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A B S T R AC T

The proliferation of 3D sensors induced 3D computer vision research for many application

areas including virtual reality, autonomous navigation and surveillance. Recently, different

methods have been proposed for 3D object classification. Many of the existing 2D and 3D

classification methods rely on convolutional neural networks (CNNs), which are very successful

in extracting features from the data. However, CNNs cannot address the spatial relationship

between features due to the max-pooling layers, and they require vast amount of data for

training. In this work, we propose a model architecture for 3D object classification, which is

an extension of Capsule Networks (CapsNets) to 3D data. Our proposed architecture called

3D CapsNet, takes advantage of the fact that a CapsNet preserves the orientation and spatial

relationship of the extracted features, and thus requires less data to train the network. We

use ModelNet database, a comprehensive clean collection of 3D CAD models for objects, to

train and test the 3D CapsNet model. We then compare our approach with ShapeNet, a deep

belief network for object classification based on CNNs, and show that our method provides

performance improvement especially when training data size gets smaller.
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Chapter 1

Introduction

1.1 Motivation

Object recognition is a process for identifying an object in a digital image, 3D

space or video. Object recognition algorithms typically rely on matching, learning, or pattern

recognition algorithms using appearance-based or feature-based techniques. Object recognition

comprises a deeply rooted and ubiquitous component of modern intelligent systems. The

application of the technology related to 3D object recognition and analysis is increasing

day-by-day. Moreover, the effectiveness of 3D object recognition is increasing as researchers

are finding new algorithms, models and approaches and implementing them. The applications

for which 3D object recognition and analysis technology is used are:

1. Manufacturing Industry: 3D object recognition technology can make tasks like

manufacturing or maintenance more efficient in the aerospace, automotive and machine

industries. The advances in 3D object recognition technology is making robots more

1



INTRODUCTION 2

intelligent and autonomous as issues such as recognition of handing objects and obstacles

during navigation are being addressed.

2. Video surveillance : The usage of 3D object recognition technology in this area

includes tracking people and vehicles, segmenting moving crowds into individuals,

face analysis and recognition, detecting events and behaviours of interest and scene

understanding.

3. Medical and Health care: Deep learning and 3D object recognition is being widely

used in computer aided diagnosis systems in medical industry. Various applications

include analysis of 3D images from CT scans, digital microscopy and related fields.

4. Autonomous Driving: 3D object recognition is key to intelligent vehicles. For au-

tonomous driving, it is necessary to recognize and predict the motion of pedestrians,

other cars, bikes etc. Autonomous cars also need to recognize traffic signs, signals , road

area, sidewalks, guardrails, crosswalks, crossroads etc. In addition, understanding of

the scene by considering the context of the scene is required to predict future possible

dangers and prevent them. 3D object recognition technology can help accomplishing all

these goals.

5. Urban planning, Safety and Control: 3D object detection is widely used for damage

inspection, traffic monitoring, and rescue missions in urban areas. In addition, with the

help of drone technology, useful information related to urban planning can be acquired.

6. Augmented Reality - 3D: Object detection is a key component of an augmented
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reality system. Using 3D object technology in conjunction with augmented reality

systems can provide additional information and can be highly effective in fault diagnosis

and maintenance of industrial equipment.

Many of the existing 2D and 3D classification methods rely on convolutional neural

networks (CNNs), which are very successful in extracting features from the data. However,

CNNs cannot address the spatial relationship between features due to the max-pooling layers,

and they require vast amount of data for training.

The introduction of CapsNet by Dr. Hinton[1, 2] has intrigued many researchers to

understand how CapsNet works and apply it to their own research. CapsNet were developed

solely for 2D image classification. In this thesis, we are aiming to solve the problem of object

recognition from 3D volumetric data, and we propose a model architecture for 3D object

classification, which is an extension of Capsule Networks (CapsNets) to 3D data. Our proposed

architecture called 3D CapsNet, takes advantage of the fact that a CapsNet preserves the

orientation and spatial relationship of the extracted features, and thus requires less data to

train the network.

1.2 Problem Statement

Deficiency of data is a pronounced concern while training using a pure Convolutional

Neural Network(CNN)-based architecture. The problem becomes even more pronounced when

it comes to 3D data. There is a dearth of annotated datasets available for 3D data to train
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models, with even fewer training data. There has been several CNN-based approaches for

object classification and recognition from 3D data. However, CNN-based approaches require

larger datasets. The introduction of Capsule Network[1, 2] has opened doors to a new area of

research. Capsules have been used to recognize digits from MNIST dataset[3], and objects

from CIFAR[4] and Small NORB datasets[5]. These are 2D datasets with images. Capsules

have encoding for poses and orientations of the object i.e. neural activities are different for

same objects with different poses. Results of [2] show that Capsule Networks are better at

identifying multiple objects and also at generalizing among viewpoints than convolutional

neural networks. The motivation behind development of capsules is close depiction of neurons

arrangement in the brain. In this thesis, we propose a CapsNet architecture to solve the

problem of 3D object classification using Capsule Networks, extended for 3D data. Evaluation

of several architectures proves that CapsNet shows good promise, since the results obtained

with the proposed solution are better than a CNN-based approach even when we use less

training data.
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Chapter 2

Object Recognition Background

2.1 Background and history

Contemporary computer vision study had its origins in the early 1960s [6]. Since then,

there have been many studies performed to correctly classify, recognize and detect objects in

images and 3D space. Some of the classical approaches include recognition using volumetric

parts [7, 8], geometric invariants [9–11], appearance-based recognition [12, 13], grammars

and related graphs representation [14, 15] and several others. More modern approaches,

such as scale invariant feature transform [16, 17], speeded up robust features [18], Principal

component analysis [19–21], linear discriminant analysis[22–24] and convolutional neural

networks[25–27], have been utilized to aid the process of recognizing objects. Convolutional

neural networks(CNNs) have allowed accomplishing the task of object recognition like never

before. CNNs have enabled object recognition in not only 2D images, but also in 3D models.

Numerous CNN models have been designed and have proven effective for this category of

tasks. Researchers have achieved state-of-the-art results by coalescing number of layers and
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applying different mathematical functions to these layers.

Over the last several decades, researchers have been working towards object recogni-

tion using neural networks. Several algorithms and techniques have been developed, providing

state-of-the-art performance. The maturity of object recognition has helped its adoption in

large scale applications. Some of the notable works are the foundation to this thesis. In this

section, some of these notable works are mentioned and described in detail. The algorithms

mentioned in this section have not only been able to prove themselves in the academic research

domain, but also have been used in the production domain. Several companies have started

using 3D scanners to collect and generate 3D data from these scanners. The next steps to

data generation is always using data to extract knowledge from it. Object recognition is one

method to gather knowledge from 3D data.

2.2 Artificial Neural Networks

As the name suggests, artificial neural networks are logical networks mimicking the

functioning of the biological brain. Just like the brain, artificial neural networks are composed

of neurons connected to each other. Each artificial neuron is capable of transmitting signal

from the previous neuron to the subsequent one. Figure 2.1 shows a multilayer perceptron

with input layer, hidden layer and one output layer.

In an artificial neural network, the signal at an edge between artificial neurons is a

real number, and the output of each artificial neuron is gaged by a non-linear function of

the sum of its inputs. Artificial neurons and edges typically have a weight that updates as
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Figure 2.1: An Artificial Neural Network

learning advances. The weight increases or decreases the strength of the signal at an edge.

Artificial neurons may have a threshold such that only if the aggregate signal crosses that

threshold is the signal sent. Artificial neurons are organized in layers. Different layers may

perform different kinds of transformations on their inputs. Signals travel from the first (input),

to the last (output) layer, possibly after traversing the layers multiple times.

2.3 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) are one of the most notable deep

learning approaches. A CNN is a class of deep, feed-forward networks, composed of one or

more convolutional layers with fully connected layers. It uses tied weights and pooling layers.

In general, a CNN is a hierarchical neural network, consisting of three main neural

layers: convolutional layers, pooling layers and fully connected layers. Figure 2.2 shows a

simple convolutional neural network.
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Figure 2.2: Simple convolutional neural network

In the convolutional layers, a CNN utilizes various kernels to convolve through the

whole image as well as the intermediate feature maps, further generating additional feature

maps. There are three main advantages of the convolution operation. The weight sharing

mechanism in the same feature map reduces the number of parameters and thus the number

of operations. Local connectivity helps in learning correlations among neighboring pixels.

Finally, invariance to the location of the object helps in finding the object regardless of the

position of object in the image.

The pooling layer[28] is used to progressively reduce the dimensions of feature

maps and network parameters. Pooling layers are also translation invariant, because their

computations take neighboring pixels into account. Average pooling and max pooling are

the most commonly used strategies. Most implementations use max-pooling as it can lead to

faster convergence, select superior invariant features and improve generalization. There are
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three well-known approaches related to the pooling layers, each having different purposes.

Stochastic pooling[29] replaces the conventional deterministic pooling operations

with a stochastic procedure, by randomly picking the activation within each pooling region

according to a multinomial distribution. It is equivalent to standard max pooling but with

many copies of the input image, each having small local deformations. This stochastic nature

is helpful to prevent the overfitting problem. In Spatial Pyramid Pooling (SPP)[30] approach,

the last pooling layer of the CNN architecture is replaced with a spatial pyramid pooling

layer. The spatial pyramid pooling can extract fixed-length representations from arbitrary

images (or regions), generating a flexible solution for handling different scales, sizes, aspect

ratios. Max pooling and average pooling are useful in handling deformation, but they are not

able to learn the deformation constraint and geometric model of object parts. To deal with

deformation more efficiently, researchers introduced a new deformation constrained pooling

layer, called def-pooling layer, to enrich the deep model by learning the deformation of visual

patterns. It can substitute the traditional max-pooling layer at any information abstraction

level.

Fully-connected layers contain about 90% of the parameters in a CNN. Using this,

the neural network is fed forward into a vector with a pre-defined length. We could either

feed forward the vector into certain number of categories for image classification or take

it as a feature vector for follow-up processing. Though changing the structure of the fully-

connected layer is uncommon, some effort has gone in to make it more efficient. For example,

GoogLeNet[31] designed a deep and wide network by switching from fully connected to

sparsely connected architectures.
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There are two stages for training the network - a forward stage and a backward stage.

First, the main goal of the forward stage is to represent the input image with the current

parameters (weights and bias) in each layer. Then the prediction output is used to compute

the loss cost with the ground truth labels. Second, based on the loss cost, the backward stage

computes the gradients of each parameter with chain rules. All the parameters are updated

based on the gradients and are prepared for the next forward computation. After sufficient

iterations of the forward and backward stages, the network learning can be stopped.

CNNs are usually trained by backpropagation (BP)[32] or Stochastic Gradient

Descent (SGD)[29] to find weights and biases that minimize certain loss function in order to

map the arbitrary inputs to the targeted outputs as closely as possible. BP algorithm refers

only to the method for computing the gradient, while SGD algorithm is used to perform

learning using this gradient. There are two key challenges in training CNNs: underfitting and

overfitting. Overfitting occurs when the gap between the training error and test error is too

large. Underfitting occurs when the model is not able to obtain a sufficiently low error on the

training set. In CNNs, there are two primary ways to combat overfitting: dropout and data

augmentation. Dropout is an inexpensive, powerful regularization strategy that can be seen

as a process of constructing new inputs by multiplication by noise. It is a method of adaptive

re-parametrization, motivated by the difficulty of training very deep neural network models.

Data augmentation is to artificially enlarge the dataset using label-preserving transformations.
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2.4 3D data

3D data has three dimensions. It typically depicts real life objects and scenes. Most

3D can be shown in x, y and z coordinate space. 3D models can be constructed from data

collected from 3D scanners [33]. The first 3D scanners were introduced in the 1960s. 3D

technology has progressed since then. 3D data capture is the process of gathering information

from the real world, with x, y, and z coordinates, and making it digital. From there, it can

be processed in a number of ways to create any number of end products: 3D models, line

drawings, point clouds, fly through visualizations.

With the advent of several different types of 3D scanners, having state-of-the-art

specifications, it has become a challenge to be able to use the data collected from these 3D

scanners by first constructing 3D models and then recognizing objects in these models. Some of

the different types of 3D data are georeferenced and non-georeferenced [34, 35]. Georeferenced

data is one that describes a geographic location. It has longitude, latitude, and elevation as

the three different axes and center of the earth as the origin for these axes. Georeferenced

data can be collected by using satellite data and survey techniques. This data is collected by

starting at an identified point and then using relativity to construct the georeferenced data

for every point collected. Once the data is properly referenced, one georeferenced data can be

augmented with different georeferenced data and the combination can be used for numerous

applications requiring GPS and mapping applications. Non-georeferenced data is a type of

data which is collected without any identified known point. This kind of data can be used

for applications ranging from reverse engineering to crime scene detection to driverless cars
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to drones. There are several methods of scanning 3D information, laser scanning, SONAR,

photogrammetry and structured light sensors are few to name.

Laser (or LiDAR)[36] scanning is one method that uses lasers to scan. A large

number of lasers are emitted from scanner and based on the surface these lasers are emitted

to, 3D data is generated by determining the location of 3D points. This generated data is

saved into a file known as point cloud. Pulsed based, airborne, phone-based, closed range are

few of the laser-based scanners.

Photogrammetry [37] is an old method that determines distances using photographs

to take measurements. In this method, massive number of photographs are uploaded to a

software that then perform numerous calculations on these photographs in order to create

point clouds. Since there are many assumptions and approximations used for this method, it

is not as accurate as laser scanning.

Structured light scanners[38] emit light on to surfaces and then use camera to and

software to measure how the light is distorted, which can then be used to create a point cloud

or model. Microsoft Kinect [39] is a famous structured light scanner. It uses projected dots of

infrared light and infrared camera to capture 3D data in real life.

Sonar[40] has typically been a method to use sound waves to find position in 2D

technology. However, in recent times, sonar has been extended to construct point clouds of

underwater environments.

Another important primitive type of 3D data is data from CAD models [41]. Software
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Figure 2.3: Different viewpoints of a 3D object

is used to create these models in 3D spaces. In this thesis, CAD model’s dataset is used

for the experimental results. However, these algorithms are capable of being extended to

use on point clouds as well. CAD is an important step in the development process of many

industrial applications involving mechanical parts. 3D CAD has several benefits since it

allows visualization and optimization of designs, avoids unnecessary costs due to human error,

and provides reproducibility of the experiments under various conditions such as different

viewpoints, different sizes etc. Figure 2.3 shows one 3D object viewed from different angles.

2.5 Contemporary related work

Advancements in 3D data collection technologies induced research for many appli-

cation areas. This has led to the proposal of different methods for object classification. In

this section, we discuss some of the related works in the domain of object classification using

neural networks.
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[42] discusses an approach for using 3D CNNs which they call C3D. Spatio-temporal

features are those that contain information about the space and time, e.g. moving objects

that can exist in space in a given time. They prove that 3D CNNs are more suitable for

spatiotemporal feature learning compared to 2D CNNs. The architecture they use is a

homogeneous one with small 3× 3× 3 convolution kernels in all layers and this architecture is

the best among the different architectures for 3D ConvNets (best temporal kernel length for

3D ConvNets). Inspired by this work, we are using 3D convolutions in the convolution layers.

3D ShapeNets[26] learns the distribution of complex 3D shapes across diverse object

classes and arbitrary poses. A deep belief network is proposed with convolutions to realize the

complex joint distribution of 3D objects which are converted to voxels. They have extended

the deep belief network for 2D data to 3D data by first reducing the size of feature map using

few convolution layers and then using fully connected layers. By creating this network, they

have been able to recognize objects and also reconstruct 2.5D objects from RGBD sensors. In

addition to the belief network, they also contribute to the 3D data community by publishing

their dataset, ModelNet, which they also use to train their network. ModelNet dataset is a

3D CAD model dataset which is used in our work as well. Figure 2.4 shows the architecture

of the ShapeNet deep belief network.

[27] is another important model in the research of object recognition in 3D data.

It uses 3D CNN architecture. In their approach, the point cloud inputs are converted to

occupancy grids of size 32× 32× 32. These occupancy grids symbolize the state of the object

and its surroundings as a 3D mesh of random variables (each corresponding to a voxel) and

preserve a probabilistic approximation of their occupancy as a function of inward sensor
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Figure 2.4: ShapeNet architecture

data and prior knowledge. Two convolution layers are applied to the occupancy grid creating

smaller feature maps. Pooling is applied to the output of the second convolutional layer. This

is followed by a fully connected layer of 128 neurons and this is connected to the output

layer which is equivalent to the number of classes in the dataset. This model first achieves

volumetric representation in the form of occupancy grids as 3D mesh of random variable. This

allows to proficiently evaluate free, occupied and unknown area from range measurements,

even for measurements coming from different viewpoints and time instants. They can be

stored and manipulated with simple and efficient data structures such as matrices. This is a

novel approach because most framework uses 0s and 1s to describe 3D data. They are also

able to achieve good classification results by using the 3D CNN architecture.

By assembling several layers, the network can construct a hierarchy of more com-

pound features representing larger regions of space, leading to a global label for the input

occupancy grid. Finally, hypothesis is merely feed-forward and can be performed efficiently

with commodity graphics hardware.
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Another approach has been applied by [43] which represents 3D data using view-

based descriptors. The shape of the 3D object is described by compilation of 2D projections

of the objects. This can be visualized as using a camera to click several pictures going around

the object and creating a collection. The authors of [43] describe the reason for developing a

multi-view algorithm as opposed to using 3D shape. First, the size of organized databases with

annotated 3D models is rather limited compared to image datasets. For example, ModelNet

contains 127,915 CAD Models. Whereas, the ImageNet database contains several millions of

annotated images. Second, 3D shape descriptors tend to be very high-dimensional, making

classifiers prone to overfitting. On the other hand, view-based descriptors have a number of

desirable properties: they are relatively low-dimensional, efficient to evaluate, and robust to

3D shape representation artifacts, such as holes, imperfect polygon mesh tessellations and

noisy surfaces. The rendered shape views can also be directly compared with other 2D images,

silhouettes or even hand-drawn sketches. In [43], multiple views are aggregated in order

to amalgamate the information from all views into a single, compact 3D shape descriptor.

Multi-view CNN offers better results and more efficient retrieval performance during retrieval

compared to methods which are based on pairwise comparisons of image descriptors. In

this thesis, we use a relatively small amount of data to show that training can in fact, be

done with a smaller dataset as well. We do not need several millions of annotated shapes to

effectively train a 3DCapsNet classifier.

Residual neural networks have been demonstrated to be easier to optimize and do not

suffer from vanishing/exploding gradients observed in deep networks. In [44] a residual neural

network has been implemented for 3D object classification of the 3D Princeton ModelNet
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dataset. It has also been shown that widening network layers dramatically improves accuracy

in shallow residual nets and improves classification accuracy.

They present their results with developing volumetric CNN architectures that utilize

wide residual layers on classification on the ModelNet-40 dataset. A widening factor has been

defined, where the factor multiplies the number of features in convolutional layers. This was

used to evaluate the effect of further widening of the residual layers on classification accuracy.

To enhance their dataset, the training samples were augmented by randomly rotating each

3D shape along a randomly designated axis to increase variance and the model’s capability to

generalize. The model was trained with batch sizes of 64 and during training, weights were

saved every epoch for 10 epochs and a final model consisting of an ensemble of weights from

each epoch was used.

While this approach gets state-of-the-art results, it is important to remember

the magnum model parameters and computation time. Thus, we aim to build a shallow

architecture to be able to build on simpler hardware, requiring lesser computation power.
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Capsules

A capsule is a group of neurons that together perform internal computations on

inputs given to them and encapsulate the output into a small vector which is capable of

representing different properties of the same entity . In [1], Hinton talks about the deficiencies

of previously existing methods of object recognition such as CNN and Scale Invariant feature

transform (SIFT).

In a CNN, there are a number of layers of learned feature detectors that gives a

scalar output. These networks aim for viewpoint invariance by using max-pool to abridge

the activities of duplicated feature. What max-pool essentially does is the following: it finds

components in an object and based on that affirms that the object is present. However,

spatial relationships of the parts are not relevant to the CNN, thus making them invariant to

features but not equivariant. Equivariance is detection of objects that can transform to each

other. For instance, if an object is rotated at an angle, then by the property of equivariance,

capsules can recognize that the object is rotated at that angle, without necessitating training
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with that variation of image. This is a unique quality of capsules over its predecessor, CNNs,

which required training with all variation of the object such as orientation, pixel intensities,

scale etc.

Scale Invariant Feature Transform[16] combines the unambiguous representations

of pose of the features of the objects and offers vector as output. These feature vectors are

invariant to scale, rotation, illumination, and translation. However, scale invariant feature

transform is a complicated technique and is typically hand-crafted.

Capsules have two primary constituents. One is the locally invariant probability

that an entity is present. Second is the set of the instantiation parameters, also known as

pose, that are equivariant. It is important to have these two constituents because they help

in recognizing the whole object by recognizing their parts.

With this concept in mind Hinton published three research papers [1, 2, 45], which

opened up door to a new field of research and are also the foundation of this thesis.

3.1 Transforming Auto-Encoders

In [1], transforming auto-encoders has been proven to be able to easily learn

from pairs of transformed images provided that there is a straightforward approach to the

transformations. Auto-encoders are simple neural networks with 3 layers. One important

application for this is data compression and retrieval. Figure 3.1 shows the simplest auto-

encoder. Complexity can be defined with the encoder and decoder unit.
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Figure 3.1: Simple Auto-encoder

The transforming auto-encoders are described as having both recognition and

generation units.

[1] describes a simple transforming encoder which has three capsules, each capsule

has three recognition units and four generation units. It receives an image and shift variables

∆x and ∆y as input, uses the recognition unit to read image and perform computations on

the image to give out x, y, and p as output, where x and y are pose information and p is

the probability that an entity is present in the image. The generation units then use the

pose information x, y summed up with ∆x and ∆y, respectively, to compute an intermediate

output, which when multiplied with the p gives the output image. By back-propagating on the

mutation between the original and transformed image, the weights are learned. The capsules

work independently until the final layer where they collaborate to create the output image.

Figure 3.2 shows three capsules of a transforming auto-encoder that models translations.
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Hinton later proceeds to explain how more complex poses can be trained by using matrices.

Figure 3.2: The transforming Auto-encoder (From [1])

He asserts that matrices can be a valuable asset for handling images of 3D objects. 3D

orientation features are represented using 3x3 matrix. The 3x3 matrix is multiplied with

transformation image to feed to a layer of generative ReLUs. The resulting activities are

multiplied by the probability p and the result is used to increment the intensities in a patch

of the reconstructed image positioned at the center of the capsule’s receptive field.

A transforming auto-encoder can influence the outputs of capsule to represent any

characteristic of an image that can be controlled. These properties include intensity, brightness,

contrast, etc. Hinton argues that if a visual entity is sophisticated enough to extract direction

of brightness from output of recognition units and if the direction of brightness can be

controlled, then capsules can be trained to represent the direction of this brightness.
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3.2 Matrix Capsules with EM Routing

In [45], the capsule constitutes an activation and a pose. An activation is a logistic

unit to signify the presence of an entity and pose is a 4 x 4 matrix to signify relationship

between an entity and the observer. Basis of CNN is that the visual detector demands usage

of the same knowledge at all locations in the image. This is attained by binding weights

of detected features learned at one position to others. The authors argue that view point

changes such as azimuth, elevation etc. have a complex impact on pixel intensities but simple,

linear effect on pose matrix. Capsules aim high dimensional coincidence filtering by utilizing

the underlying linearity. They use it to both, deal with variations in view point as well as

improve segmentation decisions. High dimension coincidence filtering is the property which

helps to detect a familiar object by looking for an agreement between votes for its pose

matrix. These votes are derived from parts previously detected. EM routing algorithm is

performed on both activation and the votes matrix. EM algorithm is classically used for

fitting a mixture of Gaussians [46]. After a number of iterations of EM routing, tight clusters

of high dimensional votes are formed. Loose particles of irrelevant votes are also formed.

A capsule network can be visualized by imagining layers of several capsules arranged

sequentially. ΩL denotes all the capsules in layer L. Values of components in a capsule, i.e.

activation probability a and pose matrix M, are not stored since they depend on the current

input. The weights are the only stored parameters and are learned discriminatively. The

weights are a 4x4 transformation matrix which are trained over several epochs. The weight

matrices are designed to exist between the capsule layers. The vote matrix for two layers, i



CAPSULES 23

and j, is built by matrix multiplication between the pose matrix of the previous layer, i, and

the weight matrix between the two layers, i and j. Using EM routing, a non-linear technique,

the pose and activation of next layer, that is, j, is calculated.

Figure 3.3: Matrix capsules with EM routing architecture ( From [45])

Figure 3.3 shows the architecture for matrix capsules with EM routing. The capsule

architecture described by the authors have 5 significant layers. The first is a Rectified linear

unit- convolutional layer of A=32 filters of kernel size 5. Second is a primary capsule layer.

There are two convolutional capsule layers after the primary layer. The routing procedure

is done between the capsule layers. The Expectation Maximization (EM) algorithm can be

used to generate the best hypothesis for the distributional parameters of some multi-modal

data. Note that we say ‘the best’ hypothesis.

E-step: perform probabilistic assignments of each data point to some class based on

the current hypothesis h for the distributional class parameters. During the E-step we are

calculating the expected value of cluster assignments.

M-step: update the hypothesis h for the distributional class parameters based on

the new data assignments. During the M-step we are calculating a new maximum likelihood

for our hypothesis.
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In this capsule architecture, spread loss is used to desensitize the training to unique

hyper-parameters. This is done in order to maximize the activation is of target class and the

activation of other classes.

3.3 Dynamic Routing Between Capsules

In [2], CapsNet is based on multiple layers of capsules where capsules from one layer

make predictions for capsules at a higher level. The higher-level capsule becomes active when

different expectations harmonize. This is known as routing by agreement. This process is

implemented for several iterations. [2] prove that this method is more effective compared to

the max pooling method which chooses the most prominent feature amongst a set of features

and disregards the other features. By doing this, it is able to achieve invariance. However, the

goal of CapsNet is not to achieve invariance, but equivariance. Equivariance helps the model

recognize an object even if the pose of the object is different from objects the model has

learned before. It also helps remember the spatial relationship of the features of the objects.

In order to achieve equivariance, scalar features are substituted by vector features and pooling

is swapped by routing by agreement. Figure 3.4 shows the architecture for dynamic routing.

Figure 3.4: Dynamic Routing between capsules(From [2])
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Squashing is a non-linear function applied to the output vector to ensure that vectors

which have low probability are minimized to near zero leaving the high probability vectors to

be near one. Discriminative learning which learns the probability y given x, helps to use the

output of squashing.

Routing by agreement is done by using dynamic routing. An initial weight vector

is created and is multiplied by the output of the capsules of the lower levels, creating the

prediction vector û, after which all these prediction vectors are summed up in a weighted

manner, creating an input to the higher-level capsule. The output of current capsule is

represented as v and the agreement between the layers is calculated by a scalar product

between output of current capsule v and prediction of the lower capsule û.

There are two kinds of losses that are used. Margin loss is the loss that pronounces

the existence of a particular class. If the class is present in the image, then the vectors have a

higher value. Reconstruction loss is another type of loss to encode the instantiation parameter

of the input class. A mask is created for the activity vector of the correct class and this is

used to reconstruct the output of the digit (class) capsule, both of which are fed into the

decoder. By doing this, they use reconstruction loss as a regulator. The total loss is sum of

the two losses, reconstruction loss being factored down by a value of 0.0005.

The aforementioned capsule model is a key building block in this proposed research.

We use this capsule model as the base to build our 3D version of the Capsule Net model.
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3D CapsNet

As mentioned before, CNNs have several deficiencies. Firstly, CNNs do not check

the relative positions of features with respect to each other. Secondly, they need a large

amount of data to generalize the classifier. Thirdly, it is believed that CNNs are not a good

representation of the human vision system. In a CNN, all low-level details are sent to all

the higher-level neurons. These neurons then perform further convolutions to check whether

certain features are present. This is done by striding the receptive field and then replicating

the knowledge across all the different neurons. Capsule network (CapsNet) tries to overcome

these shortcomings of CNNs.

Main features of CapsNets are that neurons (which output scalar values) are replaced

with capsules (which output vectors). A capsule contains several neurons, and together they

represent instantiation parameters of a feature. Like neurons, capsules are also stacked into

layers. However, unlike convolutional layers, capsule layers activate only certain capsules

that best represent the incoming image (or just a feature). A CapsNet solves the issues
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of CNNs by treating different orientations of an image as the same object. Hence, less

training examples suffice during the training of CapsNets. The CapsNet solves the issue of

translational invariance by preserving the geometric dependence of features. If a chair and

bed both have four legs, a CNN may confuse the two objects. However, a CapsNet preserves

the orientation and relationship of those features and results in correctly classifying the two

objects. The introduction of CapsNets has begun to stimulate additional wave of research,

that will hopefully lead to development of very useful and powerful applications.

In this work, we propose a novel method of classifying 3D objects from 3D volumetric

data. We experiment with different variations of the method. We thus propose a vector capsule

network model with dynamic routing for 3D volumetric data.

4.1 The key components of 3D CapsNet

4.1.1 3D Convolutions

The Convolution layer detects the basic features in the 3D data to create activities

for these features. 3D convolutions involve filters of 3 dimensions (x, y and z) and thus are

also known as spatial convolutions. This filter is moved in the three dimensions producing

3D output.
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Figure 4.1: 3D convolutions

4.1.2 Primary Capsule

Primary capsule helps in implementing Hinton’s view of inverse graphics. Hierarchy

of parts is a concept used which explains that a higher level visual entity is present if several

lower level visual entities can agree on their predictions for its pose. In the concept of capsules,

lower level capsule helps the higher level predict if an entity is present. Primary capsules are

thus bottommost level of multi-dimensional objects.

4.1.3 Squash Function

The squash function is applied to output of capsule to shorten the length of capsule

vectors. It is a non-linearity function just like ReLU, Sigmoid, etc. However, unlike ReLU,

which work well with scalars, squash function has proven to work better with capsules.

The above function squashes to 0 if the output is a short vector and tries to constrain

the output vector to 1 if the vector is long. According to [2], the squash function is defined
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as follows:

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(4.1)

4.1.4 Class Capsule

Class capsule has 16D output per object class. Dynamic routing algorithm is

employed between the primary and class capsule layers. The routing algorithm is used to

achieve an agreement between the primary and class capsule layers. Essentially, the lower

level capsule sends its input to higher level to receive an agreement. A non-linear squash

function is used within the routing algorithm in order to change the length of vector to less

than one, yet preserving the direction of the vector, thereby representing the weights as

probabilities with direction.

4.1.5 Routing Algorithm

A routing algorithm is used to resolve which capsule gets activated for the incoming

data. Dynamic routing is a very important networking technique that helps select path

according to the real-time layout changes. Dynamic routing algorithm is employed between

the primary and class capsule layers and is used to achieve an agreement between the primary

and class capsule layers. Dynamic routing helps to strengthen prediction value by using an

agreement protocol. The lower level capsule sends its input to the higher level, which agrees

with its input. Weight matrices are updated using this agreement between the two levels

of capsules. The routing algorithm performs a similar function as the max pooling layer.
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However, while the max pooling layer chooses the most prominent features eliminating the

non-prominent ones, the routing algorithm does not eliminate the features, but routes to the

right feature instead.

The number of iterations for routing is a hyper parameter and has been chosen, as

per [2] as 3, since larger values of routing iteration lead to more overfitting.

4.1.6 Reconstruction Loss

Reconstruction loss is used as regularization to learn a global linear manifold between

a whole object and the pose of the object as a matrix of weights via unsupervised learning.

As such, the translation invariance is encapsulated in the matrix of weights, and not in the

neural activity, making the neural network translation equivariant.

4.1.7 Decoder

The decoder takes the output of the class capsules and reconstructs the object from

it. There are three fully connected layers in our model’s decoder. The first two fully connected

layers use activation as ReLU and the last one uses Sigmoid activation.
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4.2 Optimizations

4.2.1 Leaky ReLU

The Rectified Linear Unit (ReLU) is an activation function that computes the

function f(x)=max(0, x) In other words, the activation is simply thresholded at zero. However,

this leads to neuron values to become zero. Sometimes this may happen at early stages of

training. It is not desirable as sometimes this may cause the neurons to never get activated

on any input. Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of

the function being zero when x < 0, a leaky ReLU will instead have a small negative slope

(of 0.01, or so). That is, the function computes

f(x) = (x < 0)(αx) + (x >= 0)(x)f(x) = 1(x < 0)(αx) + 1(x >= 0)(x) (4.2)

where α is a small constant.

4.2.2 Batch Normalization

It is the process of normalizing the data in the mini-batch. Batch Normalization

allows us to use much higher learning rates and be less careful about initialization. It helps

the layers learn more independently of other layers. It helps reduce overfitting by small

factor. Used together with dropout helps in reducing overfitting better. It helps improve the

stability of a neural network by normalizing the output of the previous activation layers.
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This normalization is done by subtracting the batch mean and dividing the same by batch

standard deviation.

4.2.3 Dropout

Dropout is a regularization procedure for reducing overfitting in neural networks by

averting complex co-adaptations on training data. It is a very efficient way of performing

model averaging with neural networks. The term “dropout” refers to dropping out units

(both hidden and visible) in a neural network. We can specify the percentage of neurons to

drop in the function.

4.3 Data Preprocessing

ModelNet10 and ModelNet40 datasets have been used to train and test our model.

These datasets are available in “.off” format. To be able to train and test the model, we are

required to convert the dataset into a format that is understood by tensors. We decided to

use process of Voxelization to convert the datasets from “.off” to voxels. The voxels are saved

in “.npz” format to be able to use in our experiments.

Voxelization converts 3D objects into a number of voxels or occupancy grids of fixed

size using clipping and sampling of 3D objects. Binary voxel grid used has merely two states.

They are occupied state and unoccupied state. Voxelization fits diverse sized 3D objects into

fixed size consistent grids without the loss of the spatial information of the objects. Both
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Figure 4.2: 3D Binary Voxels

Modelnet10 and ModelNet40 are converted to 3D Numpy arrays of 30× 30× 30.

4.4 3D CapsNet Architecture

4.4.1 Architecture 1

Our first proposed model has a shallow architecture with two 3D convolution layers,

a 3D max pooling layer, followed by the primary and class capsule layers. Between the

convolution layers and the max pooling layer, batch normalization is performed. The conv1

layer has 48-many 5 × 5 × 5 filters with stride 1. The conv2 has 96-many 5 × 5 × 5 filters

with stride 1. These layers convert pixel intensities to local features. The pooling layer is

used to reduce the overfitting by reducing the dimensionality of the feature maps. The batch

normalization process is used to speed up the training process of the classifier by addressing

the problem of internal covariate shift, thus allowing us to use higher learning rate for more

iterations. Primary capsule layer that follows the max-pooling layer contains a convolutional
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capsule layer with 4 channels of convolutional (each 3D convolution unit contains filters with

3 × 3 × 3 kernel with stride 1) 8D capsules. Primary capsule has [9,9,9] capsule outputs.

Figure 4.3 shows diagrammatic representation of the architecture.

Figure 4.3: Architecture 1

This model has an encoder and a decoder. The encoder uses a reconstruction mask

from the expected output to encode the output from CapsLayer duo. The decoder has two

hidden layers followed by the output layer. The first hidden layer has 512 hidden neurons and

second hidden layer has 1024 hidden neurons. These two layers are followed by the output

layer whose size is decided by the shape of the input here being 30× 30× 30.
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4.4.2 Architecture 2

In our second model, we use one 3D convolution layer, followed by the primary and

class capsule layers. Batch normalization is used after the convolution layer and before the

primary capsule layer. The conv1 layer has 64-many 5 × 5 × 5 filters with stride 2. These

layers convert pixel intensities to local features. Leaky ReLU is used to improve the activation.

The batch normalization process is used to speed up the training process of the classifier by

addressing the problem of internal covariate shift, thus allowing us to use higher learning rate

for more iterations. Dropout is used between convolution layer and primary capsule layer

with probability of keeping as 0.5. The primary capsule layer that follows the max-pooling

layer contains a convolutional capsule layer with 4 channels of convolutional 8D capsules.

Each 3D convolution unit contains filters with 5× 5× 5 kernel with stride 1. The stride is

kept at 1 to prevent further loss of information using higher value of strides. Primary capsule

for ModelNet has [9,9,9] capsule outputs. Figure 4.4 shows diagrammatic representation of

the architecture.

The number of class capsules are 10 for ModelNet10 and 40 for ModelNet40. This

model has an encoder and a decoder. The encoder uses a reconstruction mask from the

expected output to encode the output from CapsLayer duo. The decoder has two hidden

layers followed by the output layer. The first hidden layer has 512 hidden neurons and second

hidden layer has 1024 hidden neurons. Another dropout layer is used in the decoder unit.

Leaky ReLU is used with both hidden layers and the dropout is used after the second one.

These two layers are followed by the output layer whose size is decided by the shape of the
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Figure 4.4: Architecture 2

input here being 30× 30× 30.

4.4.3 Architecture 3

In our third model, we use two 3D convolution layer, followed by the primary and

class capsule layers. The conv1 layer has 48-many 5× 5× 5 filters with stride 2. The conv2

has 96-many 5 × 5 × 5 filters with stride 1. These layers convert pixel intensities to local

features. Batch normalization is used after the convolution layer and before the primary

capsule layer. Leaky ReLU is used to improve the activation. The batch normalization process
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is used to speed up the training process of the classifier by addressing the problem of internal

covariate shift, thus allowing us to use higher learning rate for more iterations. Dropout

is used between convolution layer and primary capsule layer with probability of keeping

as 0.5. Primary capsule layer that follows the max-pooling layer contains a convolutional

capsule layer with 4 channels of convolutional 8D capsules. Each 3D convolution unit contains

filters with 3× 3× 3 kernel with stride 1. Primary capsule for ModelNet has [9,9,9] capsule

outputs. Figure 4.5 shows diagrammatic representation of the architecture. The number of

Figure 4.5: Architecture 3

class capsules are 10 for ModelNet10 and 40 for ModelNet40. This model has an encoder



3D CAPSNET 38

and a decoder. The encoder uses a reconstruction mask from the expected output to encode

the output from CapsLayer duo. The decoder has two hidden layers followed by the output

layer. The first hidden layer has 512 hidden neurons and second hidden layer has 1024 hidden

neurons. Another dropout layer is used in the decoder unit. These two layers are followed by

the output layer whose size is decided by the shape of the input here being 30× 30× 30.

4.4.4 Architecture 4

Our next model has only one convolutional layer. This convolution layer has 64

kernels of size 5 and stride 2 and activation as leaky ReLU. We use batch normalization

and dropout of 0.4. The convolutional layer is followed by primary convolutional layer. The

primary capsule has convolution units of size 5 and stride 1. This is followed by class capsule

layer. The number of class capsules are 10 for ModelNet-10 and 40 for ModelNet-40. Figure 4.6

The decoder here has only one hidden layer with 512 neurons. We use leaky ReLU activation

with this hidden layer. This is followed by a dropout layer, followed by the output layer.

These two layers are followed by the output layer whose size is decided by the shape of the

input here being 30× 30× 30.

4.4.5 Architecture 5

Our final architecture has two primary capsule layers. The first layer is a convolutional

layer with 64 filters of kernel size 7 and stride 1. Activation used is leaky ReLU. Dropout

with probability to keep = 0.4 is used after the convolutional layer. Just as the previous
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Figure 4.6: Architecture 4

architectures, batch normalization is used. The primary capsules have kernel size 7 as well

and stride 1. The input to the first primary caps is 18 and the input to second primary caps

is 12. Squashing function is used in the primary capsules to squash the capsule output to less

than 1 for long vectors and 0 for short vectors.
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Figure 4.7: Architecture 5
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Chapter 5

Experiments

5.1 ModelNet Dataset

Figure 5.1: ModelNet10 Mesh

Princeton ModelNet project [47] provides a comprehensive clean collection of 3D

CAD models of objects covering most common object categories. In this work, we have

used the 40-class subset as well as the 10-class subset of the full dataset. The classes in the

modelnet10 dataset are bathtub, bed, chair, desk, dresser, monitor, nightstand, sofa, table,

and toilet. The number of objects in each class are shown in the figure below. 5.1 displays

the different categories under ModelNet10 viewed using the software Meshlab. Number of
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Table 5.1: ModelNet10: Number of samples under each class

Bathtub Bed Chair Desk Dresser
156 615 989 286 286

Monitor NightStand Sofa Table Toilet
565 286 780 490 444

samples per category are mentioned in the table 5.1.

The modelnet40 dataset has objects from 40 classes. The number of samples per

class are shown in the table 5.2. These datasets are available in “.off” format. Object File

Format (.off) files are used to represent the geometry of a model by specifying the polygons

of the model’s surface. The polygons can have any number of vertices.

The .off files in the Princeton Shape Benchmark conform to the following standards:

OFF files are all ASCII files beginning with the keyword OFF. The next line states the

number of vertices, the number of faces, and the number of edges. The number of edges can

be safely ignored. The vertices are listed with x, y and z coordinates, written one per line.

After the list of vertices, the faces are listed, with one face per line. Voxelization is used to

convert OFF into binary voxels and voxels are converted to numpy format that can be used

in our algorithms.
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Table 5.2: ModelNet40: Number of samples under each class

Airplane Bathtub Bed Bench Book shelf Bottle Bowl Car
8712 1872 7380 2316 8064 5220 1008 3564
Chair Cone Curtain Cup Desk Door Dresser Flower Pot
11868 2244 1188 1896 3432 1548 3432 2028

Glass Box Guitar Keyboard Lamp Laptop Mantel Monitor Person
3252 3060 1980 1728 2028 4608 6780 3432

Night Stand Piano Plant Radio Range hood Sink Sofa Stairs
1296 3972 4080 1488 2580 1776 9360 1728
Table Stool Tent Toilet TV Stand Vase Wardrobe Xbox
1320 5904 2196 5328 4404 6900 1284 1476

5.2 Hardware

The Alienware system in Smart Vision Lab has been used to implement the 3D

CapsNet and to run all the experiment. It has the following configurations:

Architecture: x86 64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 8

Model name: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz

The GPU configurations are as in fig. 5.2:

5.3 Software

Software and libraries used for this research are as below:



EXPERIMENTS 44

Figure 5.2: GPU config

� Python 3.5

� Tensorflow 1.3

� Numpy

� Scikit-learn

� MeshLab

5.4 Experiments on proposed architectures

In this section we present the results of each of the architectures discussed in the

previous section, assess them and finally compare them to ShapeNet[26], the baseline for this

thesis.
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Figure 5.3: Architecture 1

5.4.1 Architecture 1

For architecture 1 (figure 5.3), the data is split randomly by using different percent-

ages of data as training and test sets. In order to evaluate the performance on small and

decreasing training data sizes, the dataset was first divided into 15% training set and 85%

test set. ShapeNet model and the proposed 3D CapsNet model were trained and tested with

this split. Then, the data was divided into 5% training set and 95% test set, and the training

and testing process was repeated with this split.
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ShapeNet 3D CapsNet
ModelNet-10 84.37% 88.54%
ModelNet-40 81.37% 82.61%

Table 5.3: ShapeNet versus 3D CapsNet using 15% of data for training.

ShapeNet 3D CapsNet
ModelNet-10 77.85% 83.21%
ModelNet-40 73.47% 75.53%

Table 5.4: ShapeNet versus 3D CapsNet using 5% of data for training.

Table 5.3 shows the comparison of the results obtained from training the proposed

3D CapsNet and ShapeNet classifiers with 15% of the dataset for both ModelNet-10 and

ModelNet-40 datasets. Similarly, Table 5.4 shows the results obtained from training the

classifiers with 5% of the datasets. Our proposed 3D CapsNet performs better in all cases.

When Table 5.4 is compared with Table 5.3, it can be seen that the performance improvement

obtained with the 3DcapsNet is indeed more significant when training data size gets smaller.

For instance, with ModelNet-10 dataset, our proposed 3D CapsNet performs significantly

better than the ShapeNet after being trained on as little as 5% of the entire dataset. The

training data in this case contained as few as seven examples for a class. It should also be

noted that the default split provided on the ModelNet web page is 81.5% for training and

18.5% for testing for ModelNet-10 dataset, and 80% for training and 20% for testing for

ModelNet-40 dataset. This shows once more what a small percentage of data we used for

training in our experiments.

Finally table 5.5 shows the comparison of the results obtained from training the

proposed 3D CapsNet and ShapeNet classifiers with 40% of the dataset for both ModelNet-10
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and ModelNet-40 datasets.

The results of all the 5 architectures have been summarized and compared in the

analysis subsection (Table 5.12).

Figure 5.4 shows the graph of accuracy and loss while training and validation.

Training is shown by using orange and validation is shown with grey.

ShapeNet 3D CapsNet
ModelNet-10 88.3% 91.48%
ModelNet-40 85.6% 88.67%

Table 5.5: ShapeNet versus 3D CapsNet: Architecture-1 using 40% of data for training.

5.4.2 Architecture 2

For this variation of CapsNet (figure 5.5), the data is divided into 40% for training

and the remaining data for test and validation. Just as architecture 2, the training data is

increased, yet kept lower than traditional model training to exhibit the property of CapsNet

being able to train using less data, since the default split provided on the ModelNet web page

is 81.5% for training and 18.5% for testing for ModelNet-10 dataset, and 80% for training

and 20% for testing for ModelNet-40 dataset. This shows once more what a small percentage

of data we used for training in our experiments. The results of all the 5 architectures have

been summarized and compared in the analysis subsection (Table 5.12).

Here instead of using pooling layer like the architecture 1, stride 2 has been used

to reduce the size of feature map to be input into primary capsule. For ModelNet10, the



EXPERIMENTS 48

Figure 5.4: Experiment1: Loss and accuracy for training(orange) and validation(gray) Model-
Net10

result achieved is almost the same for both architecture 1 and architecture 2. However, for

ModelNet40 dataset, the result is better for the architecture 2. The result is shown in table

5.6.

ShapeNet 3D CapsNet
ModelNet-10 88.3% 91.37%
ModelNet-40 85.6% 89.66%

Table 5.6: ShapeNet versus 3D CapsNet:Architecture 2 using 40% of data for training.

Figure 5.6 shows the graph of accuracy and loss while training and validation.
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Figure 5.5: Architecture 2

Training is shown by using orange and validation is shown with grey.

5.4.3 Architecture 3

For this modification of CapsNet as well(figure 5.7), the data is divided into 40% for

training and the remaining data for test and validation. Here as well, instead of using pooling

layer like the architecture 1, stride 2 has been used to reduce the size of feature map to be

input into primary capsule. Other than this, there is an additional convolutional layer for

reducing the feature map size even further. We add an extra convolutional layer to monitor if
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Figure 5.6: Experiment2: Loss and accuracy for training (orange) and validation (blue)
ModelNet10

adding convolutional depth to the architecture adds value to the model’s performance. We

observe that, adding an additional layer does not truly add value to the model’s results. The

result is shown in table 5.7. The results of all the 5 architectures have been summarized and

compared in the analysis subsection (Table 5.12).

ShapeNet 3D CapsNet
ModelNet-10 88.3% 90.625%
ModelNet-40 85.6% 87.28%

Table 5.7: ShapeNet versus 3D CapsNet:Architecture 3 using 40% of data for training.
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Figure 5.7: Architecture 3

5.4.4 Architecture 4

The Architecture 4(Figure 5.9) has a similar architecture to Architecture 2. We

experiment with 64 filters in the convolution layer and removal of 1 dense layer in the decoder

section. Referring to table 5.8, we see that there is not a great difference between architecture

2 and architecture 4. In fact, lowering number of convolutional kernels and number of neurons

in the dense layer slightly reduces the test accuracy. Figure 5.10 shows the progress of learning

of this model.
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Figure 5.8: Experiment3: Loss and accuracy for training(orange) and validation(blue) Model-
Net10

5.4.5 Architecture 5

The Architecture 5 (Figure 5.11) is a variation with 2 primary capsules. We wish to

see if increasing the number of primary capsules affects learning of the model. Figure 5.12

shows the learning of this model. We see that the model learns in fewer epochs. The concern

with this model is that it take relatively more time to run. We get similar results as compared

to the other models.
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Figure 5.9: Architecture 4

For this experiment, we first used 40% split to train the data. Since the model

performed well on 40% training data, we also used 5% split and 15% split to perform

experiments on the model. In table 5.9, we summarize the result of experiment on architecture

5 using 40% data. Next, in table 5.10, we summarize the result of experiment on architecture 5

using 15% data. Finally, in table 5.11, we summarize the result of experiment on architecture

5 using 5% data.

We summarize the results of all the architectures in the analysis section (Table 5.12).

We also compare the results of the experiment on architecture 1 and 5 with 5%, 15% and
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ShapeNet Architecture 4 Architecture 2
ModelNet-10 88.3% 90.75% 91.37
ModelNet-40 85.6% 88.7% 89.66

Table 5.8: ShapeNet, 3D CapsNet:Architecture 4, 3D CapsNet:Architecture 2 using 40% of
data for training.

Figure 5.10: Experiment4: Loss and accuracy for training (orange) and validation (blue)
ModelNet10

40% data split in the analysis section (Table 5.13).
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Figure 5.11: Architecture 5

5.5 Analysis

We observe from all the experiments that all these shallow models have similar

performances to each other. We have been able to achieve good results for shallow 3D CapsNet

architecture. The default split provided on the ModelNet web page is 81.5% for training

and 18.5% for testing for ModelNet-10 dataset, and 80% for training and 20% for testing for

ModelNet-40 dataset. However, we have randomly selected just 40% of the data and trained

our models on that.
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ShapeNet 3D CapsNet
ModelNet-10 88.3% 91.31%
ModelNet-40 85.6% 87.38%

Table 5.9: ShapeNet versus 3D CapsNet:Architecture-5 using 40% of data for training.

ShapeNet 3D CapsNet
ModelNet-10 84.37% 88.62%
ModelNet-40 81.37% 82.7%

Table 5.10: ShapeNet versus 3D CapsNet:Architecture-5 using 15% of data for training.

Table 5.12 shows the comparison of results of all the different architectures. The

architecture 2 has overall highest accuracy(89.66% on test data) for ModelNet40. This shows

that a simple architecture with just 1 convolutional layer, 1 primary capsule layer, and 1

class layer, is also capable of learning and generalizing the 3D shapes admirably.

Table 5.13 shows result of test accuracies on ShapeNet, CapsNet architecture 1

and CapsNet architecture 5 models, trained with 5%, 15% and 40% training data. In all 3

ShapeNet 3D CapsNet
ModelNet-10 77.85% 83.79%
ModelNet-40 73.47% 76.48%

Table 5.11: ShapeNet versus 3D CapsNet:Architecture-5 using 5% of data for training.

ModelNet10 ModelNet-40
Architecture 1 91.48% 88.67%
Architecture 2 91.37% 89.66%
Architecture 3 90.625% 87.28%
Architecture 4 90.75% 88.7%
Architecture 5 91.30% 87.38%
ShapeNet 88.3% 85.6%

Table 5.12: Summary: Comparison of proposed architectures and ShapeNet(40% training data)
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Figure 5.12: Experiment5: Loss and accuracy for training(orange) and validation(blue) Mod-
elNet10

scenarios, CapsNet performs better than ShapeNet. Between architecture 1 and architecture

5, we observe that for 5% and 15% training data, architecture 5 shows slightly better results.

This signifies that adding a primary capsule layer helps in reducing the amount of data

needed for training.

The accuracy for ModelNet-40 does not reach that of ModelNet10 due to that the

fact that some objects in 40 classes are just too challenging to be distinguished solely from

shapes. For example, “wardrobe” and “dresser”, “chair” and “bench”, “cone” and “tent”,

“plant” and “flower pot”, are all very similar in term of 3D shapes. It’s the appearance or
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ModelNet-10 ModelNet-40

ShapeNet
CapsNet
Arch 1

CapsNet
Arch 5

ShapeNet
CapsNet
Arch 1

CapsNet
Arch 5

5% Training data 77.85% 83.21% 83.79% 73.47% 75.53% 76.48%
15% Training data 84.37% 88.54% 88.62% 81.37% 82.61% 82.7%
40% Training data 88.3% 91.48% 91.30% 85.6% 88.67% 87.38%

Table 5.13: Summary: Result of ShapeNet, Architecture 1 and Architecture 5 on different split
of dataset

the context that makes them different. The tasks using 40-categories are a lot harder not

only because of more categories, but also because the new classes are more challenging

to differentiate. This makes the performance upper limit much lower than the 10-category

experiments. Table 5.14 contains individual class accuracies of all the classes in ModelNet10.

Toilet, sofa, monitor, bed and chair have unique shapes. Thus, CapsNet realizes these shapes

better than the other shapes.
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Arch1 Arch2 Arch3 Arch4 Arch5

Bathtub 72.72 79.8 78 78.87 75.43

Bed 93.89 94.17 94.21 92.17 93.19

Chair 99.59 98.5772 98.98 98.17 98.58

Desk 73.75 70.71 77.85 79.28 74.76

Dresser 75.83 81.75 87.84 80.4 78.5

Monitor 97.73 95.83 97.72 95.83 96.212

Night stand 76.81 71.81 72.46 84.05 86.96

Sofa 98.32 97.94 99.44 98.044 99.16

Table 85.08 78.07 75.43 92.017 75.43

Toilet 95.4 92.36 94.38 94.898 89.9

Table 5.14: Individual class accuracies (%) on ModelNet-10 with 40% training set.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have proposed 3D Capsule Network solutions to perform object

classification from 3D data which is present in the form of 3D binary occupancy grids. We have

proposed shallow architectures that can recognize shapes better than shallow architectures

based on pure convolutional networks. We have used 3D convolutional layers to extract the

features and proposed capsule architectures to identify the spatial relationships in the 3D

data better. We believe that this network provides a better representation to the human

vision system than pure convolutional neural network detectors.

It is claimed that Capsule Networks require less training data. We have been able

to prove this to be true for 3D data as well, in our experiments. We have compared our

approach with ShapeNet on the ModelNet dataset, and showed that our method provides

performance improvement especially when training data size gets smaller. With only 40%
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training data, we have been able to achieve close to 90% accuracy for ModelNet10 and close

to 88% for ModelNet40. We believe that our investigation steps a foot into the door to a new

area of research.

6.2 Limitations and future work

Though we have been able to provide a good architecture that works well with

volumetric data, there are few areas for improvements.

The current implementation of 3D capsule network is much slower than contemporary

deep learning model implementations in spite of having shallow architecture. This is due

large number of parameters that materialize due to the third dimension. And this causes

computational requirements to be very high. We made several optimizations to the original

capsule architecture to improve the speed of training. however, they were only able to do

so marginally. Thus, Performance optimization for capsules is an open-ended problem to be

solved.

Another limitation to current 3D capsule network, is its inability to be used in

production environments since it is still in the research phase. Though the concept of capsule

network for 3D data is intuitively appealing, the need for finding a robust implementation is

imperative. In our research, we have explored various solutions for solving the problem of

object recognition in 3D data using CapsNet. This is indeed, a solution worth enhancing.

Another future work recommendation is to improve regularization further for 3D
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data to avoid overfitting. This will enable the model to generalize better on smaller number

of 3D data.

With all these considerations, we can agree that there are myriads of opportunities

to develop capsule network to be able to utilize it to its full potential.
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