Spring 2014

Charge. Point

Lauren Alessandra Wilson

Follow this and additional works at: https://surface.syr.edu/architecture_theses
Part of the Architecture Commons

Recommended Citation
https://surface.syr.edu/architecture_theses/187

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Lauren Alessandra Wilson
Primary Advisor : Brian Lonsway
Secondary A : Jonathan Massey
The goal of this thesis is to reduce dependence on fossil fuels, lower the carbon emission footprint, and ignite a paradigm shift towards clean energy usage. Architecture can play a role in increasing the accessibility of sustainable modes of transit by changing the way energy is produced and distributed throughout the city.

Accepting both the reliance and privatization of the automobile as givens, this idea caters to a transitional stage of travel, shifting from internal combustion engine vehicles to electric powered vehicles. Current technological limitations are stunting the momentum of a sustainable transit phenomenon, i.e. EV battery charge time and storage capacity, proximity of EVSE charging points to desired destinations and the capacity of the city grid to supply and distribute adequate amounts of energy. However by embracing these limitations as design objectives one can begin to develop ubiquitous charging points that not only provide reassurance against range anxiety but also brand an idea of clean energy.

The typology will be self-sustaining in terms of energy through manipulation of its facade/exterior treatment. The nodes will create a positive urban experience, and common language through, signage, lighting, coloration, and surface treatment, that showcase a cultural commitment to the new technology. As 80%-90% of charging takes place at home, these charging stations will focus on the other 10%-20% of charging that might occur in downtown lots, parking garages, on-street parking or highway stops.¹ The nodes will feed energy to modes of public and private transit as well as acting as one of several pods within the city setting the stage for a self-organizing and adaptive networked phenomenon. Charge points will be connected to a media network interface enabling the user to efficiently find the closest vacant parking space.

“A fundamental prerequisite for the major transport revolution we anticipate will be provision of sufficient electric energy.”² Challenging the conventional centralized single-sourced production and distribution of energy will allow for an interesting dynamic between production and consumer. As oppose to transporting energy from a power plant, energy will be locally produced directly from the architectural façade and into the vehicle creating a direct intersection between energies of the cities and the physical energy being consumed. The nodes will act as energy umbilici and when charging is not taking place, energy will be distributed back into the grid.

In expanding and branding this typology of infrastructure as accessible, consistent and simple to use, EV’s will emerge as a viable option for drivers.

Current U.S. Energy Consumption

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>fossil fuel oil</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>natural gas</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>coal</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>nuclear</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>biomass</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>hydro-power</td>
<td>2.8%</td>
<td></td>
</tr>
<tr>
<td>wind energy</td>
<td>0.72%</td>
<td></td>
</tr>
<tr>
<td>geothermal</td>
<td>0.4%</td>
<td></td>
</tr>
</tbody>
</table>

Total: 99.578 Quadrillion BTU

“Today, oil meets 36 percent of US energy demand, with 70 percent directed to fuels used in transportation – gasoline, diesel and jet fuel. Another 24 percent is used in industry and manufacturing, 5 percent is used in the commercial and residential sectors, and less than 1 percent is used to generate electricity. Petroleum is the main mover of our nation’s commerce and its use for transportation has made our world more intimate. It is the transportation fuel, as almost all of our nation’s transportation is dependent upon its concentrated liquid form.”

U.S. Energy Information Administration
CHALLENGES & OPPORTUNITIES

Limitations of the Electric Vehicle
Battery Performance
Energy & The Grid
Fueling Station Locality

Electric Vehicle Stock [2012]
To begin accommodating for the limitations of the EV, it is necessary to change the way energy is produced and distributed throughout the city. Charging lots must replace traditional parking lots, charging units must begin to dot the streetscape, garages must be equipped with proper EVSE equipment and electric energy must be locally produced, generating renewable energy (sun and wind), when available, and feeding unused resources back into the grid.

EV BATTERY PERFORMANCE AND COSTS

Currently the most significant challenge with the electric vehicle is its battery performance and cost. In the 85kWh Tesla Model S EV, the battery life lasts about 301 miles per 85kwh battery (at 55mph) and it takes about 9.5 hours to fully charge using a 240 volt outlet (4.5 hrs using a high power wall connector 240 volt). Other electric vehicles have much lower ranges “with a usable range of about 100 kilometer’s (km) the 24 kWh battery-powered Nissan LEAF achieves about a fifth of the range of a comparable ICE vehicle.”

QUANTITY OF ELECTRIC ENERGY FED INTO THE GRID

“How much more electricity would have to be generated if all cars and other personal vehicles were to become EVs? ... Estimates range from about 15% [Belgium] to about 45% [California] of respective total electricity consumption... A reasonable rule of thumb could be that, other things being equal, converting the personal vehicle fleet to electric drives in a higher-income jurisdiction would increase the amount of electricity that has to be generated by 15-40%.” The hub might begin to produce its own energy using renewable resources when available.

LACK OF FUELING STATIONS WITH REGARDS TO DESIRED DESTINATION

Placement of these energy nodes is very important with regards to desirable destination; other modes of transit, work, shopping center, highway stop etc. By increasing the number of supercharging stations and EVSE units we can begin to reduce range anxiety. “The Tesla Model S can charge for free at any Supercharger once enabled, unlike gas stations that require you to pay for each fill-up. Superchargers provide half a charge in about 20 minutes and are strategically placed to allow owners to drive from station to station with minimal stops.” Tesla motors has begun dispersing their charging stations around North America and Europe deliberately locating them in proximity with amenities such as diners, shopping centers, cafes, public transit stops and stations etc. There are currently only 37 stations in North America and 6 stations in Europe. By 2015 they hope to extend supercharger coverage to 98% of both the US population and Canada.
ICEs (internal combustion engines). Combustion of a fuel, normally a fossil fuel and the use of internal combustion to generate motion.

EVs (electric vehicles) uses chemical energy stored in batteries that are rechargeable. Instead of internal combustion engines they use electric motors.

ELECTRICITY AS THE IDEAL TRANSPORT FUEL

INTERNAL COMBUSTION ENGINES

- 10k Miles Driven
- $3.80 (cost of fuel national average on 8.12.13) 22 mpg (average sedan)
- $1,727 (cost of fuel for 10k miles)

ELECTRIC VEHICLES

- 10k Miles Driven
- $0.11 (kilowatt hours National Average)
- $311 (cost of fuel for 10k miles)

“Electric vehicle powertrain is more efficient at using energy than a combustion engine. Only about 20-25% of the energy stored in gas actually turns the wheels. An EV is about three times more efficient.”

ICEs and **EVs**
ELECTRIC VEHICLE (EV) STOCK IN 2012

EVI Member Countries Held Over 90% of World Electric Vehicle (EV) Stock in 2012

UNITED STATES
- EV Stock: 71,174
- EVSE Stock: 15,192

UNITED KINGDOM
- EV Stock: 8,183
- EVSE Stock: 2,866

FRANCE
- EV Stock: 20,000
- EVSE Stock: 2,100

SPAIN
- EV Stock: 787
- EVSE Stock: 705

PORTUGAL
- EV Stock: 1,862
- EVSE Stock: 1,350

DENMARK
- EV Stock: 1,388
- EVSE Stock: 878

NETHERLANDS
- EV Stock: 6,750
- EVSE Stock: 3,674

SWEDEN
- EV Stock: 1,285
- EVSE Stock: 1,215

FINLAND
- EV Stock: 271
- EVSE Stock: 271

GERMANY
- EV Stock: 5,555
- EVSE Stock: 2,821

ITALY
- EV Stock: 1,643
- EVSE Stock: 1,350

CHINA
- EV Stock: 11,573
- EVSE Stock: 8,107

JAPAN
- EV Stock: 44,727
- EVSE Stock: 5,009

INDIA
- EV Stock: 1,428
- EVSE Stock: 999

SOUTH AFRICA
- EV Stock: N/A
- EVSE: N/A

SWEDEN
- EV Stock: 1,285
- EVSE Stock: 1,215

NETHERLANDS
- EV Stock: 6,750
- EVSE Stock: 3,674

SWEDEN
- EV Stock: 1,285
- EVSE Stock: 1,215

FINLAND
- EV Stock: 271
- EVSE Stock: 271

GERMANY
- EV Stock: 5,555
- EVSE Stock: 2,821

ITALY
- EV Stock: 1,643
- EVSE Stock: 1,350

CHINA
- EV Stock: 11,573
- EVSE Stock: 8,107

JAPAN
- EV Stock: 44,727
- EVSE Stock: 5,009

INDIA
- EV Stock: 1,428
- EVSE Stock: 999

SOUTH AFRICA
- EV Stock: N/A
- EVSE: N/A

EVI MEMBER COUNTRIES HELD OVER 90% OF WORLD ELECTRIC VEHICLE (EV) STOCK IN 2012

- Approximate Percentage of Global Electric Vehicle Stock, 2012 (Total EV Stock = 180,000+)
- EV Stock: Cumulative Registration/Stock of Electric Vehicles, 2012

Electric vehicles are defined in this report as passenger car plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV), and fuel cell electric vehicles (FCEV).

See the Glossary on page 41 for more information.
Energy is currently fueled from single source power plants that feed into the city through the power grid. For example, New York’s main energy source is from Nuclear (33% nuclear, 31% natural gas, 21% hydro electric, 10% coal and 5% other.) source: New York State Energy Information Association, 2009.

While one of the greatest limitations with the electric vehicle technology is its inefficiency in charge time and battery storage capacity, architecture might begin to think about a public infrastructure that acts as an energy collection deposit feeding the transportation sector through renewable resources, produced for the city, by the city. The hub will become a positive icon, promoting stainability, and hopefully fuel a post-carbon mobility revolution.

What is Architecture’s role in setting the stage for sustainable fuel awareness?
Brief History of The Filling Station

Timeline:
- Evolution of the Filling Station
- Evolution of the Internal Combustion Engine
- The Electric Vehicle
- The Gas Station & The Charging Station
Before the 20th century obtaining gasoline was a messy and dangerous process. Motorists had to travel to their town oil refinery, fill five-gallon buckets with oil, and manually funnel the product into their vehicle. It wasn’t until 1905 that tanks were drawn from underground tanks using a push/pull lever. By 1910 tanks dispensed oil directly into the vehicle and quantity was measurable.

General stores began placing self-service split pumps at the curb, directly outside of their store, allowing vehicles to pull up and fill their tanks in the center of town. Originally these stations offered a variety of gasoline brands however in 1911 the Standard Oil trust broke apart and competitive branding and company loyalty became an important driver in the evolution of filling station typologies.

Oil companies began offering free services as incentive to buy their product. The Standard Oil Company dressed their workers up in matching uniforms and provided free tire, and auto cleaning services. Some offered automobile repair services and oil changes, others hired famous architects including Mies van der Rohe and Frank Lloyd Wright to design their stations.

Oil Companies turned these general stores into “decorated sheds,” similar to Venturi’s explanation of building as a commercial backdrop used to brand their company.

While it was once an abundant waste product, oil was soon in high demand, valuable and very expensive. After the oil crisis in the 1970’s, competitive gas pricing became much more important in attracting customers as oppose to offering free auto services.
18 0
Few places sold fuel, vehicle owners would have to fill a bucket in the outskirts of town.

1 0
The curbside station usually resided on the curb in front of general town stores, hardware, bicycle or grocery shops. They allowed for more convenient fueling however disrupted the flow of traffic.

Industrial Revolution: Before 1900 there were less than 6,000 automobiles in the United States. During the Industrial Revolution machines replaced man labor. Steam, electric and gas powered cars competed until Henry Ford, mass production and the internal combustion engine stole the market. New Energy Sources ignite a transportation revolution. Oil and steel were used to power factories and coal was used to make iron. By 1910 there were over 130,000 automobiles in the United States, 35,000 trucks and 150,000 motorcycles.

1 10
The earliest drive-in gas stations were small sheds with minimal decoration or advertisements and did not have canopies. These split-pump stations offered different gas minimal decoration or advertisements and did not have canopies. These split-pump stations offered different gas

Fantastic stations were very popular through the 20s and 30s. They were very unique designs formally based on

Sustainable gas stations are becoming more popular after the energy crisis. Designs consider ventilation, heating and cooling, natural vegetation, photovoltaic panels and sustainable systems to offset automobile pollution.

Thomas Herzog’s filling station, located just off the autobahn in Germany, uses solar panels to produce energy for the building, interior natural ventilation, and shrubs for shading.

2000
With the growing number of EVs there has been a demand for accessible charging stations around the world.

2010
There are 5,678 charging stations and 16,256 public charging points in the United States as of March, 2013.

Walter Dorwin Teague designed the most recognizable gas station in America, originally for Texaco. It was designed to be replicated out of any material as long as it was finished with white porcelain enamel and could be built in any state. Simple bands of color and the company name stretch along the edge of the canopy and building.

1 0
The need to break away from the modernized box led to more animated and dramatic structures. Large sloped "V" roofs served as both canopy and roof.

In Palm Ajo, California, Welton Becket and Associates designed a prefab glass box station prototype. Mies van der Rohe designed a prototype that considered the stations need to break away from the modernized box that led to more animated and dramatic structures. Large sloped "V" roofs served as both canopy and roof and they contained drive-ins and station-restaurants.

A shift away from the international style and towards a search for functional, yet still domestic form. The forms were more humanized. The Domestic Station gained popularity again and had masonry walls, slanted roofs, mansard roofs and/or overhanging eaves. “Throughout history, the domestic station’s popularity has stemmed from its almost universal acceptability. Because they are deemed neither tasteless nor intimidating” (Vieyra, 1979.)

An aesthetic celebration of industrial form allowed parts that were once hidden to become exposed and celebrated.

Eliot Noyes designed a prototype for mobile that was replicated 19,000 times. The plans were flexible enough to be duplicated in any setting.

1 70
Architectonic appeal celebrating peppers of structure and materiality was most important to the design of filling stations during the 1970s...

Facts from this timeline are credited to:

In 1973 Lawrence Booth designed a prototypical kit of parts that had the possibility of different assemblies depending on content and height requirements. The design expressed its structural form through its open space frame roof structure. “The building creates a poetic celebration of its materials and method of construction” (Vieyra, 1979).

Merit Petroleum had the Architects Collaborative design several stations in a brutalist style using concrete channels that were invented.

Oil Depletion: Oil Crisis of 1973 sparked a clean energy revolution. Internal combustion cars had 50 mpg (in the 50s and 60s Thunder birds and Mustangs that had 12-15 mpg). Advances in battery and clean energy sources have ignited a revolution in electric vehicle technology, including advances in battery storage and quantity of clean energy production and distribution.

1 80
A second oil crisis drove oil prices, already limited supply.

1 10
Sustainable gas stations are becoming more popular after the energy crisis. Designs consider ventilation, heating and cooling, natural vegetation, photovoltaic panels and sustainable systems to offset automobile pollution.

1 20
The domestic station was influenced by the English Picturesque Movement. Its form was associated with vernacular aesthetic to blend into residential areas. They represented comfortable and friendly services and often acquired loyal customers.

By 1925 most gas stations had car washing floors, grease pits, canopies with multiple bays and rest rooms.

Stations as decorated shed. Oil companies used stations as backdrop for commercial branding. They built architect-designed stations with specific forms, colors, signage and material to represent their corporate identity.

Car ownership increased and oil companies invested in neighborhood gas stations with vernacular aesthetic to blend into residential areas. They represented comfortable and friendly service with a positive association.

During the 1930s there was a fear of long distance travel. Companies wanted to be a familiar site that reinforced safe traveling, standardized company signs used. They began catering to the traveler, giving free maps and selling soft drinks, tobacco and snacks.

They allowed for more convenient fueling however disrupted the flow of traffic.

The curbside station usually resided on the curb in front of general town stores, hardware, bicycle or grocery shops. They allowed for more convenient fueling however disrupted the flow of traffic.

1 0
The curbside station usually resided on the curb in front of general town stores, hardware, bicycle or grocery shops. They allowed for more convenient fueling however disrupted the flow of traffic.
9 minutes
quick on eniace

THE GAS STATION

Fuel Time

THE CHARGING STATION

Fuel Time

Park and harge

Branding Sustainability

Brandin g any colors

Gasoline

of the time cars are immo ile

00 million surface parking lots in US where super chargers can potiniall e implemented

Paking lots have a vast impact on the design of cities and the character of the uilt enviornment.In some cities the cover more than 1 of the urban fabric.
Siting and Design Guidelines for Electric Vehicle Supply Equipment

By Architects and SE

The Levels of Charge
Charge Times & Sufficient Ontent

The Surface Lot

Street Parking

Fleet Parking

Parking Garage

The Service Station
As CarCharging continues to buy and consolidate charging companies and has consolidated operations with the Blink Charging Network, their slogan is "EV fueling where you live, work and play." "It is a perfect place to understand the fit and flow of electric vehicles in the larger City of Portland context."

As far as energy goes, there are no renewable energy sources supplying the chargers and supply is taken out of the grid. The biggest challenge the "Electric Avenue" is facing is clear and consistent way finding and signage, there seems an over abundance of signs that are not cohesive and clear."

As an owner’s direct benefits, charging stations will increase property traffic as well as additional time spent on the property. There are nothing but rewards for the companies utilizing these services as CarCharging pays for full installation, maintenance, electricity consumed and equipment (however profit from usage is gained by the Carcharging through user payment.)
In November of 2012, NYSERDA teamed up with the Transportation & Climate Initiative and WXY Architecture + Urban Design to prepare a report called "Siting and Design Guidelines for Electric Vehicle Supply Equipment." The document is a set of guidelines that lays out the basics of EVSE implementation and is written for developers, local governments, business owners, homeowners etc. The report hopes to establish a common language and that begins to register with the public's eye helping to diminish range anxiety, represent a community commitment to this idea of sustainable transport and essentially generate ubiquitous charging. As filling the gas tank of an ICE vehicle occurs specifically at a local gas station, one benefit of the electric vehicle (EV) is that it can, potentially, be charged "anywhere, anytime," at home, on commercial sites, downtown, surface parking lots, parking garages, street parking and DC fast charging service. The report negotiates the opportunity to promote renewable energy sources, increasing users more aware of their energy consumption by only stating their negative cost implication and design choices such as canopies, alternative power sources will add expense. In my opinion there is a gap in the discussion regarding self-sustaining energy, on-site energy production. Both Level 2 and 3 put a burden on the city electrical grid and utility upgradations and possible branch circuits might be necessary. There is a missed opportunity in the literature to link the aesthetic design of the chargers to the production and boost user awareness. It is interesting how the levels of parking correspond with functions of time, this will be important in considering types of lots based on time connection, efficiency and amount of time cars will be parked in types of lots. As Level 1 takes longer to charge it proves suitable for overnight parking, level 2 is suitable for several hour parking and level 3 is most closely associated to gas station infrastructure needs to be developed in order to sustain them. "Expanding the infrastructure network will help make EVs a viable option for all drivers, even those without garages. The benefits come from extended infrastructure networks that are consistent, accessible and easy to use from place to place." Public charging stations are nodes of intersection between the driver and the grid.
Slow charging is much more common than fast charging as it is less expensive and puts less of a burden on the grid. It uses an external charger to provide alternating current (AC) to an EV’s battery. To fully charge a battery slow charging can take anywhere from 4-20 hours.

SLOW CHARGING

Fast charging is not as common as it is much more costly. It uses an external charger to provide direct current (DC) to an EV’s battery. To fully charge a battery, fast charging can take anywhere from 0.5 to 2 hours.

FAST CHARGING
The report predicts that retailers will be among the first to implement EVSE spaces into their lots for a few different reasons, maybe to satisfy their costumers and employees, ‘green’ branding or to target a particular customer. Installation for the purposes of branding a ‘green’ identity might cause a retailer to place EVSE equipment in prime parking spaces. “Priority locations communicate to customers the value that the EVSE host places on a sustainable business while incentivizing EV drivers to patronage their store.” Commercial parking is typically in the form of surface lots, charging stations might be placed mid-lot where it can be shared between spaces. This is usually the preference of big box retailers or shopping centers with large parking lots and no adjacent building parking. Another option for surface parking might be to create a carport which allow EV spaces to be clearly distinguishable from regular parking. The added visibility allows for signage and green branding as well as shading and renewable energy source opportunities. Connections to the power grid might not be plausible and the carport solar canopies add potential for a closed loop system battery storage system.

Precedent Examples

Sierra Nevada Brewery Chico, California 2009. GE EV Carport
EVSE charging stations are suitable for on-street parking in partially busy urban centers and main streets. Zoning, space and obstacles, (planters, bike racks, fire hydrants etc.) might prove problematic in these heavily trafficked areas. Overcoming these hurdles creates a great opportunity to provide accessible and highly visible charging points in busy areas. “Municipalities or districts seeking a green identity may choose to locate EVSE spaces in prominent locations, and incorporate identity campaigns into accompanying signage.” Precedents include “Electric Avenue” on the PSU campus (Portland State University) and the London city-center, both successfully implemented strips of charging stations in dense urban areas. Power might be drawn from a nearby business who might sponsor the EVSE station, or city-owned lines.

Precedent Examples

Electric Avenue Portland, Oregon 2011

2 “Siting and Design Guidelines for Electric Vehicle Supply Equipment.”
Commercial trucking is an important and growing sector of EV charging. Large corporations that have invested in EV trucking include Duane Reade, Frito Lay and FedEx. Green loading zones should be equipped with DC Level 3 charging for quick turn-around and depending on fleet trucking usage, the charging zones might be “further from building entrances so as not to impede delivery traffic or other industrial operations.”

Precedent Examples

2 "Siting and Design Guidelines for Electric Vehicle Supply Equipment."
Parking Garages have similar advantages as carports in that the added visibility allows for signage and green branding as well as shading and renewable energy source opportunities. Connections to the power grid might not be plausible however solar canopies add potential for a closed loop system battery storage system. The garage as added potential for solar application as well as helix wind turbines similar to the Greenway Parking Garage in downtown Chicago.

Precedent Examples
Service Station: Level 3 Charging. As technology improves charging times, the typology of a drive through service station will likely be a suitable option for drivers. Currently it takes about 30 minutes to reach an 80% charge with DC Level 3 charging. Service stations are usually situated along interstate highway systems, allowing for customers to quickly and conveniently charge while in transit, roadside highway signage is essential as charging stations resemble gas station designs. “Customer amenities are crucial, as drivers will need a safe place to wait...” the service should be re-programmed with activates that users might engage in while waiting, wifi lounges, food or coffee shops, etc.

Precedent Examples
Tesla Supercharger Station Los Angeles, California 2009. Geotectura’s Green Gasoline Station Haifa, Israel 2010

Sources:

PRECEDE NTS

Precedent a and Timeline
Green a y Self Park
Plug and Play
Eight Point ne
eso Service Station
Vol o Pure Tension Pa illon
Electric enue
Sierra ada Bre ery
Gothen urg harging Station
The city of Chicago was built around the car and in our culture, people are always going to have privatized vehicles. Rather than dramatically altering the urban fabric of the city and forcing new modes of transit this design was a smaller intervention used to raise environmental impact awareness. Offering a sustainable alternative to driving in hopes of positively changing behavioral patterns.

The garage is the first LEED certified green parking garage, it has become a vibrant force bringing strong publicity to green consciousness and the carbon footprint. The construction included pre cast concrete, minimizing cost and resources at construction site and all labor and materials were sourced from within 100 mile radius.

This renewable energy infrastructure uses an exterior glazed screen that naturally ventilates the structure, it has a green roof system, cistern rain water collection system, gives privilege to electric cars and uses a double helix wind turbines to power all garage lighting. The electric wind turbines extend higher than the roof and are designed to harvest available wind power. Excess power that is not used for lighting, is returned back into the city’s grid.

The Chicago Green way houses 12 versicle-axis, stacked Helix wind turbines. Each is about 16’x4’, weighs over 1,330lbs and are supported by steel support base plates. Unlike horizontal axis wind turbines, the helical form is able to harness wind coming from any direction, they take up less space and are less noisy making them perfect for urban environments.

Photo Credit : John Picken
Photos Credited to John Picken

The eli S
made y Sauer Energy
2 k w yr
11 h it
indi eli heli tur ine produces energy

Garage Form
Vertical is Tur ine
Green col

Ventilation Through Facade Panels
Plug and Play was the winning entry for a DesignByMany competition for an Electric Vehicle Charging Station. Arcollab designed a form that would generate consciousness regarding energy, creating an intersection between the aspects of production and consumption. Ironically, the charging station units take the shape of traditional power plant smoke stacks, hoping to reverse the negative stigma associated with this form and are made of photovoltaic film, led lights, and lightweight aluminum pipes make up the frame.

The project challenges the idea of a centralized gas station and scatters the modulated system through the city with an awareness about where people are travelling to and from. They map out “play” zones in the city (food, exercise, shopping, coffee etc.) that might act as destinations points and places the charging stations in close proximity to them. The facade surface acts as an urban battery that displays amount the vehicle has been charged.

The Eight Point.one is a solar charging station designed to be marketable, yet very innovative. It had evolved through a design charrette from LAVA architects, Consuplan Structural Engineering, and Designproduction Planning all on behalf of EIGHT mbH & Co. KG in SuBen, Germany.

The charging station was designed for the top-end market sector and would target companies who are committed to sustainable, green technology. The design was developed based on an arch framework called a dihedral, exploiting metal manufacturing technologies including laser cutting and integrated 3-d data sets. The 55 sqm aluminium structure is meant to be easily assembled, disassembled and recycled.

“The solar charging stations from EIGHT enables sustainable and emissions-free e-mobility which enthuses people and therefore helps electric vehicles to become a key element of a new modern urban lifestyle. Based upon a holistic approach that combines design, technology manufacturing and process intelligence with recycling-efficient materials and intuitive user-interfaces the Point One solar charging stations are visual solutions for a new and emissions free mobility.”

LAVA Architects

"EIGHT Point One - Lava."
Foster and Partners were hired to re-design the Spanish Repsol Oil Company's new roadside image. The solution was a flexible and easily replicated system that has been implemented onto over 200 Spanish sites. The result included a canopy system made up of inverted factory made pyramids in orange, red and white (red always the highest and most prominent). The umbrellas were clustered based on the amount of pumps needed, creating an interesting three dimensionality that breaks tradition of a simple flat service station canopy.

The variables in the modulated umbrellas include height, quantity, and distance between each according to different site needs. The construction is simple and the modulated system can be reconfigured based on site conditions. The entire design is associated with a family of forms including the signage, petrol pumps, store unit and a car wash.

"Even from the air Repsol's identity is announced unmistakably. On the road, the stations are clearly identifiable from a distance and vivid and inviting when approached."

Traditional Gas Station

A "One off," no association aside from the logo and sign

Repsol Station

Moves away from traditional filling station typology and towards a visual identity

Photo Credit: Foster and Partners
Synthesis Design + Architecture, a Los Angeles firm, won a design competition for an iconic and portable charging pavilion used to brand Volvo’s new electric hybrid V60.

“We wanted to challenge the notion of solar power as something that is an additive piece of engineering infrastructure,” said Synthesis founder and principal, Alvin Huang. “The solar panels became a design feature and design driver, rather than something applied after the fact.”

The portable design disassembles to fit into the trunk of a car.

The pavilion is made up of 252 photovoltaic panels (7” x 7” panels by Ascent Solar Technologies) that are dispersed along the skin in a particular pattern based on sun exposure and optimization. A vinyl polyester mesh skin is stretched along a structure is made up of CNC milled aluminum pipes. Photovoltaic wiring is strung through the seams of the mesh fabric and connect to a battery used to charge the EV.

When tested, the pavilion generated about 450 watts of energy under optimum solar conditions.

“Pure Tension is an experimental structure that, similar to a concept car, is a working prototype that speculates on the potential future of personal mobility and alternative energy sources for transportation while also exploring digital design methodologies and innovative structural solutions.”

http://www.dezeen.com/2013/1114/volvo-pure-tension-pavilion/
It is important to the City of Portland to brand themselves as a 'Green City.' Electric Avenue is a research initiative developed by the City of Portland, Portland State University and Portland General Electric. The research partnership developed a two-year project in downtown Portland at the geographical center of the Portland Sixth Avenue Transit Mall, PSU's campus and the city center. "It is a perfect place to understand the fit and flow of electric vehicles in the larger mobility context of the city." 2

The initiative began as a response to the increase in the number of Portland electric streetcars and was meant to study the performance of charging stations, driver preference and charging habits. The programs slogan is "Visit Electric Avenue soon! Plug in, Charge up. Drive on."

The intervention includes a number of host partners (City of Portland, Portland General Electric and PSU), charging station partners (Eaton, ECCityuality, General Electric, Northwrite Inc., Shorepower etc.) and supporting partners (Nissan North America, Toyota Motor Sales, Mitsubishi North America etc.)

"With a whole range of all-electric and plug-in hybrid vehicles now coming to market, we made the choice not simply to react to their appearance, but to understand and document how they worked, how well they performed, and if they served the region’s long-view interests in urban planning, personal and freight mobility, economic development, public health, and quality of life." 3

1 Electric Avenue on the PSU Campus at SW Broadway and SW Montgomery, 2013, http://www.pdx.edu/electricavenue
2 "Electric Avenue on the PSU Campus at SW Broadway and SW Montgomery.
3 "Electric Avenue on the PSU Campus at SW Broadway and SW Montgomery."
Kjellgren Kaminsky Architects was commissioned by the Gothenburg Traffic Department to design a charging station, powered by almost entirely by solar energy. As the design was meant to represent the city’s commitment to this mode of transit, these stations will be an iconic “symbol of a more sustainable city.”

A south facing sloped roof is covered with solar panels and covers an elevated ramp that houses bikes, scooters and cars. “The design, fabricated entirely from FSC-certified local wood, strategically separates vehicles from bikes and scooters on an elevated ramp capped with a south-facing, solar cell roof.”

The structure is equipped with amenities that the user can engage in while waiting the 20 minutes for their charge including an outdoor gym, Wi-Fi connected courtyard, cafe and bicycle repair shop.

www.archdaily.com/?p=412281
Maximizing Solar Gain
Ecotect Testing
Form Manipulation
<table>
<thead>
<tr>
<th>Form</th>
<th>Tilt Area</th>
<th>Object</th>
<th>Value Range: 3400000.0 - 5070000.0 Wh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>129.6</td>
<td>43.6</td>
<td>81 4372597.5 2173925.75 2198672</td>
</tr>
<tr>
<td></td>
<td>161.9</td>
<td>60.4</td>
<td>81 4666710.5 2621377.5 2045332.625</td>
</tr>
<tr>
<td></td>
<td>147.2</td>
<td>56.1</td>
<td>81 4449283 2463542.25 1985740.875</td>
</tr>
<tr>
<td>H2</td>
<td>6.06</td>
<td>48.2</td>
<td>81 4804466.5 2739306 2065160.125</td>
</tr>
</tbody>
</table>

Form B3

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form H2

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form B3

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form H2

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form B3

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form H2

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form B3

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form H2

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form B3

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form H2

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form B3

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

Form H2

<table>
<thead>
<tr>
<th>Object Tilt Area Total Radia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>
To Build ChargePoint Parking Lot Orientation to the Sun Foundation Connection to the Ground Structure Solar Film Connection Panels and Base
CONGRATULATIONS! You are now the proud owner of a CHARGE.POINT charging station.

FELICIDADES! Usted es ahora el orgulloso propietario de una estación de carga CHARGE.POINT.

FÉLICITATIONS! Vous êtes maintenant le fier propriétaire d’une station de charge CHARGE.POINT.

恭喜你，你在是一个CHARGE.POINT充电站的主人。
Interlocking Structure: 40x
(Marine grade ply with laminate)

Hardware: 120x
(Carriage bolts, screws, twist-lock fastener and anchor bolts)

Panels: 9x

PA : 1x
PB : 1x
PC : 1x

P1 : 1x
P2 : 1x
P3 : 1x
P4 : 1x
P5 : 1x
P6 : 1x

S1 : 1x
S2 : 1x

P10 : 3x
P11 : 3x
P12 : 3x

P1 : 1x
P2 : 1x
P3 : 1x
P4 : 1x
P5 : 1x
P6 : 1x
P7 : 3x
P8 : 3x
P9 : 3x

PF : 3x
PE : 3x
PD : 3x

C1 : 2x
C2 : 2x
C3 : 2x
C4 : 1x
C5 : 1x
C6 : 1x

H1 : 40x
H2 : 40x
H3 : 20x
H4 : 20x
NOTE: The components for corners 2, 3 and 4 may be constructed in two different ways based on solar orientation. See section for assembly instructions.

1. Please use the Charging.Station App to locate your parking space and orient your Charging Station.

2. Based on your orientation the App should help you understand how parts are assembled i.e. either tilted up or down on the Z-axis.

>> Connect to the Charge.Point App and locate your parking spot before installing!

>> Components for corners 2, 3 and 4 are assembled in different ways to maximize your solar energy gain. For questions please call 1 (800) CHARGE.
2’ - 4"

Components:
PA: 1x
PB: 1x
PC: 1x
P5: 1x
P6: 1x

1. Set concrete footings into 3’-0” holes (6” below the frost line) and 15” in diameter.

NOTE: Make sure that forms are perfectly horizontal and 2’ - 4” apart.

2. Set adjustable anchors in locations using diagram below.
STRUCTURE:

Components:
- PA : 1x
- PB : 1x
- PC : 1x
- P5 : 1x
- P6 : 1x

1. Assemble interlocking structure for Corner 1 (C1).
STRUCTURE:

Components:
- PA: 1x
- PB: 1x
- PC: 1x
- P5: 1x
- P6: 1x

1. Assemble interlocking structure for Corner 1 (C1).

>> Repeat at corners 2 and 3.

>> Note Assembly might change based on which corner is south facing. Please see Charge.Point App.
SOLAR FILM:
ChargePoint units must have access to grid system as the unit acts as a self-sufficient all year round, grid tied system, feeding the grid when not charging an EV.