Syracuse University

SURFACE

Architecture Senior Theses

School of Architecture Dissertations and Theses

Spring 2014

Charge. Point

Lauren Alessandra Wilson

Follow this and additional works at: https://surface.syr.edu/architecture_theses

Part of the Architecture Commons

Recommended Citation

Wilson, Lauren Alessandra, "Charge. Point" (2014). Architecture Senior Theses. 187. https://surface.syr.edu/architecture_theses/187

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

Lauren Alessandra Wilson

Primary Advisor : Brian Lonsway Secondary A : Jonathan Massey

CHARGE.POINT

TABLE OF CONTENTS

+ CONTENTION

Abstract Energy Crisis

+CHALLENGES & OPPORTUNITIES

Limitations of the Electric Vehicle Battery Performance Energy & The Grid Fueling Station Locality

Electric Vehicle Stock [2012]

+ HISTORY & COMPARISON

History of The Filling Station

An Evolution of the Filling Station
An Evolution of the Internal Combustion Engine
vs. the Electric Vehicle

The Gas Station & The Charging Station

+SITING & DESIGN

Ageny

A Critique in the Absence of Sustainability Of "Siting and Design Guidelines for Electric Vehicle Supply Equipment" By WXY Architects and NYSERDA

The Levels of Charge
Charge Times & Sufficient Contexts

The Surface Lot On-Street Parking Fleet Parking Parking Garage The Service Station

+PRECEDENTS

+BIBLIOGRAPHY

CONTENTION

The goal of this thesis is to reduce dependence on fossil fuels, lower the carbon emission footprint, and ignite a paradigm shift towards clean energy usage. Architecture can play a role in increasing the accessibility of sustainable modes of transit by changing the way energy is produced and distributed throughout the city.

Accepting both the reliance and privatization of the automobile as givens, this idea caters to a transitional stage of travel, shifting from internal combustion engine vehicles to electric powered vehicles. Current technological limitations are stunting the momentum of a sustainable transit phenomenon, i.e. EV battery charge time and storage capacity, proximity of EVSE charging points to desired destinations and the capacity of the city grid to supply and distribute adequate amounts of energy. However by embracing these limitations as design objectives one can begin to develop ubiquitous charging points that not only provide reassurance against range anxiety but also brand an idea of clean energy.

The typology will be self-sustaining in terms of energy through manipulation of its facade/exterior treatment. The nodes will create a positive urban experience, and common language through, signage, lighting, coloration, and surface treatment, that showcase a cultural commitment to the new technology. As

80%-90% of charging takes place at home, these charging stations will focus on the other 10%-20% of charging that might occur in downtown lots, parking garages, on-street parking or highway stops. The nodes will feed energy to modes of public and private transit as well as acting as one of several pods within the city setting the stage for a self-organizing and adaptive networked phenomenon. Charge points will be connected to a media network interface enabling the user to efficiently find the closest vacant parking space.

"A fundamental prerequisite for the major transport revolution we anticipate will be provision of sufficient electric energy." Challenging the conventional centralized single-sourced production and distribution of energy will allow for an interesting dynamic between production and consumer. As oppose to transporting energy from a power plant, energy will be locally produced directly from the architectural façade and into the vehicle creating a direct intersection between energies of the cities and the physical energy being consumed. The nodes will act as energy umbilici and when charging is not taking place, energy will be distributed back into the grid.

In expanding and branding this typology of infrastructure as accessible, consistent and simple to use, EV's will emerge as a viable option for drivers.

WXY Architecture + Urban Design, "Siting and Design Guidelines for Electric Vehicle Supply Equipment." NYSERDA and Development Authority, November. 2012. 1.

Gilbert, Richard, and Anthony Perl. Transport Revolutions: Moving People and Freight Without Oil. United Kingdom: Earthscan, 2008.

CURRENT U.S. ENERGY CONSUMPTION

total= 99.578 Quadrillion BTU

non-renewable	fossil fuel oil	37%	
	natural gas	25%	
	coal	21%	92%
	nuclear	9%	
		:	
	biomass	4%	
	hydro-power	2.8%	
	wind energy	0.72%	8%
	geothermal	0.4%	
renewable		.01%	
		non-renewable fossil fuel oil natural gas coal nuclear biomass hydro-power wind energy geothermal	non-renewable fossil fuel oil 37% natural gas 25% coal 21% nuclear 9% biomass 4% 2.8% hydro-power wind energy geothermal

http://geology.com/articles/renewable-energy-trends/

+CHALLANGES & OPPORTUNITIES

Limitations of the Electric Vehicle
Battery Performance
Energy & The Grid
Fueling Station Locality

Electric Vehicle Stock [2012]

CHALLANGES & OPPORTUNITIES

- +

CHALLENGES & OPPORTUNITIES

To begin accommodating for the limitations of the EV, it is necessary to change the way energy is produced and distributed throughout the city. Charging lots must replace traditional parking lots, charging units must begin to dot the streetscape, garages must be equipped with proper EVSE equipment and electric energy must be locally produced, generating renewable energy (sun and wind), when available, and feeding unused resources back into the grid.

+ EV BATTERY PERFORMANCE AND COSTS

Currently the most significant challenge with the electric vehicle is its battery performance and cost. In the 85kWh Tesla Model S EV, the battery life lasts about 301 miles per 85kwh battery (at 55mph) and it takes about 9.5 hours to fully charge using a 240 volt outlet (4.5 hrs using a high power wall connector 240 volt). Other electric vehicles have much lower ranges "with a usable range of about 100 kilometer's (km) the 24 kWh battery-powered Nissan LEAF achieves about a fifth of the range of a comparable ICE vehicle."

+ QUANTITY OF ELECTRIC ENERGY FED INTO THE GRID

"How much more electricity would have to be generated if all cars and other personal vehicles were to become EVs? Estimates range from about 15% [Belgium] to about 45% [California] of

respective total electricity consumption... A reasonable rule of thumb could be that, other things being equal, converting the personal vehicle fleet to electric drives in a higher-income jurisdiction would increase the amount of electricity that has to be generated by 15-40%." The hub might begin to produce its own energy using renewable resources when available.

+ LACK OF FUELING STATIONS WITH REGARDS TO DESIRED DESTINATION

Placement of these energy nodes is very important with regards to desirable destination; other modes of transit, work, shopping center, highway stop etc. By increasing the number of supercharging stations and EVSE units we can begin to reduce range anxiety. "The Tesla Model S can charge for free at any Supercharger once enabled, unlike gas stations that require you to pay for each fill-up...Superchargers provide half a charge in about 20 minutes and are strategically placed to allow owners to drive from station to station with minimal stops." Tesla motors has begun dispersing their charging stations around North America and Europe deliberately locating them in proximity with amenities such as diners, shopping centers, cafes, public tranit stops and stations etc,. There are currently only 37 stations in North America and 6 stations in Europe. By 2015 they hope to extend supercharger coverage to 98% of both the US population and Canada. 5

Tesla. "Supercharger, The Fastest Charging Station on the Planet" 2013. http://www.teslamotors.com /supercharger

Clean Energy Ministerial,
"Electric Vehicles Initiative,
International Energy
Agency Global EV Outlooric
Understanding the Electric
Vehicle Landscape to
2020." April 2013
http://www.iea.org/topics/tra

³Gilbert, Richard, and Anthony Perl. Transport Revolutions: Moving People and Freight Without Oil. United Kingdom: Earthscan, 2008.

⁴ "Supercharger, The Fastest Charging Station on the Planet"

[&]quot;Supercharger, The Fastest Charging Station on the Planet"

ELECTRICITY AS THE IDEAL TRANSPORT FUEL

LVs [electric vehicles]
uses chemical energy
stored in batteries that are
rechargeable. Instead of
internal combustion
engines they use electric

motors.

\$0.11 kilowatt hours (National Average)

Driven

\$311 :

Fastest Charging Station on the Planet" 2013.

ELECTRIC VEHICLES

ELECTRIC VEHICLE (EV) STOCK IN 2012

EVI MEMBER COUNTRIES HELD OVER 90% OF WORLD ELECTRIC VEHICLE (EV) STOCK IN 2012

Map Credit: Clean Energy Ministerial, "Electric Vehicles Initiative, International Energy Agency, Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020." April 2013

UNITED STATES EV Stock: 71,174

EVSE Stock: 15,192

UNITED KINGDOM

EVSE Stock: 2,866

FRANCE

EV Stock: 20,000 EVSE Stock: 2,100

SPAIN

EV Stock: 787 EVSE Stock: 705

EV Stock: 1,862

EV Stock: 8,183

PORTUGAL

EVSE Stock: 1,350

DENMARK

EV Stock: 1,388 EVSE Stock: 3,978

NETHERLANDS

EV Stock: 6,750 EVSE Stock: 3,674

SWEDEN

EV Stock: 1,285 EVSE Stock: 1,215

FINLAND

EV Stock: 271 EVSE: 2

(does not include electric block heaters also used for charging)

GERMANY

EV Stock: 5,555 EVSE Stock: 2,821

ITALY

EV Stock: 1,643 EVSE Stock: 1,350

CHINA

EV Stock: 11,573 EVSE Stock: 8,107

6.2%

JAPAN EV Stock: 44,727 EVSE Stock: 5,009

INDIA

EV Stock: 1,428 EVSE Stock: 999

SOUTH AFRICA

EV Stock: N/A EVSE: N/A

Cumulative Registration/Stock of Electric Vehicles, 2012 EV Stock: Non-Residential "Slow" and "Fast" Electric Vehicle Supply Equipment (EVSE) Stock, 2012 Electric vehicles are defined in this report as passenger car plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV), and fuel cell electric vehicles (FCEV). See the Glossary on page 41 for more information.

2012 (Total EV Stock = 180,000+)

Approximate Percentage of Global Electric Vehicle Stock,

ENERGY

"A fundamental prerequisite for the major transport revolution we anticipate - moving from ICEs to electric motors - will be provision of sufficient electric energy."

Energy is currently fueled from single source power plants that feed into the city through the power grid. For example, New York's main energy source is from Nuclear (33% nuclear, 31% natural gas, 21% hydro electric, 10% coal and 5% other.) source: New York State Energy Information Association, 2009.

Gilbert, Richard, and Anthony Perl. Transport Revolutions: Moving People and Freight Without Oil. United Kingdom: Earthscan, 2008.

New York State Energy Information Association, "New York States Energy Sources." 2009

ENERGY IS SINGLE SOURCED, MILES AWAY FROM ITS ULTIMATE DESTINATION. A LARGE PERCENTAGE OF THE ENERGY IS LOST IN TRANSITION.

What is Architectures role in setting the stage for sustainable fuel awareness?

While one of the greatest limitations with the electric vehicle technology is its inefficiency in charge time and battery storage capacity, architecture might begin to think about a public infrastructure that acts as an energy collection deposit feeding the transportation sector through renewable resources, produced for the city, by the city. The hub will become a positive icon, promoting stainability, and hopefully fuel a post-carbon mobility revolution.

SHIFT TOWARDS DECENTRALIZED ENERGY PRODUCTION, AND DISTRIBUTION WITHIN THE URBAN CENTER SOURCING RENEWABLE ENERGY WHEN AVAILABLE.

HISTORY & COMPARISON

+ HISTORY & COMPARISON

Brief istory of The Filling Station

Timeline

n E olution of the Filling Station n E olution of the nternal om ustion Engine s the Electric Vehicle

The Gas Station & The harging Station

FILLING STATION

Before the 20th century obtaining gasoline was a messy and dangerous process. Motorists had to travel to their town oil refinery, fill five gallon buckets with oil and manualy funnel the product into their vehicle. It wasn't until 1905 that tanks were drawn from underground tanks using a push/pull lever. By 1910 tanks dispensed oil directly into the vehicle and quantity was measurable.

General stores began placing self service split pumps at the curb, directly outside of their store, allowing vehicles to pull up and fill their tanks in the center of town. Originally these stations offered a variety of gasoline brands however in 1911 the Standard Oil trust broke apart and competitive branding and company loyalty became an important driver in the evolution of filling station typologies.

Oil companies began offering free services as incentive to buy their product. The Standard Oil Company dressed their workers up in matching uniforms and provided free tire, and auto cleaning services. Some offered automobile repair services and oil changes, others hired famous architects including Mies van der Rohe and Frank Lloyd Wright to design their stations.'

Oil Companies turned these general stores into "decorated sheds," similar to Venturi's explanation of building as a commercial backdrop used to brand their company.²

While it was once an abundant waste product, oil was soon in high demand, valuable and very expensive. After the oil crisis in the 1970's, competitive gas pricing became much more important in attracting costumers as oppose to offering free auto services.

Vieyra, Daniel. "Fill'er Up" An Architectural History of America's Gas Stations. New York: Macmillan Publishing.

Vieyra, Daniel. "Fill'er Up"

FILLING STATION

18 0

Few places sold fuel, vehicle owners would have to fill a bucket in the outskirts of town.

1 0

The curbside station usually resided on the curb in front of general town stores, hardware, bicycle or grocery shops. They allowed for more convenient fueling however disrupted the flow of traffic.

Industrial Revolution: Before 1900 there were less than 6,000 automobiles in the United States. During the Industrial Revolution machines replaced man labor. Steam, electric and gas powered cars competed until Henry Ford, mass production and the internal combustion engine stole the market. New Energy Sources ignite a transportation revolution. Oil and steam were used to power factories and coal was used to make iron. By 1910 there were over 130,000 automobiles in the United States, 35,000 trucks and 150,000 motorcycles.

1 10

The earliest drive-in gas stations were small sheds with minimal decoration or advertisements and did not have canopies. These split-pump stations offered different gas brands until the Standard Oil Trust broke up in 1911. This caused fierce competition and brand loyalties. They added services including windshield wiping, oil checks, as well as pits and lifts for car maintenance. A Lubritorium was a building, eventually enclosed, that allowed for services in all weather and were equipped with pits and lifts. The Lubritorium doubled the size of the station.

1 20

The domestic station was influenced by the English Picturesque Movement. Its form was associated with vernacular aesthetic to blend into residential areas. They represented comfortable and friendly services and often aguired loyal customers.

By 1925 most gas stations had car washing floors, grease pits, canopies with multiple bays and rest rooms.

Stations as decorated shed.; Oil companies used stations as backdrop for commercial branding. They built architect-designed stations with specific forms, colors, signage and material to represent their corporate identity.

Car ownership increased and oil companies invested in neighborhood gas stations with vernacular aesthetic to blend into residential areas. They represented comfortable and friendly service with a positive association.

1 30

Prefabricated Gas stations using metal and glass were mass produced and erected very quickly. Roof lines became flat and forms took an oblong box shape. Terra cotta was a popular facade material used.

During the 1930s there was a fear of long distance travel. Companies wanted to be a familiar site that reinforced safe traveling, standardized company signs used. They began catering to the traveler, giving free maps and selling soft drinks, tobacco and snacks.

Fantastic stations were very popular through the 20s and 30s. They were very unique designs formally based on gaining the attention of the adventurous traveler. Their forms took the shapes of air planes, lighthouses, shells, Castles etc, while other mimicked foreign design.

Respectable stations were sparked by the city beautiful movement and gained prestige through formal association. Their forms mimicked courthouse, institutions etc.

1 0

The functional station was influenced by the International Style of architecture and the German Bauhaus. It was an simple oblong box favored by modernists lacking ornamentation and nostalgia to historical forms.

Frank Lloyd Wrights idea that the gas station would transform a city. "The roadside service station may be an embryo the future city service distribution center. Each station may grow into a well-designed, convenient neighborhood distribution center naturally develoing as a meeting place, restaurant, restroom...." (Wright, 1943).

Walter Dorwin Teague designed the most recognizable gas station in America, originally for Texaco. It was designed to be replicated out of any material as long as it was finished with white porcelain enamel and could be built in any state. Simple bands of color and the company name stretch along the edge of the canopy and building.

1 0

The need to break away from the modernized box led to more animated and dramatic structures. Large sloped "V" roofs served as both canopy and roof.

In Palo Alto, California, Welton Becket and Associates designed a frefab glass box station prototype.

Mies van der Rohe designed a prototype that considered the stations need to break away from the modernized box that led to more animated and dramatic structures. Large sloped "V" roofs served as both canopy and roof they contained drive -ins and station-restaurants.

A shift away from the international style and towards a search for functional, yet still domestic form. The forms were more humanized. The Domestic Station gained popularity again and had masonry walls, slanted roofs, mansard roofs and/or overhanging eves. "Throughout history, the domestic station's popularity has stemmed from its almost universal acceptability. Because they are deemed neither tasteless nor intimidating" (Vieyra, 1979.)

1 0

An asthetic celebration of industrial form allowed parts that were once hidden to become exposed and celebrated.

Eliot Noyes designed a prototype for mobile that was replicated 19,000 times. The plans were flexible enough to be duplicated in any setting.

1 70

Architectonic appeal celebrating poetics of structure and materiality was most important to the design of filling stations during the 1970s. Facts from this timeline are credited to:

Facts from this timeline are credited to : Vieyra, Daniel. "Fill'er Up" An Architectural History of America's Gas Stations. 1979 New York: Macmillan Publishing. In 1973 Lawrence Booth designed a prototypical kit of parts that had the possibility of different assemblies depending on contet and height requirements. The design expressed its structural form through its open space frame roof structure. "The building creates a poetic celbration of its materials and method of construction" (Vieyra, 1979).

Merit Petroleum had the Architects Collaborative design several stations in a brutalistic style using concrete channels that were inverted.

Oil Depletition: Oil Crisis of 1973 sparked a clean energy revolution. Internal combustion cars had 50 mpg (in the 50s and 60s Thunder birds and Mustangs that had 12-15 mpg). Advances in battery and clean energy sources have ignited a revolution in electric vehicle technology including advances in battery storage and quanity of clean energy production and distributition.

80

A second oil crisis drove oil prices, already limited supply.

1

Sustainable gas stations are becoming more popular after the energy crisis. Designs consider ventilation, heating and cooling, natural vegitation, photovoltaic panals and sustainable systems to offset automobile pollution.

Thomas Herzog's filling station, located just off the autobaun in Germany, uses solar panels to produce energy for the building, interior natural ventilation, and shrubs for shading.

2000

With the growing number of EVs there has been a demand for accessible charging stations around the world.

2010

There are 5,678 charging stations and 16,256 public charging points in the United States as of March, 2013.

THE GAS STATION

THE CHARGING STATION

SITING & DESIGN

+ SITING & DESIGN

geny

riti ue

f Siting and Design Guidelines for Electric Vehicle Supply Equipment " By rchitects and SE

The Le els of harge harge times & Sufficient onte ts

The Surface Lot

n Street Parking

Fleet Parking

Parking Garage

The Ser ice Station

When asked what market CarCharging provided the most services to, she described business as being steady across the board, catering to the needs of retail, shopping malls, hospitals, hotels, parking garages, multifamil, condo and residential. The company works closely with several very loyal retailers including IKEA and Walgreens, whose aim is to spread charging stations to stores worldwide.

As far as an owner's direct benefits, charging stations will increase property traffic as well as additional time spent on the property. There are nothing but rewards for the companies utilizing these services as CarCharging pays for full installation, maintenance, electricity consumed and equipment (however profit from usage is gained by the Carsharing through user payment.)

As CarCharging continues to buy and consolidate charging companies the next step will be to create a ubiquitous image across their network. According to Tamargo, all energy consumed from the units is taken from the grid and the company does not have a business model for renewable generation of energy.

AGENCY

VEHICLE COMPANIES

Tesla, Volvo and BMW are three examples of car companies that have extended their businesses into the electric vehicle market and have become recently interested in this idea of a charging network. All three companies have produced models for charging stations, each with aesthetic quality mimicking the language of their brand.

Tesla has produced over 200 solar powered Superchargers making state-by-state travel feasible with stations about 80 miles apart. The solar powered charging stations take advantage of DC charging, taking about 22 minutes to fully charge. "A properl e uipped Model S can charge for free at an Supercharger once enabled. unlike gas stations that require you to pay for each fill-up. Simply pull up and plug in, take a quick bathroom or food break, and get back on the road."

Most of Tesla Supercharger stations reside in the California, Vancouver, Dallas, and Portland regions however within 6 months the company plans to extend their network to many of the larger cities in the US and in The company incentive for dispersing these stations across the country is to increase vehicle sales and thus only a Tesla vehicle can currently charge at the Supercharger stations (although owner, Elon Musk mentioned that he eventually wishes to partner with other EV companies to increase vehicle compatibility and usage.)

- Tesla. "Supercharger, The Fastest Charging Station on the Planet" http://www.teslamotors.com/ supercharger
- Cobb. Jeff. "Tesla Promises 'Free' Supercharger Access 'Forever' For All Its Future Cars." May 30, 2013. http://www.hybridcars.com/

RETAIL COMMERCIAL

IKEA and Walgreens are two commercial companies have recently taken advantage of CarChargings electric vehicle charging services. Installation, maintenance, equipment, and energy is free as CarCharging is essentially profiting from motorist usage. IKEA and Walgreen's .however, benefit from increase in property traffic as well as additional time spent on the property. As of June, 2013 IKEA has purchased more than 55 Blink charging stations and has implemented them in more than half of their stores, country-wide.

The company is well known for sustainability efforts. Increasing access to EV charging stations advances our goal of helping coworkers and customers as well as mem ers of the communities in which we operate more sustaina le lives. ² The company is well known for its sustainability efforts and joining the EV network was important to Other green efforts include using recycled waste materials in their products, using energy efficient lighting and HVAC as well as recycled construction materials in their stores and corporate offices.

> Roth, Joseph. "IKEA to June 27. www.IKFA.com

Roth, Joseph, "IKEA to Grow Presence of Electric Vehicle Charging Stations with Units at 8 More locations Extending Reach Beyond the Western U.S.

THE CITY

seven

context.

companies to test and gain

public awareness of how this

technology fits into the urban

"It is a perfect place to under-

stand the fit and flow of

electric vehicles in the larger

mo ilit conte t of the cit ...

we do this because the rapid

Portland State Universit and population growth, mass urbanization, and energy security issues make sustainable urban charging stations in what they are calling 'America's Green est Cit .' "After all, this is a city with a downtown free-rail zone public transportation, solar-powered parking meters, 315 miles of in-city bikeways and 10.000 acres of parkland." supply is taken out of the grid. They implemented an 'Electric Avenue' on the Portland State University campus, centralized between the light rail train stations and Portland's Sixth Avenue Transit Mall. It contains seven charging stations from different charging

avenue/

Portland State University "Electric Avenue."

- Grow Presence of Electric Vehicle Charging Stations with Units at 8 More locations Extending Reach Beyond the Western U.S.'

Walgreens Charging Stations Photo Credit: Green Tech Lead

The City of Portland Charging Station Photo Credit: Hans van der Meer

Electric Avenue Portland Photo Credit: OTREC

the Cit of Portland Partners up to provide a network of

mobility a top-of-the-agenda item for every metropolitan region on the planet in the decades ahead." 2 As far as energy goes, there are no renewable energy sources supplying the chargers and

THE UNIVERSITY

The biggest challange the "Electric Avenue" is facing is clear and consistent way finding and signage, there seems an over abundance of signs that are not cohesive and clear.

- Portland State University "Electric Avenue." 2013. http://www.pdx.edu/electric
- "Electric Avenue."

Volvo Pure Tension Pavilion Photo Credit: Jessica Reeves

BMW Point.One S Photo Credit: BMW

Tesla Supercharger Station Photo Credit: Tesla Motors

IKEA Charging Stations Photo Credit: Jessica Reeves

SITING & DESIGN

In November of 2012, NYSERDA teamed up with the Transportation & Climate Initiative and WXY Architecture + Urban Design to prepare a report called "Siting and Design Guidelines for Electric Vehicle Supply Equipment." The document is a set of guidelines that lays out the basics of EVSE implementation and is written for developers, local governments, business owners, homeowners etc. The report hopes to establish a common language that begins to register with the public's eve helping to diminish range anxiety, represent a community commitment to this idea of sustainable transport and essentially generate ubiquitous charaina.

As filling the gas tank of an ICE vehicle occurs specifically at a local gas station, one benefit of the electric vehicle (EV) is that it can, potentially, be charged 'anywhere, anytime,": at home, on commercial sites, downtown surface parking lots, parking garages, street parking and DC fast charging service stations. Siting and Design Guidelines for Electric Vehicle Supply Equipment describes factors of installation, access and operation associated with these different contexts.

Where 80% of charging occurs at home however the report caters to the other 20% of charging occurring else ware. 1 Statistics represent a steady growth in the number of EV's driven each year, the necessary public infrastructure needs to be developed in order to sustain them. "Expanding the infrastructure network will help make EV's a viable option for all drivers, even those without garages. The benefits come from extended infrastructure networks that are consistent, accessible and easy to use from place to place." 2

Public charging stations are nodes of intersection between the driver and the grid. The charging points will have to be transformable as technology is developing at a rapid pace, batteries will soon charge more quickly and store greater amounts of energy. Charging stations, according to the report, are catagorized by 3 different groups according to their maximum voltage, and charge time. Level 1 charging takes 8-20 hrs for full charge with a maximum of 120V (suitable for overnight parking and are particulary found at the home). Level 2 charging points are usually free standing units that take about 4-8hrs with a maximum of 240V and are suitable for indoor and outdoor locations where cars are parked for a few hours at a time. Level 3 are also freestanding units and take about 30 minutes to charge 80% of the EV battery with a maximum of 480V. 3

The report neglects the opportunity to promote renewable energy sources and make users more aware of their energy consumption by only stating their negative cost implication "...design choices such as canopies, alternative power sources will add expense." In my opinion there is a gap in the discussion regarding self-sustaining energy, on-site energy production. Both Level 2 and 3 put a burden on the city electrical grid and utility upgrades and possible branch circuits might be necessary. There is a missed opportunity in the literature to link the consumption with the production and boost user awareness.

WXY Architecture + Urban

Design, "Siting and Design Guidelines for Electric

Vehicle Supply Equipment."

NYSERDA and Develop-

ment Authority, November,

² WXY Architecture + Urban

Design "Siting and Design

Guidelines for Flectric

Vehicle Supply Equipment."

3 WXY Architecture + Urban

Design "Siting and Design

Guidelines for Flectric

Vehicle Supply Equipment."

4 WXY Architecture + Urban

Design "Siting and Design

Guidelines for Flectric

Vehicle Supply Equipment."

2012, 1.

It is interesting how the levels of parking correspond with functions of time, this will be important in considering types of lots based on grid connections, efficiency and amount of time cars will be parked in types of lots. As Level 1 takes longer to charge it proves suitable to for overnight parking, level 2 is suitable for several hour parking and level 3 is most closely associated to gas station

A network interface is important in connecting the driver to a vacant charging point, either through a cellular device or on-vehicle systems. It is important to create a language that carries from every aspect of interface, whether it be urban (signage), parking spot (paint designating space, lighting) EVSE interface (mounting approach, coloration and form of unit, number of connectors, etc) and technology interface (app on a smart phone or in-vehicle system.)

Branding plays an interesting role in promoting ease of use and accessibility. "the user experience at the EVSE site presents branding opportunities for the EVSE host's, installer's or partners' purposes" 5 (the perspective of the report clearly targets the buyer or developer where my thesis will target the community, user and the environment.) It goes on to discuss the importance of clarity and consistency, "common visual identity will reduce confusion and increase public awareness of EVSE." 6 Currently there are dozens of signs, symbols and colors used for EVSE guidance, posing an issue with communication. It is important to create a known symbol and common language that will be replicated on every sign and while signs will be needed in different contexts with different associated needs, consistency is key. The report suggests using an electric vehicle symbol as the largest and most pronounced aspect of the sign above the words 'electric vehicle charging station,' and somehow an indication that only ICE's and hybrids may not use these spaces. Also included should be a time limit to parking, whether the space is level 1,2 or 3 and how many hours the space is available for, as well as possible payment methods. One interesting branding technique discussed, included designating priority spots for EV's that sit directly outside the entrance to buildings.

WXY Architecture + Urban

Design "Siting and Design

Guidelines for Electric

Vehicle Supply Equipment."

typology. As technology improves charges might take only minutes and will potentially become suitable for convenient drive-through service.

WXY Architecture + Urban

Design Siting and Design Guidelines for Electric Vehicle Supply Equipment."

WXY Architecture + Urban Design Siting and Design Guidelines for Electric Vehicle Supply Equipment."

LEVELS OF CHARGE

Slow charging is much more common than fast charging as it is less expensive and puts less of a burden on the grid. It uses an external charger to provide alternating current (AC) to an EV's battery. To fully charge a battery slow charging can take anywhere from 4-20 hours.

SLOW CHARGING

FAST CHARGING

Fast charging is not as commmon as it is much more costly. It uses an external charger to provide direct current (DC) to an EV's battery. To fully charge a battery, fast charging can take anywhere from 0.5 to 2 hours.

LEVEL 1

+Uses an Alternating Current (AC)

- + Sufficient for home charging or overnight pu ic charging + Standard 1772
- +Least effecient

8-20+ Hours of Charge Time

SLOW CHARGING

LEVEL 2

+Uses an Alternating Current (AC) +Sufficient for outdoor locations

- + Several hour parking +Site will need utilit upgrades
- + Standard 1772 +Burden on e isting electrical s stem

4-8 Hours of Charge Time

SLOW CHARGING

LEVEL 3

+Direct Current (DC)
+ Sufficient for pu lic fueling

- + Drive in 30 mins +Site will need utilit upgrades
- + Has high electrical curent, DC charging + Uses a Standard 1772 com o
- +Burden on e isting electrical s stem

0.5 Hours of Charge Time

FAST CHARGING

SURFACE LOT

Level 1 and 2 Charging

The report predicts that retailers will be among the first to implement EVSE spaces into their lots for a few different reasons, maybe to satisfy their costumers and employees, 'green' branding or to target a particular customer. Installation for the purposes of branding a 'green' identity might cause a retailer to place EVSE equipment in prime parking spaces. "Priority locations communicate to customers the value that the EVSE host places on a sustainable business while incentivizing EV drivers to patronage their store." Commercial parking is typically in the form of surface lots, charging stations might be placed mid-lot where it can be shared between spaces. This is usually the preference of big box retailers or shopping centers with large parking lots and no adjacent building parking. Another option for surface parking might be to create a carport which allow EV spaces to be clearly distinguishable from regular parking. The added visibility allows for signage and green branding as well as shading and renewable energy source opportunities. Connections to the power grid might not be plausible and the carport solar canopies add potential for a closed loop system battery storage system.

Precedent Examples

Sierra Nevada Brewery Chico, California 2009. GE EV Carport Plainview, Connecticut 2010. Plug and Play Los Angeles, California 2012

WXY Architecture + Urban Design, "Siting and Design Guidelines for Electric Vehicle Supply Equipment." NYSERDA and Development Authority, November, 2012, 1.

- +

ON STREET PARKING

Level 1 and 2 Charging

EVSE charging stations are suitable for on-street parking in partiality busy urban centers and main streets. Zoning, space and obstacles, (planters, bike racks, fire hydrants etc.) might prove problematic in these heavily trafficked areas. Overcoming these hurdles creates a great opportunity to provide accessible and highly visible charging points in busy areas. "Municipalities or districts seeking a green identity may choose to locate EVSE spaces in prominent locations, and incorporate identity campaigns into accompanying signage." Precedents include "Electric Avenue" on the PSU campus (Portland State University) and the London city-center, both successfully implemented strips of charging stations in dense urban areas. Power might be drawn from a nearby business who might sponsor the EVSE station, or city-owned lines.

Precedent Examples

Electric Avenue Portland, Oregon 2011

WXY Architecture + Urban Design, "Siting and Design Guidelines for Electric Vehicle Supply Equipment." NYSERDA and Development Authority, November, 2012, 1.

[&]quot;Siting and Design Guidelines for Electric Vehicle Supply Equipment."

FLEET CHARGING

Level 1, 2 or 3 Charging

Commercial trucking is an important and growing sector of EV charging. Large corporations that have invested in EV trucking include Duane Reade, Frito Lay and FedEx. Green loading zones should be equipped with DC Level 3 charging for quick turn-around and depending on fleet trucking usage, the charging zones might be "further from building entrances so as not to impede delivery traffic or other industrial operations."

Precedent Examples

Duane Reade, New York 2011. Frito Lay, New York 2010. Fedex, Tennessee 2008.

WXY Architecture + Urban Design, "Siting and Design Guidelines for Electric Vehicle Supply Equipment." NYSERDA and Development Authority, November, 2012, 1.

[&]quot;Siting and Design Guidelines for Electric Vehicle Supply Equipment."

PARKING GARAGE

Level 1 or 2 Charging

Parking Garages have similar advantages as carports in that the added visibility allows for signage and green branding as well as shading and renewable energy source opportunities. Connections to the power grid might not be plausible however solar canopies add potential for a closed loop system battery storage system. The garage as added potential for solar application as well as helix wind turbines similar to the Greenway Parking Garage in downtown Chicago.

Precedent Examples

Greenway Self-Park Chicago, Illinois 2010. KKA Electric Charging Station Soleil, Sweden 2013

WXY Architecture + Urban Design, "Siting and Design Guidelines for Electric Vehicle Supply Equipment." NYSERDA and Development Authority, November,

SERVICE STATION

Level 3 Charging

Service Station: Level 3 Charging. As technology improves charging times, the typology of a drive through service station will likely be a suitable option for drivers. Currently it takes about 30 minutes to reach an 80% charge with DC Level 3 charging. Service stations are usually situated along interstate highway systems, allowing for customers to quickly and conveniently charge while in transit, roadside highway signage is essential as charging stations resemble gas station designs. "Customer amenities are crucial, as drivers will need a safe place to wait..." the service should be re-programmed with activates that users might engage in while waiting, wifi lounges, food or coffee shops, etc.

Precedent Examples

Telsa Supercharger Station Los Angeles, California 2009. Geotectura's Green Gasoline Station Haifa, Israel 2010

WXY Architecture + Urban Design, "Siting and Design Guidelines for Electric Vehicle Supply Equipment." NYSERDA and Development Authority, November, 2012, 1.

[&]quot;Siting and Design Guidelines for Electric Vehicle Supply Equipment."

[&]quot;Siting and Design Guidelines for Electric Vehicle Supply Equipment."

+ PRECEDENTS

Precedent a and Timeline

Green ay Self Park

Plug and Play

Eight Point ne

e sol Ser ice Station

Vol o Pure Tension Pa ilion

Electric enue

Sierra e ada Bre ery

Gothen urg harging Station

PRECEDENTS

The city of Chicago was built around the car and in our culture, people are always going to have privatized vehicles. Rather than dramatically altering the urban fabric of the city and forcing new modes of transit this design was a smaller intervention used to raise environmental impact awareness. Offering a sustainable alternative to driving in hopes of positively changing behavioral patterns.

The garage is the first LEED certified green parking garage, it has become a vibrant force bringing strong publicity to green consciousness and the carbon footprint. The construction included pre cast concrete, minimizing cost and resources at construction site and all labor and materials were sourced from within 100 mile radius.

This renewable energy infrastructure uses an exterior glazed screen that naturally ventilates the structure, it has a green roof system, cistern rain water collection system, gives privilege to electric cars and uses a double helix wind turbines to power all garage lighting. The electric wind turbines extend higher than the roof and are designed to harvest available wind power. Excess power that is not used for lighting, is returned back into the city's grid. 2

The Chicago Green way houses 12 versicleaxis, stacked Helix wind turbines. Each is about 16'x4', weighs over 1,330lbs and are supported by steel support base plates.3 Unlike horizontal axis wind turbines, the helical form is able to harness wind coming from any direction, they take up less space and are less noisy making them perfect for urban environments.

Cilento, Karen, "Chicago Greenway Self-Park/HOK." ArchDaily, Aug 24, 2010, http://www.archdaily.com/?p

Cilento, Karen, "Chicago Greenway Self-Park/HOK," ArchDaily.

Cilento, Karen, "Chicago Greenway Self-Park/HOK." ArchDaily.

The eli S made y Sauer Energy 11 1 h Lo tur ine roduces energy hori ontal a is ind tur ine the making it sutia le heli ind com ori ontal is Tur ine

Garage Form

Green oof

Ventilation Through Facade Panels

Plug and PLay was the winning entry for a the DesignByMany competition for an Electric Vehicle Charging Station. Arcollab designed a form that would generate consciouness regarding energy, creating an intersection between the aspects of production and consumption. Ironically, the charging station units take the shape of traditional power plant smoke stakes, hoping to reverse the negative stigma associated with this form and are made of photovoltaic film, led lights, and lightweight aluminum pipes make up the frame.

The project challenges the idea of a centralized gas station and scatters the modulated system through the city with an awareness about where people are travelling to and from. They map out "play" zones in the city (food, exercise, shopping, coffee etc.) that might act as destinations points and places the charging stations in close proximity to them. The facade surface acts as an urban battery that displays amount the vehicle has been charged.

Furuto, Alison, "Electric Vehicle Charging Station Winning Proposal: Plug + Play/Arcollab," ArchDaily, March 01, 2010, www.archdaily.com/?p=212842.

ATTENDANCE.

Photo Credit : Arcollab

The Eight Point.one is a solar charging station designed to be marketable, yet very innovative. It had evolved through a design charette from LAVA architects, Consuplan Structural Engineerging and Designtoproduction Planning all on behalf of EIGHT mbH & Co. KG in SuBen, Germany.

The charging station was designed for the top-end market sector and would target companies who are committed to sustainiable, green technology. The design was developed based on an arch framework called a dihedral, exploiting metal manufacturing technologies including laser cutting and integrated 3-d data sets. The 55 sgm aluminium structure is meant to be easily assembled, disassembled and recycled.

"The solar charging stations from EIGHT enables sustainable and emissions-free e-mobility which enthuses people and therefore helps electric vehicles to become a key element of a new modern urban lifestyle. Based upon a holistic approach that combines design, technology manufacturing and process intelligence with recyclingefficient materials and intuitive user-interfaces the Point.One solar charging stations are visi le s m ols for a new and emissions free mo ilit ."

> "EIGHT Point.One S/Lava," Archdaily, Aug, 2013. http://www.archdaily.com/4

Foster and Partners were hired to re-design the Spanish Repsol Oil Company's new roadside image. The solution was a flexible and easily replicated system that has been implemented onto over 200 Spanish sites. The result included a canopy system made up of inverted factory made pyramids in orange, red and white (red always the highest and most prominent). The umbrellas were clustered based on the amount of pumps needed, creating an interesting three dimensionality that breaks tradition of a simple flat service station canopy.

The variables in the modulated umbrellas include height, quantity, and distance between each according to different site needs. The construction is simple and the modulated system can be reconfigured based on site conditions. The entire design is associated with a family of forms including the signage, petrol pumps, store unit and a car wash.

"Even from the air Repsol's identity is announced unmistakably. On the road, the stations are clearly identifiable from a distance and vivid and inviting when approached."

¹ "Repsol Service Station, Spain 1997," Foster and Partners, 2013, http://www.fosterandpartners.co m/projects/repsol-servicestations/

Photo Credit: Foster and Partners

Repsol Station

Moves away from traditional filling station typology and towards a visual identity

Synthesis Design + Architecture, a Los Angeles firm, won a design competition for an iconic and portable charging pavilion used to brand Volvo's new electric hybrid V60.

"We wanted to challenge the notion of solar power as something that is an additive piece of engineering infrastructure," said Synthesis founder and principal, Alvin Huang. "The solar panels became a design feature and design driver, rather than something applied after the fact."

The portable design disassembles to fit into the trunk of a car.

The pavilion is made up of 252 photovoltaic panels (7" x 7" panels by Ascent Solar Technologies) that are dispersed along the skin in a particular pattern based on sun exposure and optimization. A vinyl polyester mesh skin is stretched along a structure is made up of CNC milled aluminum pipes. Photovoltaic wiring is strung through the seams of the mesh fabric and connect to a battery used to charge the EV.

When tested, the pavilion generated about 450 watts of energy under optimum solar conditions.

"Pure Tension is an experimental structure that, similar to a concept car, is a working prototype that speculates on the potential future of personal mobility and alternative energy sources for transportation while also exploring digital design methodologies and innovative structural solutions."

[&]quot;Volvo Pure Tension Pavilion that charges an Electric Car by Synthesis Design + Architecture," Dezeen Magazine.

[&]quot;Volvo Pure Tension Pavilion that charges an Electric Car by Synthesis Design + Architecture," Dezeen Magazine, November 14, 2013 http://www.dezeen.com/2013/11 /14/volvo-pure-tension-pavilion/

It is important to the City of Portland to brand themselves as a 'Green City." Electric Avenue is a research initiative developed by the City of Portland, Portland State University and Portland General Electric. The research partnership developed a two-year project in downtown Portland at the geographical center of the Portland Sixth Avenue Transit Mall, PSU's campus and the city center. "It is a perfect place to understand the fit and flow of electric vehicles in the larger mobility context of the city."

The initiative began as a response to the increase in the number of Portland electric streetcars and was meant to study the performance of charging stations, driver preference and charging habits. The programs slogan is "Visit Electric Avenue soon! Plug in, Charge up. Drive on."

The intervention includes a number of host partners (City of Portland, Portland General Electric and PSU), charging station partners (Eaton, ECOtality, General Electric, Northwrite Inc., Shorepower etc.) and supporting partners (Nissan North America, Toyota Motor Sales, Mitsubishi North America etc.)

"With a whole range of all-electric and plug-in hybrid vehicles now coming to market, we made the choice not simply to react to their appearance, but to understand and document how they worked, how well they performed, and if they served the region's long-view interests in urban planning, personal and freight mobility, economic development, public health, and quality of

Image Credit: Portland State University

[&]quot;Electric Avenue on the PSU Campus at SW Broadway and SW Montgomery," http://www.pdx.edu/electricaven

² "Electric Avenue on the PSU Campus at SW Broadway and SW Montaomery."

[&]quot;Electric Avenue on the PSU Campus at SW Broadway and SW Montgomery."

BREWERY STAINABILITY GOALS

"At Sierra Nevada Brewing Co., stainability means recognizing the impacts associated with our operations and making a conscious effort to reduce them. We are committed to leaving the smallest footprint possible without jeopardizing our high standards for quality. We strive to maintain a healthy balance between environmental stewardship, social equity, and economic stability. By engaging in an active stainability program, we intend to leave a better world for future generations."

Sierra Nevada Brewery has a Stainability Department that promotes zero waste action hoping to inspire change. They monitor their waste and energy consumption, produce their own biodiesel, research alternative fuel options, and produce a large amount of their own energy through solar panels and hydrogen fuel cells.

The Brewery owns 10,573 solar panels, one of the largest array of solar panels in the United states, that produce about 20% (2 Megawatts of DC power) of the total energy they consumer. They also use non combustion hydrogen fuel cells that produce another 40% of energy the brewery consumes.

Since day one, the Sierra Nevada Brewery has stuck to an important business model: Reduce, Reuse, Recycle," which has "helped solidify our commitment to the environment. We have been recognized locally, statewide, and nationally for our commitment to reducing our environmental impact." ²

SUSTAINABILITY

ON-SITE POWER GENERATION

28° F Partly Cloudy

The current time in Chico, California is 10:58pm PST

Photo Credit : Sierra Nevada Brewery

Photo Credit : Sierra Nevada Brewerv

[&]quot;Sustainability, On-Site Power Generation," Sierra Nevada Brewery Chico California, 2013, http://www.sierranevada.com/br ewery/about-us/sustainability.

[&]quot;Sustainability, On-Site Power Generation," Sierra Nevada Brewery Chico California

Kjellgren Kaminsky Architects was commissioned by the Gothenburg Traffic Department to design a charging station, powered by almost entirely by solar energy. As the design was meant to represent the city's commitment to this mode of transit, these stations will be an iconic "symbol of a more sustainable city."

A south facing sloped roof is covered with solar panels and covers an elevated ramp that houses bikes, scooters and cars. "The design, fabricated entirely from FSC-certified local wood, strategically separates vehicles from bikes and scooters on an elevated ramp capped with a south-facing, solar cell roof."

The structure is equipped with amenities that the user can engage in while waiting the 20 minutes for their charge including an outdoor gym, Wi-Fi connected courtyard, cafe and bicycle repair shop.

Rosenfield, Karissa, "KKA Designs Electric Vehicle Charging Stations in Sweden" Aug 06, 2013. www.archdaily.com/?p=412281

Rosenfield, Karissa, "KKA Designs Electric Vehicle Charging Stations in Sweden."

+TECHNOLOGY

Maximizing Solar Gain Ecotect Testing Form Manipulation

TECHNOLOGY

Form K1 Total Radiation

Form L1 Total Radiation

CORNER 2 : TAUT -4' - 0"

SUM TO MAXIN MINIM AVERA

ID	Type	(π2)	wn/mz	wn/m2	wn/
SUM TOTAL		166.17	178707520	91979536	86727
MAXIMUM		20.25	4725604.5	2645517.75	2336
MINIMUM		1.25	3164218.75	1859791.375	1304427.
AVERAGE		4.15	4467688	2299488.4	216819
ALL CORNER	S FLAT				Wh 5070
					4900
		_			4738
					458
					4400
					4238

MAXIMUM 19.97 4824823 2807346 2336819.5 MININIUM 1.22 44731.031 0 443933.394 VARRAGE 4.06 421773.6 2179843.4 2031879.8	Object	Object	Area	fotal Radiation	Direct Radiation	Diffuse Radiation
MAXIMUM 19.97 4824823 2807246 238619.5 MINIMUM 1.22 4874.031 0 0 43933.396.3 AVERAGE 4.06 4213723.6 2239843.4 201379.8 370200-201379.8 3.1 TAUT 2'-0'	ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
MINIMUM 1.22 44874.031 0 43933.594 4248666 4211723.6 2137984.3 2011579 4 401676 5 40177 5 4017	SUM TOTAL		162.51	168468944	87193736	81275192
AVERAGE 4.06 4211773.6 2179843.4 2031879.8 (CORNER 3 : TAUT 2'-0' 5170000 4770000 477000 477000 477000 477000 477000 477000 477000 477000 47700000 477000 477000 477000 477000 477000 477000 477000 477000 4770000 477000 477000 477000 477000 477000 477000 477000 477000 4770000 4770000 4770000 477000000 477000000 47700000000	MAXIMUM		19.97	4824823	2807346	2336819.5
CORNER 3 : TAUT 2'-0"	MINIMUM		1.22	448741.031	0	443933.594
ORNER 3 : TAUT 2'-0"	AVERAGE		4.06	4211723.6	2179843.4	2031879.8
408000	ORNER 3 : T	AUT 2' - 0"				50700004
	ORNER 3 : T	AUT 2'-0"				50700004 4903000 4736000 4599000

CORNER 3 : TAUT 3 - 0"

ion Object ID SUM TO MAXIMI MINIML AVERAG

t	Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radiation
	Type	(ft2)	Wh/m2	Wh/m2	Wh/m
TOTAL		162.79	199453856	88512928	8094097
MUM		20.61	4894146	2802462.25	231662
MUN		1.22	470543.969	0	465607.31
AGE		4.12	4236346.4	2212823.2	2023524.

	Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radiation
	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
L		162.79	199453856	88512928	80940976
٨		20.61	4894146	2802462.25	2316628
		1.22	470543.969	0	465607.312
		4.12	4236346.4	2212823.2	2023524.4

Form K4

Object	Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radia
ID	Туре	(ft2)	Wh/m2	Wh/m2	W
SUM TOTAL		162.61	168657440	89100736	8055
MUMIXAM		21.81	4947375	2691077.5	23150
MINIMUM		1.22	476049.75	1746.814	47430
AVERAGE		4.19	4241436	2227518.4	2013

Form K5
Total Radiation
Value Range: 34000

163.24 168678576 90829696 23.4 5020282.5 2783910 1.21 486788.781 0 4.33 4231964.4 2270742.4

Form L2 Total Radiation Value Range: 340000

CORNER 2 : TAUT -2' - 0"

119512288 2336527 439272.562 1991871.467

2867581.5 0 2087448

Object	Object	Area	fotal Radiation	Direct Radiation	Diffuse Radiation
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL		162.03	168012256	107656240	101356032
MAXIMUM		9.99	4848104	2807346	2336819.5
MINIMUM		1.22	448741.031	0	443933.594
AVERAGE		3.3	4180245.12	2153124.8	2027120.64

Form M3 Total Radiation

Object	Object	Area fi	otal Radiation	Direct Radiation	Diffuse Radiation
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL		162.17	178707520	91979536	86727976
MAXIMUM		20.25	4725604.5	2645517.75	2336090
MINIMUM		1.25	3164218.75	1859791.375	1304427.125
AVERAGE		4.15	4467688	2299488.4	2168199.4
ORNER 2:T	AUT 0' - 0"				50700 49030 47360 45000 48000 87860

Form L4 Total Radiation Value Range: 340000 e ECOTECT vs

CORNER 2 : TAUT 2' - 0"

Object	Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radiation
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL		162.72	174496848	98328160	86168736
MAXIMUM		19.57	4803906.5	2740240.25	2314645.5
MINIMUM		1.22	3339092.25	1977392.875	1361699.5
AVERAGE		4.04	4612421.2	2458204	2154218.4

Wh/ #2 5070000+ 4903000 4796000 4669000 4402000 4235000 4068000 5901000 5567000 5660000 CORNER 2 : TAUT 4' - 0"

99289200 2801511.5 1987491.75 2482230

Form M1 Total Radiation Value Range: 3400000x e ECOTECT v5

CORNER 4 : TAUT -4' - 0"

Diffuse Radiation	Direct Radiation	Fotal Radiation	Area	Object	Object
Wh/m2	Wh/m2	Wh/m2	(ft2)	Type	ID
129134784	138051760	185186512	162.82		SUM TOTAL
2270270.25	2807346	4762901.5	5.01		MAXIMUM
421030.90	0	425838.375	1.22		MINIMUM
2017731	2157058.75	4174789.25	2.61		AVERAGE

Form M2 Total Radiation Value Range: 34000

CORNER 4 : TAUT -2' - 0"

PECOTECT VS					
Object	Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radiatio
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m
SUM TOTAL		162.9	186750112	122572040	11417812
MAXIMUM		9.99	4788033	2807346	2336499.2
MINIMUM		1.22	425838.375	0	419493.40
AVERAGE		2.93	4227680.571	2188786.429	203889

Object	Object	Area	fotal Radiation	Direct Radiation	Diffuse Radiation
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL		162.04	143459648	74721528	68738120
MUMIXAM		19.94	4699183	2518435	2295952.5
MINIMUM		1.25	3537344.5	2118732.5	1418612.125
AVERAGE		5.19	4483114	2335047.75	2148066.25
CORNER 4 : T	AU12-U				5070000
ORNER 4:1	A012-0				4903000 4736000 4569000
ORNER 4:1	A012-0				4903000 4739000 4590000 4402000 4235000
ORNER 4:1	A012-0			\rightarrow	4903000 4796000 4569000 4402000

Wh/ m2 5070000+ 4903000 4736000 4569000 4402000 4235000 4068000 3001000 5734000 5667000 5400000 CORNER 4 : TAUT 2' - 0"

86727976 2336090 1304427.125 2168199.4

Object	Object	Area	Total Radiation	Direct Radiation	Diffuse Radiation
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL		162.71	104183944	54002276	50181668
MAXIMUM		20.27	4533718	2398849.5	2235089.25
MINIMUM		2.61	3434070.25	2031563.625	1402506.75
AVERAGE		7.07	4340997.667	2250094.833	2090902.833

CORNER 4 : TAUT 4' - 0"

Form H1 Total Radiation

Object	Area	fotal Radiation	Direct Radiation	Diffuse Radiation
ID	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL	162.64	181757072	96502520	85254568
MAXIMUM	20.63	4822250.5	2799523.5	2336094
MINIMUM	0.69	3041195.75	1822539.375	1218656.5
AVERAGE	4.07	4543926.8	2412563	2131364.2

AVERAGE	4.07	4543926.8	2412563	2131364
				Whyms
ALL CORNERS FLAT				5070000
				490300
	_			473600
				456900
				440200
				423500
	_			406800
				390100
				373403 356703 340003
	C. ill 1/1:	\leftarrow	\rightarrow	256700
7:10	X			34000
	/X	12	/ /	
	XX	11:11		>
1	11:1	11/1/	. / /	7
くころこ	11:	1/		
		1 X		
- X	>//	1	Ti.	
The state of		X	1	
- N	X	XVI		
~ \ /				
X	- X		` \\/	
1		- A		
**	. /	. / T	\ Z	

Form I2 Total Radiation

SUM TOTAL MAXIMUM MINIMUM AVERAGE

CORNER 3 : PEEL 2.5' - 0" CORNER 2 : PEEL -2' - 0"

Form H2 Total Radiation Value Range: 3400000

Object	Area	fotal Radiation	Direct Radiation	Diffuse Radiation
ID	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL	162.6	182398944	97326120	85072808
MAXIMUM	21.28	4822258.5	2799523.5	2315637.5
MINIMUM	0.69	3041195.75	1822539.375	1218656.5
AVERAGE	4.12	4559973.6	2433153	2126820.2

162.47 180414784 95975952 21.7 4822073 2790340.75 0.69 3040526.75 1821880.125 4.19 4510369.6 2399398.8

Form H2.1 Total Radiation

Form I3
Total Radiation
Value Range: 340000
e ECOTECT v5

CORNER 3 : PEEL 2.5' - 0" CORNER 2 : PEEL 0' - 0"

Form J3 Total Radiation

Object ID

84438824 2315629.75 1218646.625 2110970.6

Diffuse Radiatio	Direct Radiation	Total Radiation	Area	Object
Wh/m	Wh/m2	Wh/m2	(ft2)	ID
8479884	97548120	182346992	166.84	SUM TOTAL
2315640.2	2799523.5	4822350	23.36	MAXIMUM
1218656.	1822539.375	3041195.75	0.69	MINIMUM
2119971.	2438703	4558674.8	4.17	AVERAGE

Form H3 Total Radiation Value Range: 3400000

Object	Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radia
ID	Type	(ft2)	Wh/m2	Wh/m2	Wh
SUM TOTAL		162.68	182195008	97690936	8450
MAXIMUM		26	4822352.5	2799523.5	231564
MINIMUM		0.69	3041195.75	1822539.375	12186
AVERAGE		4.24	4554875.2	2442273.4	21126

Wh/m2 5070000+ 4903000 4736000 4566000 4402000 4235000 4068000 3001000 5557000 5400000

Form H4 Total Radiation

83258392 2315647.75 1218677.125 2081459.8 Wit n2 5070000-4905000 4759000 4590000 425900 42590 425900 4259 84431344 2315642.75 1218667.875 2110783.6 162.97 179433792 96175416 20.7 4862361 2808132.75 0.69 3041337 1622670.75 4.27 4485844.8 2404385.4 CORNER 3 : PEEL 2.5' - 0" CORNER 2 : PEEL 4' - 0"

5011000 5734000 5670000	
2	Form J5 Total Radiation Value Range: 3400000.0 - 5070000.0 Wh/m2 e ECOTECT 95

00.0 Wh/m2				Total Radiation Value Range: 3400000.0 e ECOTECT vs	- 5070000.0 Wh/m2		
Area fot	tal Radiation	Direct Radiation	Diffuse Radiation	Object	Area f	otal Radiation D	Direct I
(ft2)	Wh/m2	Wh/m2	Wh/m2	ID	(ft2)	Wh/m2	
162.49	143726848	76565032	67161824	SUM TOTAL	162.27	140468096	
21.18	4821119	2798338	2315266.5	MAXIMUM	20.68	4792463	27
0.69	3040374.75	1817271.5	1218687	MINIMUM	0.68	3039572.75	132
5.2	4491464	2392657.25	2098807	AVERAGE	5.23	4389628	

		otal Kadiation		
Wh/m2	Wh/m2	Wh/m2	(ft2)	ID
66065476	74402624	140468096	162.27	SUM TOTAL
2275382.25	2792530.75	4792463	20.68	MAXIMUM
1218719.87	1328134.125	3039572.75	0.68	MINIMUM
2064546.125	2325082	4389628	5.23	AVERAGE
4736000				ORNER 4: PEEL 4'-

AVERAGE		5.23	4389628	2325082	206
CORNER 3:	PEEL 2.5' - 0"				
CORNER 2:	PEEL 0' - 0"				
CORNER 4: I	PEEL 4'-0"	_			

CORNER 3 : PEEL 2.5' - 0"	
CORNER 2 : PEEL 0' - 0"	
CORNER 4: PEEL 4'-0"	

Form I1 Total Radiation Value Range: 3400000 e ECOTECT v5	.0 - 5070000.0 Wh/m2
Object	Area fotal I

Diffuse Radiation	Direct Radiation	Fotal Radiation	Area	Object
Wh/m2	Wh/m2	Wh/m2	(ft2)	ID
105075240	115597008	180672256	162.5	SUM TOTAL
2315627.75	2784629.5	4853159.5	11.21	MAXIMUM
1218635.125	1473792.75	3040804.75	0.69	MINIMUM
2101504.8	2311940.16	4413445.12	3.41	AVERAGE

Form J1 Total Radiation

Object	Area	Total Radiation	Direct Radiation	Diffuse Radiation
ID	(ft2)	Wh/m2	Wh/m2	Wh/m
SUM TOTAL	162.48	179521728	134489088	11903267
MAXIMUM	11.26	5021015.5	2800992.75	2318878.2
MINIMUM	0.69	3042855.25	1797122.125	1218591.7
AVERAGE	3.01	4527173.714	2401590.857	2125583.42

Form J2 Total Radiation Value Range: 3400000 e ECOTECT v5

Object	Area	Fotal Radiation	Direct Radiation	Diffuse Radiation
ID	(ft2)	Wh/m2	Wh/m2	Wh/m2
SUM TOTAL	165.43	179157808	116505280	102652536
MAXIMUM	11.2	4958328.5	2800468.75	2338924.5
MINIMUM	0.69	3041507	1822882.125	1218625
AVERAGE	3.45	4525787.667	2427193.333	2138594.5

COONED A DEEL A ST AS	
CORNER 3 : PEEL 2.5' - 0"	5
CORNER 2 : PEEL 0' - 0"	4
CORNER 4: PEEL -2'-0"	
	4

85072808 2315637.5 1218656.5 2126820.2

162.6 182398944 21.28 4822258.5 0.69 3041195.75 4.12 4559973.6 97326120 2799523.5 1822539.375 2433153 SUM TOTAL MAXIMUM MINIMUM AVERAGE CORNER 3 : PEEL 2.5' - 0" CORNER 2 : PEEL 0' - 0" CORNER 4: PEEL 0' - 0"

Form E2 Total Radiation Value Range: 34000

SUM TOTAL MAXIMUM MINIMUM AVERAGE

Wh/m2 2723107.25 2723107.25 2723107.25 5446214.5 2723107.25 2723107.25 2723107.25

25627612 2772473.25 2323676 2562761.2

22386084 2336101.25 2151671.75 2238608.4

SUM TOTAL MAXIMUM MINIMUM AVERAGE

	Orient.	Tilt				Diffuse Radiation
	(deg)	(deg)	(ft2)	Wh/m2	Wh/m2	Wh/m2
	-180	74.8	81		2558994.75	
	-180	74.8	81		2558994.75	
			162		5117989.5	
			81		2558994.75	
			81		2558994.75	
			81	4719922	2558994.75	2160926.75
<					>	White School

Area Total Radiation Dir (R2) Wh/m2 81 5010460.5 81 5010461.5 162 10020912 81 5010461.5 81 5010460.5 81 5010461

wh/m2 2910201.5 2910201.5 2910201.5 5820403 2910201.5 2910201.5 2910201.5

24325922 2772809.5 2635922 2702880.222

75.11 10.72 5.48 44082624 4924533 4866355.5 4898069.333 19756706 2274490.75 2151723.25 2195189.556

SUM TOTAL MAXIMUM MINIMUM AVERAGE

SUM TOTAL		162	9554546	5392425	4162120.75
MUMIXAM		81		2696361	2081060.375
MINIMUM		81		2696064.25	2081060.375
AVERAGE		81	4777273	2696212.5	2081060.375
					Wh/m2
					5070000+
					4903000
					4736000
					4569000
					4402000
		-4			4235000
					4068000
					3901000
	-	1/			3734000 3567000
		1 '			3567000
		- 1			3400000
	/	1			
	,	\ \			
		/ /			
		1	1		
		1 ~ 1	,		
		16 18			
		1 8			
	and the same	100	~		
	and the same of the	$\sim \times$	- No.		
	~ \ /		V >		
	1	>< \V	1		
	1		1	>.	
			O 1997	100	
		\vee		100	
		A 20		×	
		\sim	/ / /	**	
		~ \ _ /"	$\langle \times \rangle$		
			100		

195 53238476 11.67 4958834.5 6.06 4732732 7.86 4839861.455

31023130 2833259.5 2799984 2820284.545

22215350 2155000 1917291.375 2019577.273

2907782.25 2907782.25 2907782.25 5815564.5 2907782.25 2907782.25 2907782.25

Form H2 Total Radiatio

SUM TOTAL MAXIMUM MINIMUM AVERAGE

(deg) 60.4 60.4

u					e ecorect vs	0.0-30700000 11111	-				
Tilt	Area To	otal Radiation D	irect Radiation D		Object	Orient.	Tilt	Area T	otal Radiation D	irect Radiation D	iffuse I
(deg)	(ft2)	Wh/m2	Wh/m2	Wh/m2		(deg)	(deg)	(ft2)	Wh/m2	Wh/m2	
66	81	4777125	2696064.25	2081060.375		-180	62	81	4804763	2739602.75	206
66	81	4777421.5	2696361	2081060.375		-180	62	81	4804466.5	2739306	206
	162	9554546	5392425	4162120.75	SUM TOTAL			162	9609230	5478909	41
	81	4777421.5	2696361	2081060.375	MAXIMUM			81	4804763	2739602.75	206
	81	4777125	2696064.25	2081060.375	MINIMUM			81	4804466.5	2739306	206
	81	4777273	2696212.5	2081060.375	AVERAGE			81	4804615	2739454.5	206
			>	507/CO3- 4/7/SCO3- 4/7/SCO3- 4/6/SCO	NOTE-RESULTS PRC VERTICALL, FORM B						M.

Form B3 Total Radiation Value Range: 340000

SUM TOTAL MAXIMUM MINIMUM AVERAGE

				>	
Form I otal Radiati alse Range: 340 ccorscr vs	DR 00000.0 - 5070000.0 Wh/m2	Ama	fatal Badistion	Nices Ordintion	Diffuse Radiation
oject	(deg)	(ft2)	Total Radiation Wh/m2	Wh/m2	Wh/m2
	(deg)	(112)	wn/mz	Wn/m2	wn/mz
UM TOTAL		106.34	56896872	33664248	23232626
MUMIXAN		23.77	4926410.5	2833716.25	
INIMUM		6.13	4412736	2690130	
- The state of the		0.13	4412730	2030130	1711003.073

### (Fig. 2) Anna Craft Resilinino Sivera Resilinino Diffuse Resilinino Sivera Resilinino Diffuse Resilini		1	11: 1			
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		1				
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		$\leq 1 \leq 1$		>		
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5	1	/ //		\sim		
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5	1	J-14.	₹.	\times	λ,	
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		$\times \times$	00		1	
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		$ \langle \cdot \cdot \rangle$			and the same	
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		1		\ /		
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- C	age of the same		
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		×.	. 1	1 1	,×	
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5		- 4	D	\ \ /		
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5			Sec.	V		
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5			`			
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5						
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5						
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5	ı					
3400000 - 59700000 Virimo? TR. Area fostal Radiation Describadiation Diffuse Radiation (deg) (R2) Wu/m² Wu/m² Wu/m² Wu/m² 106.34 5696927 33664248 22223256 22.77 4092445.9 282375.6 5						
TRI Area fotal Radiation Direct Radiation Diffuse Radiation (deg) (ft2) Wh/m2 Wh/m2 Wh/m2 Wh/m2 106.34 \$6006872 \$23376.52 \$223776.25 \$2095137.65\$						
(deg) (ft2) Wh/m2 Wh/m2 Wh/m2 Wh/m2 106.34 56896872 33664248 2322626 23.77 4926430.5 2833716.25 2995157.625						
(deg) (ft2) Wh/m2 Wh/m2 Wh/m2 106.34 56896872 33664248 2323626 23.77 4926430.5 2833716.25 2995157.625	se: 3400000.0 - 507000	00.0 Wh/m2				
106.34 56896872 33664248 23232626 23.77 492640.5 2833716.25 2095157.625	se: 3400000.0 - 507000					
23.77 4926410.5 2833716.25 2095157.625	e: 34000000.0 - 507000	Tit				
	se: 3400000.0 - 507000	Tit				
6.13 4412736 2690130 1722605.875	ge: 3400000.0 - 50700i v5	Tit	(ft2)	Wh/m2	Wh/m2	Wh/m2
	nge: 3400000.0 - 507000	Tit	(ft2) 106.34	Wh/m2 56896872	Wh/m2 33664248	Wh/m2 23232626
8.86 4741406 2805354 1936052.167	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5	Wh/m2 33664248 2833716.25	Wh/m2 23232626 2095157.625
	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875
	ge: 3400000.0 - 507000	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167
White	rge: 340000.0 - 50700	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167
50700000+	ge: 3400000.0 - 507000	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167 Wh/m2 5070000+
5070000+ 4903000	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167 Wh/m2 50700000- 4903000
5070000+ 4003000 4799000	e: 3400000.0 - 50700	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167 Wh/m2 50700000 4003000 4739000
50700001 4202000 4709000 4809000	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167 Wh/m2 5070000- 4020000 4790000 4800000
507020- 492300 492000 492000	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 2323626 2095197.625 1722605.875 1936052.167 Wh/m2 5070000- 402000 4790000 490000 490000
50702020 4720200 4720200 4820200 4820200	ge: 3400000.0 - 507000	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167 Wh/m2 5070000+ 4020000 4420000 4420000 4420000
500000- 490000 470000 490000 490000 490000	ge: 3400000.0 - 507000	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23237626 2095157.625 1722605.875 1936052.167 Wh/m2 5070000- 4020000 4750000 4750000 4750000 4750000 4750000 4750000
\$00000 470000 470000 470000 470000 470000 470000	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23232626 2095157.625 1722605.875 1936052.167 Wh/m2 55700004 475000 475000 475000 475000
55000 47300 47300 48000 48000 48000 48000 48000	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23231626 2095157.625 1722605.875 1936052.167 Wh/m2 55700004 4000000 44000000 44000000 44000000
\$00000 470000 470000 470000 470000 470000 470000	ge: 3400000.0 - 507001	Tit	(ft2) 106.34 23.77 6.13	Wh/m2 56896872 4926410.5 4412736	Wh/m2 33664248 2833716.25 2690130	Wh/m2 23231626 2095157.625 1722605.875 1936052.167 Wh/m2 55700004 4000000 44000000 44000000 44000000

Area Total Radiation 0 (R2) Wh/m2 81 4666710.5 81 4666710.5 162 9333421 81 4666710.5 81 4666710.5 81 4666710.5

wct Radiation D Wh/m2 2621377.5 2621377.5 5242755 2621377.5 2621377.5 2621377.5

Wh/m2 2045332.625 2045332.625 4090665.25 2045332.625 2045332.625 2045332.625

SUM TOTAL MAXIMUM MINIMUM AVERAGE

tal Radiation Dis Wh/m2 4770592 4770767 9541359 4770767 4770592 4770679.5 wit Radiation Di Wh/m2 2782542.75 2782718 5565261 2782718 2782542.75 2782630.5

SUM TOTAL MAXIMUM MINIMUM AVERAGE

Area Total Radiation Di (R2) Wh/m2 81 4227511 81 4227503.5 162 8455014 81 4227501 81 4227501.5 81 4227507

Radiation D Wh/m2 4449740 4449283 8899023 4449740 4449283 4449511.5

(deg) 30.1 30.1

Wh/m2 2601710 2601702.25 5203412 2601710 2601702.25 2601706

SUM TOTAL MAXIMUM MINIMUM AVERAGE

Sirect Radiation	Diffuse Radiation	Object	Orient.	Tilt	Area	Total Radiation	Direct Radiation	Diffuse Radiation
Wh/m2	Wh/m2		(deg)	(deg)	(ft2)	Wh/m2	Wh/m2	Wh/m2
2463999	1985740.875		129.6	42.6	81	3969486	2108937	1860549.125
2463542.25	1985740.875		129.6	42.6	81	3969486	2108937	1860549.125
4927541	3971481.75	SUM TOTAL			162	7938972		3721098.25
2463999	1985740.875	MAXIMUM			81	3969486		1860549.125
2463542.25	1985740.875	MINIMUM			81	3969486		1860549.125
2463770.5	1985740.875	AVERAGE			81	3969486	2108937	1860549.125
	Wh/m2 5070000+							Wh/m2 5070000+
	4903000							4903000
	4739000							4739000
	4509000							4569000
	4402000							4402000
	4295000							4235000
	4068000		1					4068000
	3901000		1					3901000
	3734000							1734000 2567000
	3567000							3567000
	3400000							\$400000
			1 /	· \				
			\ \	1 1				
			- N	1 1				
			- N		V			
			V		\			
			,	Same?				
				16 1				
			and the	-	-			
			- 75	< .2				
			x >< -	2<	26	25		
		age of			0.00	< $>$		
· .			and the second			- X	>	
>			North Contract					
						\ <u>/</u>		
			- X .	A.,		1		
			~		- 3			
×			-	J 1	~1			
				1.10	~	//		
				1	_ \			
		Form J1						
		Total Redistion						

27100598 2215072.75 1974958.875 2084661.385

Tilt Area Total Radiation (bit (deg) (812) Wh/m2 (0 81 2900558.75 (0 81 2900551 162 5901110 81 2900558.75 81 2900551 81 290055

Wh/m2 1755416.5 1755408.75 3510825.25 1755416.5 1755408.75 1755412.625

4058000 3901000 3734000
\$154000 \$86,7000 \$400000

195 53774580 1.67 4964124 6.06 4828055.5 7.86 4888598.182

30800938 2834082.75 2749519.25 2800085.273 22973642 2214389.5 1994170.75 2088512.909

+ CONSTRUCTION MANUAL

o To Build hargePoint
Parking Lot rientation to the Sun
Foundation onnection to the Ground
Structure
Solar Film onnection
Panels and Base

CONSTRUCTION MANUAL

CHARGE.POINT

CONGRATULATIONS! You are now the proud owner of a CHARGE.POINT charging station.

FÉLICITATIONS! Vous êtes maintenant le fier propriétaire d'une station de charge CHARGE.POINT.

FELICIDADES! Usted es ahora el orgulloso propietario de una estación de carga CHARGE.POINT.

恭喜你,你在是一个 CHARGE.POINT充站傲的主人。

[**c**]

[1]

ORIENTATION:

NOTE: The components for corners 2, 3 and 4 may be constructed in two different ways based on solar orientation. See section for assembly instructions.

- 1. Please use the Charging.Station App to locate your parking space and orient your Charging Station.
- 2. Based on your orientation the App should help you understand how part are assembled i.e. either tilted up or down on the Z-axis.

[2]

FOUNDATION:

5x Adjustable Anchors 15x Anchor Bolts

Components: PA: 1x PB: 1x

PC : 1x P5 : 1x P6 : 1x

1. Set concrete footings into 3'-0" holes (6"below the frost line) and 15" in diameter.

NOTE: Make sure that forms are perfectly horizontal and 2'-4" apart.

2. Set adjustable anchors in locations using diagram below.

[3]

STRUCTURE:

Components: PA: 1x PB: 1x PC: 1x P5: 1x

P6 : 1x

1. Assemble interlocking structure for Corner 1 [C1].

[4]

STRUCTURE:

Components: PA: 1x PB: 1x PC: 1x P5:1x

P6:1x

1. Assemble interlocking structure for Corner 1 [C1].

PD PE PF

CORNER 4

>> Repeat at corners 2 and 3.

>> Note Assembly might change based on which corner is south facing. Please see **Charge.Point App.**

[6]

SOLAR FILM:

[7]

BASE:

Charge.Point units must have access to grid system as the unit acts as a self-sufficient all year round, grid tied system, feeding the grid when not charging an EV

+ APPLICATION & SITE

Ste and nterface
Single S ace
Tested on Ste I any e ork
edia nterface and

APPLICATION & SITE

