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Computational Complexity of Determining the Barriers to Interface Motion in
Random Systems

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244
(July 16, 1998)

The low-temperature driven or thermally activated motion of several condensed matter systems is
often modeled by the dynamics of interfaces (co-dimension-1 elastic manifolds) subject to a random
potential. Two characteristic quantitative features of the energy landscape of such a many-degree-
of-freedom system are the ground-state energy and the magnitude of the energy barriers between
given configurations. While the numerical determination of the former can be accomplished in time
polynomial in the system size, it is shown here that the problem of determining the latter quantity
is NP-complete. Exact computation of barriers is therefore (almost certainly) much more difficult
than determining the exact ground states of interfaces.

I. INTRODUCTION

Numerical computation has been extensively used for
confirming scaling relations from analytical work and for
computing exponents in the statistical mechanics of dis-
ordered systems, such as random magnetic systems [m]
In order to calculate long wavelength and low frequency
behaviors, and to precisely determine exponent values,
one needs to study a number of samples of large dimen-
sion. The utility of numerical techniques strongly de-
pends on how the computational demands, such as the
number of operations needed by an algorithm, scales with
system size. Direct simulation by Monte Carlo techniques
often cannot be used to determine the exact ground state
in large systems, for example, due to the extremely slow
relaxation times typical of disordered systems [ In con-
trast, the exact ground state can be found for many sys-
tems [ﬂ—ﬂ], using combinatorial optimization techniques,
with a computational time that grows polynomially with
the volume of the system V (in practice, the computa-
tional time often scales roughly as V?, with 1 < b < 2
[B.B).) More detailed information about the “energy land-
scape” of the model, besides ground state energies, is
needed to determine dynamical behavior, which is gener-
ally modeled by studying thermal activation over barriers
between low-energy states [E,ﬂ] It is shown in this paper
that, for many models that might be of physical inter-
est, the numerical study of barrier heights is in the set of
NP-complete problems [E]

To define NP-complete problems, one first defines NP
(non-deterministic polynomial time) problems [§. A
problem which is NP is one for which a proposed so-
lution be verified in an amount of time that grows no
faster than a polynomial in the size of the problem def-
inition, given a model of a computer as a Turing ma-
chine [H] An NP-complete problem is then defined as
an NP problem such that if there existed an algorithm
that produced a solution in polynomial time (polynomial

in the size of the definition of the problem), such an al-
gorithm could be adopted to solve any NP problem in
polynomial time. The class of NP-complete problems
includes the traveling salesman problem [§] and ground
states of spin glasses on general graphs [LJ]. It is gen-
erally believed that no polynomial-time algorithm exists
for NP-complete problems, though a proof of this is an
outstanding problem in computer science. Showing that
determining barrier heights can be an NP-complete prob-
lem therefore strongly suggests that no polynomial time
algorithm can be found that exactly determines barrier
heights.

II. INTERFACE MODEL

To address the computational complexity of a prob-
lem, a discrete formulation must be given and the size
of the problem must be defined. We consider here the
study of the configurations of a self-avoiding, connected
D-dimensional interface embedded in a bounded region
X c R% d = D + 1, such as might be used to approxi-
mate a domain wall in a magnet. The interface separates
X into two disjoint sets. A discretization can be made
by approximating the interface by a set of D-dimensional
polyhedra, which are the faces of d-dimensional cells that
partition the region X. One might consider the cells to
represent actual atoms (with the polyhedral faces being
polygons for d = 3 lattices) or as elements of a coarse-
grained description, with cells having a size of typical
disorder-induced distortions in the elastic interface [El]
The size of the interface problem can then be defined as
the number of cells n in the decomposition of X, assum-
ing that there is an n-independent bound on the number
of faces for any cell, so that the number of discrete faces
which make up the interface is then bounded by a con-
stant multiple of n [19]. The dynamics of the interface
is a sequence of simple moves which move the interface
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through primitive cells, one at a time, while maintaining
the self-avoidance and connectedness constraints.

For this model of an interface, it is natural to reformu-
late the interface problem as an Ising model on a graph
Go = (Vo, Ey) given by the cellular decomposition of X.
The nodes of the graph Vj are identified with the prim-
itive cells (Fy will be defined for special cases, in the
next paragraph.) Each node is assigned a spin variable
si, which takes on values 41, with a sign depending on
which side of the interface cell i, 1 < i < n, belongs to.
In general, the energy of the interface could be any func-
tion of the {s;} and could have a number of independent
values exponential in n. Determining the ground state
of the interface given by such an energy function would
likely necessitate the computation of a number of ener-
gies exponential in the volume. We do not consider this
case here, as it is not of physical interest.

A more restricted, but natural case, is to represent the
energy of an interface as the sum over interactions be-
tween the spins. That is, consider the energy function

E = _ZJijSiSju (1)
4,J

where the J;; are edge weights; when J;; # 0, an edge
e = (i,j) € Ep is included in Gy. We consider here only
the case of J;; > 0, as the case where J;; < 0 for some
bonds is the spin-glass problem, for which determining
even the ground state is an NP-complete problem, for
graphs of physical lattices in more than two dimensions
[E] The energy is equal to twice the total weight of
the bonds which intersect the interface, up to the addi-
tive constant — ZZ—J— Jij. If the energy is given by nearest
neighbor interactions, i.e., J;; # 0 only for cells ¢ and j
that share a face, this energy corresponds to a nearest
neighbor random-bond Ising model (RBIM).

The ground state energy of the interface is then de-
fined as finding the minimum of E over all configurations
{si}, possibly subject to boundary conditions that define
the two regions of space that are to be separated. Such
ground state energies and configurations give a great deal
of information about the system, including the response
to boundary condition changes and sensitivity to random
changes in the J;; [[3). Such information for the RBIM
and many other problems can be found using polynomial-
time algorithms [ff.

A more subtle characterization of the energy landscape
is the energetics of extremal paths in configuration space.
A sequence of configurations related by simple moves
(flips of single spins adjacent to the interface) are the
paths of interest in configuration space. The cost of a
path is defined as the maximal value of the interface en-
ergy over all intermediate configurations in the path. The
barrier between two given configurations can then be de-
fined as the minimal cost over all allowed paths between
the two configurations.

More precisely, a path @ of length M is defined by
an initial configuration {s;} and a sequence of locations
for single spin flips, {Q1,Q2,...,Qum}, with 1 < Q; <n
for all 1 < j < M. Each spin flip corresponds to mov-
ing a cell from one partition (side of the interface) to
the other, with the sequence constrained by the interface
self-avoidance and connectedness conditions. The result
of a partial sequence of spin flips P,? = (Q1,.,Qr),
1 < k < M, operating on a spin configuration {s;} is
given by its action on individual spins

Plsi = (—1)"s;, (2)

where ny; is the number of times Q; = ¢ for 1 <1 < k.
Py is the identity operation. The value of the barrier
B(S1, S2) separating two spin configurations S; = {s}}
and Sz = {s?} is then given by

B(51,5,) = min max  E[P2{s;}]. (3)

{QIPE(S1)=Ss} k=0,....M(Q)

III. BARRIER FOR AN ARBITRARY GRAPH

Though the ground state of the random-bond or
random-field Ising magnet for a given realization of bonds
can be computed in amount of time bounded by a polyno-
mial in the number of bonds and sites [E«E], the problem
of finding the barrier between two states will be shown
here to belong to the class of NP-complete problems,
for the motion of a self-avoiding interface. There are
no known polynomial-time algorithms for solving NP-
complete problems and it is generally believed that such
problems require a time for solution that grows faster
than any polynomial in the problem size [§]. The bar-
rier problem is therefore (almost certainly) in a computa-
tional complexity class distinct from that of the ground-
state problem.

The barrier problem can be shown to be NP-complete
for general graphs. This is done by a reduction [E] of
a register allocation problem, which has been shown to
be NP-complete [@], to the barrier problem. Loosely
stated (see [I4] for more detail), the register allocation
problem is that of determining the amount of memory
a CPU needs to use to store intermediate results in the
evaluation of an arithmetical expression. The problem
size is given by the size of the arithmetical expression,
which is defined by a set of parenthesized binary opera-
tions. Initially, no register memory is used, but values for
the variables in the expression are loaded into registers
and intermediate results are stored in registers, until the
expression is completely evaluated. The cost to be min-
imized is the maximum number registers in use at any
time during the computation. The cost is affected by the
order in which the binary operations are evaluated and in
which the values are loaded into registers. The correspon-
dence between the register allocation problem and finding



the minimal barrier to interface motion can be made by
identifying cells as the numerical values (original inputs
to the expression and the results of binary operations)
needed in the evaluation of the arithmetic expression and
identifying shared faces of the cells with the dependen-
cies of results on subexpressions. The interface separates
evaluated numbers from intermediate results yet to be
computed. The energy of the interface is taken to be the
number of cells that contact one side of the interface; this
is the number of intermediate results that are available
in registers for further evaluation of the expression. The
optimization of register use is then equivalent to find-
ing the minimum energy barrier to moving an interface
through the graph determined by the algebraic expres-
sion. As the register allocation problem is NP-complete,
the corresponding (high-dimensional) interface problem
is NP-complete. I do not give a more detailed proof here,
however, as the following section shows that a restricted
interface barrier problem is NP-complete. This directly
implies the NP-completeness of the more general prob-
lem. It is of interest, however, to note the close rela-
tionship between the determination of barriers in a type
of interface motion and computational resource problems
such as register allocation.

IV. BARRIER FOR A LOOP IN D =2

Consider now the more specific model of an interface
described by a self-avoiding closed path in a planar graph
G. The graph G is dual to a graph Gy which defines a
nearest-neighbor RBIM. The edges of G will be the faces
of the cells defining interface motion. The face separat-
ing cells ¢ and j is assigned weight 2J;;. Here we will
restrict the J;; to have non-negative half-integer values.
The energy of the loop is then the sum of the weights of
the edges it passes through. This interface might define
the surface of a magnetic domain in two dimensions, for
example. Finding the barrier that separates two config-
urations of a loop in the plane will be referred to here as
the loop-barrier problem. Note that the loop is permitted
to vary in length.

The ground state of a loop in a plane can be determined
in polynomial time using maxflow algorithms [E,E,E] on
the graph Gy. One can either find the the minimum cost
interface separating two points or regions, for example,
or a globally minimal interface [@] Not all loop or path
problems in the plane are so easily solved. There is at
least one example where finding the ground state for a
loop is an NP-complete problem: the NP-complete prob-
lem of finding a Hamiltonian path in a planar cubic graph
can be reduced to determining the ground state of a loop
in the plane with fized length ] In contrast, finding
the minimal directed path of fixed length is easily shown
to be linear in the volume of the lattice, as shortest-path
algorithms can be used [fj.

It will be shown here that the loop-barrier problem
is NP-complete by a reduction of the problem planar
3-satisfiability (P3SAT) [B[L§). That is, any algorithm
which solves the loop-barrier problem can be applied to
solve P3SAT problems and the time taken to translate an
instance (realization) of the P3SAT problem to a loop-
barrier instance is bounded by a polynomial in the size of
the P3SAT instance. Since P3SAT is NP-complete, it fol-
lows that determining the barriers for loops in the plane
(and, trivially, barriers to the motion of closed surfaces
in higher dimensions) is NP-complete.

To define P3SAT, it is convenient to consider first the
more general problem of 3-satisfiability (3SAT) [§]. An
instance of 3SAT is defined by a set of p’ Boolean vari-

ables B = {u1,...,uy} and ¢’ clauses C = {c1,...,cq }
A clause ¢; is a triplet of literals,
Ci = {27,152125213 ) (4)

where each literal z{ is either u; or W; (the negation of
u;) for some 1 < j(a,i) < p’. The set of clauses is said
to be satisfiable if, for some set of truth assignments for
the {u;}, at least one of the literals in ¢; is true, for all
1 < i < ¢'. That is, there is a choice of values for the
{u;} such that the Boolean expression

(21 VZ V) A (23 VI V) AL A (20 V 25V 20)
()

is true. The problem 3SAT is to determine whether Eq.
(Fl) is satisfiable.

A given satisfiability problem can be identified with a
graph G’ = (V’, E’), with vertices

V=A{u:1<k<p+¢}=BUC, (6)
(renaming  variables  {ui,...,uy} and  clauses
{e1,...,¢q} as {v1,...,0p} and

{Vp41s-- -, Uprsq }, respectively.) The edge set E' is
defined by
E'={(v,v):1<i<p,p' <j<p +4, (7)

Uj € Cj_pr OF Uj; € cj,p/}.

The instances of P3SAT are just those 3SAT instances
whose graphs G’ can be embedded in a plane (the vertices
and edges can be placed so that edges do not intersect.)

P3SAT has been shown to be NP-complete [B] In the
proof developed in Ref. []E], it is shown that any 3SAT in-
stance can be polynomially reduced to a P3SAT instance.
The construction of the P3SAT graph G (p variables and
q clauses) from G’ (p’ variables and ¢’ clauses) has three
properties which are central to the following reduction:
Property 1 — There exists a cyclic path L which inter-
sects none of the edges of the graph G, but passes through
all of the vertices v; with 1 < i < p, that is, all of the
nodes corresponding to the variables {u;}. Property 2



— The edges between variables and clauses can be ar-
ranged so that only variables (negated variables) are in
interior (exterior) clauses. More precisely, define the two
sets Cipy and Cext, consisting of the clauses interior and
exterior to the cycle L. Then, given any variable index
1 <i<p,forall ¢c € Coxt, u; & ¢, and for all ¢ € Ciyt,
u; € c [@] In particular, variables u; may be “split” into
two nodes of the graph, representing the literals u; and
u;, so that a variable and its complement are separated
by L. Property 3 — No literal is a member of more than
two clauses. Properties (2) and (3) are a restatement of
Lemma 1 in Ref. [B] An example of a P3SAT problem
and its corresponding graph, showing the path L through
“split” variables, is shown in Fig. |I.

FIG. 1. A particular realization of P3SAT (planar 3-sat-
isfiability), represented as a planar graph G. The “split-
ting” of the Boolean variables into a variable and its negation
are shown as pairs of literals (filled squares) connected by
thick edges. Clauses are indicated by open circles. Edges
between literals and clauses are indicated by thin lines.
Clauses have edges to a maximum of three literals and lit-
erals have edges to a maximum of two clauses. The loop
L passes between all pairs of literals, but does not inter-
sect any of the edges between variables and clauses. The
particular Boolean expression represented by this graph is
aNbAANfAg = (xVyVw)A(xVYy)A(wV2)A([GVE)A(WVTE).
Determining whether such a planar graph is satisfiable, that
is, whether there exists an assignment of truth values to
the Boolean variables for which the expression is true, is an
NP-complete problem.

A loop-barrier problem can be constructed from a
P3SAT instance with Properties (1-3), with the number
of steps in the construction polynomial in the size of the
P3SAT instance, such that a computation of the barrier
for loop motion would determine the satisfiability of the
P3SAT instance. The loop considered is a self-avoiding
(no vertex is shared by more than two edges) returning
walk on a lattice (i.e., a simple cycle.) In order to make

the closest connection to problems in condensed matter
physics, the problem is mapped onto a regular lattice,
though a slightly simpler reduction onto a general planar
graph can be made. The energy of a loop is defined by
summing edge weights E;; = 2.J;; for the “faces” (i.e.,
edges) separating nearest neighbor pairs of cells (i5). As
in the general case discussed above, the allowed moves
are those which change the path by moving the loop
sequentially over single cells (a polygon in this planar
case.) The barrier problem is to determine the barrier
between two loop configurations, given the elementary
cell-crossing moves and the constraint of self-avoidance.

The central notion behind the reduction can be sum-
marized briefly. The barrier problem will be constructed
so that the energy of a loop, initially coinciding with the
cycle L (Fig. m), will be lowered by distorting it so that
it passes through locations corresponding to the clauses.
Each such distortion can lower the loop energy by no
more than a unit amount. These distortions of the loop
will implicitly require a choice of truth values for the vari-
ables, by the direction in which the loop is distorted. If
all of the clauses can be satisfied, by choosing truth val-
ues for a sufficient number of variables, the energy of the
loop will be lowered from its initial value by an amount
q, allowing the loop to move into an otherwise forbid-
den region, which has a barrier ¢q to enter. Hence, if the
P3SAT instance is satisfiable, the barrier to motion of the
loop into the forbidden region will be zero. If the P3SAT
instance is not satisfiable, the barrier to motion into the
forbidden region will be positive. The satisfiability of the
instance therefore holds if and only if the barrier is zero.

The first step of the construction is to embed the
P3SAT graph G, with the loop L guaranteed by Prop-
erty (1) and with variables split into literals, into a square
grid A of size polynomial in p + ¢ [R0] (Fig. P(a).) The
grid A is then refined by dividing each square into four
smaller squares and then adding a single border layer of
squares around the whole lattice, resulting in the grid
Ay (Fig. l(b).) This step insures that all nodes corre-
sponding to nodes of G are separated from each other
and from the edges of the loop L by a distance of at least
two lattice spacings, and that no node is on the bound-
ary of the grid. Given this refined embedding of G, the
grid Ay is defined as the dual of As, excluding the dual
node that corresponds to the boundary cycle of A;. Each
node of the lattice embedding of G will now correspond
to a square plaquette in Ay (Fig. f(c).) The final lattice
is constructed by drawing a diagonal with uniform di-
rection across the plaquettes of Ay, defining a triangular
grid T, with each node of G corresponding to two trian-
gles. The cells of T" will be the cells defining interface
motion.
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FIG. 2. (a) The embedding of the graph G of Fig. m into a
square lattice A; the loop L is indicated by the dashed line and
edges in G are indicated by thick lines. (b) An illustration of
the refinement Ay of A constructed by halving edge lengths.
(¢) The square lattice dual to A2 (excluding the point corre-
sponding to the boundary cycle), Aq, for the sample graph,
with the loop L contracted so that its edges lie in the dual
graph. The nodes of G now correspond to squares while the
edges of G correspond to sequences of squares. The shaded
region indicates the area illustrated in detail in Fig. E

The correspondence between the P3SAT instance and
the edge costs is best made clear by reference to Fig. E
and Fig. E, which illustrate weight assignment rules, and
Fig. ﬂ, which illustrates a subgraph of T' for the sample
expression. First, weights are assigned to edges of T' that
intersect the edges of G (Fig. ) The edges of T' that in-
tersect edges of G between literals are assigned a weight
of 2. The edges of T' that intersect edges between literals
and clauses are assigned weight 1. Next, the weights of
edges in T that are incident upon the edges correspond-
ing to squares in A4 that contain a literal or a clause are
assigned (Fig. ) The weight of the diagonal edge cor-
responding to a literal is set to 2. The pair of triangles
corresponding to the node for the literal then divides the
weight into two edges of unit cost, if the literal is a mem-
ber of two clauses. If a literal is a member of only one
clause, one of the edges of the square that does not inter-
sect an edge of G is set to have a weight of 1, so that the
literal will “absorb” one unit of cost and one unit of en-
ergy can leave the square. The most complicated part of
the construction is the assignment of weights near clauses
(Fig.[{(b)). Note that, near clauses, these rules may over-
ride the rule shown in Fig. ﬂ(b) Up to three edges of
G may enter a clause square in A4. One corner of the
clause square is chosen to represent the clause. This cor-
ner will be referred to as a clause node. The weights in T’
near this node are set so that (a) a primitive move that
places the interface on this corner reduces the weight of
the loop by a unit amount and (b) the interface cannot
move “forward” through the node at low cost. These re-
quirements (a) and (b) are met by identifying triangles
containing the clause node with the ends of the edges of
G between literals and clauses. These triangles have two
edges of weight zero and the other edge with weight one,
with the zero weight edges incident upon the corner rep-
resenting the clause. Note that due to the self-avoidance
constraint, a loop may pass through a given clause node
at most once. The horizontal and vertical edges that bor-
der the edges between clauses and variables, and between
literals, and have not yet been assigned a weight, are set
to have weight 0. The weight of edges on L that do not
intersect edges of G are set to zero. The remainder of the
edges (edges completely covered by the hatched regions
in Fig. E) are set to have weight ¢g. To complete the def-
inition, the weights of three edges near L, which would
otherwise be ¢ by the previous step, are set to zero, as
shown in Fig. E
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FIG. 3. Pictorial representation of rules for assignment of
weights in the graph 7. Heavy edges have weight 2, dashed
edges have weight 1, and thin edges have weight 0. (a) Edges
that intersect an edge in G between literals are assigned a
weight of 2. (b) Edges that intersect an edge in G between a
literal and a clause are assigned weight 1.
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FIG. 4. Pictorial representation of rules for assignment of
weights in the graph T', for edges near literals and clauses. (a)
The two triangles corresponding to a literal that is a mem-
ber of two clauses are designed to share the weight between
the two paths to the clauses. In this figure, the left branch
connects to the negation of the literal, while the down and
right branches connect to a clause. If a literal is a member of
only one clause, the literal “absorbs” one unit of weight. The
left side of the literal is connected to another literal, while
the right branch is connected to a clause, in this example.
(b) Clause regions are designed to lower the weight of the
loop, when it intersects one corner of the clause square, by a
unit amount. Triangles that are at the ends of edges incident
upon a clause meet at a single node of the square correspond-
ing to a clause. This node is referred to as a clause node.
The self-avoidance constraint prohibits the loop from moving
“through” the clause nodes or the loop from simultaneously
intersecting the clause node from more than one direction and
thereby lowering the loop energy more than once per clause.

FIG. 5. In the final step of the reduction, the square
plaquettes of Ay are divided into two triangles by the intro-
duction of diagonal edges. Weights are then assigned to the
edges, according to the rules listed in the text and illustrated
in Fig. E and Fig. E Edge weights for the shaded region of
Fig. é(c) are shown here. Edges which intersect the hatched
areas are assigned a weight of ¢q. The weight of edges on the
loop L that are not used to connect literals is set to zero.
The heavy line segments indicate edges of weight 2 and the
dashed segments indicate edges of weight 1. Thin edges are
assigned a weight of 0. The final part of the assignment of
the weights for T is to set the weights for three edges near L
to zero, as indicated by the unhatched edges at the bottom
right of the figure. The barrier problem is to distort L with
minimal maximum cost so that it passes through these three
zero-weight edges.



Now that the graph and edge weights for a loop-barrier
problem have been defined, the initial and final configu-
rations can be described. The initial path is taken to be
the path describing the loop L. The total weight of L is
2p. The final path is taken to be the one differing from
L by only two primitive moves and that passes through
the three edges set to zero weight in the final step of
the weight definitions. The final configuration is also of
weight 2p. The barrier problem is to determine whether
there is a barrier of zero energy separating the initial and
final path. This will be so if and only if the initial path
can be distorted so that its energy is first lowered by ¢
from the initial energy. This allows a bond coinciding
with L to be moved onto the high cost diagonal near the
zero weight goal edges without exceeding the initial en-
ergy. Note that while the loop cost remains greater than
2p — q, all moves that do not raise the loop cost above 2p
are neutral in cost, except for those that move the loop
onto a clause node and thereby lower the energy by a
unit amount.

In order to lower the loop energy to 2p — q, the initial
loop L must be distorted until it intersects all of the clause
nodes; such a path configuration can be reached without
exceeding the initial energy if and only if the given in-
stance of PS3SAT can be satisfied. First, suppose that
such a path configuration can be reached. Property (2)
implies that moving the loop L in a particular direction
(neglecting high cost moves) chooses a truth value for a
variable by moving the loop through the region corre-
sponding to a literal; the loop cannot be in a state where
it has passed through both literals for a single variable
an odd number of times, without first passing through a
barrier of at least ¢ in energy. Once a literal is chosen,
all of the unsatisfied clauses which it belongs to can be
satisfied by distorting the loop onto the corresponding
clause node. Given a loop which intersects all clauses,
values for the variables which satisfy the expression can
thus be directly deduced from which literals the loop has
passed through an odd number of times. If a loop config-
uration of weight 2p — ¢ reachable from L without raising
the energy above 2p exists, the P3SAT instance can be
satisfied. Conversely, suppose that the P3SAT instance
can be satisfied. There must then exist an assignment of
truth values to the variables which satisfy the instance.
Given such an assignment, the loop L can be moved so
that it passes over the corresponding literals with zero
cost. The loop can then be moved to simultaneously
pass through all ¢ clause nodes without raising the loop
cost at any time, since, by the satisfiability of the P3SAT
instance, each clause has as a member one of the literals
over which the loop has been moved. The loop will then
have a weight 2p — q.

Given a loop configuration of weight 2p — ¢ reachable
without moves of cost ¢, the loop can then be moved
onto the high cost diagonal near the goal edges, raising
its energy by ¢ back to 2p. The loop energy can then im-

mediately lowered by the same amount, by moving the
loop onto the zero weight goal edges. The earlier moves
that lowered the energy by ¢ can then all be reversed,
returning the remainder of the loop to its original state.
The height of the barrier between initial and final loop
configurations is then zero. This sequence of moves ex-
ists if and only if a loop configuration of weight 2p — ¢
can be reached with zero barrier. Answering the ques-
tion about the magnitude of the loop-barrier is there-
fore equivalent to determining whether the assignment
instance from which it was derived can be satisfied. Since
P3SAT is NP-complete, the general problem of deter-
mining the barrier to motion of a loop in a plane is also
NP-complete.

V. COMMENTS

In a general sense, physical barrier problems can be
related to resource allocation problems which are NP-
complete. It has been shown here that the problem of de-
termining the exact barrier to a self-avoiding loop in the
plane, given integer edge weights bounded by the volume
of the system (¢ < n, where n is the number of triangles
in T'), is NP-complete. Physically, this is most closely
related to the barrier to the motion of a self-avoiding
interface in an RBIM. The proof of this result is based
upon a mapping between the assignment of truth values
that satisfy a Boolean expression and the distortions of
a loop necessary to lower its energy by a given amount.
The loop energy can be lowered sufficiently to cross a
barrier towards the goal loop if and only if the Boolean
expression can be satisfied. An immediate application of
this result is to undirected paths in samples with peri-
odic boundary conditions. A region interior to the loop
L that does not intersect any of the edges corresponding
to G or the final loop configuration can be removed from
T, so that the loop-barrier problem corresponds to the
motion of a loop on an annulus. This implies that the
barrier problem for a periodic path in 14 1-dimensions is
NP-complete, in the general case of a self-avoiding cyclic
path [@] It is unclear at this time whether determining
the barrier to motions of a directed path [|] in 1 + 1-
dimensions is an NP-complete problem. Even if such a
problem is NP-complete, this does not rule out the ex-
istence of heuristic methods which can give useful upper
and lower bounds on the barrier, such as those described
in Ref. [d].
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