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ABSTRACT 

 

The work presented in this thesis outlines our efforts to synthesize alkaline earth metal 

coordination complexes that could potentially serve as gas storage and synthetic precursor 

materials. The properties of these complexes are heavily influenced by factors such as the 

propensity to aggregate and the absence of energetically available d-orbitals which provide 

directionality. These often pose a challenge in obtaining suitable, stable compounds.  

Some challenges in the crystallization of alkaline earth coordination complexes involve 

the precipitation of insoluble aggregates. Thus, a great part of the work focused on studying 

suitable reaction conditions towards the formation of X-ray quality crystals for structural 

elucidation. Slow concentration and hydro/solvothermal techniques, amongst others, were prime 

crystallization methods in this work.  

The bulk of this thesis is divided in two parts. The first part details our attempts to 

synthesize metal organic frameworks (MOFs) of Mg, Ca, Sr and Ba. Our ligands of choice were 

the p, m, o-pyridinecarboxylic acids which provide two different binding sites. These consist of 

an N-donor and an anionic carboxylic acid, the N-donor located at different positions in the 

pyridyl ring depending on the isomer. These are also of low cost and soluble in different organic 

solvents. 

The use of pyridinecarboxylic acids resulted in the systematic isolation of five 

magnesium coordination complexes, three of which exhibit open-framework character and 

remain stable after removal of guests, and two of which are hydrogen bonded networks. Further, 

systematic work with the heavier metals resulted in three fully 3-dimensional complexes based 

on Ca, Sr and Ba and one hydrogen-bonded Ca complex. A pattern is observed when using the 

linear p or angular m-pyridinecarboxylic acid in the presence of MeOH/DMF mixtures, in which 



3-dimensional motifs with open-framework (p) and dense (m) character (Mg, Ca and Sr) are 

displayed. The dimensionality decreases in the presence of water or strongly coordinating 

donors, leading to the formation of hydrogen bound or 2-dimensional complexes.  

The second part of this thesis involves the isolation of crown stabilized alkaline earth 

tosylates. The work resulted in the isolation of four new crown stabilized alkaline earth tosylates. 

Trends observed include an increase in coordination number as the size of the metal increases. 

Variation of crown:metal stoichiometry was also studied and resulted in two different calcium 

species displaying fully separated (1:1) and contact separated (1:2) ion association modes. For Sr 

and Ba, (1:1) stoichiometries resulted in hydrogen bound contact species.   

This thesis provides a selection of alkaline earth metal coordination complexes. The 

preparation of these complexes has led to the elucidation of their synthetic routes. Full 

characterization of the complexes is also provided.  
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CHAPTER 1 

The Coordination Chemistry of Alkaline Earth Metals 

 

1.0 Introduction 

 

1.1 General Properties and Applications of the Alkaline Earth Metals 

 

The alkaline earth metals, or Group II metals, beryllium (Be), magnesium (Mg), calcium    

(Ca), strontium (Sr), barium (Ba) and radium (Ra) belong to a very important family in the 

periodic table. Unlike transition metals, in which metal-ligand bonding is achieved through d-

orbitals, metal ligand bonding in Group II metals is dominated by interaction of the ligand with 

s-orbitals.  A significant shift in properties exists for the lighter and the heavier metals, rendering 

the chemistry of the lighter metals beryllium and magnesium significantly different from that of 

calcium, strontium and barium.
[1, 2]

 For the heavier metals, the s-valence electrons are easily 

removed under formation of the dications, as also indicated by the highly negative redox 

potentials of the metals (Table 1.1).
[1]  
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Table 1.1 Redox
 
potential for alkaline earth metals 

Element Redox potential E
0
 [M

2+
 + 2e = M(s)] (V) 

Be -1.70 

Mg -2.37 

Ca -2.87 

Sr -2.89 

Ba -2.90 

Ra -2.92 

 

As a result, the metals are highly reactive, and readily react with water or oxygen. If stored 

and handled under air, the surface of the metals is therefore covered with a protective oxide 

layer. In the absence of this layer, the metals might spontaneously ignite when exposed to water 

or oxygen. This property is much reduced for the lightest alkaline earth metal element, 

beryllium, which only reacts with hot water vapor,
[3]

  whereas magnesium adopts an intermediate 

position, in which the reaction with water and oxygen is less exothermic. The heaviest alkaline 

earth element, radium, is radioactive, and only exists as a trace element.
[4-6]

 It follows the trend 

described above: the loss of the s-valence electrons is facile, making the element highly reactive.  

However, only limited studies are available, due to the metals’ scarcity and radioactive nature.
[7, 

8]
 

Some alkaline earth metals are very abundant in nature and have found applications in a large 

variety of commercial and medical fields. Beryllium and it’s compounds are toxic. Nevertheless, 

beryllium compounds are used in a range of technical applications, the most important being an 



CHAPTER 1: The Coordination Chemistry of Alkaline Earth Metals | 3 

 

alloy with copper, yielding a significant enhancement in strength, along with improvement of 

heat capacity.
[9]

  

Magnesium and calcium are non-toxic and are important minerals in the human body, with 

functions as diverse as enzyme co-factors
[10]

 to being the main components of the bone 

structure.
[11]

 The metals also have a wide variety of technical uses as corrosion deterrents, such 

as calcium phosphate coatings on magnesium alloys which express lower corrosion rates.
[12]

 

Strontium and barium are significantly less abundant. Barium and it’s compounds are highly 

toxic. There are few applications for the metals themselves, but some of their compounds have 

been used widely. Strontium and barium nitrates are used  in pyrotechnics,
[13]

  and barium oxide 

is widely used as an additive in glass ceramics.
[14]

 Perhaps best known is the use of BaSO4 as a 

contrast agent in medical applications, as the compound is X-ray opaque. This is possible 

because of its extremely limited solubility, which limits exposure to the toxic barium ions to a 

minimum. However, care must be taken to remove any soluble barium salts from the BaSO4 

suspension to avoid exposure. Radium has few applications, due to its scarcity and radioactivity. 

It’s isotope, Radium-223, has found applications as a powerful cancer targeting agent.
[15]
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1.1.1 Trends in the Periodic Table 

The group of alkaline earth metals serves well to analyze and rationalize chemical trends 

with specific properties of the metals pertaining to physical and chemical characteristics. Perhaps 

most obvious is the increase of size as atomic number increases. Indeed, barium (and radium) are 

amongst the largest elements in the periodic table, only surpassed by the heaviest alkali metals. 

Table 1.2 summarizes the size of the metals and their respective dications. Along with the 

significant size, come multiple properties. The lightest elements have the highest charge/size 

ratios, resulting in a significant polarization of metal ligand bonds. It is this property that dictates 

the organometallic chemistry of beryllium and magnesium, as the covalence of the compounds is 

significantly greater than that of the heavier analogues. This effect is further acerbated by the 

decrease in electronegativity for the heavier elements (Table 1.3), introducing increased polarity 

(or ionicity) in a given metal-ligand bond. This goes hand-in-hand with an unfavorable overlap 

of the large metal centers and the smaller ligand orbitals. These combined factors result in weak-

metal-ligand bonds, making the compounds rather labile. For the heavier metals, the small 

covalent bond contribution results in mainly electrostatic metal-ligand bonding, that is governed 

by the need for steric saturation. As mentioned above, except for the heaviest elements, d-

orbitals are energetically not available for bonding in the alkaline earth metals. This results in the 

absence of orbital controlled coordination chemistry. As such, compound geometry is difficult to 

control, as many factors may contribute towards the steric saturation of the complexes.  

The large metal size also results in a significant tendency towards aggregation and the 

formation of sparingly soluble compounds. Aggregation may be suppressed by the use of 

sterically demanding or multidentate ligands, often in combination with Lewis donors, which 

again may be mono or mutidentate. Non-covalent, secondary interactions also serve an important 
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role in suppressing aggregation, although much less is known about how these can be used in a 

rationale fashion. 

Table 1.2 Ionic radii of the alkaline earth metals 

Ae
2+ 

CN
 

IR (ionic radii)
[16] 

Be 6 0.45 

Mg 6 0.72 

Ca 6 1.00 

Sr 6 1.18 

Ba 6 1.35 
 

 

Table 1.3 Pauling electronegativities of the alkaline earths as compared to common atoms in 

organic ligands 

 

Element EN
[17, 18]

  

Be 1.47 

Mg 1.23 

Ca 1.04 

Sr 0.99 

Ba 0.89 

H 2.20 

C 2.50 

N 3.07 

O 3.50 

S 2.44 
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1.1.2 Coordinative Saturation 

 

As outlined above, the coordination chemistry of the alkaline earth metals is driven by the 

sum and characteristics of the metal-ligand bonds (covalent and electrostatic contributions). As 

the size of the metals increases, the number of contacts increases; however, the overall bond 

strength weakens.  

The smaller metals (Be and Mg) usually have lower coordination numbers (4-6) than the 

larger, heavier metals (Ca-Ba) (6-10),
[1]

 depending on the size and nature of the ligands and 

donors. For the heavier metal compounds, aggregation is a common observation, with the 

formation of complex coordination polymers of low solubility.  Aggregation may be suppressed 

by the judicious introduction of co-ligands satisfy the metal’s coordination sphere. This will be 

discussed further in Section 1.3.6.  

 

1.1.3 Chelate Effect 

 

As mentioned above, co-ligand coordination is a key strategy in controlling metal 

coordination. Co-ligands may be monodentate (e.g., tetrahydrofuran) or multidentate, as for 

example in the crown ether 18-crown-6, in which typically six metal-crown interactions are 

observed.
[19]

 The chelate effect is largely an entropic process governed by the Gibbs free energy 

formula (∆G = ∆H - T∆S).
[20]

 A textbook example of the chelate effect can be the substitution of 

6 NH3 molecules by 3 ethylenediamine (en) co-ligands in [Ni(NH3)6]
2+

 (Scheme 1.1).
[18] 
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Scheme 1.1 Displacement of NH3 by ethylenediamine  

As coordination of ethylenediamine and ammonia is largely similar in enthalphy, the change 

in entropy drives the reaction, as expressed by the number of co-ligands present at the beginning 

and end of the reaction. Thus, in the reaction above, there are four species on the left and seven 

species on the right resulting in a significant increase in the entropy of reaction. The resulting 

“chelate complex” will be the more thermodynamically stable species. 

The tendency of a complex to adopt a certain coordination chemistry or aggregation state 

further depends on the ability of the ligand to bridge neighboring metal  centers and the ability of 

ligands and co-ligands to engage in non-covalent interactions. Other factors to consider in the 

chelating process include the steric properties of the ligand, which in the case of multidentate 

ligands is dictated by the bite angle which will determine the chelating power of the co-ligand.
[20-

22]
 

1.2 Non-covalent interactions in alkaline earth coordination polymers  

 

A range of non-covalent interactions have been reported. Often these interactions have 

important structure-determining effects. Non - covalent interactions include hydrogen bonding 

interactions, agostic interactions,  MF interactions, - stacking interactions, and H-C 

bonding
[23]

 amongst others. This section deals with hydrogen bonding and - stacking 

interactions, as they both have relevance to the structures described in this thesis.  
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1.2.1 Hydrogen bonding 

 

Hydrogen bonding is a well-studied, important structure-determining force.
[24-26]

 

Commonly, the synthesis of coordination complexes under aqueous conditions leads to the 

formation of networks exclusively or partially held together via hydrogen bonding 

interactions.
[27]

 A hydrogen bond involves a D-H···A moiety, with D being a donor (e.g. the 

oxygen atom in H2O; other typical donors are nitrogen or fluoride) whilst A is the proton 

acceptor, typically fluorine, oxygen, nitrogen or less common sulfur. Theoretical studies reported 

in a review by Steiner
[28]

 place the overall energy of hydrogen bonds in the wide range from the 

weakest, -0.2 kcal mol
-1

  (hydrogen bond in CH4···F-CH3) to the strongest, -40 kcal mol
-1

  

(hydrogen bond in [F-H-F]
-
) (for more information see Table 1 of reference [40]).  

The strength of the hydrogen bond is determined by several factors including the bond angles 

and length of H···A. The strength of a hydrogen bond is inversely proportional to its length:  a 

weak hydrogen interaction is typically longer than 2.2 Å for H···A (electrostatic and dispersion 

forces) whereas a strong interaction is found in the range of 1.2 to 1.5 Å for H···A. This 

interaction is considered strongly covalent.
[29] 

Frequently, the strength of hydrogen interactions 

depend on the type of donor-acceptor atoms involved. However, locating hydrogen bonds from 

an X-ray diffraction experiment is difficult.  

Since hydrogen bonding is of critical importance to the structural propagation of some of the 

compounds reported in this thesis, the following section will offer details about the 

crystallographic location and refinement of hydrogen atoms and hydrogen bonds. 
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1.2.2 Crystallographic location of hydrogen bonds 

 

Locating hydrogen atoms in a Fourier difference map can be a difficult task.
[30]

 This is 

related to the X-ray diffraction experiment, in which hydrogen’s scattering power is very low. 

Specifically, in a D-H bond, the electronegativity of the donor atom causes a withdrawal of 

electron density from the hydrogen atom towards the bond formed, which contributes to large 

experimental uncertainties.
[28, 30, 31] 

The result is an electron deficiency in hydrogen, which causes 

an averaging of the hydrogen atom’s position relative to the donor atom, thus increasing the 

challenge of locating the hydrogen atom in the Fourier map.  As hydrogen bonding, as also 

shown extensively in this thesis is a major structure determining force, the location of these 

interactions is important. 

Though locating hydrogen atoms can be a difficult task, it is necessary to locate them since 

they are integral to the structural characteristics. Crystallographically, there are two ways to 

identify hydrogen atoms in a molecular structure: (a) chemical sense (for example, locating the 

oxygen of a water molecule and assigning a position on the basis of O-H bond lengths and H-O-

H angles) and (b) placement of hydrogen atoms on calculated positions. It is necessary to 

mention that the mobility of the hydrogen atom makes the D-H bond appear shorter than it really 

is; thus, D-H distances found in the Fourier map are typically less than 1 Å. 

An effective way to obtain good hydrogen binding data is to perform neutron diffraction 

experiments.  Considered by many complementary to X-ray diffraction, neutron diffraction has 

been a successful technique in the elucidation of structures in areas such as biology
[32]

 and 
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material sciences.
[33]

 Hydrogen and its isotope, deuterium, are strong neutron scatterers, as 

opposed to X-ray scatterers.
[34]

 

When the hydrogen atoms are located and assigned to positions, these positions must be 

refined to improve accuracy of data. The hydrogens can be stabilized by applying positional 

restraints (through the refinement software, some examples include DFIX and DANG) which 

improve the accuracy of the distances.  

Frequently, it is not possible to locate hydrogen atoms in the Fourier difference map. Water 

of crystallization, for example, often exists as disordered species, preventing the location of 

hydrogen atoms. 

In this work, wherever possible, hydrogen atoms in water molecules, on oxygen or nitrogen 

atoms were located in the Fourier difference map and included in the refinement using positional 

restraints. Non-water bound hydrogens (hydrogens on carbon atoms etc.) were fixed to 

calculated positions. Hydrogens on some waters of crystallization could not be located.  

 

1.2.3  Π-stacking interactions in metal organic complexes 00000 

 

Extended structures of coordination polymers containing aromatic ligands (or ligands with 

aromatic moieties) often display π-stacking interactions. These interactions arise from the 

intermolecular attraction of aromatic molecules or moieties. They are typically weak result in 

distances longer than the sum of van der Waals radii (carbon); thus, the atoms do not touch. 

These are not to be confused with the π-ion interactions that occur with some cations
[35-37]

 or 

anions
[38-40]

 (e.g. cation: metal-π or anion: halogen-π). They are also non-covalent.  
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π-stacking interactions have been known to play important structural roles, such as in the 

stabilization of the vertical base-base interaction in the double helix structure of DNA,
[41]

 or the 

packing structure of aromatic molecules in crystals.
[42]

  They thus offer stability in inclusion 

complexes and novel optical materials.
[43] 

An extensive literature is available regarding the 

interactions between aromatic molecules in solution and in the solid state.
[44]

 
 

What arises during π-π stacking interactions depends on the type of π-interaction involved, as 

shown in Figure 1.1b-d with the benzene dimer. The benzene molecule has a delocalized 

molecular orbital with a δ
-
 charge above and below the plane of the molecule, whilst the 

hydrogens on the ring possess partial positive charges, δ
+ 

(Figure 1.1a). At least three types of 

interactions are commonly reported: 

(1) For eclipsed interactions (face-to-face) (Figure 1.1b), the hydrogen atoms and the 

delocalized π-orbitals come into direct contact with their counterparts on the other ring. This 

brings like charges in proximity, causing repulsion. (2) In the edge-to-face mode (Figure 1.1c), 

the hydrogen atoms on the ring actively interact with the delocalized π-orbitals in a weak C-H---

π type interaction (weak hydrogen bond). (3) The offset motif finds hydrogens from both rings 

displaced over the aromatic π-cloud (Figure 1.1d).  

The stability of these conformations can be related to the stabilizing arrangements arising 

from the quadrupole moments between the aromatic rings.
[45]

  Ab initio calculations have 

demonstrated that edge-to-face and offset interactions are the most stable, since they minimize 

repulsion and maximize the partial charge interactions between the aromatic systems and 

hydrogens.
[46, 47] 
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Finally, the distances between aromatic rings are obtained by measuring centroid-to-centroid 

distances. Typically, distances for the edge-to-face mode can reach values of up to 5 Å or 

greater,
[48]

 whilst the face-to-face configurations are within 3.3-3.6 Å in a crystal structure.
[49]

 

 

Figure 1.1 (a) The relative charges of the benzene molecule, π-interactions from left to right: 

(b) face-to-face (eclipsed), (c) edge-to-face and (d) offset  
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1.2.4 Ion association  

 

For the alkaline earth metals, the metal ions may be coordinated to ligands in three ways: (i) 

contact molecules, with two ligands bound to the metal center, (ii) contact separated, with one 

ligand metal bound, whereas the other is unassociated, and (iii) dissociated ions with both 

ligands being unassociated. The three different association modes are illustrated in Figure 1.2.   

The type of ion association depends on metal-ligand bond strengths and metal-co-ligand bond 

strengths, in which the chelate effect (see Chapter 6) plays a major role. This is nicely 

demonstrated by complexes involving crown ethers, where separated ions are commonly 

observed.  

Additional factors affecting ion association include the ability of the ligand to distribute 

negative charge. As charge density on the ligand decreases, the propensity for separated ions 

increases. More commonly, a complex equilibrium exists, with a range of factors governing the 

ion association. The resulting structures include a summation over all the different factors, 

making the prediction of structural features very challenging. 

 

 

Figure 1.2 Ion association modes in alkaline earth metals 
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1.3 Some Applications of Alkaline Earth Metal Materials 

 

1.3.1 Organometallics 

 

The exploration of novel organoalkaline earth metal species is essential for the progress 

of a variety of fields.
 
For example, metal organic chemical vapor deposition (MOCVD) is widely 

used for the manufacture of electronic or photonic materials, such as thin films of barium-

strontium-titanate films for photonic applications (BaxSr1-xTiO3).
[50]

 Other examples include 

various semiconducting materials, where doping with alkaline earth metals is a key technique.
[51]

 

MOCVD involves the volatilization of an organometallic or metalorganic precursor 

followed by decomposition and deposition on a substrate. Key properties for suitable MOCVD  

materials include high volatility and sufficient thermal stability to allow the transport of the 

metal through the gas phase onto the substrate.
[52]

 This is followed by the requirement of 

efficient decomposition to yield the desired compounds (typically oxides) in high purity without 

impurities imposed by the precursors (such as carbon or fluorine).
[53, 54]

 
 
Further, to allow for an 

efficient industrial process, the substrate must volatilize completely with no or little residue.
[55, 56]

   

Frequently used alkaline earth MOCVD precursors include the bidentate β-diketonates
[57]

 

in which the bidentate nature of the ligand provides sufficient bulk to suppress extensive 

aggregation and thus offers sufficient volatility and low sublimation temperatures.
[56]

Other 

MOCVD precursors are based on fluoalkoxides, a family of compounds recently examined in the 

Ruhlandt group at Syracuse University.
[58]

 The perfluorinated OC(CF3)3 alkoxide has shown 

exceptional promise, with low sublimation temperatures, minimal left-over residues, and air 

stability, to allow for easy handling. 
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Other uses for metal organic and organometallic alkaline earth species include their use 

as starting materials for other alkaline earth complexes. Examples are the alkaline earth amides 

M(HMDS)2(thf)2, (HMDS =  N(SiMe3)3; M = Mg, Ca, Sr and Ba), which have been extensively 

employed in the synthesis of heavy alkaline earth metal organometallics via transamination.  The 

amides can be obtained through a variety of routes,
[59]

 and their versatile application in synthesis 

allowed our group to synthesize some of the first strontium and barium sigma bonded  alkaline 

earth organometallics.
[22, 60]

 

More recent uses for organometallic and metalorganic alkaline earth species are in 

catalysis for processes including hydroamination,
 
hydrophosphination,

 
and hydrosilylation.

[2] 

These methods rely on earth-abundant metals, specifically calcium, which poses no waste 

problem. Specifically, hydroamination can be used for the efficient preparation of 

organonitrogen compounds, which are key ingredients in a variety of chemicals, such as dyes 

and the synthesis of substances found in nature.  An impressive example is the DIPP-nacnac 

based heteroleptic calcium amide, which proved to a be highly active catalyst for the 

intramolecular hydroamination/cyclization reaction.
[61, 62]
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1.3.2 Hydrogen Storage 

 

Decreasing fossil fuel supplies, along with environmental concerns, are prompting the 

development of alternative energy sources. Among these, hydrogen storage technology and the 

production of “clean” fuels are key components of a complex plan that is geared to decrease the 

dependence from fossil fuels, while decreasing the carbon footprint.
[63] 

 
With three times higher energy content than gasoline on a weight basis (H2 = 123 MJ/kg

-1
, 

gas =  47.2 MJ/kg
-1

),
[64]

 hydrogen poses attractiveness as an energy carrier due to its clean 

combustion into water, via controlled combustion in a PEM (proton exchange membrane) fuel 

cell.
[65] 

Hydrogen in its compounds is widely abundant, and multiple techniques for its 

production are known. Common sources for hydrogen  gas are biomass,
[66]

 coal gasification
[67]

 or 

water-splitting through electrolysis.
[68]

 However, all these techniques require significant amounts 

of energy; thus hydrogen technology is not without drawbacks. One of the current challenges 

includes the safe and efficient storage of the flammable hydrogen gas in onboard compressed gas 

tanks.  

 The use of hydrogen as fuel in fuel-cell powered vehicles requires the availability of cost 

effective and safe systems that offer rapid and reversible adsorption/desorption of hydrogen with 

minimal energetic input and thermodynamic effects. Ideally, a hydrogen storage device would 

operate at or at near ambient temperatures (between room temperature and 80ºC) and moderate 

pressures (<100 bar). Storage values for such systems have been set by the Department of 

Energy, which has requested capacities of 5.5% by weight by 2017. Yet, despite numerous 

efforts, no proposed system has come close to these values, as the current state of the art systems 
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suffer from insufficient storage capacity, unsafe operational conditions, unacceptable 

reversibility, unacceptable thermodynamics, and expensive, bulky storage tanks.
[69]

  

In a vehicle, these tanks require high pressures and negative temperatures (-256 °C) posing a 

safety hazard to the driver. Furthermore, frequently, leakage has been detected, which not only 

pose a safety hazard, but also results in the loss of efficiency.
[70]

 As such, alternative, solid state 

based hydrogen storage systems involving the light weight lithium and magnesium metals have 

been envisioned as a storage alternative to gaseous or liquid hydrogen. 

The most common form of solid-state hydrogen storage material is the metal hydride. MgH2 

has been extensively studied as a potential storage material due to its high content of hydrogen 

(8% by wt.).
[71] 

However, high temperatures are required to release hydrogen from the hydride, 

making the material less attractive. Other metal hydrides, such as LiH or NaH, offer an even 

larger hydrogen weight percentage, but their activation temperatures are even higher.
[72, 73]

  

Attempts to lower the activation temperatures by the reduction of particle sizes through ball-

milling have not been met with success, because frequent oxidation of the hydrides was 

observed.
[74-76]

 Further, attempts at synthesizing mixed alkali- alkaline earth metal hydrides in 

solution (specifically Li/Mg)
[77]

 in order to increase the amount of hydrogen stored have been 

successful, yet the low solubility of the materials leads to the formation of mixed phases and 

hard to separate solids.
[78] 

 

Other hydride sources, including the complex hydrides LiAlH4,
[79, 80]

 NaAlH4
[81]

 and LiNH2 

(metal amides) have also been examined as storage materials. Yet, these frequently involve 

difficult to monitor reaction mechanisms upon activation and are often irreversible.
[82, 83]

  

Other work is focusing on  aminoboranes, NH3BH3 and amidoboranes (e.g. M(NH2BH3)x, M 

= Mg,
[84]

 Ca,
[85]

 x = 2; M = Na,
[86]

 Li,
[87, 88]

 x = 1). These compounds provide a very high 
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hydrogen content (up to 18% for NH3BH3), yet the thermal decomposition of aminoborane 

involves the irreversible formation of borazine and BN, making the materials unsuitable for 

reversible storage.
[89]

   

 

1.4 Alkaline earth metal coordination polymers 

 

1.4.1 Porous coordination polymers: Metal Organic Frameworks – Structure and 

Composition 

 

Chapters 3-5 of this thesis describe our research on the synthesis and characterization of s-

block (Mg, Ca, Sr and Ba) based metal organic frameworks (MOFs). MOFs are coordination 

compounds involving a metal center and organic ligands, with the metal centers binding to 

organic ligands to form infinite three-dimensional motifs, often exhibiting channels which can be 

occupied by guest molecules.
 
Early work on MOFs was mainly focused on transition metals such  

Zn,
[90-92]

  Cd
[93, 94]

,
 
and main group elements such as Al,

[95]
 and involved aromatic carboxylate 

ligands with specific substitution patterns, including 1,4-benzenedicarboxylic acid
[96, 97]

 or 

trimesic acid, 1,3,5-benzenetricarboxylic acid.
[98, 99]

  Perhaps the most prominent of such 

examples include MOF-5,  a coordination polymer involving zinc and 1,4-benzenedicarboxylic 

acid.
[100]

  The combination of copper with 1,3,5-benzenetricarboxylic acid results in the well-

studied HKUST-1 MOFs, that are commercially available for gas separation purposes.
[101]

 Figure 

1.3 shows an example of a MOF. 
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Figure 1.3 An example of a Cd based MOF ([Cd4(OH)2(4-pt)6(DMF)4])
[102] 

 (pt = 4-

pyridyltetrazolate) 

 

As mentioned above, a MOF structure is determined by the metal center and the ligands. 

The nature of the metal center will determine factors such as bond strength, coordination number 

and propensity towards aggregation. The smallest metal, Be
2+

, has been reported to afford 

microporous MOFs,
[103, 104]

 yet Be is toxic and not desirable for day-to-day applications. The 

larger metals, such as lanthanides, have afforded dense non-porous systems that sparked an 

interest as luminescent devices.
[105]

  

The second building blocks of MOFs are the organic ligands. The organic ligands are 

important structure-determining factors. Structural dimensionality (0D  3D) can be obtained 

by using ligands that possess unique substitution points (e.g. O-, N-, NH2, -OH, -COOH) and 

substitution patterns, imparting specific symmetries.
[106-108]

  

The combination of the ligand-metal subunits are called SBUs (secondary building units). 

SBUs typically consist of small metal-ligand clusters, associated by the organic ligands. They are 
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crucial to the formation of extended networks.
[109-111]

 Table 1.4 shows examples of organic 

ligands frequently used in MOF synthesis. 

 

Table 1.4 Examples of organic ligands used in the synthesis of MOFs 

 

Examples of Organic Ligands 

 

 

 

[112] 

 

[113] 

 

[114] 

 

[115] 

 

[116] 

 

 

 

[117] 

 

 

 

[117] 

 

[118] 
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Frequently, MOFs are prepared via simple acid base chemistry, involving a metal salt (e.g. 

nitrate, acetate, iodide, chloride) and an acidic ligand.
[119]

 Depending on the metal, mineralizers 

such as HF, HCl, NaOH aid in dissolving the reagents and provide crystalline products.
[120, 121]

  

One of the major challenge in MOF synthesis is the unpredictability of the resulting 

structures.
[122]

  The combination of a given ligand and metal center may afford a myriad of 

products, depending on factors such as solvents, which may be applied as mixtures of polar and 

non-polar solvents;
[95, 123]

 reaction temperatures;
[124, 125]

 reaction duration; and pressure;
[126]

 

reaction pH;
[127]

 the presence of co-ligands or mineralizers; and others.
[128]

 Frequently, modern 

MOF synthesis makes use of combinatorial, automated high-throughput methods screening 

thousands of reaction conditions, to pinpoint the required synthetic conditions for the production 

of the desired materials.
[129-131]

 

 Lastly, many MOFs exhibit special structural features such as channels,
[132]

 the inclusion 

of guest molecules in cavities and channels,
[133, 134]

 and hydrophobic or hydrophilic moieties in 

the channels
[135]

 that allow the interaction with guest molecules through electrostatic or hydrogen 

bonding interactions. These will be discussed in detail in the following sections. 

 

1.4.2 Alkaline earth metal organic frameworks 

The spherical nature of the s orbital makes the metal-ligand bond strength non-directional. 

Further, due to the large metal size, especially in the heavy alkaline earth metals, the poor metal-

ligand orbital overlap renders the bond weak and labile. Metal-ligand bonds are predominately 

ionic in nature; thus the coordination environment of the metals is driven by the tendency 

towards coordinative saturation, and the completion of the metals’ coordination environment is 

influenced by many competing factors. As a result, few alkaline earth-metal based MOFs are 
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known.
[136-140]

 The absence of MOFs for group II metals is more evident for the heavier metals 

for which there is a larger tendency towards aggregation and insoluble, unidentifiable solids may 

form. Moreover, the highly oxophilic and hydrophilic nature of the metals often causes the 

formation of dense hydrogen bonded networks as opposed to 3D open frameworks.
[141-143]  

 

1.4.3 Effect of Ligand Topology on MOF Dimensionality 

As illustrated in a recent review article by Paz et al.,
[144]

 the ligand nature and type have a 

profound influence on the overall MOF structure. Functional frameworks arise from the 

combination of several factors, including the nature of the ligands
[145, 146]

  and the properties of 

the metal centers they connect to (e.g. coordination numbers, metal sizes, metal coordination 

environments).
[140, 147]

 Ligands might be obtained commercially, or prepared by organic 

synthesis.
[148, 149]

  The modification of pre-determined ligands 
[150-153]

 in situ during reaction 

process has also been reported. 

An exciting method for custom modification involves post-synthetic modification techniques 

utilizing metalloligands
[154]

 through the “building-block upon building block” approach. This 

technique involves the modification of pre-existing frameworks and attachment of SBUs (such as 

metal oxalates
[155]

, donor solvents
[156]

 or other small molecular building blocks
[157, 158]

) in efforts 

to further tailor the framework properties or produce larger supramolecular networks.  

Formation of open-frameworks requires ligands which prevent the formation of dense 

coordination polymers and that also allow the propagation of the network. Multi-topic ligands 

provide additional anchor points for the formation of extended networks.
[159-161]
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A nice demonstration on how ligand modification, and thus the introduction of the multi-

topic ligands principle permits the formation of extended higher dimensional networks is 

provided by benzoic acid. Unsubstituted benzoic acid in conjunction with zinc
[162]

 and other 

metals (e.g. Cd
[163]

, Al
[164]

) has been reported to afford linear polymeric chains as non-porous 

solids. The modification of benzoic acid with other substituents (such as azolates,
[165, 166]

, 

phenyls
[167, 168]

 and carboxylates
[169]

) affords a variety of three-dimensional open frameworks 

with interesting characteristics.   

 

Figure 1.4 From left to right: benzoic acid and 1,4-benzenedicarboxylic acid 

Thus, the functionalization of simple, rigid ligands can provide further avenues for metal 

coordination and the formation of stable three-dimensional networks.
 
The ligands utilized in this 

work have two different binding points, carboxylate and pyridyl nitrogen, as discussed in detail 

in the next section.  

 

 

 



CHAPTER 1: The Coordination Chemistry of Alkaline Earth Metals | 24 

 

1.4.4 Multi-topic Ligands: Carboxylate and Nitrogen Binding Sites 

The implementation of ligands containing carboxylate-oxygen  and pyridyl-nitrogen 

functions has been shown to produce stable three-dimensional frameworks.
[170]

 Ligands which 

possessing these  anchor points will bind to the metal center on the basis of the “softness” or 

“hardness” of the metal.
[171, 172] 

 

As an example, Du et al.
[173]

 reported on the specific fine-tuning of the pore sizes of two  Cu 

MOFs by the use of ligands with different substitution patterns, including the N-donor sites in 5-

(pyridine-4-yl)isophtalic acid and 5-(pyridine-4-yl)isophtalic acid (Figure 1.5a-b). While the 

overall characteristics of both frameworks were similar, the different nitrogen atom positions 

caused a change in cavity size.  

 

    (a)    (b) 

Figure 1.5 (a) 5-(pyridine-4-yl)isophtalic acid and (b) 5-(pyridine-4-yl)isophtalic acid 
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1.4.5  Isonicotinic acid, nicotinic acid, picolinic acid 

The ligands used in this work are the family of pyridinecarboxylic acids: isonicotinic acid, 

nicotinic acid and picolinic acid (Figure 1.6). These are commercially available and cost 

effective ($17-20 per 100 g). Their metal complexes have recently found interest as 

luminescence sensors
[174, 175]

 and non-linear optic materials.
[176]

 The ligands’ ability to function 

as  linkers in MOF chemistry has also been met with success.
[177]

  

The pyridinecarboxylic acid ligands possess two unique binding points. The ligands are 

monoanionic, with the carboxylic acid moiety being deprotonated, whilst the N-pyridyl donor 

site is capable of donating electrons to a metal center. Further, the shift of the N-pyridyl atom 

into para, meta or ortho positions, allows for the systematic investigation of ligand geometry on 

the overall structural features of the resulting solid. The use of pyridinecarboxylic acid ligands 

allowed for the isolation of several novel alkaline earth coordination polymers; their synthesis 

and characterization is described in Chapters 3 - 5 of this thesis.  

 

 

Figure 1.6 from left to right: isonicotinic acid (Hin), nicotinic acid (Hnic) and picolinic acid 

(Hpic) 

 



CHAPTER 1: The Coordination Chemistry of Alkaline Earth Metals | 26 

 

1.4.6. Hydrothermal and Solvothermal Crystallization 

The preferred crystallization routes for metal organic frameworks are through hydrothermal 

and solvothermal methods. Hydrothermal methods involve the use of low temperatures (typically 

100-300 °C), with pressures ranging from 20-25 mmTorr in the presence of water, whilst 

solvothermal methods rely on the use of polar organic solvents, with conditions similar to those 

used in the hydrothermal regimen.  

An important factor is that the reactions are carried out in closed containers above the boiling 

point of the solvent. The resulting high pressure affords increased solubility to provide the 

conditions for crystal growth.
[178]

 

The use of autoclaves, also called digestion bombs, is very common in MOF synthesis 

(Figure 1.7). The autoclaves are chemically resistant stainless steel vessels outfitted with Teflon 

(polytetrafluoroethylene) lined cups in which the reaction takes place. The autoclaves are 

available in several different sizes; the most common one has a fill volume of about 10 mL. The 

cups are filled with the desired solvent mixtures and the bombs closed tightly. The readied 

bombs are then placed in ovens at constant temperatures (85-200 °C).  
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Figure 1.7 Stainless steel autoclave set-up
[179] 

 

The stainless steel bombs allow pressures of up to 200 bar. The different sizes allow the easy 

scale-ups of the reactions. However, as the reaction takes place in closed containers, direct 

monitoring of the reaction and potential crystal formation is not possible.  

An alternative technology is based on the use of Carius tubes. These are thick-walled glass 

tubes that are, after filling, cooled in a liquid nitrogen bath and sealed under vacuum to provide a 

closed reaction container. The fill volume of Carius tubes is typically smaller (max. 4 mL or less) 

and the maximum pressure is limited to 10 bars. It is essential to carefully seal the Carius tubes 

to avoid tension in the glass that may lead to potential explosion in the oven. Carius tubes are 

always used with an additional safety measure: they are placed inside the oven in a metal liner 

that is crimped on one end. The crimped end is pointed towards the oven door, while the open 

end points towards the back of the oven.  Temperatures above 150 °C are not recommended for 

safety reasons.  
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1.4.7 Reaction variables: effect of solvent in MOFs 

As the synthesis of MOFs is highly dependent on reaction conditions, many variables need to 

be careful monitored and examined. Perhaps the most important factor is provided by the solvent 

and, if applicable, the presence of co-ligands. Solvents may (a) coordinate to metal centers,
 
(b) be 

guest molecules,
 
(c)

 
serve as

 
both guest and ligand, (d) serve as indirect structure directing agents 

(SDAs).
[180]

  

The ability of solvents to coordinate to the metal centers is directly correlated to their base 

strength. In analogy to coordination compounds, solvents or co-ligands containing N, O or S 

donor atoms will have coordination preferences that depend on the “softness” or “hardness” of 

the metal center.
[171]

 The removal of these metal-coordinated solvents can result in either an 

unsaturated metal center
[181-183]

 or the collapse of the structure.
[184]

 

The influence of solvents and co-ligands, and their role as donor and guest, was demonstrated 

with a Cd(II) based S-spaced-4,4’-bipyridine. Different solvent mixtures (ACN/CH2Cl2, 

MeOH/CH2Cl2 and DMF/CH2Cl2) afforded structures of one, two and three-dimensions 

depending on the solvent system used.
 [185]

  

Solvents which do not incorporate into the resulting structures, but play an important role in 

the crystallization of the material, are denominated SDAs (structure directing agents).
[186]

 

Furthermore, quite a few examples of MOFs demonstrate single-crystal to single-crystal 

transformations
[187]

  by the exchange of the guest through soaking experiments. This often results 

in structural changes. 
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1.4.8 Hydrogen storage in alkaline earth MOFs 

The microporous MOFs have been studied as potential hydrogen storage materials.
[188, 189]

 As 

hydrogen would be incorporated in pores and channels, hydrogen could be rapidly absorbed and 

desorbed, providing a solution to the high activation energy, insoluble side products, and 

irreversible hydrogenation cycles observed with many of the hydride or ammonia borane based 

materials, as described in Section 1.3.2.  

A MOF is characterized as a potential hydrogen storage material if it exhibits permanent 

porosity, determined by N2 adsorption isotherm analysis. These experiments are typically 

conducted at liquid N2 temperatures; low dosages of hydrogen are pumped into the sample 

holder and the adsorption measured.  

There are five types of adsorption isotherms and these are determined by their shapes. The 

microporous MOFs show Type I isotherms (Figure 1.8) in an N2 adsorption analysis curve. 

Often, higher BET (Brunauer Emmett Teller) surface areas (in some cases up to 6240 m
2
g

-1
 for 

MOF-210)
[190]

 and pore volumes (the highest being 2060 m
2
g

-1
, MOF-210)

[190]
 offer higher 

hydrogen adsorption (in the case of MOF-210, 176 mg/g at 80 bar and 77 K).  
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Figure 1.8 Type I adsorption isotherm (Y axis: amount adsorbed, X axis: relative pressure, 

Ps: saturation pressure)
[191]

 

A number of microporous MOFs that exhibit hydrogen storage potential have been 

documented, mainly based on transition metals.
[192-194]

 Whilst the hydrogen uptake in these 

MOFs is promising (up to 8% by wt. in some cases), the values are obtained at very low 

temperatures (77 K) and high pressures (80 bar),
[195]

 thus not providing the storage conditions 

requested by the Department of Energy (see above Section 1.3.2).  

Recently, interest has been focused towards alkali- and alkaline earth metals. Much 

discussion about hydrogen storage in alkaline earth MOFs is available. This includes doping 

existing transition metal MOFs with alkali- alkaline earth cations to enhance the hydrogen 

adsorption, yet few examples of MOFs that can store hydrogen exist.
[196-198]

  

An advantage of lightweight metals such as lithium and magnesium in a MOF system is 

lower gravimetric densities, thus potentially delivering more hydrogen.
[199, 200]

 In addition to the 

low molecular weight for the lighter metals, and the potential of high storage percentages 

(relative to the weight), lithium and magnesium have an appreciable affinity towards hydrogen.  
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Hydrogen storage in MOFs occurs through weak van der Waals interactions at strongly 

adsorbing sites. These interactions are stronger at lower temperatures and higher pressures. For 

efficient hydrogen storage, high specific surface areas are desirable; and lowering of the overall 

density of the framework could achieve this.
[201]

 Furthermore, adsorption temperatures and 

pressures are factors that depend greatly on heats of adsorption (reported in KJ/mol).
[202-204]

 

Ideally, a larger heat of adsorption would result in higher temperatures and lower pressures at 

which the MOF could adsorb hydrogen.
[200, 205]

  

Though the alkaline earth MOFs, the theme of this thesis, are rare and difficult to obtain, the 

promise of having low density materials for the storage and delivery of hydrogen is predicted to 

be an advantage over current systems.  

 

1.5 Effect of donors on coordination chemistry  

  

The structural chemistry of alkaline earth coordination polymers can be altered by the use of 

donors or co-ligands which will likely affect the dimensionality of the corresponding networks.  

Ideally, the resulting MOFs are structurally stable, three-dimensional, and have well defined 

channel geometries. The dimensionality of the networks can be modified by introducing co-

ligands that coordinate to the metal and link individual SBUs.  

As an example, Jayaramulu et al. 
[170]

 reported on a coordination polymer comprised of Cd
2+

 

ions with a mixture of ligands, consisting of the 4,4’-bipyridine ligand (Figure 1.9a) and 4,5-

imidazoledicarboxylic acid (Figure 1.9b) in acetonitrile, affording a 3-dimensional heteroleptic 

MOF with great structural stability.  
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a 

b 

Figure 1.9 (a) 4,4’-bipyridine (b) 4,5-imidazolecarboxylic acid 

For MOFs three-dimensionality is critical to obtain highly stable, insoluble and functional 

materials. Reduction of dimensionality, achieved by the use of co-ligands, often goes hand-in-

hand with increased solubility. 

The coordination chemistry of metal- macrocycles which can effectively encapsulate metal 

centers has been a topic of recent active research.
[206, 207]

 Macrocycles are cyclical molecules, 

often containing multiple metal-binding sites including O-, N-, and S- moieties. In the case of 

cyclic ethers, also called crown ethers, the most important feature is their ability to stabilize 

cations on the basis of size.
[208]

 This selectivity has prompted their use as separators
[209, 210]

 (e.g. 

hazardous waste ions) and purifiers
[211]

 (e.g. water purification).  
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One of the most commonly used, commercially available cyclic ethers is 1,4,7,10,13,16-

hexaoxacyclooctadecane – known under the simpler name 18-crown-6 (Figure 1.10).
[212]

 The 

macrocycle consists of an 18 membered ring with 6 oxygen binding sites (diameter of cavity: 

2.6-3.2  Å) and is obtainable through a template Williamson ether synthesis route.
[213]

 Other 

frequently employed but smaller crown ethers, include  12-crown-4 (diameter of cavity: 1.2-1.4 

Å) and 15-crown-5 (diameter of cavity: 1.7-2.2 Å).
[214]

  

 

Figure 1.10 18-crown-6 

Factors that contribute to the stabilization of cations were detailed by Christensen et al.
[215]

 

and include the nature of the binding sites in the ring, the quantity of binding sites in the ring, 

and the relative size of the stabilized cations, among others.  

The different crown sizes and their effect on the stabilization of the respective cations have 

given rise to a huge array of crown ether stabilized species. It is important to note that small 

variations in reagent stoichiometry may lead to significant changes in the resulting target 

compounds. 
[216]

 A crown:metal stoichiometry of  1:1 might afford a crown stabilized metal 

ligand compound, whereas a 1:2 stoichiometry might afford separated ions with the cation 

stabilized by two crown ethers in a sandwich fashion, and a non-coordinated anion.
 [215, 217]

 From 
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this example, it becomes clear that for the formation of a coordination compound many 

competing factors play critical roles. 
 
Table 1.5 shows alkali- and alkaline earth metals as 

compared in size to crown ether cavity diameters.  

Practical applications of crown ethers include solubility enhancing effects upon crown 

coordination,
[218, 219] 

a widely known example being “purple benzene”.
[220]

 “Purple benzene” 

contains benzene soluble KMnO4,
[221]

 as achieved by addition of 18-crown-6, to coordinate the 

K
+
 cation. Crown ethers have been used extensively to provide steric saturation to the large alkali 

and alkaline earth metal ions.  

Table 1.5 Ionic diameter and size comparison of alkali-, alkaline earth metals vs. different 

polyethers’ cavity sizes  

 

Cation
 

Ionic 

Diameter
[16]

 (Å) 

Polyether “Cavity” 

Diameter (Å)
[215]

 

 

Lithium 

 

1.20 

 

12-crown-4 

 

1.2-1.7 

Sodium 1.90 15-crown-5 1.7-2.2 

Potassium 2.66 18-crown-6 2.6-3.2 

Magnesium 1.45 21-crown-7 3.4-4.3 

Calcium 1.94    

Strontium 2.36   

Barium 2.70   

 

 

The discovery of crown ethers and their many applications was rewarded  with a Nobel Prize 

in Chemistry in 1987 for Charles Pedersen, Donald Cram and Jean-Marie Lehn.
[222]

 Since, an 

extensive amount of literature has appeared, ranging from effects on transition metals
[223-226]

 to 

lanthanides.
[227-229]

 Examples of effects with the alkaline earth metals also exist, although the 

number of examples strongly depends on the metal center. For example, beryllium in 



CHAPTER 1: The Coordination Chemistry of Alkaline Earth Metals | 35 

 

conjunction with 12-crown-4 is limited  to a single example reported by Neumüller et al.
[230]

. 

The cationic Be(12-crown-4) (1:1 and 2:1 stoichiometry) species includes charge balancing 

[SbCl4]
-
 ions. For magnesium, examples are more varied, with solvent-separated species 

involving 12-crown-4,
[231]

 15-crown-5
[232, 233]

 and 18-crown-6.
[234, 235]

 

For the heavier alkaline earth metals calcium, strontium and barium, 18-crown-6 has been 

widely used to stabilize contact molecules as well as separated ions.  The Ruhlandt group at 

Syracuse University has shown the versatility of 18-crown-6 in stabilizing heavy alkaline earth 

phenolates, thiolates and selenolates,
[236]

 acetylides
[23]

 and amides.
[237]

 The structural chemistry 

of 18-crown-6 complexes will be further explained in Chapter 6, in which the isolation of four 

new alkaline earth metal crown stabilized alkaline earth tosylates is reported.  

 

1.4.10 Sulfonates 

 

A ligand group explored in this thesis is based on the sulfonic acid family; it possesses the 

formula RSO2OH, where R can vary widely. Sulfonic acids may be prepared by sulfonation,
[238] 

the oxidation of thiols,
[239]

 or free radical additions.
[240]

 Sulfonic acids are relatively weak metal 

coordinators, which may be advantageous, or disadvantageous, due to the limited capacity of 

displacing coordinated co-ligands from metal centers.
[241]

 Metal sulfonates have been evaluated 

as adsorptive materials
[242]

 (e.g. microporous supramolecular frameworks) and are also used as 

surfactants.
[243, 244]

 

The high polarity of the sulfonic group makes sulfonic acids highly acidic (e.g. pKa of p-

toluenesulfonic acid = -6.57).
[245]

 The sulfonic acid moiety’s tetrahedral, triply oxygenated nature 

allows for a variety of coordination modes, as illustrated in Figure 1.11.  
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Figure 1.11 Coordination modes for RSO2O
-
.
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 Several examples of alkaline earth metal sulfonates have been reported. These range from 

separated ions, as reported for magnesium with a fully solvated dication, as seen in 

{[Mg(OH2)6](1,5-nds)}
[241]

 (1,5-nds = 1,5-napthalenedisulfonic acid), where magnesium is 

coordinated with six water molecules to heavier alkaline earth examples. The magnesium-bound 

water molecules form a complex hydrogen bonded network with the sulfonate oxygens, resulting 

in an extended chain with the [Mg(OH2)6]
+
 units arranged between the ligand’s –SO3

-
 groups.  

For the heavier metals, the same ligand (1,5-nds) affords the contact molecules [Ca(1,5-

nds)(OH2)2], [Sr(1,5-nds)(OH2)], [Ba(1,5-nds)(OH2)], where, unlike the magnesium species, the 

sulfonate ligands coordinate to the metal centers. For each, dense three-dimensional frameworks 

are achieved through bridging interactions between metal centers.  
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1.4.11 Alkaline earth tosylates 

 

A variant of sulfonic acid is p-toluenesulfonic acid, a versatile reagent in organic chemistry. 

p-toluenesulfonic acid is obtained by the sulfonation of toluene, though it is commercially 

available at low cost. p-toluenesulfonic acid  is used in several organic reactions, including the 

preparation of tosylate esters, acetylations
[246]

, and substitution reactions, because the high 

acidity of tosylic acid (pka = -6.57)
[245]

  makes the tosyl moiety a good leaving group. 

A few examples of group II metal tosylates have been described,
[247]

 including the DAIP 

(donor assisted ion pair) ({[Mg(H2O)6](OTs)2}∞), with water solvated magnesium centers, and 

([Ca(OTs)2(H2O)4]∞), in which four water molecules are coordinated to the metal in addition to 

two tosylates.
[247]

 In both cases, extensive hydrogen bonding links individual units.  
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CHAPTER 2 

Scope of the Thesis 

2.0 Summary of Content 

Over the last few decades, important reasons for the study of Group II organometallics have 

emerged, mainly due to their particular interest as synthetic precursors
[1-5]

 and functional 

materials.
[6-8]

  Whilst the metals show high promise in these fields, research on their properties 

has not come without difficulties. These difficulties arise because the target compounds are 

challenged by the weak nature of the metal-ligand bond with increasing metal size, a mainly 

electrostatically controlled coordination environment,  and a significant propensity to aggregate, 

associated with limited solubility.
[9, 10] 

Thus, studying the properties of alkaline earth 

coordination complexes remains a challenging area of research.  

The scope of this thesis is geared towards the analysis of the structure/function relationships 

in alkaline earth complexes, particularly as gas storage materials and synthetic precursors.  Thus, 

this thesis is divided into two parts.  

The first part is focused on alkaline earth metal organic framework (MOF) chemistry, and is 

based on one of the lightest metals in the periodic table, magnesium, with the aim to prepare 

lightweight, porous materials for gas storage. While a large amount of open-frameworks have 

been reported for transition metals,
[11, 12]

 the expansion of MOF chemistry  to magnesium is 

based on the affinity of magnesium towards hydrogen, offering the possibility of hydrogen 

storage in the pores. Further, hydrogen sorption to the metal sites provides the possibility of a 

larger storage capacity. Very few prior examples of magnesium-based MOFs have been reported  

and the number is especially small for those that remain intact after desolvation and exhibit 

permanent microporosity. This is discussed in Chapter 3, where the synthesis and 
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characterization of lightweight magnesium coordination complexes, based on the para-

pyridinecarboxylic acid, is detailed.  

While magnesium-based materials have been evaluated for hydrogen storage materials due 

to its lightweight character, the larger, heavier metals calcium, strontium and barium display 

larger metal diameters that allow for different structural properties. Because we are interested in 

a correlation of metal size with physical properties, we explored synthetic routes explored for 

magnesium chemistry, as outlined in Chapter 3. Then we used these routes to afford four novel 

heavy alkaline earth metal (Ca, Sr and Ba) coordination complexes, as summarized and 

discussed in Chapters 4-5. 

The second part of this thesis, Chapter 6, reports our studies of the effect of 18-crown-6 

coordination on the highly aggregated, anhydrous alkaline earth tosylates. These were reported to 

be excellent pre-cursors towards isolating heavy alkaline earth metal amides,
[13, 14]

 yet their poor 

solubility in common organic solvents is an obstacle. The crystallographic features and physical 

properties of four novel 18-crown-6 stabilized alkaline earth tosylates are reported. This work 

provides a nice overview on the effect of various parameters, including non-covalent 

interactions, on the coordination chemistry of the target compounds.  
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2.1 Study on Metal Organic Frameworks: ligand choice, reaction solvent composition and 

metal size dependency 

 

Alkaline earth metal-based MOFs containing the biocompatible metals magnesium and 

calcium in conjunction with phosphoric acids, have been previously studied in our group by Dr. 

Victoria Bampoh
[15]

 as possible bone therapy additives. This work impressively demonstrated the 

correlation between reaction conditions and structural features 
[15]

, as also observed in the 

literature,
[16-20]

 Dr. Bampoh’s work was geared to design systematic approaches towards the 

target compounds, on the basis of a) the ligand type and b) the solvent composition, and c) metal 

size dependency.  

The choice of ligand type in our work is based on evidence that rigid, multi-topic ligands 

have afforded open-frameworks.
[21-24]

 Specifically, ligands based on flat aromatic centers have 

been demonstrated to offer these properties. 
[25-27]

 Therefore, we decided to employ 

pyridinecarboxylic acids for the construction of higher dimensional networks (Figure 2.1). The 

MOF literature is heavily populated with examples involving carboxylate-based networks, and 

the study of ditopic ligands with both carboxylates and nitrogen binding points as MOF 

producers is new and promising.
[28-31]

   

There are many powerful advantages in using pyridinecarboxylic acids as linkers in MOF 

chemistry: the multiple binding sites, consisting of an anionic carboxylate and Lewis basic 

nitrogen, offer coordination to two different ligand moieties. Furthermore, pyridinecarboxylic 

acids exist in the form of several isomers, with the pyridyl site in para, meta and ortho position, 

allowing the study of ligand geometry on overall solid architecture without changing the nature 
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of the ligand system. Furthermore, the ligands are soluble in water and a variety of organic 

solvents and are of low cost. There are significant considerations, especially in light of the 

desired technical application.   

 

 

Figure 2.1 para, meta and ortho-pyridinecarboxylic acid 

 

It has been widely documented that solvent choice has a major impact on MOF architecture, 

and thus, a systematic study on solvent effect is essential in this work. This has been an area of 

interest since reports indicated that mixtures of polar organic solvents afford higher dimensional 

architectures (2D, 3D).
[32, 33]

 Again, although prior work is available on transition metals, in 

contrast it is not clear of these effects would be apparent for the s-block metals. Solvent mixtures 

also seem to have an effect on the inclusion of different solvents in the cavities.
[34]

 Thus, our 

systematic approaches include studying solvent mixtures and their different ratios ranging from 

water to mixtures of polar organic solvents (mainly EtOH, MeOH, CH3CN, DMF, THF), to 

study their effect on the resulting structures. Using these solvent choices, five new magnesium 

coordination complexes were obtained and characterized, as described in Chapter 3.  



CHAPTER 2: Scope of the Thesis  | 58 

 

Literature reports document a clear correlation between metal size and the resulting 

coordination complex. Thus, we were interested in the study of metal dependency on network 

geometry. There are very few literature reports on heavy alkaline earth metal open-frameworks 

coordination compounds, likely because the large metal diameters increasing from calcium to 

barium promote aggregation under formation of condensed phases.  

This is discussed in Chapters 4-5, where metal size dependency (calcium, strontium and 

barium) on the resulting coordination complexes was studied under variations of the solvent 

composition, in analogy to Chapter 3. This work afforded five new calcium, strontium and 

barium coordination polymers.  

 

2.2 Crown ether stabilized alkaline earth tosylates: donor studies 

Salt metathesis (Scheme 2.1) is one of the most effective routes towards the synthesis of 

alkaline earth amides, which can be used as precursors towards heavy alkaline earth 

organometallics.
[10]

  

Whilst salt metathesis provides the amides in high yield and purity,
 
the starting metal 

iodides (CaI2, SrI2 and BaI2) must be anhydrous and highly pure,
[35]

 making them very 

expensive. Further, the incomplete precipitation of the resulting alkali halide under formation of 

“ate” complexes is a distinct possibility, imposing difficulties in the isolation of pure products.
[36]  
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THF

MI2 + 2KHMDS                          M(HMDS)2(thf)2 + 2KI
 

M = Ca, Sr, Ba 

N

Si

H3C

CH3

CH3

Si

H3C
CH3

CH3

H

 

HMDS = Hexamethyldisilizane 

Scheme 2.1 Salt metathesis reaction 

Two communications in the 1990’s dealt with alternative starting materials to replace the 

expensive alkaline earth iodides. One proposed by Frankland et al.
[13]

, involved alkaline earth 

triflates (CF3SO3H, Figure 2.2) in reaction with alkali metal amides in THF, affording 

Ca(HMDS)2(thf)2 and Sr(HMDS)2(thf)2 in high yields.  

F

C

F
F

S

O

O H

O
 

Figure 2.2 Triflic acid 

Triflic acid, whilst being highly acidic (pKa = -15),
[37] 

is still very expensive. The second 

communication explored the possibility of using the less expensive p-toluenesulfonic acid 

(HOTs, Figure 2.3)
[14]

 precursors to obtain the target amides via salt metathesis.  
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CH3

S OO

OH  

Figure 2.3 p-toluenesulfonic acid (HOTs, pKa = -6.56)
[38]

 

The attractiveness of p-toluenesulfonic acid as a cost-effective precursor further lies in 

the facile and inexpensive preparation of the alkaline earth tosylates through a bench-top acid 

base reaction without toxic side products. Whilst not as acidic as triflic acid, HOTs remains 

acidic enough to easily undergo aqueous acid-base chemistry with the corresponding alkaline 

earth carbonates under release of CO2 gas. The anhydrous M(OTs)2 are easily obtained by mild 

heating under dynamic vacuum for a few hours (Scheme 2.2). Conveniently, even though the 

following metathesis reactions require strict inert gas conditions, the M(OTs)2 starting materials 

are air stable, facilitating handling and storage. 
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M= Mg, Ca, Sr, Ba 

n = Mg: 6; Ca: 4; Sr: 1; Ba: 1 

 

Scheme 2.2 Synthesis of M(OTs)2 

Surprisingly, little is known about the structural chemistry and physical properties of the 

alkaline earth metal tosylates. It is well documented however,
[13, 14]

 that the anhydrous tosylates 

display very limited solubility, even in the presence of polar solvents such as THF. The low 

solubility is likely a consequence of significant aggregation upon dehydration.  

In our work, initial studies involved refluxing the anhydrous tosylates in THF under inert 

conditions, yet this did not improve solubility. Thus we evaluated the role of the multidentate 

donor 18-crown-6
[39-42]

  and its role in the structural chemistry of the alkaline earth metal 

tosylates. 

Due to the limited solubility of the tosylates in organic solvents, the solvent of choice 

remained water. Reactions between the alkaline earth tosylates and 18-crown-6 in different ratios 

(metal/crown: 1:1, 1:2)  were performed, obtaining four new crown stabilized alkaline earth 

tosylate coordination complexes exhibiting a range of ion association modes. This project 

provides fascinating insight into different mechanisms to obtain steric saturation in the large 

alkaline earth metal centers.  

 



CHAPTER 2: Scope of the Thesis  | 62 

 

2.3 References 

[1] J.S. Alexander, K. Ruhlandt-Senge, Eur. J. Inorg. Chem., (2002) 2761. 

[2] B.I. Nakhmanovich, Y.G. Urman, A.A. Arest-Yakubovich, Macromol. Chem. Phys., 202 

(2001) 1327. 

[3] S. Harder, F. Feil, A. Weeber, Organometallics, 20 (2001) 1044. 

[4] T.P. Hanusa, Organometallics, 21 (2002) 2559. 

[5] W. Teng, Doctoral Thesis, in:  Department of Chemistry, Syracuse University. 

[6] W.D. Buchanan, D.G. Allis, K. Ruhlandt-Senge, Chem. Commun., 46 (2010) 4449. 

[7] W.D. Buchanan, M.A. Guino-o, K. Ruhlandt-Senge, Inorg. Chem., 49 (2010) 7144. 

[8] W.D. Buchanan, E.D. Nagle, K. Ruhlandt-Senge, 8 (2009) 263. 

[9] A. Torvisco, A.Y. O'Brien, K. Ruhlandt-Senge, Coord. Chem. Rev., 11-12 (2011) 1268. 

[10] A.G. Goos, P.J. Rosado Flores, Y. Takahashi, K. Ruhlandt-Senge, Alkaline Earth Metals: 

Organometallic Chemistry 2012. 

[11] H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev., 112 (2012) 673-674. 

[12] G. Xiaojun, S. Haiquan, Materials Focus, 1 (2012) 97. 

[13] A.D. Frankland, P.B. Hitchcock, M.F. Lappert, G.A. Lawless, J. Chem. Soc., Chem. 

Commun., (1994) 2435. 

[14] A.D. Frankland, M.F. Lappert, J. Chem. Soc. Dalton Trans., (1996) 4151. 

[15] V. Bampoh, Doctoral Thesis, in, Syracuse University, 2012. 

[16] C. McKinstry, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, J. Sefcik, CrystGrowthDes, 13 

(2013) 5481-5486. 

[17] F. Yuan, J. Xie, H.-M. Hu, C.-M. Yuan, B. Xu, M.-L. Yang, F.-X. Dong, G.-L. Xue, 

CrystEngComm, 15 (2013) 1460. 



CHAPTER 2: Scope of the Thesis  | 63 

 

[18] X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng, M. Kurmoo, 

CrystEngComm, 10 (2008) 1309. 

[19] X.-M. Chen, M.-L. Tong, Acc. Chem. Res., 40 (2007) 162. 

[20] T.A. Makal, A.A. Yakovenko, H.-C. Zhou, J. Phys. Chem. Letters, 2 (2011) 1682-1689. 

[21] L. Sarkisov, L.R. Martin, M. Haranczyk, B. Smit, J. Am. Chem. Soc., 136 (2014) 2228. 

[22] L. Liu, X. Wang, Q. Zhang, Q. Li, Y. Zhao, CrystEngComm, 15 (2013) 841. 

[23] W. Yang, M. Guo, Y. Fei-Yan, S. Zhong-Ming, Cryst. Growth Des., 12 (2012). 

[24] S. Henke, R. Schmid, J.-D. Grunwaldt, R.A. Fischer, Chem. Eur. J., 16 (2010) 14296. 

[25] J.-J. Wang, M.-L. Yang, H.-M. Hu, G.-L. Xue, D.-S. Li, Q.-Z. Shi, Z. Anorg. Allg. Chem. , 

633 (2007) 341. 

[26] X. Wang, J. Luan, H. Lin, C. Xu, G. Liu, J. Zhang, A. Tian, CrystEngComm, 15 (2013) 

9995. 

[27] J.-Q. Liu, Y.-Y. Wang, Y.-N. Zhang, P. Liu, Q.-Z. Shi, S.R. Batten, Eur. J. Inorg. Chem., 

2009 (2009) 147-154. 

[28] A. Pichon, A. Lazuen-Garay, L.S. James, CrystEngComm, 8 (2006) 211. 

[29] S. Xiang, J. Huang, L. Li, J. Zhang, L. Jiang, X. Kuang, C.-Y. Su, Inorg. Chem., 50 (2011) 

1743. 

[30] M.C. Das, H. Xu, S. Xiang, Z. Zhang, H.D. Arman, G. Qian, B. Chen, Chem. Eur. J., 17 

(2011) 7817. 

[31] Y.-H. Zhou, Y.-P. Tian, Bull. Korean Chem. Soc., 34 (2013) 2800-2802. 

[32] I. Senkovska, J. Fritsch, S. Kaskel, Eur. J. Inorg. Chem., (2007) 5475. 

[33] C. Dey, T. Kundu, B. Biswal, A. Mallick, R. Banerjee, Acta. Cryst. B70, (2014) 3. 



CHAPTER 2: Scope of the Thesis  | 64 

 

[34] X.-R. Hao, X.-L. Wang, K.-Z. Shao, G.-S. Yang, Z.-M. Su, G. Yuan, CrystEngComm, 14 

(2012) 5596. 

[35] M. Westerhausen, Inorg. Chem., 30 (1991) 96. 

[36] M.M. Gillett-Kunnath, J.G. MacLellan, C.M. Forsyth, P.C. Andrews, G.B. Deacon, K. 

Ruhlandt-Senge, Chem. Commun., (2008) 4490-4492. 

[37] R.D. Howells, J.D. McGown, 77 (1977) 69. 

[38] D.C. French, D.S. Crumrine, J. Org. Chem., 55 (1990) 5494. 

[39] U. Englich, K. Ruhlandt-Senge, Z. Anorg. Allg. Chem., 627 (2001) 851. 

[40] D.C. Green, U. Englich, K. Ruhlandt-Senge, Angew. Chem. Int. Ed., 38 (1999) 354. 

[41] U. Englich, K. Ruhlandt-Senge, F. Uhlig, J. Organomet. Chem., 613 (2000) 139. 

[42] S. Chadwick, U. Englich, B.C. Noll, K. Ruhlandt-Senge, Inorg. Chem., 37 (1998) 4718. 

 

 



CHAPTER 3: Novel magnesium coordination networks  `  | 65 

 

CHAPTER 3 

Novel magnesium coordination networks based on the p-pyridinecarboxylic acid ligand   

 

3.0 Introduction 

With a remarkable growth in the number and applications of metal organic frameworks 

(MOFs), the vast majority of known compounds are transition metal based carboxylates.
[1] 

 In 

contrast, little is known about main-group-based MOFs, with even less information on s-block 

metal based species. There are significant differences between main group and transition metal 

MOF’s, the most relevant of which is the lack of geometrical control, due to the filled or 

energetically unavailable d-orbitals. Thus, detailed synthetic knowledge, achieved by extensive 

work over two decades,
[2-4]

 and a well-defined coordination chemistry, as made possible by d-

orbital participation results in an extensive library of structural patterns, is not available for the 

main group MOFs. This is especially the case for s-block MOFs, where the large metal sizes 

commonly result in large coordination numbers, and geometries are mainly dictated by 

electrostatic interactions. Further, the weak metal ligand bonds often provide multiple 

coordination environments which are all quite similar in energy, making a prediction of 

geometrical parameter especially challenging.  However, the recent dissemination of a number of 

potential applications has spurred the interest in s-block MOFs. Of special interest are lithium 

and magnesium based MOFs for gas storage, because of their low weight and their significant 

affinity towards hydrogen.
[5]

  

For both metals, the use of multitopic linkers has been documented, and ligands with two 

different hard/soft binding sites have afforded 3D networks.
[6-8]

 In particular, p-
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pyridinecarboxylic acid (Hin) (Figure 3.1a) and its isomers are of interest, as systematic studies 

based on substitution pattern and different binding modes (Figure 3.1b) are easily possible. For 

the alkali metals, work by Abrahams et al.
[9]

 afforded the 3-dimensional [Li(in)]•0.5 DMF, 

which exhibits a microporous structure with gas adsorption properties. For the heavier group II 

metals, calcium and strontium,
[10]

 picolinic acid and isonicotinic acid afforded hydrogen bonded 

networks. The Ca isonicotinate species displays layers associated via π---π stacking and 

hydrogen bonding,
[11]

 whereas the Sr congener contains an unusual dissociated [in]
-
 ligand.

[11]
  

The effect of solvent composition on resulting frameworks is a topic of much discussion. 

In the transition metal sphere, studies involving the role of solvent in structural assembly have 

arisen before. Specific examples of structures for transition metals include frameworks by Chen 

et al.
[12]

, who reported on solvent dependent Mn(II) structures based on tetrachloroterephtalates, 

in which solvent combinations (pyridine/water, EtOH/MeOH, dioxane/H2O, MeOH/DMF) 

afforded 1-dimensional (pyridine/water; EtOH/MeOH), 2-dimensional (dioxane/H2O) and 3-

dimensional (MeOH/DMF) frameworks. For Mg(II) frameworks, Mazaj et al.
[13]

, using trimesic 

acid, investigated the control of crystallization processes by tuning solvent composition. Their 

system consisted of EtOH/water in various compositions (EtOH/H2O = 0:4; 1:4; 1.8:2.2; 4:0), 

with stable structures ranging from 0D (0:4), 1D (1:4), 2D (1.8:2.2) and 3D (4:0).  

Further examples include Banerjee et al.,
[14]

 who isolated four different Mg(II) 

frameworks that were based on 3,5-pyridinecarboxylic acid under different solvent compositions. 

Thus, we see that it is important to develop systematic studies in order to pinpoint conditions that 

lead to functional MOFs.  
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Figure 3.1 (a) From left to right p-pyridinecarboxylic acid (Hin), m-pyridinecarboxylic acid 

(Hnic) and o-pyridinecarboxylic acid (b) binding modes in pyridinecarboxylic acid, nitrogen 

coordination not shown 

 

In our work we describe several magnesium p-pyridinecarboxylic acid (Hin) networks, 

showing that small changes in reaction conditions lead to significant changes in network 

geometry. These include a family with three different guest molecules (1a - c), a hydrogen 
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bonded network (2), and a zwitterionic compound, where the anion plays a major role in the 

propagation of the network (3). 

 

3.1 Experimental 

3.1.1 General physical measurements 

All chemicals were obtained commercially and used without further purification (purity of 

Mg(NO3)2∙6H2O – 98%, Hin – 98%). IR measurements were carried with KBr pellets using a 

Nicolet IR200 FT-IR spectrophotometer between 4000 cm
-1

 to 400cm
-1

. Melting point 

determinations (uncalibrated) were made using capillary tubes in a Mel-Temp II melting point 

apparatus. 

TGA (Thermogravimetric Analysis) measurements were performed on a TGA Q500 series 

instrument (TA Instruments-Waters LLC) under an N2 balance/sample purge flow of 40 mL/min 

and 60 mL/min, respectively. The samples (wt. 6-20 mg) were loaded onto a platinum pan and 

heated using a ramp method, from room temperature to 750 ºC (ramp rate: 10°C/min). 

Temperature dependent powder X-ray diffraction experiments were performed on a Bruker D8 

Series II Advanced diffractometer equipped with a point detector and a target producing CuKα 

(1.54 Å) radiation. A scan range was chosen between 10-70 ° 2θ, with a 1 sec/step scanspeed in 

increments of 0.04 steps. The temperature experiments were performed on a Parr TTK450 

temperature stage, equipped with a liquid nitrogen cooling system, under vacuum from 25-300 

°C. Compounds 1a and b were characterized by the physisorption of N2 (Airgas, 99.999%) at 77 

K (Micromeritics ASAP 2020).  Prior to N2 dosing, samples were gassed out under vacuum at 

298K for 24 h to avoid any structural collapse due to elevated temperatures. Surface areas were 
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determined by BET; total pore volumes were estimated from the total quantity of nitrogen 

condensed on the samples at a relative pressure of 0.995. 

All single crystal X-ray data were collected on a Bruker Kappa diffractometer using an 

APEX 2 CCD detector and MoK radiation (0.7107 Å). Crystals were cooled using a Cryocool 

LN-3 low temperature device (Cryoindustries of America, Inc.) The crystals were submerged in 

highly viscous hydrocarbon oil (Infineum), mounted on a MITEGEN mount and placed in the 

low temperature stream on the diffractometer, similar to what has been described previously.
[15] 

Data collection parameters and refinement details have been described elsewhere in detail.
[15, 16] 

The crystal structures were solved using direct methods and subsequent refinement was 

accomplished by the full-matrix least-squares method on F
2
.
[17] 

All non-hydrogen atoms were 

refined anisotropically. Absorption corrections were performed using the SADABS program.
[18]

 

Hydrogen atoms were calculated to fixed positions. SQUEEZE parameters in PLATON were 

utilized to determine the approximate solvent void volume after removal of solvent electron 

density for 1a-c.
[19]

  

The non-centrosymmetric spacegroups in 1a and 1b were confirmed using the program 

PLATON.
[19]

 For 1a, the disordered DMF molecule was refined over split positions as follows: 

0.57588 and 0.42412.  

 

 

 

 

http://en.wikipedia.org/wiki/%C3%85
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3.1.2 Synthesis 

General procedure: Compounds 1a-c, 2 and 3 were synthesized using 

solvothermal/hydrothermal conditions in Carius tubes (4 mL). The solvents (or mixtures thereof) 

(DMF, ACN, THF and H2O) were chosen for their ability to dissolve Mg(NO3)2∙6H2O and the 

Hin ligand. Reactions were performed in the temperature range of 120-135 °C, using different 

donor ratios, as summarized in Scheme 1. 

 

{[Mg(in)2]2∙DMF}∞ (1a): 0.3 mmol (88.5 mg) of Mg(NO3)2∙6H2O and 0.6 mmol (77.9 mg) of 

Hin in a 1:3 (4 mL) DMF/MeOH mixture were combined. The Carius tube was sealed under 

vacuum and reacted solvothermally at 135ºC. After 2 days, colorless block-shaped crystals 

suitable for X-ray crystallography were isolated from the clear, colorless mother liquor. Mp: 

decomposes >475ºC. Yield (non-optimized): 93.2 mg, 31%. IR (cm
-1

): 2976 (br, w); 2781 (w); 

2440 (w); 1543 (w); 1471 (w); 1384 (s); 1233 (w); 1024 (m); 885 (w); 867 (s); 784 (w); 681 (w).  

 

{[Mg(in)2]2∙ACN}∞ (1b): 0.5 mmol (128.2 mg) of Mg(NO3)2∙6H2O and 1 mmol (123.1  mg) of 

Hin in a 2:2 (4 mL) ACN/DMF mixture were combined.  The Carius tube was sealed under 

vacuum and kept at 135ºC. Overnight, colorless block-shaped crystals suitable for X-ray 

crystallography were obtained from the clear, colorless mother liquor. Mp: decomposes > 400 

°C. Yield (not optimized): 86.6 mg, 30%. IR (cm
-1

): 3048 (w); 2462 (w); 1986 (w); 1627 (br, s); 

1558 (s); 1497 (s); 1425 (br, s); 1216 (m); 1090 (m); 1017 (m); 850 (s); 786 (s); 713 (s); 682 (s); 

601 (m); 562 (m).  
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{[Mg(in)]∙0.5THF}∞ (1c): 1 mmol (256.4 mg) of Mg(NO3)2∙6H2O and  2 mmol (246.2 mg) of 

Hin in a 2:2 MeOH/THF mixture were combined. The Carius tube was sealed under vacuum and 

reacted solvothermally at 135ºC. Overnight, colorless block-shaped crystals suitable for X-ray 

crystallography were obtained from the clear, colorless mother liquor. Mp: decomposes > 400 

°C. Yield (not optimized): 56.8 mg, 21%. IR (cm
-1

): 2723 (w); 2352 (w); 1983 (w); 1613 (m); 

1555 (m); 1455 (s); 1376 (s); 1216 (w); 1155 (w); 1064 (w); 1015 (w); 878 (w); 846 (m); 783 

(m); 711 (m); 676 (m).  

 

{[Mg(in)2(H2O)]·EtOH}∞ (2): 0.5 mmol (128.2 mg) of Mg(NO3)2∙6H2O and  1 mmol (123.1 

mg) of Hin in 4 mL of EtOH were combined. The Carius tube was sealed under vacuum and 

reacted solvothermally at 135ºC. Overnight, colorless block-shaped crystals suitable for X-ray 

crystallography were obtained from the clear, colorless mother liquor. Mp: decomposes > 400 

◦C. Yield (not optimized): 118 mg, 17%. IR (cm
-1

): 2724 (w); 2672 (w); 2413 (w); 2305 (w) 

1972 (m); 1884 (w); 1612 (w); 1469 (m); 1453 (s); 1380 (s); 1155 (w); 971 (w); 884 (w); 776 

(w); 722 (s). 

 

{[Mg(inH)(OH2)2][NO3]}∞ (3): 0.5 mmol (128.6 mg) of Mg(NO3)2∙6H2O and 1 mmol (123.1 

mg) of Hin were combined in a mixture of 3:1 (4 mL) CH3CN/H2O. The mixture was kept at 120

˚C in the sealed Carius tube. After 1 day, colorless block-shaped crystals suitable for X-ray 

crystallography were obtained from the clear, colorless, mother liquor. Mp: decomposes >452ºC. 

Yield % (not optimized): 188 mg, 40%. IR (cm
-1

): 3398 (br, s); 2396 (w); 2344 (w); 1635 (s); 

1560 (w); 1388 (s); 1048 (m); 1002 (m); 969 (w); 860 (w); 825 (m); 688 (w).  
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3.2 Results and Discussion 

3.2.1 Synthesis 

 

The target compounds were prepared by acid base chemistry, involving the treatment of 

magnesium nitrate with the organic ligand (Scheme 3.1). Since reaction conditions have a profound 

effect on the composition of the resulting frameworks,[20-23] reagent stoichiometry and reaction 

conditions were systematically varied. 

 

Scheme 3.1 Synthesis of 1a-c, 2 and 3 
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1a: DMF/MeOH ratio: 1:3 

1b: ACN/DMF ratio: 2:2 

1c: THF/MeOH ratio: 2:2 

2: EtOH ratio: 4 

3: ACN/H2O ratio: 3:1 

 

As shown previously, the coordinating ability of the donors plays a significant role in the 

structural dimensionality of the resulting network,
[24]

 prompting us to systematically investigate 

the solvent dependency on the formation of the target compounds (Table 2.1).  

The compound family 1a - c was obtained by introducing solvent mixtures in various ratios. 

Optimal conditions for the crystallization for 1a-c, 2 and 3 were found at temperatures of 120 °C (3) 

and 135 °C (1a-c and 2), as described in the experimental section. If the temperature was raised 

above 150°C, decomposition of the reagents was generally observed.  

As a side note, soaking 1a for 1 week in fresh ACN or THF did not produce 1b or 1c, as 

verified via single crystal X-ray diffraction analysis of the soaked samples. The samples also did 

not uptake small molecules such as cyclohexane and benzene.  

Compounds 1a-c and 2 are soluble in water, yet insoluble in other solvents. Water 

molecules coordinate to the metal center more effectively than less polar solvents,
[25]

 which is 

why 2 and 3 crystallize as hydrogen bonded networks.  
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Table 3.1 Solvent systems in the synthesis of 1a - c and 2 

 

Solvent 

 

Ratio 

 

Compound 

 

DMF 

 

na 

 

- 

 

EtOH 

 

na 

 

2 

 

MeOH/DMF 

 

3:1, 1:3 

 

1a 

 

ACN/DMF 

 

3:1, 2:2 

 

1b 

 

EtOH/DMF 

 

3:1 

 

1a 

 

MeOH/THF 

 

3:1 

 

1c 

 

MeOH/DMF/ACN 

 

 

EtOH/DMF/ACN 

 

2:1:1 

 

 

1:1:2 

 

 

1b 

 

1a 

 

 

Interestingly, whilst compound 2 was synthesized in EtOH as a solvent, a water molecule 

is coordinated to the metal center, resulting in a different structure as compared to the other 

compounds. It is rationalized that ethanol contains enough water to lead to the formation of a 

hydrogen-bonded, 2-dimensional sheet network, as explained in the structural characterization 

section. Further, repeating the reaction using dry ethanol resulted in the isolation of the water 

species ({[Mg(in)2]2·H2O} as reported by Liu et al. (detailed below).
[26]

  

Compound 3 was prepared from a 3:1 ratio of acetronitrile/water, resulting in a 

zwitterionic species. The zwitterion nature of isonicotinic acid in solution has been studied 
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before, and it has been found that at low pH the predominant form of isonicotinic acid is the 

zwitterion.
[27-30]

 This possibly led to the formation of a zwitterion species, instead of a neutral 

species.  
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3.2.2 Structural characterization of 1a-c, 2 and 3 

Table 3.2 Structural characterization for compounds 1a - c, 2 and 3  

 

     

Compound 

Empirical 

formula 

1a 

C27H23Mg2N5O9 

1b 

C26H21Mg2N5O8 

1c 

C12H8MgN2O4 

2 

C28H30MgN4O12 

3 

C12H16MgN4O14 

Formula weight 610.12 580.10 268.51 663.18 464.60 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Triclinic 

Space group P21 P21 P21/c P21/c P-1 

T (K) 86(2) 90(2) 90(2) 90(2) 90(2) 

Unit cell 

dimensions (Å, º) 

     

a 9.876(2) 9.864(11) 4.9198(16) 10.708(3) 6.122(8) 

b 12.996(3) 13.084(16) 12.874(4) 11.903(3) 8.104(2) 

c 10.706(2) 10.566(12) 11.004(4) 12.844(4) 9.376(3) 

α, γ 90 90 90 90 89.557(5); 88.521(5) 
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β 100.64(3)  101.699(2) 99.705(6) 110.02(7) 86.613(5) 

Volume (Å
3
) 1350.5(5) 1335.5(3) 687.0(4) 1538.28(8) 464.1(2) 

Z 2 2 2 2 1 

Calculated density 

(g/cm
-3

) 

1.498 1.433 1.298 1.432 1.662 

Absorption 

coefficient (mm
-1

) 

0.155 0.150 0.139 0.148 0.182 

θ range 2.49 to 35.75° 

 

1.97 to 26.37° 2.46 to 30.64° 2.15 to 26.37° 2.18 to 26.95° 

Unique reflections 12009 5329 2088 2857 5657 

Total reflections 35575 10389 8209 19219 2001 

Goodness-of-fit 

on F
2
 

0.981 1.430 1.028 1.033 1.029 

R1, wR2 (all data) R1 = 0.0676,  

wR2 = 0.1206 

R1 = 0.0455,  

wR2 = 0.1671 

R1 = 0.0623,  

wR2 = 0.1684 

R1 = 0.0450,  

wR2 = 0.1425 

R1 = 0.0544,  

wR2 = 0.0956 

R1, wR2 (Final) R1 = 0.0430,  

wR2 = 0.1079 

R1 = 0.0418,  

wR2 = 0.1598 

R1 = 0.0528,  

wR2 = 0.1506 

R1 = 0.0414,  

wR2 = 0.1381 

R1 = 0.0357,  

wR2 = 0.0890 

F(0 0 0) 630 600 276 692 240 
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 The compounds 1a - c display isostructural network geometries, with different guest 

molecules in the cavities. Because of the isostructural nature, only 1a is shown. 1a and b 

crystallize in the monoclinic non-centrosymmetric space group P21, while 1c crystallizes in the 

centrosymmetric spacegroup P21/c. 1a and b display distorted octahedral geometries with O-Mg-

O angles ranging from 87.207(8) to 178.427(10) º (1a) and 87.710(4) to 176.988(5) for (1b).  

In both 1a and 1b, the asymmetric units display two rather similar independent 

magnesium centers coordinated equatorially by four oxygen atoms [Mg-O distances 1a: 2.046(8) 

(avg) Å, 1b: 2.060(11) Å (avg)] from four different ligands.  

The axial positions in 1a and b are occupied by two pyridyl nitrogens [Mg-N distances 

1a: 2.215(5) Å (avg), 1b: 2.189(8) (avg) Å].  The N-Mg-N angles for 1a and b are 179.809(11) ° 

and 178.425(7) ° respectively.  

For 1c, the asymmetric unit displays one half-occupied magnesium center. Like 1a and b, 

the magnesium center displays a distorted octahedral geometry and is equatorially coordinated 

by four oxygens (three of which are symmetry generated). The Mg-O distances average 2.051(9) 

Å, whilst O-Mg-O angles range from 87.268(6) to 180 °. As in 1a and b, 1c is coordinated 

axially by two nitrogen atoms (one which is symmetry generated). The Mg-N values are close 

[Mg-N 2.206(5) and 2.207(5) Å], with a N-Mg-N angle of 180 °. Figure 3.3 shows the 

magnesium coordination environment in 1a-c. A summary of pertinent bond lengths and angles 

for 1a – c is presented in Table 3.3. These are within reported values for other compounds.
[31, 32] 

 Due to the isostructural relationship between 1a, b and c, structural propagation in 1a - c 

is achieved in a similar fashion. Chains are formed via carboxylate moieties bridging 

neighboring magnesium centers, as shown in Figure 3.4a. Another set of chains is formed 

through the axial pyridyl nitrogen atoms, providing further propagation, as shown in Figure 3.4b. 
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The combination of these two chains results in [MgO4N2] nodes to afford three-dimensional 

rhombohedral shaped channels, as shown in Figure 3.5. 

 

Figure 3.3 Six coordinate magnesium center in 1a. 1b and 1c exhibit similar geometries, the 

magnesium center in 1c sitting in a half occupancy position.  
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a 
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b 

Figure 3.4 Representation of the formation of the 3-dimensional network in compounds 1a - c:  

(a) 1-dimensional chains afforded by bridging carboxylates; (b) axial propagation by pyridyl 

nitrogens. Hydrogen atoms have been removed for clarity. 
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Table 3.3 Summary of selected bond lengths (Å) and angles (º) in 1a – c 

 

 1a 1b 1c 

Mg(1)-O(1) 2.051(2) 2.073(2) 2.052(4) 

Mg(1)-O(2) 2.038(2) 2.031(3) 2.050(5) 

Mg(1)-O(3) 2.032(2) 2.058(3) 2.052(4)* 

Mg(1)-O(4) 2.062(2) 2.077(3) 2.050(5)* 

Mg(1)-N(1) 2.214(2) 2.185(4) 2.207(5)* 

Mg(1)-N(2) 2.216(3) 2.194(4) 2.206(5)* 

O(1)-Mg(1)-O(2) 87.413(7) 89.424(4) 87.268(6) 

O(1)-Mg(1)-O(3) 178.058(9) 176.988(5) 180.000(1)* 

O(1)-Mg(1)-N(1) 87.207(8) 92.481(5) 92.103(7)* 

O(1)-Mg(1)-N(2) 92.946(7) 88.012(5) 87.897(6)* 

N(1)-Mg(1)-N(2) 179.81(1) 178.425(7) 180.000(8)* 

O(2)-Mg(1)-O(3) 94.271(8) 93.384(5) 92.732(7)* 

O(2)-Mg(1)-O(4) 178.43(1) 178.816(6) 180.000(1)* 

O(2)-Mg(1)-N(1) 91.31(1) 88.222(5) 92.006(6)* 

O(2)-Mg(1)-N(2) 88.578(9) 92.279(6) 87.994(6)* 

O(3)-Mg(1)-O(1) 178.058(9) 176.988(5) 180.000(1)* 

O(3)-Mg(1)-O(4) 87.087(7) 87.710(4) 87.268(6)* 

O(3)-Mg(1)-N(1) 91.784(8) 88.649(5) 87.897(6)* 

O(3)-Mg(1)-N(2) 88.066(9) 90.786(5) 92.103(7)* 

O(4)-Mg(1)-O(1) 91.216(8) 89.491(5) 92.732(7)* 

O(4)-Mg(1)-N(1) 87.846(8) 90.350(5) 92.006(6)* 

O(4)-Mg(1)-N(2) 92.27(1) 88.158(5) 87.994(6)* 

*Corresponding symmetry generated Mg-O distance or O-Mg-O, O-Mg-N, N-Mg-N angle around Mg(1) for 1c. 

O(3), O(4), N(1) and N(2) in 1c are symmetry generated in the structure.  
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Figure 3.5 Rhombohedral shaped cavities in 1a showing disordered DMF. The channel 

geometry in 1b and c is similar, with guests ACN (1b) and THF (1c) occupying the channels.. 

Hydrogen atoms removed for clarity.  

 

 

 

 

 

 

 



CHAPTER 3: Magnesium coordination networks  | 84 

 

In addition, compounds 1a-c exhibit channels of differing sizes. Window sizes for 1a-c 

were obtained by measuring Mg---Mg distances and are summarized in Table 3.4. Different 

guest molecules are observed in 1a-c (Figure 3.6). Void space calculation, using the PLATON 

software, determined that 1a shows one disordered DMF molecule in the asymmetric unit [316.9 

Å
3 

(23.5%)], whilst b shows an ordered acetonitrile [69.2 Å
3
 (5.2%)]. Disorder refinement 

attempts for the guest molecule in 1c were unsuccessful. Since the compound was isolated from 

a MeOH/THF mixture, SQUEEZE calculations were performed to elucidate the presence of 

MeOH or THF in the channels.  The SQUEEZE calculation returned a volume of 74.4 Å
3
 (10.8 

% of the total unit cell volume), finding 28 e
-
 in the voids, and these were assigned as 0.5 THF 

molecules. Figure 3.7 shows an example the space filling and calculated solvent plot of 1a.  

 

Figure 3.6 Channel view of 1b with acetonitrile guest molecules. Hydrogen atoms on ligands 

removed for clarity. Donor substitution in 1a-c results in a slight channel size change.   
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a 
 

b 

Figure 3.7 (a) Space filling plot for 1a showing channel spaces (b) Calculated solvent 

plot in 1a, yellow spheres represent DMF molecules. 
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The calculated void space volumes are considerably lower than those reported by 

Banerjee et al.
[14]

, who reported that three 3-dimensional structures based on Mg(II) in 

conjunction with 3,5-pyridinedicarboxylate demonstrated theoretical volumes ranging from 617 

Å
3
 to 2084 Å

3
.  

Furthermore, Liu et al.
[33]

 reported a structure with the formula {[Mg(in)2]2·H2O}∞ with 

an isostructural motif to 1a-c, in which instead a water molecule locates in the channels, 

obtaining similar window sizes to that of 1b. Structural propagation is achieved in the same way 

as 1a-c. This particular structure was isolated from DMF, whereas compounds 1a-c were isolated 

from mixtures of MeOH/DMF. In our case, using DMF as the sole reaction solvent resulted in 

clear colorless solutions.  

Window sizes in 1a-c are larger than that of the reported [Li(in)]∙0.5DMF
[9]

 which 

exhibits rectangular channels with a value of 4 Å x 5.5 Å. This result is possibly due to the 

different coordination geometry around the metal (for the reported Li
+ 

species: 4-coordinated, 

tetrahedral geometry; our Mg species: 6-coordinated, octahedral geometry).
[34]

  

There is a noticeable increase in window size as the solvent molecule size decreases 

(DMF < THF < ACN). This result is consistent with the findings of Senkovska et al.
[32, 35]

 for Mg 

frameworks, in which the guest molecule size was also correlated with increasing window size.  
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Table 3.4 Window sizes for 1a-c, and {[Mg(in)2]2·H2O}
[33]

 

 

 

Compound 

 

Window Size (Mg---

Mg distances) 

 

Unit Cell Volume 

 

Void volumes (Void 

vol./Total vol. x 100) 

{[Mg(in)2]2·DMF} (1a) 

 

{[Mg(in)2]2·ACN} (1b) 

       

{[Mg(in)2]2·THF} (1c) 
 

{[Mg(in)2]2·H2O} 

 

10.70 Å x 8.50 Å 

        

13.08 Å x 8.46 Å 

 

 11.00  Å x 8.56 Å 

 

11.30 Å x 8.59 Å 

1350.5 Å
3
 

 

1335.5 Å
3
 

 

687.6  Å
3
 

 

1377.9 Å
3
 

316.9 Å
3
 (23.5 %) 

 

69.2 Å
3 

(5.2 %) 

 

74.4 Å
3
 (10.8 %),  

  
Not reported (24.3%) 

 

Few frameworks with p-pyridinecarboxylic acid and Mg have been reported, the first 

example reported being a hydrogen bonded network.
[25]

 As opposed to 1a-c, in this example the 

6-coordinate Mg center was coordinated axially by a pyridyl nitrogen, an oxygen from a 

carboxylate and equatorially by four waters. The waters formed an extended hydrogen bonded 

network. This clearly evidences the diversity of coordination motifs that p-pyridinecarboxylic 

acid can provide.  

Compound 2 crystallizes in the monoclinic space group P21/c. Unlike 1a-c, the 

asymmetric unit contains one fully occupied magnesium center. The magnesium center displays 

a six coordinate geometry consisting of two axial pyridyl nitrogen atoms [Mg-N 2.21(3) (avg) Å] 

with an N-Mg-N angle of 177.66(6) º.  Three of the four equatorial oxygens stem from the ligand 

carboxylate [Mg-O: 2.042(4) (avg)], the fourth from a coordinated water with a Mg-Ow distance 

of 2.083(1) Å. O-Mg-O angles range from (including the water position) 84.79(5)º to 172.32(5) 

º), and O-Mg-Ow angles range from 84.99(5)-177.63(5) º), as shown in Figure 3.8. The N-Mg-O 

angles range from 88.75(5)-94.53(5) º, whilst the N-Mg-Ow angle has a value of 89.15(5) º). 
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Table 3.5 summarizes selected bond lengths and angles for 2. The bond lengths and angles are 

within published values.
[36, 37] 

 

 

 

  
Figure 3.8 The 6-coordinate metal environment in compound 2. In contrast to compounds 1a - c, 

one position, O3w is water. Hydrogen atoms, except for those on water, have been removed for 

clarity.  
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Table 3.5 Selected bond lengths (Å) and angles (º) for 2 

 

 

Mg(1)-O(2) 

 

2.0739(13) 

 

O(2)-Mg(1)-N(1) 

 

94.53(5) 

Mg(1)-O(3)w 2.0834(13) N(2)-Mg(1)-N(1) 177.66(6) 

Mg(1)-O(4) 2.0095(13) O(4)-Mg(1)-O(2) 89.99(5) 

Mg(1)-O(5) 2.0437(13) O(4)-Mg(1)-O(3)w 177.83(6) 

Mg(1)-N(1) 2.229(2) O(2)-Mg(1)-O(3)w 88.32(5) 

Mg(1)-N(2) 2.191(2) O(5)-Mg(1)-N(2) 88.75(5) 

O(4)-Mg1-O(5) 96.786(1) O(3)w-Mg(1)-N(2) 89.15(5) 

O(5)-Mg(1)-O(2) 172.32(5) O(5)-Mg(1)-N(1) 89.19(5) 

O(5)-Mg(1)-O(3)w 84.99(5) O(3)-Mg(1)-N(1) 89.56(5) 

O(4)-Mg(1)-N(1) 89.21(5)   

O(4)-Mg(1)-N(2) 92.13(6)   

 
 

Whilst in 1a-c an integral part of the three-dimensional propagation is achieved though 

magnesium bridging carboxylate chains (Figure 3.4a), the presence of an equatorial water donor 

(O3w) in the terminal position in compound 2 prevents this propagation, resulting in 2-

dimensional sheets assembled via hydrogen bonding from the water (O3w) to the non-

coordinated carboxylate oxygens O1 (H---A distance 1.97(3) Å, <DHA 169.3(3) º). This is in 

contrast of the 3-dimensional network observed for 1a-c. 

The ethanol molecule’s oxygen O6 (not pictured) is also involved in one  hydrogen bond 

to the other hydrogen in the metal bound water  (H---A distance 1.89(3) Å, <DHA 166.0(2) º). 

Figure 3.9 details 2, as viewed through the b-axis, where hydrogen bond associated 2-

dimensional sheets can be observed. Like 1a-c, propagation for 2 is also achieved through chains 
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formed by axial nitrogens coordinated to metal centers as shown in Figure 3.10a, in which one of 

the carboxylate oxygens in 1a-c is replaced by water in 2.   

 

 

Figure 3.9 Compound 2 as seen through b-axis. In 2, the presence of a water molecule affords 2-

dimensional sheets which are associated via hydrogen bonds. EtOH molecule not shown for 

clarity. Hydrogen atoms on the pyridyl rings removed for clarity.   
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a b 

Figure 3.10 Side by side comparison of (a) axial coordination by pyridyl nitrogens in 2 and (b) 

axial coordination by pyridyl nitrogens in 1a. Much like 1a-c, axial coordination by pyridyl 

nitrogens affords 1-dimensional chains. No propagation is observed through O1. Hydrogen 

atoms on the pyridyl rings have been removed for clarity.  

 

Interestingly, in 2, though the structural propagation is similar to 1a-c, the presence of the 

terminal water molecule reduces the dimensionality from a fully 3-dimensional network (1a-c) to 

a hydrogen bound 2-dimensional coordination polymer. This is comparable to other structures, in 

which terminally coordinated solvent molecules have yielded 2-dimensional motifs.
[38-40] 
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Likewise, although rhombohedral channels are formed in 1a-c, compound 2 exhibits 

channel-like motifs. These spaces are filled with hydrogen bound ethanols of crystallization. 

Figure 3.11 displays square shaped intermolecular spaces formed from the association of these 2-

dimensional sheets via hydrogen bonds. Further, in the case of 2, a solvent-accessible volume of 

[359 Å
3
 (23.3%)] was calculated via PLATON after removal of the coordinated water and 

ethanol of crystallization.   

 

Figure 3.11 Square shaped spaces in 2. Also shown are hydrogen bonds which associate the 2-

dimensional sheets into a 3-dimensional hydrogen bonded coordination polymer. 
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Compound 3 crystallizes in the triclinic space group P-1. The magnesium center is 

located on a center of symmetry, and thus only half of the metal environment is symmetry 

independent. The metal environment is six-coordinate, comprised of four water molecules in the 

equatorial plane (two symmetry generated) [Mg-Ow 2.075(3) Å (avg)], in addition to 

carboxylate in the axial position [Mg-O  2.032(1) Å] (Figure 3.12). Table 3.6 summarizes bond 

lengths and angles for 3, which are within reported values.
[41, 42] 

Interestingly, the Hin ligand is in the form of a zwitterion, with the pyridyl nitrogen being 

protonated (the proton was located in a difference map) whereas the carboxylate moieties are 

deprotonated. Thus, the magnesium center presents itself as a dicationic species, with charges 

balanced by the nitrate anion in the asymmetric unit.   

 

Table 3.6 Selected bond lengths (Å) and angles (º) for 3 

 

Mg(1)-O(1) 

 

2.032(1) 

Mg(1)-O(3)w 2.083(2) 

Mg(1)-O(4)w 2.067(2) 

O(1)-Mg(1)-O(1)’ 180.000(1) 

O(1)-Mg(1)-O(3)w 88.503(8) 

O(1)-Mg(1)-O(4)w 89.183(1) 

O(1)-Mg(1)-O(3)w’ 91.497(8) 

O(1)-Mg(1)-O(4)w’ 90.817(8) 

O(3)w-Mg(1)-O(4)w’ 94.581(7) 

O(3)w’-Mg(1)-O(3)w’ 89.21(5) 
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Figure 3.12 Magnesium coordination environment in compound 3. As the asymmetric unit 

contains only one half-occupied magnesium, only one nitrate is shown. 

 

 

There is no evidence of π---π stacking. Instead main structural propagation is achieved 

through hydrogen bonding. The metal bound waters hydrogen-bind to the nitrate anions and 

neighboring carboxylates, forming an intricate pattern of chains. Chains are also formed through 

hydrogen bond interactions coming from the hydrogen at the pyridyl nitrogen site to the nitrate 

anions. The combination of these chains expands the structure into a complex 2-dimensional 

sheet network (Figure 3.13).   
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To our knowledge no examples of alkaline earth zwitterions based on the isonicotinic 

acid ligand have been reported. The chemistry of supramolecular zwitterion complexes involving 

pyridinecarboxylic acids and metals is not well known, yet studies involving lanthanides and 

transition metals
[43, 44]

 have been reported. In these the unbound counterions act as charge 

balancers and often as connectors to expand the hydrogen bonded networks.
 
 

 
Figure 3.13 A chain formed by hydrogen bonding from water to nitrates and carboxylates. The 

combination of these chains forms a 2-dimensional sheet supported by hydrogen bonds.  
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3.3 Thermal Analysis and Structural Integrity of 1a-c, 2 and 3  

 

A TGA study was performed on 1a-c, 2 and 3, to observe their thermal properties. The 

compounds, except 1b and 3 are stable at temperatures higher than 300 °C after initial solvent 

loss (Figure 3.14). Table 3.7 summarizes the results from the TGA.  

 

Table 3.7 TGA data for compounds 1a-c, 2 and 3 

 

Compound 

 

 

∆T 

 

%Wexp 

 

%Wcalc 

 

Loss 

 

{[Mg(in)2]2·DMF} (1a) 

 

 

30-190 °C 
 

11.2% 
 

11.9% 

 

DMF 

{[Mg(in)2]2·ACN} (1b) 
 

30-130 °C 7.0% 7.1% ACN 

{[Mg(in)]·0.5THF} (1c) 

 

30-250°C 12.0% 11.8% 0.5 THF 

{[Mg(in)2(H2O)]·EtOH}∞ (2) 30-106°C 5.5% 6.9% EtOH 

{[Mg(inH)(OH2)2][NO3]}∞ (3) 30-140°C 13.5% 15.5% 4 H2O 

∆T: temperature range; %Wexp: % experimental weight loss; %Wcalc: % theoretical weight calculated; Loss: calculated guest 

solvents. 

 



CHAPTER 3: Magnesium coordination networks  | 97 

 

 

Figure 3.14 Overlay of TGA of 1a-c, 2 and 3 shows initial loss of lattice solvents followed by 

decomposition >400ºC.  

 

To determine the thermal stability of the compounds after desolvation, variable temperature 

powder X-ray diffraction experiments, from room temperature to 300 °C, were performed on the 

open-frameworks 1a-c. The room temperature and simulated diffraction patterns of 1a-c are very 

similar, because of the isostructural nature of the compounds. Upon heating 1a-c to 300 °C, several 

unknown phases are observed at 150 and 225 °C, yet the structural integrity of the framework 

remains intact (Figure 3.15a-c) after desolvation. The identity of these phases could not be 

determined.  
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(a) 

(b) 
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(c) 

Figure 3.15 Thermodiffractogram of (a) 1a and (b) 1b and (c) 1c from 25-300 °C, the overall 

structures remain intact after desolvation 

  

Further, since 1a exhibited the highest calculated void space volume of the three 

isostructural frameworks (316 Å
3
, 23.3%), preliminary adsorption studies were performed to 

determine permanent porosity. The BET surface studies using N2 indicated that 1a is non-porous, 

as evidenced by low surface area obtained (13 m
2
g

-1
). This correlates with other compounds 

reported to be non-porous with low BET surface areas,
 [13, 14]

 and the low void space volume 

calculated from PLATON.  
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3.4 Conclusions 

 

Five novel coordination complexes based on Mg(II), in conjunction with isonicotinic 

acid, were successfully isolated and characterized. The use MeOH/DMF mixtures resulted in the 

synthesis of three isostructural 3-dimensional frameworks with 1D rhombohedral shaped 

channels of varying size (1a-c)  

Compounds 1a-c were subjected to variable temperature PXRD and determined to retain 

integrity at high temperatures. Since compound 1a displayed the largest pore volume 

calculations from PLATON, N2 adsorption studies were performed determining non-porosity due 

to the low BET surface area (13 m
2
g

-1
). 

Compounds 2 and 3 crystallized as hydrogen bonded networks. The use of ethanol as a 

solvent made possible the synthesis of a 2-dimensional hydrogen bonded coordination network 

(2) with similar structural features to 1a-c, in which one of the carboxylates is replaced by a 

water molecule which is involved in structural propagation through hydrogen bonding. 

Compound 3, was crystallized as hydrogen bonded zwitterion from an ACN/H2O mixture, in 

which the protonated pyridyl nitrogen participates in intricate hydrogen bonding and the 

unbound nitrate balances the charge on the magnesium center.  
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CHAPTER 4 

Synthesis, characterization and crystal structure of the 3-dimensional hydrogen bonded 

coordination complex {[Ba(in)(H2O)6][in]}∞ 

4.0 Introduction 

 

Previous reports have shown that the use of linkers containing mixed donor atoms may afford 

a range of coordination environments  (See Chapter 2, Figure 2.1), depending on the metal 

centers.
[1,2]

 Carboxylate-pyridine combinations in a ligand system afforded previous 3D 

transition metal MOFs, including a porous, metal organic framework based on Mn.
[3]

 Other 

examples include the isostructural complexes [Zn(in)2(H2O)4] and [Cd(in)2(H2O)4],
[4]

 in which 

the ligand coordinates through its carboxylate and nitrogen donor atoms. Remarkably, the 

increase in metal size from Zn to Cd has no effect on the overall structural features. 

In contrast to the extensive work on transition metal MOFs, little is known about the s-, p- 

and f- block analogs. Alkaline earth metal analogs, based on the isonicotinic acid ligand system, 

include {[Mg(in)2(H2O)4]}
 
in which the ligand coordinates through its para nitrogen and one of 

the carboxylate oxygens. Further association is provided by an extensive network of hydrogen 

bonding through the four waters coordinated to the metal center. The magnesium center is six 

coordinated and can be regarded as a distorted octahedron. Recently, calcium {[Ca(in)2(H2O)4]} 

and strontium {[Sr(in)(H2O)6][in]} coordination networks, based on the isonicotinic acid ligand, 

have also been reported.
[7]

 In contrast to the magnesium species, and expressing the increase in 

metal size, both carboxylate oxygens and the ligand’s para nitrogen participate in coordination to 

the Ca(II) center. In this example the calcium center is seven coordinate with a capped octahedral 
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geometry. Similar to the magnesium analog, the 3-dimensional network structure is afforded by 

extensive hydrogen bonding through its four waters and π---π stacking.  

In line with the trend observed upon descending group II, the strontium complex displays an 

eight coordinate metal center, in which two of the coordination sites are occupied by the 

carboxylate moieties, in addition to six water molecules. The carboxylates bind in a µ2-ƞ
1
:ƞ

1
 

fashion. The overall metal environment can be described as dodecahedral. Interestingly, one 

ligand binds to the metal center while the other is non-metal bound. The [Sr(in)(H2O)6]∞ layers 

associate via hydrogen bonding and π---π stacking (3.502(3) – 3.611(3) Å) interactions with the 

unassociated ligands to afford a 3D framework. The arrangement of coordinated and 

unassociated ligands is not observed for the magnesium and calcium species. A related eight 

coordinate barium environment is observed in the anhydrous, heteroleptic poly[µ4-isonicotinato-

µ3-nitrato-barium(II)] ([Ba(in)(NO3)]n).
[8]

 By analogy to the strontium compound, the [in]
-
 ligand 

bridges the metal centers; however, the presence of the non-coordinated NO3
-
 anion results in 

significantly different structural features. 

This chapter reports studies geared to further illuminate the influence of metal radius on the 

overall structural features of isonicotinate-based heavy alkaline earth MOF’s by the preparation 

and characterization of a homoleptic barium isonicotinate complex. 

4.1 Experimentals 

4.1.1 General and physical measurements 

 

All chemicals were obtained commercially and used without further purification (purity of 

BaCO3 – 98%, 4-pyridinecarboxylic acid – 99%). Reactions were carried out in distilled water.  

IR measurements were carried out as mineral oil mulls in KBr discs in a Nicolete IR200 FT-IR 
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spectrophotometer between 4000 cm
-1

 to 500 cm
-1

. TGA measurements were performed on a 

TGA Q500 series instrument (TA Instruments-Waters LLC) under an N2 balance/sample purge 

flow of 40 mL/min and 60 mL/min, respectively. The sample (wt. 7.9640 mg) was loaded onto a 

platinum pan and heated using a ramp method from room temperature to 750 ºC. All crystal data 

were collected using a Bruker SMART system with a 3-circle goniometer and a APEX-CCD 

detector.  Data were collected using MoK radiation at 103(2) K using a low temperature device 

built by H. Hope (UC Davis).  

The crystals were submerged in highly viscous hydrocarbon oil (Infineum), mounted on a 

glass fiber and placed in the low temperature stream on the diffractometer, as described in detail 

previously.
[9]

 Data collection parameters and refinement details have been described in detail.
[9]

 

The crystal structure was solved using direct methods, with subsequent refinement by full-matrix 

least-squares method on F
2
.
[10]

 All non-hydrogen atoms were refined anisotropically. Hydrogen 

atoms, except those of water molecules, were calculated to fixed positions using restraints. Water 

hydrogens were located directly in the difference map. An absorption correction was performed 

using the SADABS program.
[11]

 Centroid to centroid distances representing π---π contacts were 

calculated using the OLEX2 crystallographic suite.
[12]

 Powder diffractometry experiments were 

recorded in a Bruker D8 Advance, equipped with a copper source and a NaI scintillation counter. 

Crystallographic data (excluding structure factors) for the structure reported in this paper have 

been deposited with the Cambridge Crystallographic Data Center as a supplementary 

publication, no. CCDC 794948. Copies of the data can be obtained free of charge on application 

to CCDC, 12 Union Road, Cambridge C21EZ, UK (fax:(+44) 1223-336-033; e-mail: 

deposit@ccdc.cam.ac.uk). 

 

mailto:deposit@ccdc.cam.ac.uk
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4.1.2 Synthesis of 4 

{[Ba(in)(H2O)6][in]}∞ (4): A slight excess of BaCO3 (493.3 mg, 2.5 mmol) and inH (492.8 mg, 4 

mmol) were combined in 25 mL of distilled water. The resulting slurry (BaCO3 is insoluble 

under these conditions) was stirred and kept under reflux conditions for 24 hours, after which the 

colorless suspension was filtered hot using a Whatman no. 9 filter. The resulting clear, colorless 

mother liquor was allowed to cool down to room temperature and within a few days, colorless 

block-shaped crystals suitable for X-ray crystallography were collected. Mp = above 400 ºC. 

Yield (non-optimized): 23.38 %. IR (cm
-1

): 3415.43 (s), 2351.74 (w), 1600.23 (w), 1549.45 (w), 

1057.93 (w). 
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4.2 Structural Characterization of 4 

Table 4.1 Crystallographic data and structural refinement for 4 

 

 

Empirical formula 
4 

C12H20BaN2O10 

Formula weight 489.64 

Crystal system Monoclinic 

Space group P21/c 

T (K) 103(2) 

Unit cell dimensions (Å, º)  

a  6.2592(18) 

b  44.289(12) 

c  7.2754(15) 

α, γ 90 

β  118.890(18) 

Volume (Å
3
), Z 1765.8(8), 4 

Calculated density (Mg/m
-3

) 1.842(8) 

Absorption coefficient (mm
-1

) 2.303 

2θ range 0.92 to 28.33° 

Unique reflections 4373 

Total reflections 17527 

Goodness-of-fit on F
2
 1.358 

R1, wR2 (all data) R1 = 0.0473, wR2 = 0.0780 

R1, wR2 (Final) R1 = 0.0435, wR2 = 0.0763 

F(0 0 0) 968 

 

Crystallographic analysis revealed that 4 crystallizes in the monoclinic P21/c space group 

and is isostructural with the previously reported strontium compound.
[7]

 The target complex 

displays a 3D framework via a network of hydrogen bonding between metal-coordinated water 

molecules and π---π interactions between the parallel aromatic rings. The structure contains an 

uncoordinated isonicotinate that is instrumental in the formation of the 3D network through non-

covalent interactions. Of particular importance to the formation of the 3D network is the π---π 

stacking between these non-metal bound ligands, with contacts between (3.532(3) and 3.648(3) 

Å). The metal centers are eight coordinate, with six of the coordination sites belonging to water 
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molecules, and Ba-water distances ranging from 2.766(3) – 2.838(3) Å. These distances agree 

with literature values.
[13, 14]

 The eight coordinated metal center adopts a distorted dodecahedral 

geometry, with two coordination sites occupied by two carboxylate oxygens from two different 

isonicotinate ligands. These bridge the metal centers in a µ2-ƞ
1
:ƞ

1
- coordination mode and Ba-O 

distances of 2.684(3) Å and 2.689(3) Å, resulting in a 1D zigzag-like chain, as shown in Figure 

4.1. The zig-zag chains are connected by hydrogen bonding (see table 4.3, Figure 4.2) and π---π 

interactions from the metal-bound ligands (3.642(2) Å) into 2D layers, as shown in Figure 4.3. 

All π---π stacking values are in agreement with literature values.
[15]

 Despite the significant 

increase in ionic radius from strontium to barium (1.27 Å to 1.43 Å, Δ 0.16 Å)
[16]

, the overall 

structural features for the strontium and barium complexes are quite similar, with the expected 

bond length increases due to the increased metal radius. The larger metal radius also results in an 

increase in structural flexibility, as expressed by the slightly larger range of O-Ba-O angles 

(66.61(9) – 150.07(10) º), in contrast to (67.0(1) – 148.0(1) º) reported for the strontium 

congener. Furthermore, comparison of the powder diffraction patterns of the hydrated and 

dehydrated compounds demonstrated loss of crystalline form upon removal of coordinated 

waters.  

Table 4.2 Selected bond lengths (Å) and angles (º) for 4 

    

 

Ba(1)-O(16) 

 

2.684(3) 

 

O(25)W-Ba(1)-O(1)w 

 

68.98(10) 

Ba(1)-O(15) 2.689(3) O(15)-Ba(1)-O(19)w 70.12(11) 

Ba(1)-O(12)w 2.766(3) O(16)-Ba(1)-O(19)w 85.08(11) 

Ba(1)-O(11)w 2.791(3) O(11)W-Ba(1)-O(1)w 116.13(10) 

Ba(1)-O(19)w 2.811(3) O(16)-Ba(1)-O(10)w 140.03(10) 

Ba(1)-O(1)w 2.813(3) O(15)-Ba(1)-O(10)w 71.55(10) 

Ba(1)-O(10)w 2.838(3)   

O(15)W-Ba(1)-O(16) 102.69(9)   
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Table 4.3 Selected hydrogen bonding distances (Å) for 4 

 

 

D-H…A 

 

d(D…A) 

 

O(25)-H(62)…N(3) 

 

2.769 

O(11)-H(70)…N(2) 2.756 

O(10)-H(64)…O(25) 2.825 

O(1)-H(61)…O(8) 2.770 

O(25)-H(63)…O(8) 2.852 

 

 

Figure 4.1 Zig-zag 1D chains. Water hydrogens and hydrogen bonding removed for clarity. 
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Figure 4.2 3D network showing hydrogen bonds (dashed lines) based on 1D chains connected 

into 2D sheets by non-covalent interactions.   
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Figure 4.3 2D layers associated via π---π interactions and hydrogen bonding to form a 3D 

framework 

 

4.3 Thermogravimetric analysis of 4 

Thermogravimetric analysis (Figure 4.4) was performed to determine the thermal behavior of 

the title complex. The profile shows a decrease of 21.61 wt% until 124 ºC, corresponding to the 

loss of six coordinated water molecules (calc. 22.06%). The compound appears to be stable until 

490 ºC, where a further 22.41 wt% drop is observed, coinciding with the start of decomposition 

into an uncharacterized black residue.  
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Figure 4.4 TGA plot for 4 that shows stepwise loss of water molecules (~124 ºC), thermal 

stability and consequent decomposition (490 ºC).  
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4.4 Conclusions 

 In summary, a novel barium coordination polymer 4, which exhibits an unusual ion 

association mode with one metal-coordinated and one unassociated ligand, has been synthesized 

via simple acid base chemistry. Unexpectedly, the compound is isostructural with the strontium 

congener. The barium centers coordinate in a µ2-ƞ
1
:ƞ

1
- bridging motif to the ligand’s carboxylate 

oxygens, resulting in zigzag 1D chains. These chains are formed into to 2D layers via hydrogen 

bonding and π---π interactions. The separated counteranion enables linkage of the layers via an 

extensive network of hydrogen bonding and π---π interactions, affording a 3D framework. This 

work clearly demonstrates that a change in metal size does not necessarily result in a change in 

structural features. This observation strongly suggests the continued need for individual analysis 

of solids, as the prediction of the respective solid state structures is not yet possible.   

 

 

 

 

 

 

 

 

 



CHAPTER 4: Synthesis and characterization of {[Ba(in)(H2O)6][in]}∞   | 115 

 

4.5 References 

[1] James, L. S., Chem. Soc. Rev. 2003, 32, 276-288 

[2] Janiak, C., Dalton. Trans. 2003, 14, 2781-2804 

[3] Wei, Q.; Nieuwenhuyzen, M.; James, L.S., Microporous and Mesoporous Materials 

2004, 73, 97-100. 

[4] Cingi, B. M.; Gaetani, M. A.; Guastini, C.; Musatti, A.; Nardelli, M., Gazzetta Chimica 

Italiana 1971, 11, (101), 815-824. 

[5]  Abrahams, F. B.; Grannas, M. J.; Hudson, T. A.; Robson, R., Angew. Chem. In. Ed. 2010, 

49, 1087-1089 

[6] Cingi, B. M.; Villa, C. A.; Guastini, C.; Viterbo, D., Gazzetta Chimica Italiana 1974, 

104, 1087-1093.  

[7] Chen, Y. C.; Wang, K. B.; Wang, Y., Polyhedron 2010, 29, 669-674. 

[8] Schuy, A.; Ruschewitz, U., Acta Cryst. 2006, E62, m992-m993. 

[9] Chadwick, S.; Ruhlandt-Senge, K., Chem. Eur. J. 1998, 4, 1768. 

[10] G. M. Sheldrick, SHELXTL Version 5, Siemens Analytical X-ray Instruments, Madison, 

WI, 1994. 

[11] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area 

Detector Data, University of Göttingern, 1996. 

[12] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., J. 

Appl. Cryst. 2009, 42, 339-341.  

[13] Shuai, Q.; Chen, S.; Gao, S., Struct. Chem. 2007, (18), 689-695. 

[14] Williams, C. A.; Blake, A. J.; Wilson, C.; Hubberstey, P.; Schröder, M., Cryst. Growth 

Des. 2008, 8, (3), 911-922. 



CHAPTER 4: Synthesis and characterization of {[Ba(in)(H2O)6][in]}∞   | 116 

 

[15] Jorgensen, W. L.; Severance, D. L., J. Am. Chem. Soc. 1990, (112), 4768-4774. 

[16] Emsley, J., The Elements, 2
nd

 ed.; Oxford University Guides; 1991. 

 

 



CHAPTER 5: Heavy alkaline earth (Ca, Sr, Ba) coordination networks | 117 

 

CHAPTER 5 

 

Heavy alkaline earth metal coordination networks based on the para- and meta 

pyridinecarboxylic acid  

 

5.0 Introduction 

The family of alkaline earth metals provides a textbook example of the variation of physical 

and chemical properties that depend on metal size. Compounds based on the lighter metals 

beryllium and magnesium display significantly different properties than the heavier counterparts, 

calcium, strontium and barium. To a large extent, this can be attributed to a size effect, as the 

bond character changes dramatically upon descending group II. While molecular beryllium 

species possess a significant degree of covalency, this tendency is minimal in corresponding 

barium compounds. The increasing ionicity in the metal-ligand bonds can be attributed to a metal 

coordination environment that is predominantly dictated by electrostatic interactions and size 

considerations. Furthermore, because of the large size of the heavy alkaline earth metals, the 

predominantly ionic bonds tend to be weak. Thus, many factors may contribute to the steric 

saturation of a large metals center, making it very difficult to predict structural features for the 

heavy metals.  

Synthesis of coordination polymers based on the heavy alkaline earth metals is slowly 

emerging. These polymers are studied for their feasibility to separate gas mixtures, particularly 

mixtures containing CO2,
[1, 2]

 in addition to their potential in catalysis.
[3-5]

 Considering these 

promising results, further studies in the isolation of higher-dimensional metal organic 

frameworks, based on the heavier metals, is warranted. 
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Because dense, non-porous and hydrogen-bonded network structures are commonly reported 

for Ca, Sr and Ba
[6-10]

, stable microporous materials are virtually unknown. The tendency 

towards the formation of condensed structures is caused by the significant ionic character of the 

metal-ligand  bond; further, the large metal size requires high coordination numbers to achieve 

coordinative saturation, frequently resulting in uncontrolled aggregation.
[11]

 To counter this 

effect, linear, multi-topic linkers have been identified to for their potential to provide three-

dimensional, highly regular, open network structures.  

Examples reported to date include isostructural calcium and strontium species based on the 

the linear 4,4’-sulfonylbenzoate acid (SBA).
[12]  The compounds were prepared using using 

microwave synthesis and display a microporous character. The properties of the calcium 

compound were evaluated for gas separation by Banerjee et al.,
[1]

 who reported high CO2/N2 

selectivity.   

A recent barium example is based on the benzene-1,3,5-trisbenzoic acid (HBTB) ligand,
[13]

 

which affords a 1D microporous species in which the nine-coordinate barium center connects to 

ligand oxygen atoms forming a honeycomb type structure with pores measuring 8 x 13 Å
2
. The 

channels are assembled by weak π---π interactions (3.8 Å) between the BTB layers. This 

example was reported to be the first 1D barium microporous material exhibiting permanent 

microporosity. Other examples are based on the arenesulfonate ligand
[14]

 and have been reported 

to afford higher dimensional structures.  

This chapter summarizes our efforts to prepare and characterize calcium, strontium and 

barium species based on the the para- and meta pyridinecarboxylic acid (Hin and Hnic, 

respectively). On the basis of our prior success in using para  pyridinecarboxylic acid for the 
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synthesis of well-defined magnesium MOFs in Chapter 3, we here expand this work to the 

heavier metals. To evaluate the effect of ligand geometry we also examined the metal substituted 

ligand. Further, this work allows the direct comparison of the magnesium compounds with the 

heavier congeners, giving a unique insight into the effect of metal size. Thus, this chapter will 

present the synthesis of four different coordination networks along with their structural features 

and thermal stability. 

 

5.1 Experimental 

5.1.2 General and Physical Measurements 

All chemicals were obtained commercially and used without further purification (purity of 

Ca(NO3)2·4H2O– 98%, SrCl2·6H2O – 99%, BaCl2·2H2O – 98%, Hin and Hnic– 98%).  

 IR measurements were carried out as KBr pellets or in a Nujol mull using a Nicolet IR200 FT-

IR spectrophotometer between 4000 cm
-1

 to 400cm
-1

. TGA measurements were performed on a 

TGA Q500 series instrument (TA Instruments-Waters LLC) under an N2 balance/sample purge 

flow of 40 mL/min and 60 mL/min, respectively. The samples (wt. 6-20 mg) were loaded onto 

platinum pans and heated using a ramp method from room temperature to 750 ºC (ramp rate: 

10°C/min). Melting point determinations (uncalibrated) were made using capillary tubes in a 

Mel-Temp II melting point apparatus. 

All single crystal X-ray data were collected on a Bruker Kappa diffractometer using an 

APEX 2 CCD detector and MoK radiation (0.7107 Å). Crystals were cooled using a Cryocool 

LN-3 low temperature device (Cryoindustries of America, Inc.) The crystals were submerged in 

highly viscous hydrocarbon oil (Infineum), mounted on a MITEGEN mount and placed in the 

low temperature stream on the diffractometer, similar to what has been described previously.
[15] 
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Data collection parameters and refinement details have been described elsewhere in detail.
[15, 16] 

The crystal structures were elucidated using direct methods, with subsequent refinement by full-

matrix least-squares method on F
2
.
[17] 

All non-hydrogen atoms were refined anisotropically. 

Absorption corrections were performed using the SADABS program.
[18]

 Hydrogen atoms, except 

those on water molecules were calculated to fixed positions. Hydrogen atoms were fixed using 

restraints.  

5.1.3 Synthesis of 5-8 

General procedure: Compounds 5-8 were synthesized using solvothermal/hydrothermal 

conditions in thick-walled glass tubes (Carius tubes) with a fill volume of 4 mL. The solvents (or 

mixtures thereof) (MeOH, DMF and CH3CN) were chosen because of their ability to dissolve the 

metal salts and the organic ligands. Reactions were performed in the temperature range of 100-

135 °C, using different donor ratios, as summarized in Scheme 5.1. 

 

{[Ca(nic)2]}∞ (5): 2 mmol (492.5 mg) of Ca(NO3)2·4H2O and 6 mmol (739.4 mg) of Hnic in a 

3:1 (4 mL) MeOH/DMF mixture were combined in a sealed Carius tube and reacted 

solvothermally at 135ºC. Overnight, colorless block-shaped crystals suitable for X-ray 

crystallography were isolated from the clear, colorless mother liquor. Mp: decomposes >475ºC. 

Yield (non-optimized): 93.2 mg, 54%. IR (cm
-1

): 3434 (s, br); 3067 (w); 2780 (w); 2439 (w); 

1974 (w); 1926 (w); 1565 (s); 1499 (s); 1474 (w); 1406 (s); 1384 (s); 1198 (m); 1164 (w); 1117 

(w); 1042 (w); 1094 (w); 1031 (w); 848 (s); 768 (s); 699 (s); 635 (m); 540 (s). 
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{[Ca(in)(CH3CN)(OH2)]}∞ (6): 0.5 mmol (111.9 mg) of Ca(NO3)2∙4H2O and 1 mmol (125.7 

mg) of Hin in a 3:1 (4 mL) CH3CN/MeOH mixture were combined in a sealed Carius tube and 

reacted solvothermally at 120 ˚C. After 3 days, colorless block-shaped crystals suitable for X-ray 

crystallography were isolated out of the clear, yellow mother liquor. Mp: decomposes >472ºC. 

Yield % (non-optimized): 59.5 mg, 34%. IR (cm
-1

): 3410 (br, w); 3052 (w); 2956 (w); 2344 (w); 

2260 (w); 1734 (s); 1604 (s, br); 1558 (w); 1409 (w); 1327 (w); 1292 (w); 1123 (s); 880 (m); 761 

(m); 708 (m); 680 (m). 

 

[Sr(in)2]∞ (7): 1 mmol (265.9 mg) of SrCl2·6H2O and 2 mmol (246.5 mg) of Hin in a 3:1 (4 mL) 

MeOH/DMF mixture were combined in a sealed Carius tube and reacted solvothermally at 135 

ºC. Overnight, colorless block-shaped crystals suitable for X-ray crystallography were isolated 

from the clear, colorless mother liquor. Mp: decomposes >300°C. Yield (not optimized): 128 

mg, 19%. IR (cm
-1

): 3063 (w); 2983 (m); 2782 (m); 2441 (w); 2344 (w); 1983 (w); 1590 (s); 

1542 (s); 1396 (s); 1215 (m); 1153 (w); 1059 (m); 1003 (m); 873 (m); 853 (m); 773 (s); 688 (s).  

 

[Ba(in)(Cl)]∞ (8): 0.3 mmol (71.9 mg) of BaCl2∙2H2O and 0.6 mmol (75.4 mg) of Hin in a 3:1 (4 

mL) MeOH/DMF mixture were combined in a sealed Carius tube and reacted solvothermally at 

100 ºC. Overnight, colorless block-shaped crystals suitable for X-ray crystallography were 

isolated out of the clear, colorless, mother liquor. Mp: decomposes >300ºC. Yield % (non-

optimized): 61 mg, 69%. IR (cm
-1

): 2979 (s, br); 2842 (w); 2761 (s); 2440 (m); 2344 (w); 1960 

(w); 1735 (w); 1686 (w); 1637 (m); 1541 (m); 1473 (w); 1409 (s); 1219 (w); 1081 (w); 1025 (m); 

1001 (w); 867 (w); 771 (s); 678 (s).   
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5.2 Results and Discussion 

5.2.1 Synthesis Discussion 

The target compounds were prepared by acid-base chemistry, involving the treatment of the 

metal salts with the organic ligands (Scheme 5.1). Since reaction conditions have a profound effect 

on the composition of the resulting frameworks,[19-22] reagent stoichiometry and reaction conditions 

were systematically varied. 

The compound family 5-8 was obtained by introducing solvent mixtures in various ratios. 

Optimal conditions for the crystallization of 5-8 were found at temperatures of 100 °C (8), 120 °C  

(6) and 135 °C (5, 7), as described in the experimental section. If the temperature was raised above 

150°C, decomposition of the reagents was generally observed. Mixtures of polar organic solvents 

afforded 3-dimensional frameworks, in accordance with previous reports.
[23]

  

Compounds 5, 7 and 8 crystalize as 3D networks, whereas 6 is a hydrogen bonded 

coordination polymer. For 5, the m-pyridinecarboxylic acid ligand (in a 3:1 MeOH/DMF mixture 

at 135 °C) afforded a 3-dimensional network, whilst 6 is produced from p-pyridinecarboxylic 

acid (in a 3:1 MeOH/ACN mixture at 120 °C), affording a hydrogen bonded coordination 

polymer. Compounds 7 and 8 are based on p-pyridinecarboxylic acid. They were obtained from 

3:1 MeOH/DMF mixtures at 135 °C and 120 °C respectively. Experiments based on different 

metal salts showed that reactions employing strontium and barium nitrates yielded insoluble 

powders, although interestingly, calcium nitrate afforded good quality crystals. For strontium and 

barium, the chlorides provided crystalline material. This could be due to the higher solubility of 

strontium  and barium chlorides in methanol.
[24]
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M = Ca (5,6); Sr (7); Ba (8) 

X = Ca: NO3
-
; Sr: Cl

-
; Ba: Cl

-
 

Y = Ca: 4; Sr: 6; Ba: 2 

L = Ca: Hnic; Sr: Hin; Ba: Hin 

Solvent ratios: (5, 7, 8) MeOH/DMF: 3:1; (6) MeOH/ACN: 3:1 

 

Scheme 5.1 Synthesis of 5-8 
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5.2.2 Structural Characterization 

Table 5.1 Structural characterization for 5-8 

 

 

 

 

    

Compound 

Empirical 

formula 

5 

C32H42CaN2O16 
6 

C14H15CaN3O5 
7 

C12H8N2SrO4 

8 

C6H4BaNO2Cl 

Formula weight 284.28 345.37 331.82 294.89 

Crystal system Monoclinic Orthorhombic Orthorhombic Triclinic 

Space group P21/c Pnma Pbcn P-1 

T (K) 90(2) 90(2) 90(2) 86(2) 

Unit cell 

dimensions (Å, º) 

    

a 8.9979(16) 9.6826(10) 16.365(2) 5.6117(5) 

b 16.872(3) 17.9498(18) 10.0238(2) 7.3704(7) 

c 9.0236(15) 8.7683(3) 14.443(2) 9.7216(9) 

α, γ 90 90 90 85.482(2); 

88.766(2) 

β 119.3(4)   73.971(2) 

Volume (Å
3
) 1193.8(4) 1523.9(3) 2369.2(5) 385.3(7) 

Z 4 4 8 2 

Calculated density 

(g/cm
-3

) 

1.582 1.505 1.861 2.542 

Absorption 

coefficient (mm
-1

) 

0.188 0.441 4.563 5.443 

θ range 2.41 to 25.64° 2.27 to 31.67° 2.38 to 27.14° 2.19 to 27.49° 

Unique reflections 1685 2633 2601 1744 

Total reflections 10126 23103 16035 5951 

Goodness-of-fit 

on F
2
 

0.987 1.022 1.018 1.137 

R1, wR2 (all data) R1 = 0.0390, 

wR2 = 0.1186 

R1 = 0.0478, wR2 

= 0.1304 

R1 = 0.0171, 

wR2 = 0.0378 

R1 = 0.0099, 

wR2 = 0.0263 

R1, wR2 (Final) R1 = 0.0318, 

wR2 = 0.1136 

R1 = 0.0462, wR2 

= 0.1387 

R1 = 0.0117, 

wR2 = 0.0394 

R1 = 0.0101, 

wR2 = 0.0264 

F(0 0 0) 584.0 720 1312 272 
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Compound 5 crystalizes in the monoclinic spacegroup P21/c. The structure displays a six 

coordinate calcium center surrounded by four oxygens coming from carboxylate groups on the 

the nicotinic acid ligand [Ca-O 2.298(5) (avg) Å, O-Ca-O  93.26(6)-167.64(7) °], and two 

pyridyl nitrogens, arranged almost perpendicular to the metal center in a cis fashion [Ca-N 

distances 2.541(2) and 2.531(2) Å, O-Ca-N angles 83.55(6)-177.71(6) °, N-Ca-N angle 99.59(7) 

°], (Figure 5.1). Table 5.2 summarizes selected bond lengths and angles for 5.  

 

Table 5.2 Selected bond lengths (Å) and angles (º) for 5 

 

Ca(1)-O(1) 

 

2.2737(16) 

 

O(2)-Ca(1)-O(3) 

 

165.64(7) 

Ca(1)-O(2) 2.3287(15) O(2)-Ca(1)-O(4) 91.44(6) 

Ca(1)-O(3) 2.2895(15) O(2)-Ca(1)-N(1) 86.79(6) 

Ca(1)-O(4) 2.2978(19) O(2)-Ca(1)-N(2) 84.39(6) 

Ca(1)-N(1) 2.541(2) O(3)-Ca(1)-O(4) 96.80(6) 

Ca(1)-N(2) 2.531(2) O(3)-Ca(1)-N(1) 85.23(7) 

O(1)-Ca(1)-O(2) 97.68(6) O(3)-Ca(1)-N(2) 85.20(6) 

O(1)-Ca(1)-O(3) 93.26(6) O(4)-Ca(1)-N(1) 177.71(6) 

O(1)-Ca(1)-O(4) 95.26(6) O(4)-Ca(1)-N(2) 81.66(7) 

O(1)-Ca(1)-N(1) 83.55(6) N(1)-Ca(1)-N(2) 99.59(7) 

O(1)-Ca(1)-N(2) 176.36(6) 

 

  

 

The extended structure of 5 is achieved by metal coordination through the carboxylate 

oxygens and the pyridyl nitrogen in the nicotinic acid (Figure 5.2a). The first form of 

propagation involves the carboxylate moieties bridging the [CaO4N2] units in µ2-η
1
: η

1
 -

coordination modes (Figure 5.2b). The second form involves coordination of the pyridyl 

nitrogens to neighboring metal centers in the adjacent [CaO4N2] units forming zig-zag chains. 

These chains are also observed extending from the N-donor atoms, which coordinate to the 

metals. The combination of these two modes creates a complex and dense extended 3-

dimensional network.  
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Figure 5.1 The 6-coordinate calcium center in 5 with four oxygens and two cis coordinated 

nitrogen atoms. Hydrogen atoms have been removed for clarity. 
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a 

b 
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c 

 

Figure 5.2 (a) Structural propagation in 5 is achieved through metal-ligand coordination; (b) 

carboxylate moieties bridge adjacent calcium centers; (c) an intricate pattern of zig-zag chains 

combine to develop a dense three dimensional framework as seen through the c-axis. 

 

The coordination environment of 5 is similar to that of the magnesium congener 

{[Mg(nic)2]}, reported by Liu et al.,
[25]

 where the 6-coordinate magnesium center is surrounded 

by four carboxylate oxygens and two pyridyl nitrogens. By analogy to compound 5, the pyridyl 

nitrogens coordinate to the metal in a cis fashion.    

Compound 6 crystalizes in the orthorhombic spacegroup Pnma. The structure displays a 

six-coordinate calcium center located in a center of symmetry. The coordination sphere of the 

calcium center is comprised of five oxygen molecules, four of which are carboxylate oxygens 

coming from the isonicotinic acid ligand [Ca-O distances 2.308(2) Å (avg)]. These are located in 

the equatorial plane. Indicating the octahedral geometry,  O-Ca-O  angles involving the 

carboxylate moieties are observed at  85.46(4)  º and 174.52(4) º for the cis and trans angles of 
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O(1) and O(1)’-Ca-O(2), respectively. One water molecule is located in one of the trans 

positions, [Ca-Ow 2.3343(9) Å, O-Ca-Ow values being 85.49(4) º and 96.90(3) º]. Completing the 

coordination environment is an acetonitrile co-ligand in the second trans position [Ca-N distance 

2.557(2) Å, O-Ca-N angles being 85.22(3) º and 92.18(4) º and 176.71(5) º for Ow-Ca-N], as 

shown in Figure 5.3. Bond distances and angles are summarized in Table 5.3. 

 

 

 

Figure 5.3 Coordination environment around the calcium center in 6, showing the center of 

symmetry. Aromatic hydrogen atoms on pyridyl ring have been removed for clarity.  
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Table 5.3 Selected bond lengths (Å) and angles (º) for 6 

  

 

Ca(1)-O(1) 

 

2.2844(9) 

Ca(1)-O(2) 2.3310(9) 

Ca(1)-O(3)w 2.3343(13) 

Ca(1)-N(1) 2.557(6) 

O(1)-Ca(1)-O(2) 85.46(4) 

O(1)’-Ca(1)-O(2) 174.52(4) 

O(1)-Ca(1)-O(3)w 85.49(4) 

O(2)-Ca(1)-O(3)w 96.90(3) 

O(1)-Ca(1)-N(1) 

O(2)-Ca(1)-N(1) 

O(3)w-Ca(1)-N(1) 

92.18(4) 

85.22(3) 

176.71(5) 

 

 

The structural propagation of 6 is based on 1D chains formed by the carboxylate - 

calcium µ2-η
1
:η

1
 -bridging mode (Figure 5.4). Further propagation is achieved through hydrogen 

bonding invovling  the pyridyl rings as proton acceptors of medium strength hydrogen bonding 

[H9---N2 distance 1.987(2) Å, <DHA angle of 140.94(4) º] with the metal bound water 

molecules, affording a 3-dimensional framework supported by hydrogen bonds (Figure 5.5).  
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Figure 5.4 The one-dimensional chain structure of 6, showing the µ2-η
1
: η

1
 –calcium-ligand 

bridging mode. Hydrogen atoms has been removed for clarity.  
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Figure 5.5 The hydrogen bonded network in 6, showing the hydrogen bonding between the 

metal bound water molecules and neighboring pyridyl ligands. Hydrogen atoms, except those of 

water and acetonitrile have been removed for clarity.  
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Compound 7 crystalizes in the orthorhombic spacegroup Pbcn. The complex shows a 7-

coordinate strontium, in which five oxygens from the carboxylate ligands [Sr-O distances 

2.590(5) Å (avg), with O-Sr-O angles ranging from 48.76(3)-125.35(3) º] and two nitrogens [Sr-

N distance 2.782(3) and 2.738(4) Å, O-Sr-N angles ranging from 71.81(4)-157.65(4) º] 

perpendicular to the strontium metal in cis fashion complete (N-Sr-N: 84.49(4) º) the 

coordination sphere into SrO5N2 polyhedra (Figure 5.6). Table 4 shows selected bond lengths 

and angles for 7.  

Two types of carboxylate binding modes were observed. In one case, the carboxylate 

moieties associate neighboring strontium metals through bridging and chelating in µ2-η
2
: η

1
 

coordination modes, forming [Sr2(in)2] units. Further, neighboring [Sr2(in)2] units are associated 

by carboxylates bridging in a µ2-η
1
:η

1
 -fashion.

 
The combination of these two motifs forms 

infinite one dimensional chains, as shown in Figure 5.7.  
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Figure 5.6 Seven coordinate strontium centers in compound 7. The coordination environment is 

composed of five carboxylate oxygens and two pyridyl nitrogens. Hydrogen atoms have been 

removed for clarity.  
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Figure 5.7 The one-dimensional bridging motif in 7, comprised of the association of µ2-η
2
:η

1
 –

bound [Sr2(in)2] units through µ2-η
1
: η

1
 -bridging carboxylates. The phenyl groups in the ligands 

have been removed for clarity.    
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Table 5.4 Selected bond lengths (Å) and angles (º) for 7 

 

Sr(1)-O(1) 

 

2.580(2) 

 

O(2)-Sr(1)-O(4) 

 

125.35(3) 

Sr(1)-O(2) 2.527(1) O(2)-Sr(1)-N(1) 71.81(4) 

Sr(1)-O(3) 2.487(1) O(2)-Sr(1)-N(2) 76.78(4) 

Sr(1)-O(4) 2.764(1) O(3)-Sr(1)-O(2) 119.09(4) 

Sr(1)-N(1) 2.782(3) O(3)-Sr(1)-O(4) 90.52(3) 

Sr(1)-N(2) 2.738(4) O(3)-Sr(1)-N(1) 157.07(4) 

O(1)-Sr(1)-O(2) 79.11(4) O(3)-Sr(1)-N(2) 79.18(4) 

O(1)-Sr(1)-O(3) 101.92(4) O(4)-Sr(1)-N(1) 98.87(4) 

O(1)-Sr(1)-O(4) 48.76(3) O(4)-Sr(1)-N(2) 157.65(4) 

O(1)-Sr(1)-N(1) 99.98(4) N(1)-Sr(1)-N(2) 84.49(4) 

O(1)-Sr(1)-N(2) 152.70(4)   

    

 

Further spatial propagation of 7 is achieved through the pyridyl nitrogens, such that the 

chains are propagated into a second dimension (Figure 5.8) under formation of carboxylate 

linked pillars as shown through the a-axis in Figure 5.9. The pillars are composed of wave-like 

chains which associate into a 3D framework with oval shaped channels as shown in Figure 

5.10a-b. Window channel size measures 15.15 x 10.59 Å, as determined by Sr---Sr distances.  

A peculiar feature of 7 is that the access to the significantly sized channels is blocked by 

pyridyl rings, preventing the functioning of the channels as hosts. A space-filling model shows 

that the channels are fully blocked by the pyridyl rings (Figure 5.10a).  

 

 

 



CHAPTER 5: Heavy alkaline earth (Ca, Sr, Ba) coordination networks | 137 

 

 

Figure 5.8 Chains formed through pyridyl metal coordination in 7. Hydrogen atoms have been 

removed for clarity.  
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Figure 5.9 A side view of 7. Sheets formed from the combination of carboxylate generated 

chains and coordinated pyridyl nitrogens in 7.  
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a 
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b 

Figure 5.10 (a) Space filling model of the channels in 7, the pyridyl rings block the channels. (b) 

Ball and stick model of oval shaped channels blocked by pyridyl rings in 7.  

 

Compound 8 crystalizes as a condensed structure in the triclinic spacegroup P-1. The 

structure displays a seven coordinate barium center and is coordinated by four carboxylate 

oxygen atoms (two symmetry generated) [Ba-O distances are 2.782(4) (avg) Å, O-Ba-O angles 

range from 74.35(4)-104.63(3) º], a nitrogen atom from the pyridyl ring [Ba-N distance 

2.927(13) Å, O-Ba-N angles range from 70.93(3)-137.20(4) º] and two chlorine atoms (one 

symmetry generated) [Ba-Cl distance 3.19(5) Å, O-Ba-Cl and N-Ba-Cl angles 76.80(3)-
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153.50(2) º and 117.95(3) º, respectively] as seen in Figure 5.11. Table 5.5 summarizes selected 

bond lengths and angles for 8.   

 

Figure 5.11 The 7-coordinate barium center in 8 

 

 

Table 5.5 Selected bond lengths (Å) and angles (º) for 8 

 

Ba(1)-O(1)’ 

 

2.668(11) 

 

O(1)’-Ba(1)-N(1) 

 

131.60(4) 

Ba(1)-O(1) 2.890(11) O(1)-Ba(1)-N(1) 70.93(3) 

Ba(1)-O(2) 2.867(11) O(2)-Ba(1)-N(1) 72.70(3) 

Ba(1)-O(2)’ 2.704(11) O(2)’-Ba(1)-N(1) 137.20(4) 

Ba(1)-N(1) 2.927(13) O(1)’-Ba(1)-Cl(1) 86.31(3) 

Ba(1)-Cl(1) 3.197(5) O(1)-Ba(1)-Cl(1) 124.89(2) 

O(1)-Ba(1)-O(1)’ 74.35(4) O(2)-Ba(1)-Cl(1) 153.50(2) 

O(1)-Ba(1)-O(2) 104.64(3) O(2)’-Ba(1)-Cl(1) 76.80(3) 

O(1)’-Ba(1)-O(2)’ 45.46(3) N(1)-Ba(1)-Cl(1) 117.95(3) 

O(1)’-Ba(1)-O(2) 78.42(4)   

O(2)-Ba(1)-O(2)’ 69.85(4)   

O(2)’-Ba(1)-O(1) 95.99(3) 
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The main structural propagation in 8 is by chains formed by bridging chlorides, 

associating three barium centers in µ3-η
3
 coordination mode under formation of a 1D chain with 

a “zig-zag” motif, as shown in Figure 5.12.  Furthermore, the ligand’s carboxylate moieties 

associate three metal centers through carboxylate bridges in a µ3-η
2
: η

2 
chelating/bridging 

coordination mode, forming a second “zig-zag” 1D chain. The carboxylate-supported 1D chains 

associate with the chloride bridged chains under formation of 2D sheets, as shown in Figure 

5.12.  

 

Figure 5.12 2D sheets in 8, resulting from the association of µ3:η
3 

bridging chloride atoms and 

µ3-η
2
:η

2
 chelating/bridging carboxylate moieties. Phenyl groups in the ligand have been removed 

for clarity.  
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The 2D sheets in 8 are spatially propagated by the isonicotinate ligands, which act as 

linkers between sheets. The pyridyl nitrogens in the ligand coordinate to metal centers in 

neighboring sheets, forming a 3D framework. In addition to this, the pyridyl rings stack via 

medium strength π---π stacking interactions, measuring 3.26 and 3.58 Å from centroid to 

centroid. These values are within those reported.
[26]

 

 

 

 
 

Figure 5.13 Part of the 3-dimensional network in 8, formed from the association of 2D sheets via 

the pyridyl rings.  In addition π---π stacking interactions between the aromatic rings are present. 

Hydrogens removed for clarity.  
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The heavier metals display longer M-O bond distances as compared to the compounds 

reported in Chapter 3 with the smaller Mg center. As expected, the average length of the M-O 

carboxylate bond increases with increasing metal radius and coordination number [M-O Ca (5, 

6): 2.298(5) and 2.308(2) Å, respectively; Sr (7) 2.590(5) Å; Ba (8) 2.782(4) Å]. These M-O 

carboxylate bonds are within commonly reported bond lengths for their respective coordination 

numbers [M-O 5-6 (CN 6),
[27-29]

 7 (CN 7),
[30]

 8 (CN 7)
[31]

].  

While both compounds 5 and 6 show 6-coordinate centers, compound 5 displays 

[CaN2O4] core units and compound 6 shows [CaNO5] core units. The atoms coordinated to the 

metal center in compound 5 are also different from 6. Compound 5 crystalizes donor free and is 

coordinated solely by atoms from the ligand, whilst compound 6 is coordinated by co-ligands 

(acetonitrile and water) in two positions. The co-ligand free nature of 5 results in its 3-

dimensional nature, whilst in 6 the presence of a metal coordinated water propagates the pseudo 

3-dimensional hydrogen bonded network.  

In addition, our knowledge from analyzing CCDC data indicates that no fully 3-

dimensional structures based on nicotinic acid and calcium have been reported before, as 

structures are limited to hydrogen-bonded complexes.
[32, 33]

 

Compounds 7 and 8 are also 3-dimensional. Although the Sr atom in compound 7 is 7-

coordinate, 7-coordinate strontium centers are rather uncommon,
[30, 34]

 preferring coordination 

numbers of 8
[35-37]

  or 9.
[38-40]

 

To our knowledge, no 3-dimensional Sr isonicotinates have been reported before. The only 

example of a Sr isonicotinate structure is the hydrogen-bound, contact-separated species reported 

by Chen et al.,
[32]

 which is isostructural to the barium isonicotinate (compound 4)
[41]

 detailed in 

Chapter 4.  



CHAPTER 5: Heavy alkaline earth (Ca, Sr, Ba) coordination networks | 145 

 

Further, the channels in 7 lose their potential as hosts because of blockage by pyridyl rings 

from the ligands. Blockage of channels in MOFs is common, and may arise from guest solvent 

molecules, ions or ligands which crystallize pointing towards the channels.
[42] 

Interestingly, as 

opposed to 8, no incorporation of the chlorine atom from the SrCl2 was observed.  

 Compound 8, like 7, is also 7-coordinate. It crystallizes as a dense 3-dimensional 

coordination polymer, in which the metal center forms a [BaO4NCl2] unit. A perfect example of 

increasing aggregation with increasing metal size, 8 is the only compound in the series to display 

µ3-η
2
:η

2 
binding modes.  

Incorporation of chlorine atoms in the structure results in chlorine bridges which are 

important for structural propagation. More examples of M-Cl-M bridging are reported for the 

lighter metals (116 examples in the CCDC database for Mg, 15 for Ca and 2 for Sr). However 

metal-chlorine bridges in 8 are longer than their lighter metal counterparts [Mg-Cl: 2.40-2.50 

Å
[43, 44]

;Ca-Cl: 2.72-2.97 Å
[45, 46]

; Sr-Cl: ~3.06 Å
[47, 48]

], a result of the larger metal size. The 

metal-chlorine bridging distances in 8 are comparable in length to the only two structures 

reported in the CCDC database.
[49, 50]

 They are also comparable in length to the metal-chlorine 

bridges in BaCl2 salt.
[51] 

It is noteworthy to mention that due to the larger size of the Ba atom, 7-

coordinate barium complexes are rare, and coordination numbers 8-10 are preferred.
[52-54]
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5.2.3 Analysis of the Carboxylate Binding Modes 

 

Compounds 5-8 exhibit a variety of carboxylate-metal binding motifs (Table 5.6). In the 

case of the smaller calcium metal in 5 and 6, where a coordination number of six is observed, µ2-

η
1
: η

1
 carboxylate coordination modes, corresponding to a carboxylate bridging two metal 

centers, is observed. For the larger strontium and barium centers in 7 and 8 (Sr CN: 7, Ba CN: 7), 

there are two types of binding motifs. In 7, a µ2-η
2
: η

1
 coordination mode corresponds to one 

carboxylate chelating to a strontium center and bridging another, and the bridging mode µ2-η
1
: η

1 

which associates
 
two metal centers. Compound 8 exhibits µ3-η

2
:η

2
 binding modes, corresponding 

to a carboxylate moiety chelating a metal center and bridging to two others. 

As expected and discussed above, in compounds 5 - 8, the M-O distances increase as the 

metal size increases. This increase is consistent  with the increasing ionic radii relative to Ca 

(∆Sr/Ca: 0.035 Å; ∆Ba/Ca: 0.12 Å).
[55]

, which are also responsible for the increase in 

coordination number, as the larger metals require coordination to a larger number of 

ligands/donors to achieve steric saturation. Accordingly, compounds 5 and 6 are six-coordinate, 

whereas the strontium and barium species 7 and 8 are seven-coordinate. 

A closer look reveals that the µ2-η
1
:η

1
 bridging mode is a common feature in 5 - 7, and 

the increase in M-O distance is evident as the metal size increases [∆M-O(br, max) 7 - 6 and 5 = 0.2 

Å, M= Ca, Sr]. The µ2-η
1
:η

1
 mode is not present in 8, but our previous work

[56]
 and others

[57, 58]
 

show the similar binding modes and values for barium with regard to calcium and strontium 

[∆M-O(br, max) = Ba
[56]

 – Ca
This work

: 0.35 Å; Ba
[56]

 – Sr
This work

: 0.16 Å]. The larger diameter of 

the heavier metals also facilitates for the chelating/bridging coordination modes
[59]

 (µ2-η
2
:η

1
, µ3-

η
2
:η

2
) and larger coordination numbers observed in 7 - 8. 
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Table 5.6 Carboxylate binding motifs in 5-8 

 

 

 

 

 

Mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

    µ2-η
1
: η

1
 

 

 

 

 

        µ2-η
2
: η

1
 

 

 

 

    µ3-η
2
:η

2 

 

 

5 Ca min 

      max 

 

(br, O1) 2.274(2) 

   (br, O3) 2.329(2) 

 

 

-- 

-- 

 

 

-- 

-- 

 

6 Ca min 

      max 

(br, O1) 2.284(9) 

(br, O2) 2.332(9) 

-- 

-- 

-- 

-- 

7 Sr min 

     max 

  (br, O3) 2.487(11) 

  (br, O2) 2.528(11) 

(ch, O1) 2.580(12)  

 (ch, O4) 2.764(11), 

(br, O4) 2.528(11)   

-- 

-- 

 

8 Ba min 

       max 

      min 

       max 

-- 

-- 

-- 

-- 

(ch, O2) 2.867(11), 

(br, O1’) 2.668(11) 

(ch, O1) 2.869(11), 

(br, O2’) 2.704(11) 

 

 
br = bridging, ch = chelating 
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5.2.4 Effect of ligand structural isomerism  

 

Since the isomeric nature of the pyridinecarboxylic acids involve variable positions of the 

N-donor atom in para, meta, ortho around the aromatic backbone, it is thought that this has an 

effect in the resulting framework characteristics.  

The effect of ligand structural isomerism has previously been studied before for calcium 

species involving pyridinedicarboxylic acids (PDC) (mainly: 2,6-PDC; 3,5-PDC; 2,4-PDC; 2,5-

PDC; 2,3-PDC and 3,4-PDC),
[60]

 with motifs ranging from isolated octahedra to dense 3-

dimensional frameworks. In Chapter 3 and this Chapter, we report structures that were isolated 

from Hin and Hnic; several important structural features discussed above relate to the position of 

the N-donor atom. 

This is evident when comparing compound 5, in this chapter, to compounds 1a-c in 

Chapter 3. The core geometry around both metals (5: Ca; 1a-c: Mg) is the same, with 6-

coordinated metal centers forming [MN2O4] units. In both cases these units are associated 

through carboxylates in a µ2-η
1
:η

1
 interaction (Figure 5.14a-b). Likewise, in both compounds, 

there is coordination to the metal from both the carboxylate moiety and the pyridyl nitrogen.  

An analysis of the structural propagation reveals even more. For example, even if both 

compounds exhibit the same coordination numbers and coordination spheres, the meta position 

in the nicotinic acid ligand causes the formation of zig-zag chains in compound 5 (Figure 4.2b) 

whilst the chains formed in compounds 1a-c display linear character for the para ligand.  

Further inquiry shows that the nitrogens are in different positions with respect to the metal. 

The nitrogen atoms in compound 5 are cis (Figure 5.1, above), whilst the nitrogen atoms in 

compounds 1a-c lie in trans positions (Chapter 3, Figure 3.3).  
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Unlike compounds 1a-c, in which an array of µ2-η
1
:η

1
 bridging interactions result in the 

formation of an infinite chain with linear character (Figure 5.14c), in compound 5, the cis 

position of the N-donor atoms prevents the formation of these linear chains. Instead, the chain is 

twisted and the carboxylate is engaged in a µ2-η
1
:η

1
 bridging mode with a neighboring calcium 

atom (Figure 5.14d).  

The cis position of these nitrogen atoms, in both the ligand and the coordination sphere in 

compound 5, may be the reason as to why compounds 1a-c crystalize as open-frameworks, 

whereas compound 5 crystalizes as a dense coordination polymer.  

 

a b 
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c 

 

 

 

 

 

 

d 
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Figure 5.14 Comparison of structural propagation. The black arrows define direction of the 

chains. (a) zig-zag chains in 5 and (b) a set of chains displaying linear character in 1a-c (c) 

Infinite chains found in 1a-c, formed from carboxylates bridging Mg centers in µ2-η
1
:η

1
 fashion 

(d)  Twisting of chains in compound 5, the cis positions of the N-donor atoms prevent formation 

of chains exhibiting linear character. For 5, a dense 3-dimensional coordination complex is 

formed.  

 

5.5 Thermal analysis of 5-8 

 

A TGA study was performed on 5 - 8 to observe their thermal properties (Figure 5.15). 

Compound 5 shows relative stability until 330 °C, after which the compound begins to 

decompose. Compound 6 shows loss of both coordinated water and acetonitrile in the range of 

30-142 °C (exp. 16%, calc. 17%), after which a stable plateau is observed until ~480 °C, at 

which the thermal decomposition of the organic ligands occurs. For compound 7, initial loss of 

donors occurs until 330 °C, at which a gradual decrease in weight, with an abrupt drop at 500 °C, 

indicates the start of ligand decomposition. Compound 8 exhibits an initial loss of donors until 

200 °C, at which a stable plateau forms until a sharp drop is observed at 300 °C, indicating the 

decomposition of the organic ligands.  
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Figure 5.15 TGA analysis of 5-8 
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5.6 Conclusions 

 

Our continuing work in preparing metal organic frameworks, based on the isonicotinate 

ligand family in conjunction with s-block metals, yielded four new coordination polymers based 

on the heavy alkaline earth metals (Ca, Sr and Ba) and (p, m) pyridinecarboxylic acid. The 

compounds 5, 7 and 8 exhibit 3-dimensional architectures, whereas compound 6 consists of a 

hydrogen-bonded network.  

Salient structural features in compounds 5-8 are the multiple carboxylate-metal binding 

modes that seem to change with the metal size. Bridging modes are evident for 5-7 (µ2-η
1
: η

1
), 

whereas bridging/chelating modes (µ2-η
2
: η

1
, µ3-η

2
:η

2
) arise for the larger metals in 7 and 8.  

Ligand structural isomerism is also interesting in this work. A closer look at the 

structures reveals that propagation is highly ligand dependent, and that the open-frameworks are 

favored for the p-pyridinecarboxylic acid, as opposed to the m-pyridinecarboxylic acid (as also 

evidenced in Chapter 3).  

Further, the thermal stability of 5-8 was also evaluated through thermogravimetric 

analysis. All compounds are highly stable, with decomposition temperatures occurring above 

300 °C, after initial loss of co-ligands.  

Peculiarly, compound 7 crystalizes as a closed-framework, in which the pyridyl rings 

from the ligand block access to the channels. The space filling model for 7 clearly shows that the 

channels are blocked by pyridyl rings, disabling them from functioning as hosts. 
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CHAPTER 6 

The coordination chemistry of crown ether stabilized heavy alkaline earth metal tosylates 

 

6.0 Introduction 

 

The exploration of the coordination chemistry and ion association of heavy alkaline earth 

metal complexes remains an important field of study due to the close correlation of structure and 

function.
[1-3]

 Heavy alkaline earth metals play critical roles in  important materials, including 

ferroelectrics and high temperature superconductors, among others.
[4]

 Extensive studies of 

potential precursor materials demonstrate the close correlation between structure and function, 

with special emphasis on aggregation and ion association.
[5, 6]

 For the alkaline earth metals, this 

is an intriguing topic, because the divalent metals adopt three different ion association modes: a) 

contact molecules; b) dissociated ions, and c) an intermediate mode with one anion bound to the 

metal, whereas the other is unassociated, as illustrated in Figure 6.1. Separated ions are typically 

observed as donor assisted ion pairs (DAIP)
[7, 8]

; several compounds with one metal-bound 

ligand and the other unassociated have recently been reported.
[9, 10]

 Factors responsible for the 

coordination chemistry and ion association include a) metal diameter; b) ligand or co-ligand 

steric demand; c) metal-ligand bond strength; d) ability of the ligand to distribute charge; e) 

hapticity of the co-ligand, and f) the presence of weak, non-covalent interactions.
[3, 7, 8, 11, 12]   

For the heavy congeners of group II a significant tendency towards aggregation is noticed; 

the presence of co-ligands, or a sterically demanding ligand, may suppress this tendency.
[5, 11, 13-

15] 
The role of secondary non-covalent interactions such as M—C-π, M—H-C agostic and M—F   

interactions on the coordination chemistry of the heavy alkaline earth metals has been explored 
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in recent studies.
[16]

 Frequently, M—C-π and agostic interactions are observed simultaneously 

with metal-ligand and co-ligand coordination, making the prediction of structural features 

challenging yet exciting.  

 

Figure 6.1: Ion association modes for alkaline earth metal compounds 

Our choice of the tosylate ligand stems from an earlier report by Lappert et al. dealing with 

the potential of tosylates as inexpensive starting materials to prepare heavy alkaline earth metal 

amides by salt metathesis. With this in mind, the anhydrous tosylates would provide an 

economical alternative to the expensive metal iodides.
[17] 

While there is no structural information 

on the anhydrous tosylates, their very limited solubility suggests a highly aggregated structure, 

posing significant synthetic limitations. For example, in the transition metals (M = Mn, Fe, Co, 

Ni, Zn), hydrated tosylates occur in the form of extensive aggregated networks held together by 

hydrogen bonds and π-stacking interactions.
 
Furthermore,

 
in the presence of crown-ethers, the 

hydrated transition metal species (M = Mn, Co, Zn) display isomorphous DAIP’s, propagated via 

extensive hydrogen-bonded networks involving metal bound water molecules and non-metal-

bound tosylate ligands.
[18]

 

For the transition metals (M = Mn, Fe, Co, Ni, Zn), hydrated tosylates occur in the form of 

extensive aggregated networks held together by hydrogen bonds and π-stacking interactions.
 
In 

the presence of crown-ethers, the hydrated transition metal species (M = Mn, Co, Zn) display 
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isomorphous DAIP’s, propagated via extensive hydrogen-bonded networks involving metal 

bound water molecules and non-metal-bound tosylate ligands.
[18]

 

Secondly, no known heavier alkaline earth metal tosylate compounds are known, but water 

also played a major role in the coordination chemistry of magnesium and calcium tosylates. For 

magnesium, water coordination yields a DAIP with six water co-ligands saturating magnesium’s 

coordination sphere according to the formula {[Mg(OH2)6][OTs]2}∞. In contrast, the calcium 

congener, as rationalized by the larger metal diameter, displays a contact molecule of the form 

[Ca(OTs)2(OH2)4]∞.
[18] 

Again, the water molecules in both compounds are engaged in hydrogen-

bonding, yielding an extended structure consisting of a 3D hydrogen-bonded network. Thus, this 

work was designed to analyze the structural impact of crown ether on the coordination 

chemistry, as well as the tendency towards aggregation in the heavy alkaline earth metal 

tosylates. 

This chapter examines the coordination chemistry of crown ether coordinated calcium, 

strontium and barium tosylates in the presence of water and 18-crown-6 to yield {[Ca(OH2)2(18-

crown-6)(OTs)3]3[OTs]3∙3H2O}∞, 9, {[Ca(OH2)2(18-crown-6)]2[OTs]4}∞, 10, [Sr(OH2)(18-

crown-6)(OTs)2]∞, 11, and [Ba(OH2)2(18-crown-6)(OTs)2]∞, 12.  The elucidated ion association 

modes and aggregation patterns provide an overview of the coordination chemistry of this class 

of compounds. 
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6.1 Experimental 

6.1.1 General and Physical Measurements 

All chemicals were obtained commercially and used as received (purity of MCO3 (M = Ca, 

Sr, Ba) – 98%, p-toluenesulfonic acid – 98%). IR measurements were carried out as KBr films 

using a Nicolet IR200 FT-IR spectrophotometer between 4000 cm
-1

 to 400 cm
-1

. TGA 

measurements were performed on a TGA Q500 series instrument (TA Instruments-Waters LLC) 

under an N2 balance/sample purge flow of 40 mL/min and 60 mL/min, respectively. The samples 

(wt. 6-20 mg) were loaded onto a platinum pan and heated, using a ramp method from room 

temperature to 750 ºC (ramp rate: 10°C/min). Melting point determinations (uncalibrated) were 

made using capillary tubes in a Mel-Temp II melting point apparatus. 

All single crystal X-ray data were collected on a Bruker Kappa diffractometer equipped with an 

APEX 2 CCD detector and MoK radiation (0.7107 Å). Crystals were cooled using a Cryocool 

LN-3 low temperature device (Cryoindustries of America, Inc.) The crystals were submerged in 

highly viscous hydrocarbon oil (Infineum), mounted on a MITEGEN mount and placed in the 

low temperature stream on the diffractometer, similar to the methods described previously.
[19] 

Data collection parameters and refinement details have previously been described.
[19] 

The crystal 

structures were elucidated using direct methods, followed by subsequent refinement by the full-

matrix least-squares method on F
2
.
[20] 

All non-hydrogen atoms were refined anisotropically. 

Absorption corrections were performed using  SADABS.
[21]

 Hydrogen atoms, except those on 

water molecules, were placed on fixed positions. Water hydrogen atoms were located in the 

difference map and refined freely. For compound 9, the non-centrosymmetrical space group Pc 

was verified (PLATON
[22]

) by confirming the absence of a 21 screw axis.  Crystallographic data 
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can be obtained from the Cambridge Crystallographical Database under CCDC 940503, 9; 

940504, 10; 940505, 11 and 940506, 12. To verify bulk purity of 9 - 12, powder XRD 

experiments were performed on a Bruker Kappa diffractometer equipped with an APEX 2 CCD 

detector, and Cu radiation (1.57 Å) at 85 K using a range of 2θ: 0-70° with a 0.02 sec/step (180 

second collection) increase. The overlay of the calculated powder patterns obtained from the 

single crystal experiments with the experimental powder data from the bulk samples verified the 

purity of 9-12. Compounds 9, 11 and 12 display phase purity whereas for 10, phase purity could 

not be achieved in multiple trials.  

Anhydrous tosylates were used to prepare the target compounds because their well-defined 

nature permitted better control of reaction stoichiometry; as the corresponding hydrates do not 

crystallize readily as a well-defined product, but rather yield multiple hydrate phases. It is 

therefore preferable to remove the water of crystallization by gentle heating under vacuum to 

obtain the well-defined, anhydrous product, using a literature procedure.
[17]

 Scheme 6.1 provides 

an overview of conditions needed to obtain the anhydrous starting materials. 
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6.1.2 General Syntheses  

 

{[Ca(OH2)2(18-crown-6)(OTs)3]3[OTs]3∙3H2O}∞, 9: 

0.38 g (1 mmol) Ca(OTs)2 was mixed with 0.26 g (1 mmol) 18-crown-6 in 5mL of distilled H2O. 

The reaction mixture was stirred for fifteen minutes, after which it was filtered using a Whatman 

No. 5 filter. The solution was left to evaporate for fourteen days, yielding colorless blocks 

suitable for single crystal X-ray crystallography. The product was sparingly soluble in pyridine 

and water. Mp: Turns brown at > 260°C, dark brown at > 290°C and black at 305°C. Yield (non-

optimized): 78% (0.56 g). IR (cm
-1

): 3448 (br, w); 2926 (s); 1250 (m); 1195 (m); 1011 (w); 824 

(m); 684 (s); 568 (s). 

 

{[Ca(OH2)2(18-crown-6)]2[OTs]4}∞, 10: 

0.38 g (1 mmol) Ca(OTs)2 was mixed with 0.53 g (2 mmol) 18-crown-6 in 5mL of distilled H2O. 

The reaction mixture was stirred for fifteen minutes after which it was filtered using a Whatman 

No. 5 filter. The solution was left to evaporate for fifteen days during which crystal formation 

was observed. The product was sparingly soluble in pyridine and water. Mp: Turns brown at > 

255°C, dark brown at > 290°C, and black at 305°C. Yield (non-optimized): 58% (0.40 g). IR 

(cm
-1

): 3460 (br, s); 2890 (s); 1637 (m); 1475 (m); 1203 (m); 1107 (m); 1011 (w).  

 

[Sr(OH2)(18-crown-6)(OTs)2]∞, 11: 

0.43 g (1 mmol) Sr(OTs)2 was mixed with 0.26 g (1mmol) 18-crown-6 in 5mL of distilled H2O. 

The reaction mixture was stirred for fifteen minutes after which it was filtered using a Whatman 

No. 5 filter. Evaporation for five days yielded colorless crystals. The product was sparingly 

soluble in pyridine and water. Mp: Turns brown at > 255°C, dark brown at > 310°C, and black at 
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350°C. Yield (non-optimized): 86% (0.61 g). IR (cm
-1

): 3473 (br, s); 2920 (s); 1475 (s); 1016 (s); 

684 (s); 565 (s).   

 

[Ba(OH2)2(18-crown-6)(OTs)2]∞, 12: 

0.48 g (1 mmol) Ba(OTs)2 was mixed with 0.26 g (1 mmol) 18-crown-6 in 5mL of distilled H2O. 

The reaction mixture was stirred for fifteen minutes followed by filtration using a Whatman No. 

5 filter. Evaporation for eight days yielded colorless crystals. The product was sparingly soluble 

in pyridine and water. Mp: Brown at 250°C, dark brown at 280°C, and black at 295°C. Yield 

(non-optimized): 86% (0.67 g). IR (cm
-1

): 3423 (br, s); 2920 (m); 1467 (m); 1011 (s); 813 (w); 

566 (s).  

 

6.2 Results and Discussion 

6.2.1 Synthesis Discussion 

Hydrated alkaline earth metal tosylates are obtained in water via acid/base chemistry, 

involving the treatment of the commercially available carbonates with the acid in water (Scheme 

6.1). The resulting hydrates occur as several phases and do not provide a well-defined, 

crystalline product. Due to the range of water content in the various phases, no uniform 

molecular weight can be assigned, preventing stoichiometric control if the species are used as 

reagents. It is therefore preferable to utilize the readily available anhydrous tosylates. 

        M = Ca, Sr, Ba 

Scheme 6.1 Preparation of alkaline earth metal tosylates 
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While water may be removed under mild conditions (see Figure 11), the anhydrous 

tosylates display very limited solubility. No structural data are available, but solubility data 

suggest highly aggregated structures. As co-ligand coordination has a profound effect on 

aggregation in this work we examined the impact of 18-crown-6 coordination on the heavy 

alkaline earth tosylates.
[23]

  

Compounds 9, 11, and 12 were obtained using a 1:1 metal:crown ratio. Compounds 11 

and 12 were also obtained if a 1:2 reagent ratio was utilized, whereas a 1:2 reagent ratio for 

calcium yields compound 10 (Table 6.1, Scheme 6.2). This suggests a delicate balance between 

structure determining factors such as ligand and co-ligand coordination in the formulation of the 

final products. 

Table 6.1 Metal:crown (M:C) ratio and its resulting compounds 

 

Metal 

 

 

M : C Ratio 

 

Result 

 

Ca 

 

1:1 
 

9 

Ca 1:2 10 

Sr 

Sr 

1:1 

1:2 
11 

11 

Ba 

Ba 

1:1 

1:2 
12 

12 

   

 

 

Scheme 6.2 Synthesis of 9-12 
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6.2.2 Structural characterization of 9-12 

 

Compounds 9-12 were characterized by single crystal X-ray diffraction. Suitable, well-

shaped crystals were obtained as described in the experimental section. All compounds display 

extended structures, (9 as two-dimensional, hydrogen bonded sheets, 10 - 12 one-dimensional 

chains) obtained through hydrogen bonding interactions. Relevant crystallographic details are 

summarized in Table 6.2. 

Table 6.2 Crystallographic data and structural refinement for compounds 9-12. 

    

Compound 

Empirical 

formula 

9 

C78H132Ca3S6O45 
10 

C26H42CaS2O8 
11 

C26H40SrS2O13 

12 

C26H42BaS2O14 

Formula weight 2102.50 688.80 712.34 780.07 

Crystal system Monoclinic Orthorhombic Triclinic Monoclinic 

Space group Pc P212121 P-1 P21/c 

T (K) 86(1) 83(2) 83(2) 83(2) 

Unit cell 

dimensions (Å, º) 

    

a 8.3932(9) 13.1482(8) 9.0390(18) 13.801(2) 

b 44.372(4) 19.4443(13) 11.397(2) 15.090(2) 

c 14.6394(13) 24.4742(17) 15.142(3) 14.965(2) 

α, γ 90 90 93.02(3); 

92.49(3) 

90 

β 118.199(5)  91.87(3) 91.959(2) 

Volume (Å
3
) 4805.0(8) 6257.0(7) 1555.3(5) 3114.8(7) 

Z 2 8 2 4 

Calculated density 

(g/cm
-3

) 

1.451 1.462 1.521 1.663 

Absorption 

coefficient (mm
-1

) 

0.396 0.401 1.930 1.476 

θ range 3.59 to 25.68° 1.66 to 30.37° 1.35 to 25.00° 0.92 to 28.33° 

Unique reflections 15251 18717 5443 7033 

Total reflections 29092 55690 11614 26867 

Goodness-of-fit on 

F
2
 

1.008 0.929 1.040 0.975 

R1, wR2 (all data) R1 = 0.1007, 

wR2 = 0.1116 

R1 = 0.0644, wR2 

= 0.0906 

R1 = 0.0285, 

wR2 = 0.0667 

R1 = 0.0392, 

wR2 = 0.0730 

R1, wR2 (Final) R1 = 0.0606, 

wR2 = 0.0988 

R1 = 0.0399, wR2 

= 0.0802 

R1 = 0.0285, 

wR2 = 0.0647 

R1 = 0.0316, 

wR2 = 0.0708 

F(0 0 0) 2226 2920 740 1592 
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Compound 9 crystallizes in the non-centrosymmetric monoclinic space group Pc (see 

above for crystallographic details). Each asymmetric unit contains three independent, nine-

coordinate calcium centers with one tosylate ligand and two waters coordinated to the metal 

(Figure 6.2). Charges are balanced by three non-metal-bound ligands. In addition, there are three 

lattice waters. The non-coordinate tosylate anion connects via hydrogen bonds to the metal-

bound water yielding a hydrogen-bonded, 1-dimensional chain network throughout the crystal. 

Although 9 contains three independent molecules, their overall structural features are quite 

similar, with a relatively narrow range of Ca-O(crown) distances (2.510(4)-2.725(4)Å. There are 

slight differences in the degree of crown puckering  a [<O(crown)-M-O(crown)max - <O(crown)-M-

O(crown)min] of Ca(3) 4.84°∆ > Ca(2) 2.09°∆ > Ca(1) 1.73°∆] indicating the non-ideal fit for 

calcium in the crown cavity.
[24-26]

 Expressing the multidentate nature of the crown, narrow 

O(crown)-Ca-O(crown) angles  O(crown)-Ca-O(crown) ranging from 60.0(1) to 64.8 (1)° are observed. A 

more extensive compilation of bond lengths and angles is provided in Table 6.3.  

Compound 9 is nine-coordinate, with the crown being located in an approximate 

equatorial position. One trans position is occupied by one water; the other by one water and a 

tosylate anion. As a result, the crown is bent away from the doubly occupied trans position. The 

metal-bound waters play a significant role in the association of the compound via hydrogen 

bonding. The water located on the same face as the tosylate anion (O10w), hydrogen-bonds to 

the metal-bound anion, resulting in a 6-membered metallacycle (Figure 6.3a). The second 

hydrogen atom on this water molecule hydrogen-binds to a lattice water (O52w) that in turn is 

hydrogen-bound to the non-metal bound tosylate. The water of crystallization, (O52w), is also 

hydrogen bound to the metal-bound water. Donor---acceptor distances [2.755(6)-2.812(6) Å] and 

angles [161.7-171.8°] lie within expected values for moderate strength hydrogen bonding 
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interactions.
[27] 

 Hydrogen bonding also connects the 1D chains into 2D sheets, as shown in 

Figure 6.3b. 

 

Figure 6.2 Coordination environments at calcium in 9. Only one of three independent 

molecules is shown. Hydrogen atoms except metal-bound water atoms have been 

omitted for clarity.  Intermolecular interactions are also omitted. 
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a

b 
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Figure 6.3 (a) Segment of the hydrogen bonded network in 9. Lattice water molecules serve as 

anchoring points connecting the calcium centers and tosylate anions to form 3D hydrogen 

bonded network. Tolyl groups on the tosylate anions have been removed for clarity, as have been 

hydrogen atoms on ligands and crown ether; (b) Part of the very dense hydrogen-bonded 

network of chains in the target compound. 

 

 

Table 6.3 Selected bond lengths (Å) and angles (º) for 9 

 

    

 

Ca(1)-O(1)cr 

 

2.559(4) 

 

O(1)cr-Ca(1)-O(2)cr 

 

64.26(15) 

Ca(1)-O(2)cr 2.534(4) O(2)cr-Ca(1)-O(3)cr 62.20(15) 

Ca(1)-O(3)cr 2.652(5) O(3)cr-Ca(1)-O(4)cr 62.53(15) 

Ca(1)-O(4)cr 

Ca(1)-O(5)cr 

Ca(1)-O(6)cr 

Ca(1)-O(7)tos 

Ca(1)-O(53)w 

Ca(1)-O(10)w 

Ca(2)-O(11)cr 

Ca(2)-O(12)cr 

Ca(2)-O(13)cr 

Ca(2)-O(14)cr 

Ca(2)-O(15)cr 

Ca(2)-O(16)cr 

Ca(2)-O(17)w 

Ca(2)-O(20)w 

Ca(2)-O(21)tos 

Ca(3)-O(22)cr 

Ca(3)-O(23)cr 

Ca(3)-O(24)cr 

Ca(3)-O(25)cr 

Ca(3)-O(26)cr 

Ca(3)-O(27)cr 

Ca(3)-O(31)w 

Ca(3)-O(32)w 

Ca(3)-O(28)tos 

2.626(5) 

2.510(4) 

2.606(4) 

2.393(4) 

2.425(5) 

2.370(5) 

2.567(5) 

2.618(4) 

2.542(4) 

2.617(4) 

2.699(5) 

2.568(5) 

2.371(4) 

2.370(5) 

2.398(6) 

2.606(4) 

2.523(4) 

2.584(4) 

2.725(4) 

2.601(4) 

2.544(4) 

2.351(5) 

2.388(4) 

2.404(4) 

 

O(4)cr-Ca(1)-O(5)cr 

O(5)cr-Ca(1)-O(6)cr 

O(6)cr-Ca(1)-O(1)cr 

O(11)cr-Ca(2)-O(12)cr 

O(12)cr-Ca(2)-O(13)cr 

O(13)cr-Ca(2)-O(14)cr 

O(14)cr-Ca(2)-O(15)cr 

O(15)cr-Ca(2)-O(16)cr 

O(16)cr-Ca(2)-O(11)cr 

O(22)cr-Ca(3)-O(23)cr 

O(23)cr-Ca(3)-O(24)cr 

O(24)cr-Ca(3)-O(25)cr 

O(25)cr-Ca(3)-O(26)cr 

O(26)cr-Ca(3)-O(27)cr 

O(27)cr-Ca(3)-O(22)cr 

63.28(14) 

63.26(14) 

63.02(13) 

62.87(13) 

62.98(14) 

63.11(14) 

61.85(15) 

61.13(15) 

63.94(14) 

62.92(13) 

62.70(13) 

60.37(13) 

59.97(13) 

64.81(13) 

62.21(12) 

cr = crown, tos = tosylate, w = water 
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Compound 10 crystallizes as 1D strands in a donor-assisted ion pair (DAIP) in the 

orthorhombic space group P212121. Each asymmetric unit contains two independent, but quite 

similar, eight-coordinate calcium centers, with charges balanced by two non-metal bound 

tosylates. As shown in Figure 6.4, the calcium centers are sequestered by 18-crown-6 molecules 

located in approximate equatorial positions, and two water molecules in axial positions. The Ca-

O(crown) distances for the two independent metal centers lie between 2.316(2) and 2.528(2) Å), 

whereas the Ca-OH2 distances are 2.31(2) and 2.35(2) Å. O(crown)-Ca-O(crown) angles are observed 

between 62.95(6) and 66.01(6)°). Bond lengths and angles are summarized in Table 6.4. Ca-

O(crown) bond lengths in 10 are significantly shorter than in 9 (Ca-O(crown): 2.510(4)-2.725(4)Å), 

an effect attributed to the increased cationic charge and the smaller coordination number (8 in 10 

vs. 9 in 9).  

Similar to 9, hydrogen bonding is responsible for the propagation of the structure as a chain, 

as shown in Figure 6.5. The metal-bound waters are hydrogen-bound to the tosylate anions, 

which serve as bridging points to yield 1D chains, quite similar to the extended structure of 

{[Mn(H2O)2(15-crown-5)[OTs]}∞, in which 1D polymer strands are formed through a DAIP 

consisting of [Mn(H2O)2(15-crown-5)]
2+

 units, hydrogen bound to [OTs]
-
 ligands.

[28] 
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Figure 6.4 Coordination environment at the calcium centers in compound 10. As both calcium 

centers have rather similar coordination environments, only one example is shown. Hydrogen 

atoms, except those on the metal bound water donors have been omitted for clarity. No 

intermolecular contacts are shown. 

 



CHAPTER 6: Crown ether stabilized heavy alkaline earth metal tosylates  | 173 

 

 

Figure 6.5 Extended hydrogen bonded network of 10. All non-water bound hydrogen atoms 

have removed for clarity.  

Table 6.4 Selected bond lengths (Å) and angles (º) for 10 

    

 

Ca(1)-O(1)cr 

 

2.48(2) 

 

O(1)cr-Ca(1)-O(2)cr 

 

65.49(6) 

Ca(1)-O(2)cr 2.52(2) O(2)cr-Ca(1)-O(3)cr 62.95(6) 

Ca(1)-O(3)cr 2.65(2) O(3)cr-Ca(1)-O(4)cr 64.90(6) 

Ca(1)-O(4)cr 2.51(2) O(4)cr-Ca(1)-O(5)cr 65.84(6) 

Ca(1)-O(5)cr 2.49(2) O(5)cr-Ca(1)-O(6)cr 64.34(6) 

Ca(1)-O(6)cr 2.53(2) O(6)cr-Ca(1)-O(1)cr 64.07(6) 

Ca(1)-O(7)w 2.31(2)   

Ca(1)-O(8)w 2.35(2)   
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Compound 11 crystallizes as a contact molecule in the form of 1D chains in the triclinic 

space group P-1. Again, water coordination is responsible for the formation of an extended 

structure. The strontium center is nine-coordinate, comprised of the crown ether in an 

approximate equatorial position. The two axial positions are occupied by the tosylate anions, 

although one position carries an additional water molecule (Figure 6.6). As a result, the crown is 

bent away from the face occupied by the ligand and water. In addition, the metal is located 

slightly above the face of the crown (0.371 Å) bearing the ligand and water. Sr-O(tos) distances 

are 2.471(2) and 2.514(2) Å, slightly shorter than the Sr-O(crown) (2.471(2) to 2.782(2)) and the 

Sr-OH2 (2.576(2) Å distance. The increase in values as compared to 9 and 10 correlates with the 

increase in metal radius (Sr/Ca 0.13Å).
[29]

 In accord with literature data, O(crown)-Sr-O(crown) 

angles range from 59.08(5) to 61.45(5)° in a slightly puckered crown ether geometry (deviation 

from planarity 2.37°).
[3] 

Table 6.5 summarizes selected bond lengths and angles for 11.  

Again, hydrogen bonding is responsible for the extension of the structure. By analogy to 

10, the metal-bound water and the tosylate form a 6-membered metallacycle. The second 

hydrogen atom on the metal bound water is responsible for the propagation of the structure as 1D 

columns, as shown in Figure 6.7. These bond distances and angles correlate with literature values 

for moderate strength hydrogen bond interactions.
[27]
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Figure 6.6 Graphic representation of the nine-coordinate strontium center. Hydrogen atoms on 

crown ether and tosylate ligands have been removed for clarity.  

 

Table 6.5 Selected bond lengths (Å) and angles (º) for 11 

    

 

Sr(1)-O(1)cr 

 

2.780(2) 

 

O(1)cr-Sr(1)-O(2)cr 

 

59.77(4) 

Sr(1)-O(2)cr 2.624(2) O(2)cr-Sr(1)-O(3)cr 59.08(5) 

Sr(1)-O(3)cr 2.766(2) O(3)cr-Sr(1)-O(4)cr 60.85(4) 

Sr(1)-O(4)cr 2.782(2) O(4)cr-Sr(1)-O(5)cr 59.46(4) 

Sr(1)-O(5)cr 2.732(2) O(5)cr-Sr(1)-O(6)cr 61.95(4) 

Sr(1)-O(6)cr 2.695(2) O(6)cr-Sr(1)-O(1)cr 60.42(4) 

Sr(1)-O(7)tos 2.514(2)   

Sr(1)-O(8)tos 2.471(2)   

Sr(1)-O(9)w  2.576(2) 
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Figure 6.7 Hydrogen bonded network in 11. Tolyl groups on the tosylate ligands and all non-

water bound hydrogen atoms have been removed for clarity. Shown are two strands. 

 

Compound 12 displays a 10-coordinate metal center. Table 6.6 summarizes selected bond 

lengths and angles for 12. The molecular units in 12 aggregate into 1D chains via hydrogen 

bonding. The metal environment is comprised of crown ether coordination in addition to two 

ligands and one water co-ligand. The crown ether is located in an approximate equatorial 

position. One trans position holds two tosylate anions and a water coligand; the other is occupied 

by one water. Metal-ligand distances are 2.749(2) and 2.850(2) Å; barium-water distances are of 
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similar lengths (2.786(3), 2.818(2) Å), whereas the barium-O(crown) interactions are slightly 

longer (2.865(2)-2.920(2) Å). These values are in accord with the increased metal diameter 

(Ca/Ba: 0.35∆Å ; Sr/Ba: 0.16∆Å).
[29]

 

In accord with the different degree of crowding in the trans positions, the crown is bent away 

from the face holding the ligands and the water. Furthermore, the metal is located above the 

plane of the crown oxygen atoms by 0.825 Å towards the more crowded face (Figure 6.8).  

Because of the crown’s displacement from the metal center, a slight compression is observed, as 

expressed by narrower O(crown)-M-O(crown) angles [57.22(6)-58.60(6)°]. In accord with the 

increased metal radius, the crown conformation is flatter than in 9-11, with a deviation from 

planarity of only 1.38°∆, resulting from the tighter barium:crown fit. The different degrees of 

puckering in calcium, strontium and barium 18-crown-6 compounds have been discussed 

previously.
[12]

  

 The two tosylate ligands are engaged with each other in a weak, slightly displaced π---π stacking 

interaction with a centroid-centroid distance of 3.66 Å, a value in agreement with literature 

data.
[30-32] 

 π---π stacking interactions were also observed in the previously studied alkaline 

earth/transition metal tosylates,  in which herringbone (e.g. [NH4(OTs)]∞) and face-to-face and 

edge-to-face interactions (e.g. [Ca(OTs)2(H2O)4]∞) were reported by Fewings et al.
[18]

. In these 

the stacking interactions are responsible for the extension of the network. In the case of 12, the 

extension of the network is not achieved by π---π stacking, but rather by hydrogen bonding 

interactions (Figure 6.9).
[28] 

As in 9 - 11, propagation through hydrogen bonding between the 

metal-bound water and the tosylate anions results in the formation of a columnar structure.  
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Figure 6.8: The coordination environment on the 10-coordinate barium in compound 12. 

Hydrogen atoms on the crown ether and ligands have been removed for clarity.  
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Table 6.6 Selected bond lengths (Å) and angles (º) for 12 

    

 

Ba(1)-O(3)tos 

 

2.850(2) 

 

O(7)cr-Ba(1)-O(8)cr 

 

57.29(6) 

Ba(1)-O(6)tos 2.749(2) O(8)cr-Ba(1)-O(9)cr 57.60(6) 

Ba(1)-O(7)cr 2.887(2) O(9)cr-Ba(1)-O(10)cr 58.60(6) 

Ba(1)-O(8)cr 2.920(2) O(10)cr-Ba(1)-O(11)cr 57.50(6) 

Ba(1)-O(9)cr  2.854(2) O(11)cr-Ba(1)-O(12)cr 57.44(6) 

 Ba(1)-O(10)cr 2.865(2) O(12)cr-Ba(1)-O(7)cr 57.22(6) 

Ba(1)-O(11)cr 2.912(2)   

Ba(1)-O(12)cr 

Ba(1)-O(13)w 

Ba(1)-O(14)w 

2.911(2) 

2.818(2) 

2.786(3) 

 

 

 

 

 

 

Figure 6.9 The hydrogen bonded network in 12. The phenyl groups on the tosylate ligands 

and hydrogen atoms on crown ether have been removed for clarity. 
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Compounds 9 - 12 provide a systematic study of the influence of metal diameter on the 

coordination chemistry of heavy alkaline earth metal crown ether species. The observed trends 

are dictated by the drive towards steric saturation, as achieved by a combination of ligand and 

co-ligand coordination. For the smaller calcium ion, DAIP’s are observed; for the heavier metals 

contact molecules are preferred in order to achieve steric saturation for the large heavy alkaline 

earth metal centers. Demonstrating the challenge to predict structural features, the calcium 

compounds 9 and 10 adopt different degrees of ion association, depending on reagent 

stochioemtry. For strontium and barium, compounds 11 and 12 are observed regardless of 

metal:crown stoichiometry. Water coordination plays a major role, as it not only serves a 

significant role in achieving steric saturation, but also contributes towards aggregation in either 

1-dimensional chain (10-12) or 2-dimensional sheet (9) arrangements. The hydrogen-bonding in 

9-12 follows literature trends with D--H---A (donor-hydrogen---acceptor) distances and angles 

which correspond to moderate hydrogen bonds (<(DHA): <130° and d(D—H---A) between 2.5-

3.2 Å).
[27]

   

6.2.3 Hydrogen bonding in 9-12  

Hydrogen bonding in 9 extends from the metal bound waters, and the waters of 

crystallization and the tosylate ligands. The interactions display typical geometries with almost 

linear OHO moieties (See Figure 6.3a). No waters of crystallization are observed in 10-12. In 

10 the major factor in structural propagation is the formation of 1-dimensional strands via 

hydrogen bonds to unbound tosylate ligands. 11-12 display intermolecular hydrogen bonds that 

provide assistance in the formation of the 1D chains, as described above. 
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6.3 Thermogravimetric analysis 

 

Compounds 9-12 were analyzed by thermogravimetric analysis (TGA) to determine the 

extent and ease of water loss. Figure 6.10 provides an overview of the TGA analysis, while 

Table 6.7 provides a summary of pertinent data for 9 - 12.  TGA data for the hydrated species are 

provided in Figure 6.11 to allow a direct comparison of the impact of the crown ether on the ease 

of water loss.  

Table 6.7 TGA data for compounds 9-12 and crown-ether-free tosylates 

 

Compound 

 

 

∆T 

 

%Wexp 

 

%Wcalc 

 

nH2O 

 

{[Ca(OH2)2(18-crown-6)(OTs)3]3[OTs]3∙3H2O}∞, 9 

 

30-89°C 

 

4.86% 

 

5.13% 

 

9 H2O 

 

{[Ca(OH2)2(18-crown-6)]2[OTs]4}∞, 10 

 

30-156°C 

 

10.1% 

 

10.1% 

 

2 H2O 

 

[Sr(OH2)(18-crown-6)(OTs)2]∞, 11 

 

30-130°C 

 

2.38% 

 

2.52% 

 

1 H2O 

 

[Ba(OH2)2(18-crown-6)(OTs)2]∞, 12 

 

30-106°C 

 

5.28% 

 

5.22% 

 

2 H2O 

[Ca(OH2)4(OTs)2]∞ (Fig. 6.11) 30-88°C 16.2% 15.8% 4 H2O 

[Sr(OH2)(OTs)2]∞ (Fig. 6.11) 30-89°C 4.31% 4.02% 1 H2O* 

[Ba(OH2)(OTs)2]∞ (Fig. 6.11) 30-487°C 1.31% 3.62% 1 H2O* 

 

∆T: temperature range; %Wexp: % experimental weight loss; %Wcalc: % theoretical weight 

calculated; nH2O: formula waters; *based on approximate relative weights, no structural data 

available 
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Figure 6.10 TGA overlay of the crown ether based compounds 9-12 showing water loss 

 

Water loss in 9 - 12 starts at room temperature and is completed under mild conditions, 

with 10 requiring the highest temperature (156°C) for dehydration. In contrast, dehydration in 

the partial contact molecule 9 is complete at 89°C, suggesting that the Ca-OH2 interaction in the 

DAIP is stronger than those in 10-12. 

  TGA analysis shows that crown ether coordination plays a major role in achieving steric 

saturation, as the crown ligated species 9-12 loose water at much lower temperature than the 

simple hydrates (Figure 6.11). 
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Figure 6.11 TGA overlay of the tosylate hydrate compounds showing water loss 

6.4 Conclusions 

 

Four heavy alkaline earth crown ether tosylates were synthesized and characterized. 

Compounds 9-12 crystallize as hydrogen-bonded networks. Compounds 9 - 12 also demonstrate 

the delicate interplay between ligation and solvation involving the crown, the ligand and water. 

These compounds showcase nicely why the prediction of structural features is very challenging.  

The influence of ion association and crown coordination is also reflected in TGA studies; the 

dicationic species desolvate at higher temperature than the monocations, a direct correlation with 

Ca-OH2 bond strength. 
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CHAPTER 7  

Conclusions 

 

The purpose of this work was to design alkaline earth metal coordination complexes that 

could potentially serve as gas storage and synthetic precursor materials. Alkaline earth 

coordination chemistry is heavily influenced by factors such as weak metal-ligand bonding, 

which pose a challenge in obtaining suitable stable compounds.  This thesis focused on exploring 

multiple synthetic avenues towards the isolation of alkaline earth MOFs and crown stabilized 

alkaline earth tosylates.  

Several synthetic routes were employed due to the challenges in the preparation of the 

target compounds. Mainly, hydro/solvothermal routes provided crystalline material, but other 

routes such as slow evaporation also provided X-ray quality crystals. Primarily, structural trends 

arising from varying the synthetic conditions were studied.  

The reaction conditions that favored 3-dimensional frameworks were mixtures of polar 

organic solvents, particularly MeOH/donor mixtures, with ideal crystallization temperatures of 

135 °C.  

For Mg, three open-framework structures (1a-c), which host different solvents (DMF, 

ACN, THF) in the 1-dimensional rhombohedral channels, were isolated. Variable temperature 

XRD on these displayed stability at 300 °C, demonstrating retention of overall structural 

integrity. Initial gas adsorption studies determined that 1a was non-porous to N2, on basis of the 

low surface area obtained.  
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A 2-dimensional framework consisting of hydrogen bound sheets was isolated from 

EtOH (2). The extended structure consists of 2-dimensional sheets associated through hydrogen 

bonding arising from a metal-coordinated terminal water molecule. In addition, a mixture of 

ACN/H2O resulted in the isolation of a zwitterion species, in which the N-donor atom is 

protonated and the metal center charge stabilized by an unbound nitrate.  

The reaction conditions that yielded 3-dimensional frameworks for Mg were applied to 

the heavier metals, resulting in three 3-dimensional frameworks for Ca, Sr and Ba. For Ca, a 3-

dimensional framework based on m-pyridinecarboxylic acid was isolated (5), in which instead of 

an open-framework the structure consists of a dense coordination polymer. In the case of (6), a 

hydrogen bonded network resulted from an ACN/MeOH mixture, in which water and acetonitrile 

coordinate to the metal center.  

For the heavier Sr, a 3-dimensional structure (7) with p-pyridinecarboxylic acid was 

isolated, the extended structure shows oval-shaped channels which are blocked by pyridyl rings. 

The barium species consists of a 3-dimensional structure (8) in which, peculiarly, the 

incorporation of chlorine atoms from the BaCl2 forms Ba-Cl-Ba bridges which contribute to 

structural propagation.  

A closer look at the structures reveals that propagation is highly ligand dependent and 

that the open-frameworks are favored for the p-pyridinecarboxylic acid, as opposed to the m-

pyridinecarboxylic acid. 
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Donor studies using the 18-crown-6 macrocycle resulted in the isolation of four novel 

crown-stabilized alkaline earth tosylate complexes based on Ca, Sr and Ba. Different ion 

association modes were evidenced as the metal:crown ratio was varied. For 9, a contact-

separated Ca species was isolated when using a 1:1 ratio, whereas 10 crystallizes as a separated 

species with a 1:2 ratio. 11 and 12 crystallize as contact Sr and Ba species, respectively. 

Compounds 9 – 12 demonstrate the delicate interplay between ligation and solvation involving 

the crown, the ligand and water. These compounds showcase nicely why the prediction of 

structural features is very challenging.   
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