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Disorder-Induced Topological Defects in a d = 2 Elastic Medium at Zero Temperature

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

(March 13, 1998)

The density and correlations of topological defects are investigated numerically in a model of a
d = 2 elastic medium subject to a periodic quenched random potential. The computed density of
defects decreases approximately exponentially with the defect core energy. Comparing the defect-
free ground state with the ground state with defects, it is found that the difference is described by
string-like excitations, bounded by defect pairs, which have a fractal dimension of 1.250± 0.003. At
zero temperature, the disorder-induced defects screen the interaction of introduced vortex pairs.

74.60.Ge, 75.10.Nr, 02.70.Lq, 02.60.Pn

A diverse set of physical phenomena, including vortex
lattices in superconductors, incommensurate charge den-
sity waves, and crystal growth on a disordered substrate,
have been modeled as elastic media subject to a pinning
potential due to quenched disorder [1–3]. A possible dif-
ficulty in applying these purely elastic models is their
failure to take into account account the possible effect
of defects in the elastic medium [1,4,5]. In general, the
importance of defects have been difficult to analyze an-
alytically, though recent numerical simulations and ana-
lytical arguments have indicated that defects significantly
change the d = 2 system, but have less effect in d = 3
[4,5].

In this paper, I present results on the effects of scalar
defects on the ground state of a model of a d = 2 elastic
medium subject to a disordered pinning potential. Us-
ing variants of combinatorial techniques that have been
applied [6–8] to the study of the elastic model without
defects, it is possible to exactly calculate the finite-size
ground states of models that allow for defects in the
scalar displacement variable. By comparing configura-
tions with and without defects, the change in ground
state due to the introduction of defects is found to be
confined to “strings” that connect defects. The fractal
dimension of these strings is computed to be 1.250(3).
The effects of the defects on the long-range response are
calculated by the introduction of a fixed pair of defects
into the elastic medium with defects. As the system size
increases, the cost of introducing the fixed pair goes to a
constant (rather than growing logarithmically), indicat-
ing that the defects screen the long-range interaction at
long scales.

In models of d-dimensional elastic media with scalar
displacement subject to a pinning potential periodic in
the direction of displacement, there are two length scales
that separate distinct behaviors [1,4]. For lengths less
than the pinning length ξP , the elastic energies for defor-
mation are typically larger than the pinning energies, so
that the displacement in a region of volume ξd

P can be rep-
resented as a single scalar variable h, with the pinning en-
ergy periodic in h. For length scales greater than ξP , the

pinning energy dominates and there are many metastable
states. In a medium that allows for the creation of de-
fects (in the d = 2 case considered in this paper, these
defects are point vortices), there is a length scale ξV de-
scribing the typical separation of vortices. The vortices
themselves are described by their location to within ξP

[1,4]. In this work, the lattice constant corresponds to
the length scale ξP and the distance ξV is controlled by
a vortex core energy Ec.

A model for interfaces and defects in d = 2 can be
based upon the properties of matchings and their height
representations. Given an undirected graph G = (V, D),
with vertices V and edges D, a matching M ⊆ D is a
set of edges such that each vertex belongs to at most one
edge in M . The graphs of interest here will be bipartite
(with subsets of vertices A and B and all edges connect-
ing A- and B-vertices), with equal numbers of vertices in
each sublattice, and allow for complete matchings, where
each vertex is a member of exactly one edge. In partic-
ular, consider a hexagonal lattice with L × L two-vertex
unit cells. There exists a one-to-one mapping between
complete matchings on this lattice, minimally frustrated
states of an antiferromagnetic Ising model on a triangu-
lar lattice, and a solid-on-solid height representation [9].
Fig. 1 indicates the mapping between matchings and a
height representation. In the case of a partial matching,
an equal number of A- and B-vertices are unmatched.
The uncovered vertices correspond to defects (vortices
or screw dislocations) in the height representation. The
rules for calculating the height can still be applied locally,
but are inconsistent on any loop containing an unequal
number of A and B defects. Unmatched vertices have a
positive (negative) sign, if the vertex is a member of the
B (A) sublattice, respectively, as indicated in Fig. 1.

Consider the case of a complete matching M , where
there is a well-defined interface corresponding to M . In
the absence of quenched disorder, the energy of the in-
terface is independent of the height configuration, so all
matchings appear with equal weight, and the thermally-
averaged height-height correlations < [h(~r) − h(~0)]2 >
grows as ∼ ln(r) at all temperatures T [9]. In the
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presence of quenched disorder, this is no longer true at
low temperatures. Theoretical calculations [1,10] predict
that the 2+1-dimensional model at low temperature T
has a correlation function that grows as ∼ ln2(r). This
has been confirmed in the T → 0 limit by numerical
calculations using the complete matching representation
and other methods [6,8]. The energy can be calculated in
the matching representation as E = −

∑
e∈M we, where

we are randomly chosen weights associated with each
edge (dimer.) Maximizing the total weight minimizes the
energy. When the corresponding interface in the height
representation is translated by 3 units in the height direc-
tion, the dimer configuration is unchanged, so that the
energy is periodic in global height shifts.

2 0 1

0 1 2

2 3

0 1 -1

-1 0 -2

+

-

FIG. 1. Rules for assigning heights to matchings on a
hexagonal lattice. A- (B-) vertices are shown as filled (un-
filled) circles and matched edges are heavy line segments. All
but the two circled vertices are matched. Heights h are de-
fined at the centers of the hexagons. When crossing a matched
edge from an A to a B vertex in the ccw direction about the
A vertex, h increases by 2; if the edge is unmatched, h de-
creases by 1. A locally consistent definition of h is shown on
the left side of the figure. The right side of the figure ex-
hibits defects. The unmatched vertex on the A (B) sublattice
correspond to a negative (positive) vortex. The dashed line
indicates a possible path for a defect string that connects two
defects; if this were the defect string, then in the ground state
with no defects, the unmatched edges along this path would
become matched and the matched edges would be removed.

In the case of an incomplete matching, there is no
longer a uniquely defined height variable corresponding
to displacements of the d = 2 elastic medium. An energy
for the dimer configuration can then be assigned which is
consistent with (1) a local pinning energy where vertices
are covered by dimers in M and (2) a defect energy for
vertices that are not the endpoints of dimers in M :

E = NcEc −
∑

e∈M

we, (1)

where Nc is the number of non-covered vertices and Ec

is the core cost of a defect. Minimizing E in Eqn. (1)
gives the T = 0 configuration for the elastic medium

with defects that have an associated core energy. Over
local regions where the height is well defined, the energy
is still periodic in the height (displacement) variable.

Ground-state configurations were found using two al-
gorithms that solve maximum-weight bipartite matching
(MWBM.) The first algorithm uses a heuristic developed
by C. Zeng [11], implemented in the LEDA library of al-
gorithms [12], to directly determine the (partial) match-
ing that maximizes the sum in Eqn. (1). The second
algorithm, using almost identical processor time and less
memory, is based upon finding a maximum-weight com-

plete matching in a modified graph, where vertices are
duplicated and extra edges of weight 2Ec and of weight
zero are added to the original edge set. A complete
matching algorithm such as the cost-scaling assignment
(CSA) algorithm by Kennedy and Goldberg [13] can then
be used to find a complete matching on this augmented
graph. Matched vertices in the augmented graph which
correspond to edges in the original graph give the par-
tial matching in the original graph that minimizes E.
These algorithms take 340 s on a 500 MHz DEC Alpha
to find the ground state of a system with 294 912 vertices
(384 × 384 unit cells).

In addition, one can study the result of introducing
a single defect pair, at given locations, into a complete
matching M (a defect-free medium.) This is done by
uncovering an A- and a B-vertex and arranging |M | − 1
dimers to cover the remaining vertices. This arrange-
ment can be found by solving a shortest paths problem
p in a directed graph G′ which is determined by M and
G. An undirected edge e ∈ G is replaced with a directed
edge e′ ∈ G′ from the A- to a B-vertex if e ∈ M , other-
wise e′ is directed from the B- to the A-node. A directed
path p following the edges in G′ is assigned the energy
change ∆E(p) =

∑
e∈p w′

e where w′

e = we if e ∈ M and
w′

e = −we for e 6∈ M . Minimal energy change paths
starting from an introduced positive defect to any other
vertex then give the minimal energy excitation due to a
defect pair introduced at the endpoints of the path. Such
paths can be determined by a shortest path (SP) algo-
rithm that allows for negative weights; for this purpose,
the Goldberg-Razik algorithm was used [14]. Note that
this algorithm is distinct from the shortest paths algo-
rithms used to study the directed polymer problem [15],
where the edge weights can all be made positive by a
uniform shift without affecting the paths.

Finally, the combination of the introduction of a fixed
pair and defects with a chosen core energy was studied
using a MWBM algorithm on a graph G′′ = (V, D∪{z})
with z an external edge connecting an A-node and a B-
node at a separation ~rdef = (L/2, L/2) (in the lattice unit
vector representation), with wz = ∞, so that z always
introduces a pair of defects separated as far as possible
in a finite system. The MWBM algorithm then gives the
minimum E for the introduced defects, in the presence
of disorder-induced defects.
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Simulations using MWBM without an introduced de-
fect were performed for a variety of system sizes and de-
fect core energies. The edge weights (pinning energies)
were chosen from a uniform distribution in the range
[0, 1), with a discrete resolution of 10−4. Defect den-
sities were computed by comparing |M | with the number
of edges in a complete matching (a decrease in dimer
number of one gives a defect pair.) Complete matching
(Ec = ∞) configurations were compared with the partial
matchings for identical disorder to determine the changes
due to defects. For the largest system size (384×384 unit
cells), 400 samples were studied. Simulations for intro-
duced defect pairs using the SP algorithm were performed
for systems up to 768× 768 unit cells (> 4 360 samples.)

In the MWBM calculation with finite core energy, de-
fects are readily identified as unmatched vertices (+ if
a B-vertex, − if an A-vertex.) The total defect density
ρ = (N+ +N−)/2WL is fit to within statistical errors by
a simple exponential, ρ ∝ exp(−Ec/E0), with E0 = 0.45,
for ρ−1/2 > 10. This form is consistent with the mini-
mum core energy Emin

c (L) that typically excludes intro-

duced defects on a length scale of L; numerical calcula-
tion of this quantity using the SP algorithm on complete
matchings gives Emin

c (L) ≈ (const.) + (0.36) ln(L).
The ground states with and without defects can be

directly compared. There are two types of changes ap-
parent: the introduction of vortices and changes in the
matching in the regions between vortices. The changes
are realized as “strings” connecting pairs of defects, as
shown in Fig. 2. This result is consistent with the work
of Gingras and Huse [4] who argued that in an XY model,
the phase difference caused by a defect will be confined to
lines connecting vortices of opposite sign. This confine-
ment results from strong pinning on scales larger than
ξP ; the height difference of ±3 found on a loop enclosing
a vortex is not spread out uniformly, but takes place over
the scale ξP .

FIG. 2. The symmetric difference between matchings for
a ground state with no defects and a ground state for the
same disorder realization, with a defect energy of Ec = 1.2
(384×384 unit cells.) Dimers are included if they belong to a
matching in one of the ground states, but not both. Vortices
are at the ends of the defect lines. The defect lines them-
selves show where the phase change due to the introduction
of defects is localized.
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FIG. 3. (a) A plot of the mean end-to-end displacement
r(Ec) of defect strings vs. the mean length s(Ec) of a de-
fect path, for core energies Ec = 0, 0.2, 0.4, . . . , 1.4, found by
examining defect strings as shown in Fig. 2. Statistical and
systematic (from the extrapolation L → ∞) uncertainties are
less than 1% in each quantity. The straight line indicates a
fit to the power law r ∼ s1/df , for df = 1.261(16). (b) A
finite-size scaling plot of rdf /s as a function of s/Ld

f from
spanning trees generated by the SP algorithm on complete
matchings. In this case, precise collapse over two decades
with a linear abscissa gives the fitted value of df as 1.250(3).

The strings corresponding to the difference between
ground states with and without defects were character-
ized by the string length s (number of edges in the string)
and the end-to-end distance r. The mean of the end-to-
end displacement distance of the paths, r(Ec), and the
mean length of the paths, s(Ec), depends on the core
energy. The dimension df was computed assuming

r(Ec) ∼ s1/df (Ec). (2)

The quantities r(L, Ec) and s(L, Ec) were simply com-
puted by averaging over all defect paths at fixed L and
Ec. The limits s(L → ∞, Ec) = s(Ec) and r(L →
∞, Ec) = r(Ec) were found by scaling fits. For example,
a plot of r(L, Ec)/r(∞, Ec) vs. L/r(∞, Ec) was made for
trial values of r(∞, Ec) until the data collapsed to a single
line. The values of s(L, Ec) were scaled using a presumed
scaling form s(L, Ec)/s(∞, Ec) ∼ L/s(∞, Ec)

1/df , for
trial values of s(∞, Ec) and df . The final value of df was
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then most accurately read from a plot of r(∞, Ec) vs.
s(∞, Ec), as shown in Fig. 3(a). The single defect paths
caused by the two vortices placed in a complete match-
ing, computed using the CSA and SP algorithms, were
also studied. In a single sample, s can be calculated for
all possible values of r; the finite-size scaling is shown in
Fig. 3(b). The fractal dimensions for the multiple defect
and single introduced defect, df = 1.261(16), 1.250(3),
respectively, are numerically consistent.

The SP algorithm gives the minimum energy excita-
tions for a pair of defects at all separations, in the ab-
sence of other defects. Applying MWBM to the ex-
tended graph G′′ allows one to study a pair of defects
at fixed separation in the presence of defects. The cost
∆Edef to introduce a defect pair is given by the dif-
ference between the ground state energies for G and
G′′ at the same core energy. Introducing a pair of de-
fects, if other defects can be ignored, costs an energy
2Ec (for the defect cores) and a separation energy, log-
arithmic in the separation [5], so that at small values
of x = ρ1/2L, ∆Edef = 2Ec + c + 2πγρs ln(L), where
ρs is the long-distance stiffness associated with a single
core, c is a constant, and γ is a constant given by the
sample geometry. For large values of x, the introduced
pair cost approaches a constant, if the disorder-induced
defects screeen the interaction between the introduced
defects, with the crossover occuring for ρ1/2L ∼ 1 (giv-
ing ∆Edef = 2Ec +c′ +2πγρs ln(ρ−1/2) for large x.) The
results of the simulation, as plotted in Fig. (4), are con-
sistent with this form of defect screening.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 1 10

∆E
de

f -
 2

 E
c 

- 
2π

γρ
s 

ln
(ρ

-1
/2

)

Lρ1/2

γρs = 0.185

0.000
0.400
0.800
1.200
1.600
2.000
2.400

FIG. 4. A plot of the energy cost ∆Ec to introduce two
maximally separated defects into a system of size L×L, scaled
to indicate consistency with the limits described in the text.
The symbols indicate the core energy Ec; distinct points with
the same symbol are found by varying L (L = 6, . . . , 192.) Er-
ror bars are statistical (1σ.) The coefficient γρs was chosen
for the best scaling collapse. For fixed Ec, the defect cost ap-
proaches a constant in large systems, indicating the screening
of the defect-defect interaction.

By applying optimization algorithms to many large
samples, the lack of long-range elastic behavior in a disor-
dered medium at T = 0 with defects is confirmed and the
string dimension df is precisely determined. Note that

df appears to be distinct from the defect-step dimension
1.35± 0.02 previously reported [8]; this difference is sur-
prising and further confirmation would be useful. The
dimension df is very close to that of 5/4 for loop-erased
random walks (LERW’s) [16], and distinct from the di-
mension (1.22(1) [17]; 1.222(3) [18]) of minimal-spanning
trees (if the weights were all positive in G′′, the search for
defect strings would give a minimal spanning tree; note
that the SP algorithm has a loop-cancellation similar to
that of the LERW.)
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