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Numerical investigation of the thermodynamic limit for ground states in models with

quenched disorder

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

(February 1, 2008)

Numerical ground state calculations are used to study four models with quenched disorder in
finite samples with free boundary conditions. Extrapolation to the infinite volume limit indicates
that the configurations in “windows” of fixed size converge to a unique configuration, up to global
symmetries. The scaling of this convergence is consistent with calculations based on the fractal
dimension of domain walls. These results provide strong evidence for the “two-state” picture of the
low temperature behavior of these models. Convergence in three-dimensional systems can require
relatively large windows.

75.10.Nr, 75.50.Lk, 02.70.Lq, 02.60.Pn

The structure of the thermodynamic set of states of
a system in statistical mechanics is studied formally
through the infinite volume limits of correlation func-
tions [1]. If a nested sequence of systems with given
Hamiltonian and boundary conditions has spin correla-
tion functions that converge in the infinite volume limit,
a thermodynamic state can be defined. For example, in
a ferromagnet with fixed, positive fields at the bound-
ary, the single-spin correlation function converges to a
positive value, defining an “up” state. For disordered
spin systems, the question of the number of thermody-
namic states is a subtle one [2–7]. Whether there are
many thermodynamic states in some sense [8] or a small
number of states related by simple global symmetries [3]
(e.g., two spin-flip related states in an Ising spin glass)
has been a most controversial point for low-dimensional
systems. Part of this debate has been over what are
the most useful methods for determining the structure of
thermodynamic states, spin overlaps P (q) [8–10] or cor-
relation functions in subsystems [3,5] and it is unclear
whether Monte Carlo simulations at finite temperature
can be used to study large enough systems [11].

This letter describes the results of numerical compu-
tations which address the structure of states in disor-
dered systems in the thermodynamic limit, at zero tem-
perature. Two two-dimensional models, an Ising spin
glass and a charge density wave (CDW) model (also re-
ferred to here as an elastic medium model) and two three-
dimensional models, a CDW model and a dimer match-
ing model that is equivalent to non-intersecting lines in a
random medium (similar to vortex lines in type-II super-
conductors), were studied. The ground states were com-
puted for a sequence of free boundary conditions and the
configurations in a fixed finite subsystem (or “window”)
were compared. This study is a particular instance of
the numerical approach suggested by Newman and Stein
[6], who have presented detailed arguments that the ex-
istence of many states, as in the Parisi solution [8] of the
mean field spin glass, gives rise to “chaotic size depen-

dence” [4]. The principle result derived from the simu-
lations presented here is that the window configurations
converge to a single fixed configuration with probability

one. These computations strongly support the picture of
a small number of ground states related by global sym-
metries, consistent with the droplet model [3,12]. The
details of the convergence to a single fixed configuration
as the boundary grows has a scaling behavior which is
well-described by a simple picture of domain walls.

The 2d spin glass model (SG) studied has spins si =
±1 defined at lattice points i, with Edwards-Anderson
Hamiltonian [13] HSG = −

∑
〈ij〉 Jijsisj , where Jij is

chosen independently from a Gaussian distribution for
all nearest neighbor bonds 〈ij〉. This model is believed
to be paramagnetic at finite temperature, but is a spin
glass at T = 0; minimal energy large scale excitations of
size L have an energy E(L) ∼ LθSG with θSG ≈ −0.27
[14]. The discretized CDW or elastic medium model in
two dimensions (E2) studied here is also equivalent to
a disordered substrate model or vortex lines in two di-
mensions pinned by quenched disorder [15,16]. The con-
figurations in this model are defined by complete dimer
coverings of a hexagonal lattice, with the Hamiltonian be-
ing the sum over covered dimers d of dimer weights wd,
HE2 =

∑
d wd, where the wd are chosen for each bond

from a uniform distribution. In mean field replica cal-
culations, matching problems are found to have replica
symmetric solutions [17,18]. A mapping of the dimer
model to a discrete height representation h can be made
[19]; the variable h corresponds to the scalar phase dis-
placements in CDW models. This model is believed [15]
to have a finite temperature phase transition, with the
height-height correlations 〈h(r)h(0)〉 behaving as ∼ ln(r)
in the high-T phase and as ∼ ln2(r) in the low-T phase.
In this model, θE2 = 0 (E(L) ∼ const.) The model
E2 can be extended to three dimensions in two distinct
ways; both are both studied here. One extension is that
of dimer covering (matching) on a cubic lattice (M3),
which can be mapped to a set of vortex lines with hard-
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core repulsion [16,20]. It has a Hamiltonian identical to
that for E2, with the covering dimers a subset of the
edges in a simple cubic lattice. The other 3-D model
is the three dimensional CDW or elastic medium model
(E3) [21]; in the continuum limit, θE3 = 1 (consistent
with numerics in Ref. [21].) The low temperature phase
of the elastic medium models have been studied using
both [22] renormalization group and replica symmetry
breaking techniques, which are usually, though not exclu-
sively, interpreted physically as describing systems with
few states or many states, respectively.

These models of disordered systems were studied using
polynomial-time combinatorial optimization algorithms
[16,23,24]. The spin glass was studied on a triangular
lattice, using the method developed by Barahona [24],
rather than the string method which is often used [25].
The minimum weighted matching algorithm [26] used for
the implementation of Barahona’s algorithm was the al-
gorithm described in Ref. [27]. Calculations were made
for at least 103 samples of up to 5122 spins. The model E2
can be mapped to a bipartite matching problem [16,26]
and was solved using the algorithm of Ref. [28] for at
least 103 samples of sizes up to 10242 sites. The same al-
gorithm was used for model M3, 3-D matching, with up
to 1283 sites with at least 103 samples, while the push-
relabel maximum flow algorithm as implemented in Ref.
[28] was used to study the 3-D elastic medium model
E3 (up to 643 sites with at least 103 samples). The algo-
rithms used determine ground states up to global symme-
try transformations. For example, in the spin glass, un-
satisfied bonds (bonds with Jijsisj < 0) are calculated,
rather than si. Configurations related by symmetries are
considered identical here, so that a “two-state” picture
for spin glasses naturally appears as a single state in the
computations [29].

The effect of system size was studied extensively for
free boundary conditions. The disorder realizations for
each sample Sα

L of linear size L (with Ld spins or sites)
were generated so that Sα

L was a subsystem of a given
infinite volume sample α. Two finite samples Sα

L and
Sα

L′ had the same quenched disorder in their intersec-
tion. Each finite sample was centered at an origin
C, so that a sequence of samples Sα

L, Sα
L′ , Sα

L′′ , . . . with
L < L′ < L′′ < . . . gives a nested set of square or cubic
samples centered about P . The L → ∞ limit could then
be numerically studied for a number of infinite samples
α. The free boundary conditions were assumed to be
typical for the models SG and M3. In the elastic models,
free boundary conditions give ground states with lower
energy than boundary conditions that would introduce a
uniform strain in the elastic models in the infinite volume
limit; such uniform strain states are not considered here.

The configuration differences for samples of different
sizes L < L′ were computed by comparing the exact
ground states in the volumes of size Ld where Sα

L and
Sα

L′ overlapped. Spin glass ground states in two dimen-

sions were compared by finding the differences in unsat-
isfied bonds. An example of such a ground state compar-
ison by bond overlap is shown in Fig. 1. For the models
with dimer matchings (E2 and M3), the configurations
are compared by finding the symmetric difference of the
dimer sets in the common volume. The natural com-
parison for the height configurations for the model E3 is
to determine where the gradients of the heights in the
intersection volume differ.

L’

L

w

FIG. 1. Example of expansion of boundary conditions for
the two-dimensional spin glass (SG). The ground state for
L′ = 80 and L = 80 subsystems of a single infinite sample are
compared. The solid lines inside the L = 80 region (dashed
box) indicate the difference (relative domain walls) in the two
ground states in their common area. The solid box indicates
a window of size w = 40. In this example, the expansion of
boundary conditions changes the ground state inside of the
window by the introduction of a domain wall that crosses the
window. As can be seen, domain walls exist near the edge of
the L = 80 subsystem; most do not propagate into the middle
of the region.

The primary quantity of interest that was computed
was the (sampled) probability that a change in bound-
ary conditions resulted in any change in the ground state
configuration in a window of size w centered at C. The
probability P (L′, L, w) is defined as the probability that
the configuration in the window region changes as the
system size is increased from L to L′, that is, that the
ground state configuration for Sα

L′ differs from that for
Sα

L in the volume of size w centered at C. This quantity
was estimated by sampling over a large number of sam-
ples α for various L′, L, and w [30]. This measurement is
sensitive to all gauge invariant spin correlation functions
in the window volume.

A plot of the data for P (L′, L, w), as a function of w
for various L′ and L, is shown in Fig. 2 for the spin glass.
Assuming scale invariance, P should be a function of the
two ratios L′/L and L/w. The data is consistent with
this hypothesis, for large values of w and L. For fixed
L/w, P (L′, L, w) approaches a constant for large w or
large L. Note that to within error estimates, P (L′, L, w)
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is independent of L′ for L′/L = 2, 4, 8: the probability
of change in a finite window is approximately indepen-

dent of the magnitude of expansion in the boundary, for
L′ ≥ 2L (P does decrease noticeably as L′ ց L.) In ad-
dition, for fixed w, P (L′, L, w) decreases approximately
as a power law in L (by the even vertical spacing of the
data points for P ≪ 1.) The data strongly suggest, by
extrapolation to larger values of L for fixed w, that the

probability of changing the configuration in a window of

size w goes to zero for L′/L → ∞ as L → ∞, implying

convergence to a unique thermodynamic ground state (up
to global symmetries).
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FIG. 2. A plot of the probability P (L′, L, w) that an ex-
pansion in boundary conditions from L to L′ will change the
configuration in a window of size w embedded in the original
system of size L, for the two-dimensional spin glass (SG). Er-
ror bars indicate 1σ statistical uncertainties. For large values
of L/w, P converges to a constant. For fixed w, P decreases
as a power law in L (by the even spacing of the data points
at fixed w.) Note that for the values of L′/L shown, P is
independent of L′/L.

The data can be explained by simple assumptions
about the convergence of the configurations as L → ∞
and the properties of domain walls or defect lines. For the
spin glass model, induced domain walls are lines where
the bonds change from satisfied to unsatisfied or vice

versa. In models which are represented by a match-
ing (E2 and M3) defects are also line objects and are
composed of bonds where the dimer covering changes.
In model E3, the induced walls are surfaces where the
height gradient changes. Defect lines have fractal dimen-
sion dSG

f = 1.27(1) for model SG and dE2
f = 1.25(1) for

model E2 [14,16,31]. For the 3-D elastic medium, a shift
in boundary conditions introduces a domain wall of di-
mension dE3

f = 2.60(5) [21], while localized string defects
were computed during the course of this work to have
fractal dimension of dM3

f = 1.65(4) in the 3-D match-
ing model. If the fractal dimension of the defects is large
enough (df > d/2) that no more than O(1) defects of size
L can co-exist in the volume Ld, the expected number of
defects of linear size L introduced upon expansion to size
L′ is bounded above by a constant. Whether boundary
changes do induce a number of defects that saturate this

bound is less clear a priori. For the models where θ ≤ 0,
finite changes at the boundary are likely to induce as
many defects as possible, as the large scale defect cost is
comparable to the cost of local changes at the boundary.
The probability that a line or surface will intersect a win-
dow of size w is then the ratio of the number of volumes
of size wd that intersect the defect to the number of areas
of size wd in the area Ld, giving the form

P (L′, L, w) = c(L′/L) (L/w)−κ, (1)

for large L/w, with κ = d − df by the supposition of a
single dominant defect and, by these numerical results,
the coefficient function c(L′/L) quickly converges to a
constant value for L′/L ≥ 2. This form can be checked
by plotting P as a function of L/w and comparing with
a line of slope df − d, as shown in Fig. 3. The match be-
tween this prediction and the data in d = 2 is quite good;
a two-parameter fit (varying c(∞) and κ) gives exponents
that agree with κ = d− df to within 0.05 for models SG
and E2. Differences of this order are within statistical
fluctuations and apparent finite size effects. In addition,
numerical study of a number of configurations for three
values of L (e.g., Sα

L, Sα
L′ , Sα

(L′)2/L) for the d = 2 spin
glass suggests that the location of L-scale defects in a
volume is nearly independent of L′, giving more support
to the conclusion that there is convergence to a unique
state in these models.

The 3-D results also indicate convergence to a single
state, as P (L/w) → 0 for L/w → ∞. The quantitative
fits are also consistent with a defect picture, but have a
larger uncertainty. For the 3-D elastic medium, the data

are consistent with P ∼ (L/w)dE3

f −d for fixed w, as shown
in Fig. 3(c), though larger sample sizes would be use-
ful. For the problem M3, the behavior P ∼ (L/w)−1.35,
with κ = d − df , can be fit to the largest L/w values,
though only over a small range. Note that P > 0.9 for
L/w ≤ 4 and P > 0.5 for L/w = 8. Under an expansion

L′/L = 2, the configuration in a window usually changes

for L/w < 8. Such change in small systems mimics the
predictions of a many-states picture.

In summary, the infinite-volume limit for four model
disordered systems was studied numerically by comput-
ing ground state configurations in fixed volumes embed-
ded in systems of successively larger sizes. Strong evi-
dence was found for convergence to a unique state (up
to global symmetries), even in cases where θ ≤ 0. The
convergence to a unique state in d = 2 can be under-
stood in detail by estimating the chance of a defect wall
intersecting a given area upon a boundary change. The
3d model results are more qualitative: while it appears
that the system converges to a unique state, the ratio of
scales (L′/L, L/w) required is larger, so that systems of
size L > 50 are needed. Polynomial ground state algo-
rithms are not available for the 3d spin glass and this
system is not directly addressed here, but these results
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suggest that one should be cautious in interpreting finite
temperature Monte Carlo results [9] and ground state
calculations [32] in small systems.
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FIG. 3. (a) Data for the d = 2 spin glass (SG) scaled
by plotting P (L′, L, w) vs. L/w. For clarity, only data for
L′/L = 2 is shown. The straight line indicates the slope
predicted by κ = d − df = 0.73. The data apparently con-
verge to this form as w → ∞. (b) Scaled data for the d = 2
CDW or elastic medium model (E2); the straight line again
indicates κ = d − df , with κ = 0.75. (c) A scaled plot of
P (2L, L, w) for the 3-D elastic medium (E3); the straight line
has slope df − d = −0.40, which approximately parallels the
data for fixed w. (d) A scaled plot of P (2L, L, w) for the 3-D
dimer matching problem (M3); the straight line has a slope
−κ = −1.35.
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