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Statistical Topography of Glassy Interfaces
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D. McNamara and A. A. Middleton
Department of Physics, Syracuse University, Syracuse, NY 13210, USA

(February 1, 2008)

Statistical topography of two-dimensional interfaces in the presence of quenched disorder is
studied utilizing combinatorial optimization algorithms. Finite-size scaling is used to measure geo-
metrical exponents associated with contour loops and fully packed loops. We find that contour-loop
exponents depend on the type of disorder (periodic “vs” non-periodic) and they satisfy scaling rela-
tions characteristic of self-affine rough surfaces. Fully packed loops on the other hand are unaffected
by disorder with geometrical exponents that take on their pure values.

Elastic manifolds in random media are used to model
various condensed-matter systems with quenched disor-
der, including flux-line arrays in dirty type-II supercon-
ductors [1], and charge density waves [2]. These dis-
parate systems exhibit a common feature, namely a low
temperature glassy phase in which static and dynamic
properties are dominated by the disorder. One of the
simplest models used to study this glassy phase is given
by a 2-dimensional isotropic interfaces embedded in a
3-dimensional disordered medium. The interface Hamil-
tonian in the continuum limit is

H({h(x)}) =

∫

d2
x

[

K

2
|∇h(x)|2 + V [x, h(x)]

]

, (1)

where h(x) is the height of the interface above a flat
basal plane indexed by a 2-dimensional vector x, and K
is the elastic stiffness constant. Depending on whether
the otherwise uncorrelated random potential V [x, h(x)]
is non-periodic or periodic along the height direction, the
interface is usually referred to as a random manifold or a
random elastic medium, respectively [3].

Much of the analytical understanding of these glassy

interfaces comes from functional renormalization group
calculations [4,5]. The random manifold is found to have
a zero-temperature fixed point characterized by a rough-
ness exponent ζ ≈ 0.41 [4], i.e., the width (W ) of the
interface, as measured by the square root of the height
variance, scales with its lateral linear size (L) as W ∼ Lζ.
The random elastic medium on the other hand exhibits
a low-temperature fixed line below a glass transition.
Along this line the interface is super-rough (W ∼ ln(L)),
while in the high temperature phase it is marginally rough

(W ∼
√

ln(L)) [5]. Recent numerical studies of the exact

ground-state roughness based on combinatorial optimiza-
tion algorithms strongly support the above picture [6].

In this letter, we apply further refined implementations
of these polynomial-in-time algorithms to study the to-
pography [7] of disordered interfaces at zero temperature.
In contrast to the usual paradigm of a rugged landscape
[8] where the surface morphology is described in terms of
height-height correlations, we instead focus on extended,
non-local features of the random geometry as expressed
by contour loops (i.e., lines of constant height) and fully-
packed loops (defined below). We measure different geo-

metrical exponents for the two types of loops and check
various scaling relations among them (see Eq. (5)). This
approach has proven to be very useful in characterizing
the morphology of rough surfaces whenever the complete

height profile is available [9].
From the results obtained for contour loops our main

conclusion is that the glassy interfaces studied are self-
affine and rough with roughness exponents in good agree-
ment with theoretical findings. The study of fully
packed loops on the other hand addresses the question
of the effect of quenched disorder on critical fluctuations.
Namely, the discrete interface models we employ map to
disordered fully packed loop models. In the absence of
disorder this loop model is critical and its exponents have
been calculated exactly using Bethe ansatz and Coulomb
gas techniques [10]. Unexpectedly, here we find that the
values of the pure exponents are unaffected by disorder.

a. Models and algorithms To simulate both random
and random-periodic interfaces, we consider a simple cu-
bic lattice with random bond weights (energies) and its
directed (111)-interface. This interface, to be precise, is
defined on the dual lattice with each elementary plaque-
tte (a square) intersecting a single bond of the simple
cubic lattice. The cost of such an interface is defined
to be the sum of the weights of all the bonds that it
cuts. In the case of the random manifold the integer-
valued weight of each bond is chosen independently and

1

http://arXiv.org/abs/cond-mat/9709092v1


uniformly in the interval [0, 1000]. When simulating a
random elastic medium the random weights are sampled
in the same way with the important difference that the
weights of all the bonds directly above one another along
the (111) direction are set equal. In other words, the
bond disorder is uncorrelated for the former and peri-
odic along the height direction for the latter, reflecting
the intrinsic periodicity of the random elastic medium
[3].

The problem of finding the ground state of an interface
in the presence of quenched disorder is that of minimiz-
ing its total energy cost. Employing max-flow-min-cut
and minimum-cost perfect-matching algorithms, for the
case of random disorder and random-periodic disorder
respectively, enables us to determine the exact ground
state interface in time that grows only polynomialy with
L. This allows us to simulate relatively large system sizes
for many disorder realizations.

The max-flow-min-cut algorithm interprets the simple
cubic lattice as a directed flow network. Each bond of the
lattice is directed along the (111) direction, and its ran-
dom weight specifies the maximum amount of flow that
can be accommodated in this bond. The algorithm finds
the interface of minimum cost by searching instead for
the maximum flow (with flow conservation) that can be
sustained between the bottom and top layers with the in-
terface sandwiched in between; see Fig.1. The algorithm
works because the interface of minimum cost is the bot-

tleneck through which all flow must pass.

Fully-Packed Loops (FPL)Contour Loops (CL)

FIG. 1. (111) interface of a simple cubic lattice and its two
loop representations. An example of a ground-state interface
confined between two flat (111) layers is shown. The level set
at mean height consists of closed contour loops due to peri-
odic boundary conditions. Also shown is the fully-packed-loop
(FPL) representation of the same interface (see text for details
of construction).

Next we note that the (111) projection of the interface
gives a rhombus tiling of the plane, which is also equiva-
lent to a complete (perfect) dimer covering of a hexagonal
lattice. The hexagonal lattice (L) in question is the dual
of the triangular lattice formed by the vertices of the

rhombi, while the dimers lie perpendicular to their short
diagonals [11]. This mapping is purely geometrical in na-
ture, but when the disorder is periodic it facilitates the
task of finding the interface of minimum cost. Namely,
the periodic disorder can be represented entirely by ran-
dom bonds on L, and the minimization problem becomes
one of finding the perfect matching (dimer covering) with
minimum cost. Detailed descriptions of both algorithms
can be found in Ref. [12].

b. Geometric exponents and scaling Given the exact
shape of the (111)-interface its topography is completely
characterized by a contour plot with the level spacing
equal to a single step of the the discrete height. The
contour plot consists of contour loops which live along
the bonds of the hexagonal lattice L. The contours are
closed due to periodic boundary conditions which we im-
pose in both lateral directions. For example, in Fig.1
we have drawn all the contour loops at mean height, for
the (111) interface shown. The union of all the contour
loops for different realizations of disorder is the contour

loop ensemble.
Apart from this natural contour-loop characterization,

there exists yet another interesting loop representation of
the (111)-interface, the fully-packed loops (FPL). These
loops owe their existence to the one-to-one mapping be-
tween a (111)-interface and a complete dimer covering of
the hexagonal lattice L. By removing the bonds of L that
coincide with the dimers, we are left with a configuration
of fully-packed loops, as shown in Fig.1, where every site
of L belongs to one and only one loop. A physical realiza-
tion of FPL are the magnetic domain walls in the ground
state of the Ising antiferromagnet on the triangular lat-
tice [11]. FPL models of general loop fugacity in the
absence of disorder have been studied recently [10] and
were shown to be critical for values of the loop fugacity
that does not exceed two. The interface-FPL mapping
thus allows us to consider the effect of quenched disorder
on the critical FPL model on the honeycomb lattice with
fugacity equal to one.

Following Ref. [9], we consider the fractal dimension
of a loop D, the loop distribution exponent τ , the loop
correlation exponent xl, and finally the interface rough-
ness exponent ζ. These geometrical exponents are used to
characterize the morphology of an interface which is sta-
tistically invariant under the rescaling h(x) → b−ζh(bx),
where b > 1 is an arbitrary rescaling parameter; such
interfaces are termed self-affine.

The natural quantities associated with a loop are its
length s and the radius of gyration R, both measured here
in units of the lattice spacing. For the ensemble of loops
we define n(s, R), the number density of loops of length
s and radius R. Contour loops of a self-affine interface
have no characteristic length scale and we anticipate a
scaling form for the number density:

n(s, R) = s−(1/D+τ)f(s/RD) . (2)
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Integrating n(s, R) over all radii gives the number density
of loops of length s,

n(s) ∼ s−τ , (3)

which we use to extract the exponents τ and D (see the
following section).

Yet another measure that was introduced in Ref. [9] is
the loop correlation function g(r) which gives the proba-
bility that two points separated by distance r belong to
the same loop. Just like in the case of the number density
of loops we anticipate a power law

g(r) ∼ r−2xl , (4)

where xl is the loop correlation exponent.

In Ref. [9] scaling relations were derived for the loop
exponents τ , D, and xl assuming a self-affine interface of
roughness ζ:

D = 2 − xl − ζ/2

τ = 1 + (2 − ζ)/D . (5)

These results follow from sum rules for the average loop
length and the average number of large loops (i.e., those
with radii comparable to ρ) inside an area of linear size
ρ. Eq. 5 tells us that there are only two independent ex-
ponents so measuring all four and checking the validity
of the scaling relations provides an important consistency
check on the assumed self-affine nature of the rough inter-
face. Furthermore, the second scaling relation suggests
a method for measuring the roughness exponent directly
from the loop data. Namely, integrating n(s, R) over all
s and making use of D(τ − 1) = 2 − ζ, we find

n(R) ∼ Rζ−3 (6)

for the number density of loops of radius R.

c. Numerical results We first describe our results for
the random elastic medium. Four different sample sizes,
L = 72, 120, 240, and 480 were simulated with 104 disor-
der realizations for each size.

The fractal dimension D and loop exponent τ can
be simultaneously extracted from n(s) using a finite-
size scaling (FSS) form n(s) = s−τfn(s/LD), which
follows from Eq. 3. In order to minimize the statisti-
cal noise at large s, we consider instead the cumulative
number density N(s) ≡

∫

s̃>s
n(s̃)ds̃, with the scaling

form N(s) = s1−τfN(s/LD). Results are summarized in
Fig 2. The power-law scaling regime is evident over three
decades in loop length (40 < s < 40000). The deviations
from scaling at small and large s are attributed to the lat-
tice cutoff and finite lattice size, respectively. The best
data collapses yield D = 1.46± 0.01 and τ = 2.32± 0.01
for CL, and D = 1.75±0.01 and τ = 2.15±0.01 for FPL.
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FIG. 2. Cumulative number density N(s) (normalized by
total loop number), for CL and FPL; L = 480. FSS analysis
for L = 72, 120, 240, and 480, is shown in the inset and used
to determine exponents D and τ (see text). N(s) is binned
in intervals of 0.08s at successive s to estimate the systematic
errors which are smaller than the symbols shown.

We have also computed the loop correlation function
g(r), from which the exponent xl is extracted using a
scaling form g(r) = r−2xlfg(r/L). The best data col-
lapses, shown in the inset of Fig. 3, yield xl = 0.50±0.01
and xl = 0.25 ± 0.01 for CL and FPL, respectively. An
exact value (xexact

l = 1/2) of the loop correlation expo-
nent for CL was proposed for self-affine rough surfaces
independent of the roughness [9]. Our results (see Ta-
ble I) therefore provide further evidence of the universal
nature of xl for contour loops.
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FIG. 3. Loop correlation function g(r) for both CL and
FPL; L = 480. FSS plots are shown in the inset; systematic
errors estimated as in Fig. 2 are smaller then the symbols
shown.

From Eq. 6 it follows that the roughness exponent
ζ can be obtained from n(R). Once again we consider
the cumulative number density N(R) for which we pro-
pose the scaling form: N(R) = Rζ−2fN(R/L). The re-
sults of the FSS analysis are given in Fig 4 which yields
ζ = 0.08 ± 0.01 and ζ = 0.00 ± 0.01 for CL and FPL,
respectively.
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FIG. 4. Cumulative number density N(R) (normalized
by total loop number) for both CL and FPL; L = 480. FSS
plots are shown in the inset; systematic errors estimated as
in Fig. 2 are smaller then the symbols shown.

Given the numerical values of the geometrical expo-
nents in the case of the random elastic medium, which are
summarized in Table I, it is straightforward to check that
the scaling relations, given by Eq. 5, hold for both CL and
FPL. Although the small non-zero roughness ζ = 0.08
appears to be in disagreement with the super-rough sce-
nario (ζ = 0), it can in fact be understood as an effective

exponent due to the extra log-divergence of the interface
width. We therefore expect this effective roughness to
approach zero with increasing system size as 1/ lnL.

We also carried out numerical simulations for the ran-

dom manifold. Our results for the geometrical exponents
are summarized in Table I. They were obtained in the
exact same fashion as in the case of the random elastic
medium using a FSS analysis for L = 64, 72, 96, and
150, with the interfaces confined between two boundary
layers separated by H = 55, 58, 65, and 78, respectively;
see Fig. 1. For each system size 6 × 103 disorder re-
alizations were simulated. Our three main conclusions
are: First, the roughness exponent ζ = 0.40(2) obtained
from N(R) is in excellent agreement with that obtained
from a more traditional approach that relies on measur-
ing height fluctuations [6]. Second, as in the case of the
random elastic medium, geometric exponents of both CL
and FPL satisfy scaling relations given in Eq. (5) giving
strong support to the claim that this glassy interface is
self-affine. Finally, and quite surprisingly, the geometric
exponents for FPL remain unchanged from the random-
periodic case. Moreover, their values agree, within sta-
tistical errors, with those obtained in the absence of dis-
order, where the interface is marginally rough due to en-
tropic fluctuations [10].

In conclusion, we have measured the geometrical expo-
nents of contour loops and fully packed loops associated
with the ground states of interfaces in the presence of
quenched random and periodically-random disorder. The
contour loop results are consistent with the ground state
interfaces being self-affine and rough, with roughness ex-

ponents in agreement with renormalization group calcu-
lations. The geometrical exponents for the fully packed
loops were found to be unaffected by the disorder. This
discovery is rather unexpected in light of the fact that
there is a 1-1 mapping between the two loop types, and it
calls for a more detailed study of disordered fully packed
loop models with general loop weights.

We thank J. Cardy, C.L. Henley, J. Jacobsen, P. Leath,
C. Marchetti, and V. Pasquier for useful discussions. We
acknowledge support by the NSF through grants DMR-
9214943 (CZ), DMR-9357613 (JK), and DMR-9702242
and Alfred P. Sloan Fellowship (AAM).

TABLE I. Geometric exponents of both contour loops (CL)
and fully-packed loops (FPL). Rational numbers are the pro-
posed exponents.

Random Elastic Medium

Contour Loops (CL) Fully-Packed Loops (FPL)

D = 1.46 ± 0.01 (3/2) D = 1.75± 0.01 (7/4)

τ = 2.32 ± 0.01 (7/3) τ = 2.15± 0.01 (15/7)

xl = 0.50 ± 0.01 (1/2) xl = 0.25 ± 0.01 (1/4)

ζ = 0.08± 0.01 (0) ζ = 0.00 ± 0.01 (0)

Random Manifold

Contour Loops (CL) Fully-Packed Loops (FPL)

D = 1.31 ± 0.02 (?) D = 1.74± 0.01 (7/4)

τ = 2.19 ± 0.02 (?) τ = 2.15± 0.01 (15/7)

xl = 0.49 ± 0.02 (1/2) xl = 0.25 ± 0.01 (1/4)

ζ = 0.40± 0.02 (?) ζ = 0.01 ± 0.01 (0)
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