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Abstract 

Chapter 1 

This essay examines the effect of state renewable energy policies in inducing innovation and the 

spillover effect of these policies on innovation in neighboring states. The analysis is conducted 

with patent data related to renewable technology using wind power for the United States over the 

period 1983-2010. We run a panel data regression of a log transformation of states’ yearly patent 

counts on state renewable energy policies and spatially weighted average of renewable energy 

policies in neighboring states using the Tobit model with individual effects. The results show 

that renewable energy rules, regulation and mandates such as interconnection standards, net 

metering and renewable portfolio standard enacted in neighboring states have shown a 

statistically significant positive spillover effect in increasing the number of patent applications in 

that state. However, financial policies such as tax incentives and subsidy policies implemented 

by neighboring states have shown statistically significant negative effects on technological 

innovation within that state. 

Chapter 2 

In this essay, we have conducted a Monte Carlo Study of the prediction performance of various 

nonparametric estimation methods for spatially dependent data, such as the nonparametric local 

linear kernel estimator, the Nadraya-Watson estimator, and the k-Nearest Neighbors method 

developed by Hallin et al. (2004b), Lu and Chen (2002), P.M. Robinson (2011) and Li and Tran 

(2009). With data sampled on a rectangular grid in a nonlinear random field, the results show 

that nonparametric local linear kernel method has the best performance in terms of mean squared 

prediction error. The Nadaraya-Watson estimation method also performs well. In general, these 

two nonparametric methods consistently outperform the k-Nearest Neighbors method and the 



 

 

 
 

maximum likelihood method regardless of the data generating process and sample size. 

However, the maximum likelihood method does not perform well because the spatial weight 

matrix can only be used to estimate linear structures while the true data generating process is 

nonlinear. This also gives some support to the idea of using nonparametric methods when 

various misspecification may exist either in the functional form or spatial weight matrix for 

spatially dependent data. 

     We use these methods to predict county-level crop yields with spatially weighted 

precipitation. The results are generally consistent with the simulation results. The nonparametric 

local linear kernel estimator has the best prediction performance. The Nadaraya-Watson 

estimator also performs better than the k-Nearest Neighbors method and the maximum likelihood 

estimator. However, with an inverse distance weighting matrix, the maximum likelihood 

estimator outperforms the k-Nearest Neighbors method in predicting crop yield. 

Chapter 3 

     This essay uses the “exceedances over high threshold model” of Davidson and Smith (1990)  

to investigate the univariate tail distribution of the returns on various energy products such as 

Crude Oil, Gasoline, Heating Oil, Propane and Diesel. The bivariate threshold exceedance model 

of Ledford and Tawn (1996) is also used to study the tail dependence between returns on various 

pairs of selected energy products. Tail index estimates for univariate threshold exceedance 

models show that these returns generally have fat tails similar to those of a Student’s t-

Distribution with 2 to 5 degrees of freedom except that for Crude Oil where the tail index 

estimates  are closer to that of a normal distribution. We also estimate the tail dependence index 

for four pairs of energy products, crude oil/gasoline, crude oil/heating oil, crude oil/propane, 

crude oil/diese. The correlation coefficients implied by the dependence index estimates show that 



 

 

 
 

correlations conditional on threshold exceedance are generally higher than the unconditional 

correlation between crude oil/heating oil and crude oil/gasoline. However, there is some 

variation in the implied correlation between crude oil/propane and crude oil/diesel. Whether the 

extreme correlation will be higher or lower than the unconditional correlation depends on the 

threshold chosen.  
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Chapter 1: Technological Spillover Effects of State Renewable Energy Policy: Evidence 

from Patent Count 

 

In a climate change speech at Georgetown University, President Obama argued that: 

“confronting climate change need not threaten economic growth: that investing in 

windmills, solar panels and other types of clean-energy technology could spur scientific 

innovation and generate jobs” (New York Times, July 2, 2013). 

1.1 Introduction 

    Over the past three decades, green energy has emerged as an important topic of our social and 

economic life. It is now more widely accepted that the adoption of renewable energy sources 

such as wind, solar, geothermal, ocean, biomass, and waste-to energy can significantly contribute 

to environmental protection. Also, the diversification resulted from increased shares of 

renewable energy sources could also lead to greater energy security in the face of uncertainty in 

the fossil fuel markets. During this period, various environmental policies, both at the federal 

level and the state level, have been implemented to encourage the development of renewable 

energy. It is hoped that these policies will not only accelerate the pace of switching from 

conventional fossil fuels to renewable energy sources, but also cultivate innovation in 

environmentally friendly renewable technologies that will speed-up ‘green growth’. In this 

paper, we will examine whether renewable energy policies enacted by a state will induce 

innovation within the state. In addition, we will investigate whether these policies have any 

spillover effects in facilitating innovation in neighboring states. The relative impact of state 

renewable energy policies on innovation within state and on innovation of neighboring states has 
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important implications, since the existence of spillover effects in inducing innovation may 

change the relative competitive advantages that could be obtained by within state firms when 

competing with firms in neighboring states. If the spillover effects do exist, state policy makers 

may have to think about implementing renewable energy policies in coordination with policy 

makers from neighboring states rather than acting alone in order to achieve better overall effects. 

    Although the adoption of renewable energy sources has been increasing very rapidly and 

renewable energy sources have become a significant part of energy production for some states in 

the US; the use of renewable energy sources remain limited and public acceptance still needs to 

improve in most states. In the absence of government intervention favoring their development, 

renewable energy production costs are still relatively higher than conventional fossil fuels. For 

example, over the period from 2001 to 2010, the average proportion of electricity produced from 

wind power was almost zero in 12 states in the United States; and another 12 states with an 

average percentage somewhere between 0 and 0.56%. The 13 states in the lead all have an 

average percentage higher than 5.866%, and the highest is 23.587%. A geographic map showing 

the percentage of electricity produced from wind power in each state is given in Figure 1.1. In 

order to increase the share of renewable sources in the total energy supply, most of the states 

have introduced some form of renewable energy policy in an effort to increase renewable 

technology deployment, such as tax credits, subsidies, tradable renewable energy certificates, 

renewable energy portfolio standard, interconnection standard and net-metering. By either 

decreasing the relative price of renewable energy relative to fossil fuels, or increasing the 

demand for electricity generated from renewable sources, these policy measures will improve the 

relative cost or benefit of electricity generation using renewable energy sources compared to 

traditional fossil fuels. Additionally, it is well documented that renewable energy policies at the 
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state level have increased market deployment of renewable technology, for example, see Carley 

(2009), Yin and Powers (2010), and Sarzynski et.al. (2012). 

    The adoption of renewable energy sources could contribute to environment protection and 

energy security. However, we still have to make sure that it is done in a way that is beneficial to 

economic growth. If the increased deployment of renewable technology will translate into 

innovation in renewable technology as reflected by patent filings, entrepreneurs would be more 

willing to devote effort to innovative activities in the beginning. This induced innovation would 

in return improve productivity in the energy industry and lead to ‘green growth’, which would 

make the overall benefit more likely to exceed the cost of implementing these renewable energy 

policies. It is hoped that these renewable energy policies will spur technological innovation 

related to renewable energy. The effectiveness of these different types of policy measures and 

the relative effectiveness of policies from within and outside of state in boosting innovation still 

need to be tested empirically. In this paper, we will examine whether state renewable energy 

policies will lead to technological innovation and investigate whether renewable energy policies 

enacted in neighboring states will have a spillover effect on technology innovation in that state. 

    To study the effect of renewable energy policy on innovation, we first need to find a measure 

for technological innovation. Many studies have used research and development (R&D) 

expenditures and number of scientific personnel as indicators of innovation in an economy. 

However, they are imperfect in the sense that these measures only focus on the input of 

innovative activity and it is not clear that the input will be transformed into innovation 

efficiently. In this case, people have turned to patent information as an output measure reflecting 

the innovative performance of a firm or an economy, see Grilliches (1992). Patent information 

used in this study considers patents issued by national patent offices. A patent gives the holder 
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exclusive rights to produce a specific good in the way specified in the patented invention for a 

defined period of time. To be eligible for a patent, the invention must be novel, non-obvious and 

be of commercial usage, see Dernis and Kahn (2004). Griliches (1992) also showed that patents, 

sorted by their year of application, are strongly correlated with R&D expenditure, and thus make 

a good proxy for innovative activity. 

    In this study, based on detailed information about the patent class, source country, inventor 

address and application year for each patent, we count patent applications for every state in each 

year from 1983 to 2010. We use a Tobit model with random effects or fixed effects to regress a 

nonlinear transformation of patent counts on a series of policy variables representing the 

existence or level of renewable energy policies and a spatially weighted average for each of these 

policies implemented in neighboring states. State energy consumption, production and prices are 

used to control for state energy market conditions. State social, economic and political variables 

such as population growth, state per capita income and state LCV voting scores are also 

included. A time invariant state renewable energy technical potential variable is used to control 

for state heterogeneity and a variable for global wind power capacity is used to control for trends 

in global renewable energy development1. The regression results show that regulation rules and 

mandates such as interconnection policies, net metering and renewable portfolio standards in 

neighboring states tend to show a significantly positive effect, with the positive effect of 

renewable portfolio standards consistently highly significant. While financial incentives such as 

tax incentives and subsidy policies in neighboring states have a negative effect on patent 

application in that state. At the same time, state electricity consumption, population growth and 

                                                           
1 The variable for state renewable energy technical potential is included when the random effects specification is used; the 

variable for global wind power capacity is included when time dummy variables are not used. 
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electricity price all have positive effects in increasing the number of patent applications within 

that state. However, states’ own renewable policies don’t show any significant effect on patent 

application. For robustness checks, we also constructed another version of cumulative policy 

variables2 analogous to Yin and Powers (2010). The results are more or less the same as those 

when variables characterizing policy existence are used. 

    The rest of this paper is structured as follows. Section 1.2 gives a brief overview of the related 

literature. Section 1.3 presents the testing hypothesis and estimation strategy. Section 1.4 

describes the data used in this study. Section 1.5 presents the empirical results. Section 1.6 

concludes and provides some issues for further discussions. 

1.2 Related Literature 

    As to the effect of environmental policy on technology innovation at the federal level, there is 

some empirical evidence supporting the argument that environmental policies lead to innovation, 

as reflected in increased patenting activity. For instance, Lanjouw and Mody (1996) used 

pollution abatement expenditures as a measure of environmental policy stringency in Japan, the 

US and Germany and found that the environmental patenting activity measured by the number of 

granted patents is correlated to abatement costs. With US environmental technology 

manufacturing data, Brunnermeier and Cohen (2003) also found that environment-related patent 

counts increase as pollution abatement expenditures increase. When it comes to the role played 

by specific policy instruments, Popp (2003) examined the effects of the 1990 Clean Air Act, 

which introduced a market for sulfur dioxide (𝑆𝑂2) permits. He found that this market oriented 

                                                           
2 A series of cumulative policy variables are also used as an alternative robustness check. For a specific policy, we assign 0 to the 

variable for the periods before it was first enacted, and add 1 to the variable every time it’s amended. So the value of the policy 

variable would look like a step function over years. 
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environmental regulation hasn’t induced more innovation compared to the previous regulation 

scheme as measured by patent counts related to 𝑆𝑂2 pollution-control technologies. However, 

innovation occurred after 1990 tends to be more environmentally friendly and more efficient in 

removing new scrubbers. 

    On the effect of renewable policies at the state level, most of the existing literature has 

concentrated on their impact on renewable technology deployment or renewable energy 

production. For example, using cross-sectional time-series data from 1997 to 2009, Sarzynski et 

al. (2012) found that states with a subsidy program like rebates or grants have experienced more 

rapid growth in the capacity of grid-tied PV technology than states without these policies.  They 

also found that renewable portfolio standards also affect the market deployment of grid-tied solar 

PV technology. With US state level data from 1998 to 2006, Carley (2009) found that RPS 

implementation has not increased the percentage of electricity generated from renewable energy 

sources relative to the total electricity generation, yet it has increased the total amount of 

electricity generated from renewable sources. By constructing a new measure for policy 

stringency that could more accurately characterize the incentives provided by RPS, Yin et al. 

(2010) found that RPS policy has significantly increased in-state renewable energy development. 

    In the absence of studies on the effect of renewable energy policies on renewable technology 

innovation at the state level, there are some related cross-country studies. De Vries and Withagen 

(2005) investigated the relationship between environmental policy and innovation related to 𝑆𝑂2 

abatement, as measured by the number of patent applications in relevant patent classes. Using 

three different models of policy stringency, their results showed some evidence that strict 

environmental policies tend to lead to more innovation. In another cross-country study by 

Johnstone, Hascic and Popp (2010), using a panel data set comprised of 25 countries in 26 years, 
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they examined the effect of a wide variety of policy tools on innovations of renewable 

technology, such as tradable energy certificates, feed-in-tariffs, production quotas and public 

R&D. By studying patent activity related to a number of different sources of renewable energy, 

they have shown that the effectiveness of different policy tools varies with the relative cost of 

different renewable technology sources compared to fossil fuels. Dechezlepretre and Glachant 

(2013) also tried to investigate the technology diffusion in wind power across OECD countries. 

Using patent data as an indicator of innovation activity, their results indicate that both domestic 

and foreign demand-pull renewable policies positively affect renewable technology innovation. 

However, the marginal effect of policies implemented at home is 12 times higher. 

    In the current study, we want to examine the effect of a variety of state renewable energy 

policies on innovation related to wind power and the technological spillover effect of these 

policies. We calculate patent counts for each state over time by identifying the state and year of 

application of every US patent related to wind energy using information from the database 

Delphion3. Lagged policy variables are constructed over time for each state with at least one 

patent application recorded over the period from 1983 to 2010. To characterize the spillover 

effect of neighboring states’ renewable energy policy, spatially weighted policy variables are 

calculated with a spatial weight matrix assigning weights only to neighboring states or assigning 

relatively larger weights to states that are geographically closer. Then we regressed a nonlinear 

transformation of patent count on lagged policy variables and the spatially weighted average of 

neighboring states’ policy variables to check whether renewable energy policies induce 

                                                           
3 http://www.delphion.com/. Among commercially available on-line databases, Delphion offers the advantage of allowing 

exports of large amounts of data into easily readable files, such as Microsoft Excel spreadsheets.  This database allows searching 

by patent classification, and provides detailed descriptive information on each patent, including the date of application, country of 

origin, and inventor address. 

http://www.delphion.com/
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innovation within state and whether they have any spillover effects in boosting innovation in 

neighboring states. 

1.3 Testing Hypothesis and Model Specification 

    In order to study the role played by various renewable energy policies from both within state 

and out of state in inducing innovation, we have considered two major categories of renewable 

energy policies: 1) financial incentives such as tax credits and various subsidy policies and 2) 

renewable energy related regulation rules and mandates such as interconnection standards, net-

metering and renewable portfolio standards. In order to isolate the spillover effects of renewable 

technology policy, we have included in the models both a series of variables representing the 

existence or level of a state’s own renewable energy policies and a spatially weighted average of 

each of these variables implemented in neighboring states. Some other factors that could 

potentially affect the incentives for innovative behaviors are also controlled for by including 

variables for energy demand, supply and price, state social, economic and political factors 

(Detailed definitions for these variables are provided in the data section). The benchmark 

reduced-form regression equation is specified as4: 

𝑓(#𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡)~𝛽0 + (𝑃𝑜𝑙𝑖𝑐𝑦𝑖𝑡−1)𝜷𝟏 + 𝑊𝑖(𝑃𝑜𝑙𝑖𝑐𝑦𝑡−1)𝜷𝟐 + 𝛽3(𝑅&𝐷𝑖𝑡−1) 

                      + 𝛽3(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑖𝑡−1) + 𝛽4(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖𝑡−1) 

                      + 𝛽5(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝐺𝑟𝑜𝑤𝑡ℎ𝑖𝑡−1) +  𝛽6(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑤𝑡ℎ𝑖𝑡−1) 

                      + 𝛽7(𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑡−1) + (𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙𝐼𝑛𝑑𝑒𝑥𝑖𝑡−1) 𝛽8 + 𝜀𝑖𝑡 

                                                           
4 In this equation, explanatory variables are lagged by 1 year, we also have robustness checks with states’ own policy variables 

and neighboring states’ policy variables lagged by different number of years. 
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where 𝑖 = 1,… ,48 are indices for the cross sectional unit (state) and 𝑡 = 1983,… , 2010 are 

indices for time. The dependent variable is a function of patent activity measured by the number 

of wind technology-related patent applications for a given state in a given year. The policy 

variables include a set of renewable technology policies such as a tax incentives index, a subsidy 

policy index, interchanging rules, net metering rules and renewable portfolio standards. R&D 

expenditures are used to control for changes in input for innovative activities; electricity 

consumption, electricity consumption growth and electricity price are used to control for the 

energy market demand and supply; population growth nd state per capita income may also affect 

the demand for or affordability of renewable energy; LCV senate score and LCV house score are 

used to represent the state political mood toward pro-environmental legislation. 

    The coefficient of special interest is 𝛽2, which characterizes the spillover effect of renewable 

energy policies implemented in neighboring states. W is the spatial weight matrix used to 

calculate neighboring states’ average renewable energy policy. In this paper, we have used two 

versions of spatial weight matrices, the first one follows from Aichele and Gelbermayr (2012). 

𝑊𝑖𝑗𝑡 =

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗𝑡−1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

∑
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗𝑡−1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

𝑁
𝑗=1

⁄           𝑖, 𝑗 = 1,… ,𝑁, 𝑖 ≠ 𝑗, 𝑡 = 1,… , 𝑇5 

Here we use 𝑊𝑖𝑗𝑡 to denote the element in row (𝑖 − 1) ∗ 𝑇 + 𝑡 and column (𝑗 − 1) ∗ 𝑇 + 𝑡 of the 

spatial weight matrix 𝑊, which characterizes the effect of renewable energy policy implemented 

in state 𝑗 on innovation in state 𝑖 in year 𝑡. We argue that how policy in state 𝑗 will affect state 𝑖 

                                                           
5 All the diagonal elements of 𝑊 are zero, so this formula would not be used to calculate diagonal elements. Log of the 

population level is used in weight matrix construction here. 
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is determined by population in state 𝑗 and the geographic distance between state 𝑖 and state 𝑗. 

Distance between state 𝑖 and state 𝑗 is approximated as6, 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 = 𝑅√(𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡𝑗)
2
+ (cos (

(𝑙𝑎𝑡𝑖 + 𝑙𝑎𝑡𝑗)
2

⁄ ) ∗ (𝑙𝑜𝑛𝑔𝑖 − 𝑙𝑜𝑛𝑔𝑗))

2

 

where 𝑙𝑎𝑡𝑖 and 𝑙𝑜𝑛𝑔𝑖 are the latitude and longitude of the center of state 𝑖, respectively. After 

constructing the spatial weight matrix by dividing the population in state 𝑗 by the approximate 

geographic distance between state 𝑖 and state 𝑗, we do a row normalization so that left multiply 

the spatial weight matrix to a policy variable (which is a vector) is in effect to take the spatially 

weighted average of the values of the policy variable in neighboring states. 

    The second version of spatial weight matrix is the contiguity spatial weight matrix created by 

Luc Anselin (1988): 

𝑊𝑖𝑗𝑡 =
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑗

∑ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑗
𝑁
𝑗=1

⁄  

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑗 = {
1      𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

 

In this spatial weight matrix, the spillover effect only happens between states with common 

borders. Compared to the other spatial weight matrices, this one puts relatively more weight on 

policies implemented in direct neighboring states. 

    We will estimate the above regression equation using a Tobit model with individual effects. 

Most of the existing literature in this area use count data models to fit the data; censoring in the 

                                                           
6 R is the radius of the earth, which equals 6,371.009 kilometers. All latitude and longitude are denominated in unit of radians. 
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Tobit model we used could have the same effect as the zero-inflated Poisson or zero-inflated 

negative binomial model, for example see Lambert (1992). More importantly, we don’t have to 

assume a Poisson distribution or negative binomial distribution in the error term. We could 

circumvent this issue by referring to the Central Limit Theorem7.  As pointed out in Baltagi 

(2008), if the N individuals can be seen as randomly drawn from a large population, the random 

effects model would be the appropriate specification. Since we are studying US continental 

states, we might expect the Tobit model with fixed effects is the proper specification. Given that 

random effects model usually gives more efficient coefficient estimates but may suffer from the 

endogeneity resulted from the correlation between the unobserved heterogeneity and other 

regressors, we use the random effects specification to get the main estimation results. The fixed 

effects specification is also used as a robustness check. Following the use of the random effects 

panel data model with attrition in Hausman and Wise (1979), the model with random effects is 

specified as 

𝑦𝑖𝑡 = log ( 1 + #𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 ) 

𝑦𝑖𝑡 = {
𝑦𝑖𝑡

∗                      𝑖𝑓    𝑦𝑖𝑡
∗ > 0

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑦𝑖𝑡
∗ = 𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝜇𝑖 + 𝑢𝑖𝑡                   𝑖 = 1, 2, … ,𝑁, 𝑡 = 1, 2, … , 𝑇 

𝜇𝑖~𝐼𝐼𝐷 𝒩(0, 𝜎𝜇
2),    𝑢𝑖𝑡~𝐼𝐼𝐷 𝒩(0, 𝜎𝑢

2) 

    We first take a log transformation of the patent counts plus 1 because quite some states had 

only zero patent applications in most of the years. After the log transformation, zero patent 

                                                           
7 Although we used the normal distribution in the Tobit mode with random effects specification, the results don’t really rely on 

the normal assumption. Based on the estimation methods described below, Tobit model with random effects can be estimated 

with the simulated maximum likelihood method with individual random effects following any probability distribution. A 

distribution assumption is not needed at all for the Tobit model with fixed effects. 
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counts are still zero; that’s why the observed patent counts after transformation are still censored 

at zero. All the explanatory variables are included in 𝑥𝑖𝑡, which also includes a state renewable 

technology technical potential and a variable for global wind capacity or a series of time dummy 

variables. The state individual effects are characterized by 𝜇𝑖, which are assumed to follow a 

normal distribution with variance 𝜎𝜇
2.  

    The Tobit model with random effects could be estimated using the method of simulated 

likelihood, see Baltagi (2008). The method of simulated likelihood transforms the original 

likelihood function as an expectation of some function with respect to the density function of 𝜇𝑖.  

𝐿𝑖 = Pr(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑇|𝑋) =  ∫ [∏∫𝑓1(𝜖𝑖𝑡|𝜇𝑖)𝑑 𝜖𝑖𝑡

𝑇

𝑡=1

] 𝑓2(𝜇𝑖)𝑑𝜇𝑖 

= 𝐸𝜇𝑖
[∏∫𝑓1(𝜖𝑖𝑡|𝜇𝑖)𝑑 𝜖𝑖𝑡

𝑇

𝑡=1

] =  𝐸𝜇𝑖
(ℎ(𝜇𝑖)) 

    This function is continuously differentiable. If the expectation is finite, then the conditions for 

the Law of Large Numbers would be satisfied. The expectation could be calculated as the 

average of the function with a sample of observations 𝜇𝑖1, … , 𝜇𝑖𝑅 plugged into the function.  

1

𝑅
∑ℎ(𝜇𝑖𝑟)

𝑅

𝑟=1

𝑝
→ 𝐸𝜇𝑖

(ℎ(𝜇𝑖)) 

    Then a sample 𝜇𝑖1, … , 𝜇𝑖𝑅 is drawn from the population of 𝜇𝑖 with a random number generator. 

The log of the simulated likelihood function can be written as, 

𝑙𝑛𝐿𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = ∑[𝑙𝑛 {
1

𝑅
∑∏∫𝑓1(𝜖𝑖𝑡|𝜇𝑖𝑟)𝑑 𝜖𝑖𝑡

𝑇

𝑡=1

𝑅

𝑟=1

}]

𝑁

𝑖=1
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which is similar to the probit function used in Buttler and Moffitt (1982). Maximizing this 

simulated likelihood will give the estimator for 𝛽. With estimates for the coefficients in the 

model, the marginal effect of neighboring states’ renewable policies in inducing innovation in a 

state would be calculated in a way similar to that used in McDonald and Moffitt (1980). For 

more details on the calculation of marginal effects in this nonlinear Tobit model, see Appendix 

1.1. 

As a robustness check, we also estimate the benchmark regression equation using the Tobit 

model with fixed effects. Following Maddala (1987), the Tobit model with fixed effects applied 

to the transformed patent counts is specified as 

𝑦𝑖𝑡 = log ( 1 + #𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 ) 

𝑦𝑖𝑡 = {
𝑦𝑖𝑡

∗                      𝑖𝑓    𝑦𝑖𝑡
∗ > 0

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑦𝑖𝑡
∗ =  𝑥𝑖𝑡𝛽 + 𝜇𝑖  + 𝑢𝑖𝑡                  𝑢𝑖𝑡 ~ 𝐼𝐼𝐷 𝒩(0, 𝜎2) 

    Unlike the case of a linear model, in a Tobit model with fixed effects there is no sufficient 

statistics for the fixed effects 𝜇𝑖 to condition on. So the MLE estimators of 𝛽 and 𝜎 will depend 

on the fixed effect 𝜇𝑖. Since the number of observations per cross-section unit is fixed, it is not 

possible to consistently estimate the fixed effects 𝜇𝑖 and this inconsistency will result in 

inconsistency in the estimators of 𝛽 and 𝜎. Green (2004) has shown that the usual MLE 

estimator is biased and inconsistent through Monte Carlo methods. Given this invalidity of MLE, 

we estimated the Tobit model with fixed effects following Honore (1992). Based on the 

assumption that the error terms are independent and identically distributed conditional on the 

explanatory variable and the individual fixed effects, Honore (1992) derived orthogonality 
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conditions that must be satisfied by the true parameters. The minimum distance method is in turn 

used to estimate the parameter values by either minimizing a least absolute deviations objective 

function or a least squares objective function. It is shown that these estimators are consistent and 

asymptotically normal under suitable regularity conditions. 

1.4 Data 

In this study, we use patent count data for 48 continental states spanning 28 years from 1983 to 

2010. The states and time period are chosen so that each of these states has at least one patent 

application during this time span, and for a geographic analysis we also constrained the analysis 

to the 48 contiguous states by excluding data for Alaska and Hawaii. Then state-level R&D data, 

electricity consumption, production and price information, state demographic, economic and 

political factors are used as control variables. In addition, time-invariant state renewable energy 

technical potential is used to control for state heterogeneity that might affect renewable energy 

deployment or renewable energy technical innovation, and a variable for aggregate global wind 

capacity over this period is used to control potential developing trends that may have occurred in 

the renewable energy industry. Details about the source, collection and manipulation of these 

data are given in this section. 

1.4.1 Dependent Variable 

The dependent variable in this paper is a log transformation of the number of patent 

applications for a specific state in each year. Data on relevant patent information comes from the 

on-line database provided by Delphion. Detailed descriptive information includes the patent 

class, source country, inventor address and application date. Based on a large amount of data 

downloaded from Delphion, we choose wind patents with the United States as the source 
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country; then we assign a patent to a state or several states for a specific year using information 

on the inventors’ address and the first application date. If there is only one inventor or if multiple 

inventors for a patent are from the same state, then the patent is assigned to that state. However, 

if there are multiple inventors for a patent and they are from different states, the patent will be 

assigned to each of those different states. The year of patent application is decided by the earliest 

application date. All these patents are counted as 1,582, with some of the patents having multiple 

inventors from different states. After identifying these patents, I count the number of patents 

each state has filed in each year over this period. The frequency table of patent application 

counts for the 48 states and the 28 year period is given in Table 1.1. As can be seen from Table 

1.1, the state yearly patent counts are nonnegative. For all these states and years, 843 out of the 

1,344 patent counts, which is about 62%, are 0. Most of the patent counts are 0 or 1 for these 

states over the 28 year period, which accounts for about 80%. The largest number of patent 

applications for a state in a single year is 32, which appears in South Carolina in 2009. The 

distribution of those non-zero patent counts seems to be skewed.  These facts motivate us to use 

a Tobit model with individual effects to a nonlinear transformation8 of the patent counts. Figure 

1.2 shows a map with the total number of patent applications for each state from 1983 to 2010. 

The figure shows that nine states (CA, TX, FL, SC, VA, NY, PA, CT, MA) have more than 50 

patent applications in total, on average more than 2 patents every year. Figure 1.3 through Figure 

1.8 show the patent counts for each state every other five years from 1984 to 2009. These maps 

show that the Southwestern and Eastern parts of the country are becoming greener and greener 

over the years, which means the number of patent applications are increasing. 

                                                           
8 We do the transformation log (1 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑒𝑛𝑡𝑠) so that the transformed patent counts are still censored at 0. 
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1.4.2 Policy Variables 

    With available data from the Database of State Incentives for Renewables and Efficiency 

(DSIRE), which outlines operational policy instruments across the country and the date of 

enactment and amendment for each policy instrument by each state, we first constructed two 

variables for the two major broad classes of financial incentives for renewable energy following 

Caley (2009) and Sarzynski et. al. (2012). One represents a number of different types of existing 

subsidy policies and the other tax incentives. The subsidy policies include grants, loans and 

rebates. If there is a grant program in a state for a given year in place, then assign one to the 

grant variable for the state in that year, otherwise zero. The variables for loan programs and 

rebate programs are defined similarly. After defining these variables, we construct the subsidy 

index by summing up the variables for loans, grants and rebates. So the subsidy index ranges 

from zero to three, indicating the number of kinds of subsidy policies in existence. Based on state 

corporate, personal, property and sales tax, the tax incentive index is constructed similarly 

ranging from zero to four indicating the number of types of tax incentives in existence for a state 

in a given year. 

    We have also used three variables for rules, regulations and mandates for renewable energy at 

the state level: interconnection rules, net metering and renewable portfolio. The interconnection 

standards usually give clear technical rules such as maximum capacity, connection voltage and 

connection procedure so that on-site distributed generations can connect to the electric utility 

grid conveniently and safely. Under the net metering policy, electricity meters could accurately 

record both energy inflows and outflows so that distributed generators can save excess electricity 

production for future credit. This provides incentive or convenience for the consumer-based 

small-scale renewable energy facilities such as wind or solar power to interconnect with the grid. 
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The last policy is renewable portfolio standard, which makes it an obligation that electricity 

supply companies produce a specified proportion of the increased electricity production from 

renewable energy sources, such as wind, solar, biomass, or geothermal. Renewable energy 

certificates (REC) are granted to certified generators for every unit of electricity produced from 

renewable sources. Earned REC can then be sold to electricity suppliers bundled with the 

electricity they represent. Supply companies then could use the certificates to demonstrate that 

they are in compliance with the regulatory obligations. Two versions of variables are constructed 

for these policy standards in a similar way to Yin and Powers (2010). One version represents the 

existence of these policies. For example, for a given year, if a renewable portfolio standard is in 

effect in the state; then the variable for renewable portfolio standard equals one for that state in 

that year, otherwise it equals zero. Based on the variable characterizing the existence of  RPS, 

two alternative variables for RPS are constructed to account for the stringency of the policy. The 

first alternative considers how well states are meeting their RPS obligations. The variable is the 

same as the RPS existence variable except that the variable will take value 0 if the RPS are met 

with 100% compliance in the first year of implementation and stay at 100% afterwards. The 

second alternative is different from the RPS existence variable in that the variable will take value 

0 if states with RPS have a target less than 5% in 2010, which is the last year of the data sample. 

As suggested by Yin and Powers (2010) and Menz and Vachon (2006), we also constructed a 

series of cumulative policy variables for these policies taking into consideration the amendment 

of these policies over time. Under the assumption that amended policies would be more stringent 

and thus could be more effective in promoting renewable energy adoption and innovation, the 

variable starts from zero if there is no policy in effect, one if the considered policy is in effect in 

the initial year (1983); then adding one to the policy variable every time the policy is amended. 
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In this way, the policy variable is illustrated with a step function for a given state over years. All 

the data on financial incentives and regulation rules and mandates for renewable energy is 

extracted from DSIRE. 

     By the end of our sample, 39 states have adopted RPS to promote renewable energy. 43 states 

had interconnection standards in place, and 46 states had regulations covering net metering. 

From the summary statistics in Table 1.2, the mean that value of the tax incentive index is 0.917. 

Because the tax incentive index characterizes the number of kinds of corporate, personal, sales 

and property taxes that are present in a state, this means on average states have about one out of 

the four kinds of tax incentives in all these years. Similarly, a mean value of 0.321 for the 

subsidy policy index means that states on average have one kind of subsidy policy in 34.6% of 

the years. For variables indicating the existence of regulatory rules and mandates, the renewable 

portfolio standard existence variable has a mean of 0.166. This means states on average have the 

renewable portfolio standard policy implemented in 16.6% of the years. For interconnection 

existence and net metering existence, the mean values of 0.192 and 0.313 indicate that states on 

average have these policies implemented in 19.2% and 31.3% percent of the years, respectively. 

To study the spillover effect of policies enacted in neighboring states on innovation in that 

state, we also included a series of spatially weighted averages of policy variables in the 

regression. If a large proportion of a state’s neighboring states have adopted some form of 

renewable energy policy, this might have some “demonstration effects” on the renewable 

technology adoption in that state. At the same time, it would be more convenient and cost-

effective to learn from neighboring area’s experience related to renewable technology. This 

provides another incentive to renewable energy development and technological innovation. To 

calculate the spatially weighted average of neighboring states’ policy variables, we left multiply 
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the policy variable constructed above by one of the three spatial weight matrix. See R. Leenders 

(2002) for a discussion of how to use a spatial weight matrix to model social influence. 

1.4.3 R&D Data 

When it comes to factors affecting technical innovation, we first used state R&D investment to 

control for the general scientific capacity of the state9. R&D data from 1983 to 2007 come from 

the Industrial Research and Development Information System (IRDIS) database10, which 

contains all of the statistics produced by the National Science Foundation’s Survey of Industry 

Research and Development (SIRD) from 1953 to 2007. The IRDIS database contains total funds 

spent for business R&D performed in each state over the period from 1953 to 2007, which 

measures the cost of firms’ R&D activity. After 2007, the National Science Foundation’s SIRD 

has been replaced by the Business Research and Development and Innovation Survey 

(BRDIS)11. The R&D data for 2008 and 2009 are from this database. The R&D time series data 

for each state from 1983 to 2009 are then adjusted to 2009 US dollars by using the consumer 

price index. In 2009, the total business spending on R&D activity in the United States was $282 

billion, of which $225 billion was paid by the company. Businesses in California lead in R&D 

investment, accounting for over 23% of the nation’s business R&D expenditures. 

1.4.4 State Electricity Information 

When estimating a model that accounts for the main drivers of renewable technology 

innovation, it is necessary to control for those potential underling trends in a state’s electricity 

                                                           
9 We want to isolate the effect of renewable policy on innovation from that resulted from increased R&D investment. Although 

firms may increase R&D investment in renewable technology in response to renewable policy; with the existence of spillover 

effect from policies implemented in neighboring states, a state may have more innovation by learning from the experience of 

neighboring states with the same amount of instate R&D investment. 

10 http://www.nsf.gov/statistics/iris/history_data.cfm 

11 http://www.nsf.gov/statistics/infbrief/nsf12309/ 

http://www.nsf.gov/statistics/iris/history_data.cfm
http://www.nsf.gov/statistics/infbrief/nsf12309/
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markets. So we include state electricity consumption, state electricity consumption growth, and 

electricity price per British Thermal Unit (BTU) in the regression. These data are extracted from 

the EIA’s State Energy Data System (SEDS)12, which contains detailed information on state 

energy consumption, production and prices by source from 1960 to 2010. The first two variables 

included are state electricity consumption and state electricity consumption growth. These two 

variables reflect the demand for electricity and to how large an extent a state needs to establish 

new capacity to satisfy the increase in electricity demand. If electricity consumption is high and 

increasing at a relatively faster pace, then the state would be under pressure to build more 

capacity. This could possibly provide incentives for renewable energy deployment and hopefully 

the increased deployment would lead to renewable technology innovation. Another variable 

included is electricity price, which is adjusted to 2009 US dollars by the consumer price index. It 

is possible that high or volatile conventional energy prices improve the potential return of 

investment for renewable technology, which in return provides incentives for innovation in 

renewable technology. 

1.4.5 State Social, Economic and Political Factor 

    Another factor that might affect state demand for electricity is state population growth. A state 

with high population growth would be under more pressure to construct more capacity for 

electricity generation. If part of this additional capacity is built from renewable energy resources, 

increased deployment may lead to technology innovation improving the efficiency of electricity 

generation. Wealthier consumers may have a higher valuation for a good environment and thus 

be more likely to prefer energy produced from renewable sources. Given the usual high upfront 

                                                           
12 http://www.eia.gov/beta/state/seds/seds-data-complete.cfm 

http://www.eia.gov/beta/state/seds/seds-data-complete.cfm
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cost, renewable technology is more likely to be afforadable for a consumer in states with higher 

per capita income, see Sarzynski et al. (2012). For example, Rodberg and Schachter (1980) have 

found evidence that higher income households are more likely to claim solar income tax credits. 

To control for state per capita income, we construct a variable by taking the log of the state per 

capita income adjusted to 2009 US dollars. The state population and state personal income data 

are from the Regional Economic Account of the Bureau of Economic Analysis (BEA)13. 

Research in political studies and public administration has found evidence that state 

institutional framework and other political structures could affect policy adoption and the 

outcomes of policy implementation. For example, Steinmo and Tolbert (1998) found that state 

political and economic institutions could explain state tax policy variation. Ringquist and Clark 

(2007) argued that state policy efforts could be affected by interparty competition and interest 

groups in the states. Sapat (2004) claimed that the beliefs of political figures and organizational 

culture could also impact government performance. In this study we use League of Conservation 

Voters (LCV) voting scores to account for institutional factors that may affect pro-environmental 

legislation that is important for renewable energy development and renewable technological 

innovation. The LCV voting scores data are from the National Environmental Scorecard14 

published yearly by the Congress since 1970. 

1.4.6 Renewable Energy Technical Potential 

We also include wind energy technical potential as an upper-bound estimate of wind energy 

development potential. The National Renewable Energy Laboratory (NREL)15 estimates the 

                                                           
13 http://www.bea.gov/regional/downloadzip.cfm 

14 http://scorecard.lcv.org/scorecard/archive 

15 http://www.nrel.gov/gis/ 

http://www.bea.gov/regional/downloadzip.cfm
http://scorecard.lcv.org/scorecard/archive
http://www.nrel.gov/gis/
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technical potential of different renewable energy sources based on factors such as availability, 

quality, and land-use constraint. It is important to point out that these estimates do not consider 

economic or market factors like the availability of transmission infrastructure, production cost, 

and policy or regulatory impacts; and therefore do not represent the level of actual renewable 

energy deployment. Figure 1.9 and Figure 1.10 show maps of two major sources of renewable 

energy technical potential for each state. From these maps, the Midwest and the Southwest states 

of the country are rich in solar and wind power. 

1.4.7 Global Wind Power Capacity 

To control for the possible underlying trends in the development of the renewable energy 

industry worldwide, we also included a variable for world cumulative installed wind power 

capacity as an indicator for the development level of wind power technology in the regression. 

Data on world cumulative installed wind power capacity and net annual addition are from the 

International Energy Agency16. 

1.5 Empirical Results 

From my main results presented in Table 1.4, the coefficients for neighboring states’ 

regulatory rules and mandates are almost all positive and all the coefficients for the financial 

incentives are negative. The most exciting result is that coefficients for neighboring states’ 

renewable portfolio standards are all positive and significant at the 1% confidence level when the 

random effects or fixed effects model without time dummies is used. This means renewable 

portfolio standard policies implemented in neighboring states have a positive spillover effect on 

renewable technology innovation in that state. Without time dummy varialbes, coefficients for 

                                                           
16 http://www.iea.org/ 

http://www.iea.org/
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neighboring states’ net metering policies are significantly positive at the 1% and 5% confidence 

level for the random effects Tobit model and fixed effects Tobit model, respectively17. However, 

coefficients of variables characterizing financial incentives are in general negative and 

significant. Specifically, the coefficient for neighboring states’ tax incentives is significantly 

negative when random effects Tobit model without time dummies is used and close to significant 

for fixed effects Tobit model without time dummies. When time dummies are included in the 

model, the coefficient of neighboring states’ tax incentives is significantly negative at the 5% 

and 10% confidence level for the random effects and fixed effects Tobit model including time 

dummies, respectively. The coefficients for neighboring states’ subsidy policy are significantly 

negative at the 1% confidence level when the random effects Tobit or fixed effects Tobit model 

without time dummies is used. These results suggest that regulatory rules and mandates 

implemented in neighboring states have a positive spillover effect, while financial incentives 

implemented in neighboring states tend to have a negative spillover effect on innovation in that 

state. 

To understand these two counter effects on innovation resulted from renewable energy policies 

implemented in neighboring states, we have the following tentative explanation. Renewable 

energy policy regulatory rules and mandates such as interconnection policy and net-metering 

implemented in one state would make it more convenient to connect to the grid not only for 

generation facilities from within state but also neighboring states. Renewable portfolio standards 

implemented in one state will provide incentive for utility companies to purchase electricity 

                                                           
17 The coefficient for neighboring states’ renewable portfolio standards is positive and close to significant at the 10% confidence 

level and neighboring states’ net metering is significantly positive at the 10% confidence level when a set of time dummy 

variables for each year are included in the Tobit model with random effects. When time dummies are not included in the 

regression, a log global wind power capacity variable is included to control for the possible underlying trends in the development 

of the renewable energy industry. 
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produced from renewable sources from neighboring states. This could be the possible 

mechanism that renewable energy regulatory rules and mandates would lead to increased 

deployment of renewable technology in neighboring states and thus are beneficial to technology 

innovation in neighboring states. For tax incentives and subsidy policies, although these policies 

will make renewable technology more affordable to the general public and ensure a better market 

prospective for companies developing renewable technology, to benefit from these tax incentives 

or subsidy policies, one has to be resident of a state where these financial incentives are present. 

So if one state has implemented some form of financial incentives, it is possible to attract 

potential renewable technology users who would otherwise locate in neighboring states to switch 

to that state. This kind of negative spillover effects resulted from neighboring states’ financial 

incentives may be seen as competing effects. 

For the marginal effects of neighboring states’ renewable energy policies, we will first 

calculate marginal effects using the sum of 𝜇𝑖 and 𝑢𝑖𝑡 as one single normal distribution in the 

error term. Since both individual state random effect 𝜇𝑖 and the disturbance term 𝑢𝑖𝑡 are assumed 

to be normal, their summation is normal. Then we will also calculate the marginal effect 

conditional on different realizations of individual state random effect 𝜇𝑖. In the main results, the 

estimated standard deviation of 𝜇𝑖 and 𝑢𝑖𝑡 are 0.393 and 0.952, respectively. So the variance of 

the sum of these two normal distributions is 1.061 (with standard deviation 1.030). With the 

formula for marginal effects in Appendix 1.1, plug in the mean value of the explanatory 

variables from the summary statistics table and their corresponding estimated coefficients from 

the Tobit random effects model. The marginal effects of neighboring states’ tax incentive, 

subsidy policy, interconnection existence, net metering existence and renewable portfolio 

standard existence calculated as the expected changes in the number of patent applications in 
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response to a one unit change in the corresponding policy variable are -0.5206, -1.5242, 1.5097, 

1.8927, and 1.4770, respectively18. Next, marginal effects are also calculated when the individual 

random effect is evaluated at the mean value, one standard deviation below and one standard 

deviation above the mean value19. After the realization of individual random effects, random 

effect can be combined with the estimated constant of the model. When the realization of the 

random effect is at the mean level (0), the marginal effects of neighboring states’ tax incentive, 

subsidy policy, interconnection existence, net metering existence and renewable portfolio 

standard existence are -0.4616, -1.3516, 1.3388, 1.6784, and 1.3098, respectively. When the 

random effect is realized one standard deviation below the mean (-0.393), the marginal effects of 

these policies are -0.2483, -0.7269, 0.7200, 0.9027, and 0.7044. The marginal effects of these 

policies are -0.7914, -2.3170, 2.2951, 2.8773, and 2.2454 when the random effect is realized at 

one standard deviation above the mean level (0.393). 

Results shown in Table 1.4 also indicate that electricity consumption is significantly positive 

at the 1% and inflation adjusted R&D is significantly positive at the 5% confidence levels for the 

random effects specification, respectively. These results show that states with higher electricity 

consumption or higher R&D investments tend to have more innovation in renewable energy 

technology. The coefficient for state wind power technical potential is also significantly positive. 

This means that renewable technology is more likely to be deployed in states rich in wind power 

where the marginal cost could be lower or scale economies are more likely to appear and this 

increased deployment could lead to relevant technology innovation. However, in all the 

                                                           
18 The direction of the changes in the number of patent applications will depend on the sign of the coefficients of neighboring 

states’ policy variables. 

19 The standard deviation is the estimated standard deviation of 𝜇𝑖. Then the variance of disturbance term used to calculate 

marginal effects is that of 𝑢𝑖𝑡. 
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regressions state’s own renewable policies have not shown any statistically significant effect on 

technology innovation in that state. 

As an alternative, we also run the Tobit model with either fixed effect or random effect for the 

original count variable. From results in Table 1.5, we can see although the coefficients are much 

larger, they show the similar sign pattern as those reported in Table 1.4. The coefficients for 

neighboring states’ tax incentive and subsidy policy are in general negative, and the coefficients 

for regulatory rules and mandate are in general positive. The coefficients for neighboring states 

RPS are significantly negative for most of the specifications. For controlling variables, the 

coefficients for electricity price are significantly positive for all the specifications, and the 

coefficients for electricity consumption are also all positive. From the results, wind power 

technical potential has also shown a significantly positive effect on technology innovation. To 

characterize how large are the effects of neighboring states renewable policy in inducing 

innovation in a state, marginal effects for neighboring states’ tax incentive, subsidy policy, 

interconnection, net metering and RPS are calculated as -0.5932, -1.9798, 1.3834, 2.2081, and 

2.1825, respectively20. 

For robustness checks, we have run these regressions again with the contiguity spatial weight 

matrices for the log transformed count variable. Although the magnitude of the coefficients is 

different, the results show very similar patterns as those we get with the population/distance 

weighting matrix. Specifically, the coefficients for neighboring states’ regulatory rules and 

mandates tend to be positive with the coefficient of neighboring states’ renewable portfolio 

standards significantly positive. We also try a series of regressions with alternative RPS variables 

                                                           
20 These marginal effects are calculated assuming all the explanatory variables are evaluated at their corresponding mean values. 

The average marginal effects for the five neighboring states’ policy variables over all the observations of the explanatory 

variables are calculated as -1.9406, -6.4769, 4.5257, 7.2237, 7.1400, respectively. 
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and different lag structures in both the within state renewable policy variables and neighboring 

states’ policies. Again, the results are also consistent with our baseline results that neighboring 

states’ financial incentives have a negative spillover effect while neighboring states’ regulatory 

rules and mandate have a positive spillover effect21. As robustness checks, we also run a zero 

inflated Poison regression for the original count variable using state patent applications from 

1974 to 1982 to control for state individual effects and Poison regression with fixed or random 

effects. The results for these regressions are again consistent with those we have got from 

running a Tobit regression. All these robustness checks results are presented in Table 1.6 through 

Table 1.10. 

From these regression results, states’ own renewable energy policies haven’t shown any 

significant effects on technology innovation so far. One suspection is that there might be 

multicolinearity between states’ own policy variables and neighboring states’ policy variables. 

To see whether this is the cause of the nonsignificance for states’ own policy variables, we drop 

neighboring states’ policy variables and run the regression again. The results reported in Table 

1.11 show that most of the coefficients for the policy variables are positive except for RPS, 

although most of them are not statistically significant. This means states’ own renewable energy 

policy could have some positive effect on technology innovation, we didn’t see any significant 

effect in the previous regressions bacause of the multilinearity problem. 

One last thing we need to worry about is the policy endogeneity issue, one possibility is that 

states with stronger green power characterized by more patent applications may lobby for 

environmental legislation more intensively. Thus the causal relationship is inverse, that’s to say 

                                                           
21 The coefficients in general show similar sign patterns, although their magnitude may vary with the specifications. 
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states with more patent applications will be more likely to have some form of renewable energy 

policy in place. To exclude this possibility, we run a probit or ordered probit regression on the 

five policy variables using similar explanatory variables as those used in the previous 

regressions. One variable of special interest is the state wind power technical potential variable. 

Since state wind power technical potential is exogenous and has shown a significant positive 

effect on technology innovation, we could use this variable as an instrument for technology 

innovation and see if it will affect renewable energy policy enactment. If it does not show any 

effect on whether a state will have some form of renewable energy policy, we can exclude the 

causal effect of technology innovation on enactment of renewable energy policy. From 

regression results in Table 1.12, none of the coefficients of state wind power technical potential 

are statistically significant except for the regression on net metering, which is significant at 10% 

level. This means that technology innovation will not affect the enactment of renewalbe energy 

policies in most of the cases. 

In summary, the empirical results show that renewable energy regulatory rules and mandates 

such as interconnection policy, net metering and renewable portfolio standard enacted by 

neighboring states have a statistically significant positive spillover effect on technology 

innovation in that state. However, financial incentives such as tax incentives and subsidy policies 

implemented in neighboring states have a statistically significant negative spillover effect on 

technological innovation in that state. Other factors, such as R&D investment, electricity 

consumption, and per capita income may also affect innovation related to renewable technology. 

In general, the results show that states with higher electricity consumption or per capita income 

would have a faster pace of technological innovation. 
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1.6 Conclusions and Discussion 

    In this study, we have examined the role of state renewable energy policies in inducing 

renewable technological innovation and the spillover effect of renewable energy policies enacted 

in neighboring states on innovation in that state. We have constructed a variable for state yearly 

patent counts as a measure of technological innovation using patent information from the 

national patent office provided through Delphion. Then we do a log transformation of the state 

yearly patent counts and use it as the dependent variable. Explanatory variables include a series 

of dummy variables characterizing the existence of renewable policy variables or a series of 

cumulative policy variables taking into account any amendments in these policies and the 

spatially weighted average of these policy variables. We run the regression using a Tobit model 

with individual effects using energy market demand and supply factors, and state demographic, 

economic and political factors as controling variables. The results show that renewable 

technology regulatory rules and mandates such as interconnection standards, net metering and 

renewable portfolio standards have a significant positive spillover effect on technological 

innovation in that state. However, neighboring states’ financial incentives, like tax incentives and 

subsidy policies have statistically significant negative effects on patenting activities in that state. 

Other factors such as electricity consumption, electricity price and population growth in a state 

also show significantly positive effects on technology innovation within a state. These results 

consistently hold water when we change the regression specification, such as changing the Tobit 

regression with random effects to a Tobit regression with fixed effects, including time dummy 

variables in the regression or using a series of alternative policy variables to take into account 

amendments in these policies or the stringency of state RPS. 
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    As can be seen from the previous regression results, while neighboring states’ spatially 

weighted average renewable energy policies have a significant effect on technological innovation 

in that state,  the states’ own policies do not show any significant effect on technological 

innovation within the state. We suspect this might be caused by the mulcolinearity between 

states’ own policies and the corresponding policies enacted in neighboring states. We have tried 

to prove that this is the case by running a regression excluding neighboring states’ policy 

variables. Another possibility is that renewable energy policies enacted within a state have such a 

strong effect on innovation in neighboring states that states surrounded by a larger proportion of 

neighboring states with renewable policy in place will show increased patent applications while 

states with only within state renewable policies will not. However, the mechanism of state’s own 

policy enactment and its effect on innovation needs to be explored further. 

    Another issue that needs to be addressed is the underlying assumption in the analysis of this 

study that there is no policy endogeneity. Specifically, the enactment of state renewable energy 

policy is the result of technological innovation related to renewable energy in that state. We have 

ruled out the possible of endogenous policy by running a Probit or ordered Probit regression on 

the policy variables using state wind power technical potential as an instrument for technology 

innovation. Another possible explanation is that these renewable policies are implemented as a 

result of public understanding of the consequences of pollution and global warming. Thus it is 

reasonable to assume that renewable policies both at the state level and federal level are 

implemented in response to a larger global trend, such as a greater sense of awareness and 

responsibility in environmental issues. 
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Table 1.1 Frequency Table for State Yearly Patent Application Count (1983-2010) 

Count Frequency Percent Cumulative Frequency Cumulative percent 

0 843 62.72 843 62.72 

1 223 16.59 1066 79.32 

2 113 8.41 1179 87.72 

3 49 3.65 1228 91.37 

4 29 2.16 1257 93.53 

5 21 1.56 1278 95.09 

6 15 1.12 1293 96.21 

7 9 0.67 1302 96.88 

8 5 0.37 1307 97.25 

9 6 0.45 1313 97.69 

10 6 0.45 1319 98.14 

11 1 0.07 1320 98.21 

12 5 0.37 1325 98.59 

13 1 0.07 1326 98.66 

14 4 0.3 1330 98.96 

15 2 0.15 1332 99.11 

17 1 0.07 1333 99.18 

18 1 0.07 1334 99.26 

20 1 0.07 1335 99.33 

22 2 0.15 1337 99.48 

23 1 0.07 1338 99.55 

24 1 0.07 1339 99.63 

25 1 0.07 1340 99.7 

26 1 0.07 1341 99.78 

28 1 0.07 1342 99.85 

31 1 0.07 1343 99.93 

32 1 0.07 1344 100 

Note: The data source is Delphion. The data used in this paper covers 48 states for 28 years, so the total 

number of state yearly counts is 1344. 

  



36 

 

 

 

Table 1.2 Summary Statistics 

Variable Mean Std. Dev. Min Max 

Log R&D Investments (Millions 2009 USD) 7.1542 1.7887 1.1886 11.1166 

Log Electricity Consumption (Billion BTU) 11.8411 0.9911 9.4507 13.9846 

Electricity Consumption Growth (%) 2.0597 3.7896 -21.4907 41.4432 

Log Electricity Price (2009 USD per BTU) 3.3374 0.2985 2.7048 4.0979 

Population Growth (%) 0.9974 1.0234 -5.9861 7.325 

Log Per Capita Income (2009 USD) 10.3713 0.1921 9.8144 10.9647 

Log Wind Power Technical Potential (GWh) 12.1868 2.5072 4.9972 15.5297 

Log Global Wind Capacity (Megawatts) 8.7641 1.9122 4.4998 11.9765 

LCV Senate Score 0.483 0.3022 0 1 

LCV House Score 0.4719 0.2512 0 1 

Tax Incentive Index 0.9167 1.11 0 4 

Subsidy Policy Index 0.3214 0.5809 0 3 

Interconnection Existence 0.192 0.394 0 1 

Net Metering Existence 0.3125 0.4637 0 1 

Renewable Portfolio Standard Existence 0.1659 0.3721 0 1 

Interconnection Cumulative 0.2753 0.6516 0 5 

Net Metering Cumulative 0.3981 0.6628 0 3 

Renewable Portfolio Standard Cumulative 0.2567 0.6483 0 4 

Renewable Portfolio Standard Alternative 1 0.1138 0.3177 0 1 

Renewable Portfolio Standard Alternative 2 0.1503 0.3575 0 1 

Note: Units are in parenthesis. 
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Table 1.3 Summary Statistics for Neighboring States’ Average Policy 

  Variable Mean Std.Dev. Min Max 

Contiguity 

Weighting 

Tax Incentive 0.9586 0.7715 0 3.6667 

Subsidy Policy 0.3254 0.3598 0 2 

Interchange Existence 0.2011 0.3031 0 1 

Net Metering Existence 0.3238 0.3515 0 1 

Renewable Portfolio  

Standard Existence 
0.1624 0.2708 0 1 

Interconnetion Cumulative 0.2952 0.5387 0 5 

Net Metering Cumulative 0.4208 0.5387 0 3 

Renewable Portfolio  

Standard Cumulative 
0.2521 0.4600 0 2.6667 

Renewable Portfolio  

Standard Alternative 1 
0.1087 0.2217 0 1 

Renewable Portfolio  

Standard Alternative 2 
0.1495 0.2490 0 1 

Population/Distance  

Weighting 

Tax Incentive 0.9450 0.5461 0.29979 2.6329 

Subsidy Policy 0.3178 0.2587 0 1.3733 

Interconnection Existence 0.1915 0.2484 0 0.9469 

Net Metering Existence 0.3091 0.2727 0 0.9593 

Renewable Portfolio  

Standard Existence 
0.1641 0.2186 0 0.8893 

Interconnetion Cumulative 0.2755 0.3992 0 1.8743 

Net Metering Cumulative 0.3920 0.3972 0 1.6655 

Renewable Portfolio  

Standard Cumulative 
0.2521 0.3745 0 1.9005 

Renewable Portfolio  

Standard Alternative 1 
0.1129 0.1706 0 0.7424 

Renewable Portfolio  

Standard Alternative 2 
0.1476 0.1846 0 0.8049 
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Figure 1.1 Average Percentage of Electricity Produced by Wind Power (2001-2010) 

 

Data Source: State Energy Data System, EIA 

Figure 1.2 Total Number of Patent Application by State (1983-2010) 

 

Data Source: Delphion, Author’s calculation. 
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Figure 1.3 Patent Application by State 1984 

 

Data Source: Delphion, Authors’ calculation. 

Figure 1.4 Patent Application by State 1989 

 

Data Source: Delphion, Authors’ calculation. 
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Figure 1.5 Patent Application by State 1994 

 

Data Source: Delphion, Author’s calculation. 

Figure 1.6 Patent Application by State 1999 

 

Data Source: Delphion, Author’s calculation. 
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Figure 1.7 Patent Application by State 2004 

 

Data Source: Delphion, Author’s calculation. 

Figure 1.8 Patent Application by State 2009 

 

Data Source: Delphion, Author’s calculation. 
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Figure 1.9 State Renewable Energy Technical Potential (Wind Power) 

 

Data Source: National Renewable Energy Laboratory 

Figure 1.10 State Renewable Energy Technical Potential (Solar) 

 

Data Source: National Renewable Energy Laboratory 
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Figure 1.11 Wind Power Deployment Compared to Technical Potential 

 

Data Source: National Renewable Energy Laboratory and EIA 

  



44 

 

 

 

Table 1.4 Tobit Model Regression Results with Log Population/Distance Weighting 

  Random Effect Fixed Effect 

Neighbor Tax Incentive 
-0.541* -0.806** -0.496 -1.133* 

(0.307) (0.397) (0.315) (0.620) 

Neighbor Subsidy Policy 
-1.584*** -0.846 -1.325*** -0.318 

(0.404) (0.586) (0.401) (0.705) 

Neighbor Interconnection 
1.569** 0.538 1.108 -0.333 

(0.756) (1.390) (0.777) (1.359) 

Neighbor Net Metering 
1.967*** 1.651* 1.572** 0.923 

(0.600) (0.975) (0.665) (0.997) 

Neighbor RPS 
1.535*** 1.374 1.695*** 0.536 

(0.579) (0.909) (0.336) (1.162) 

Tax Incentive Index 
0.0391 0.0419 0.0481 0.0515 

(0.0500) (0.0511) (0.0577) (0.0606) 

Subsidy Policy Index 
0.0487 0.0694 0.0472 0.0453 

(0.0769) (0.0774) (0.0773) (0.0869) 

Interconnection 
0.173 0.111 0.231* 0.0928 

(0.136) (0.146) (0.122) (0.137) 

Net Metering 
-0.0876 -0.0692 -0.0865 -0.00589 

(0.127) (0.129) (0.136) (0.140) 

RPS 
-0.0413 -0.09 -0.0996 -0.144 

(0.125) (0.123) (0.134) (0.128) 

Log Inflation Adjusted R&D 
0.112* 0.143** -0.0383 0.0389 

(0.0632) (0.0648) (0.105) (0.0938) 

Log Electricity Consumption 
0.372*** 0.312*** 0.611 0.412 

(0.107) (0.114) (0.584) (0.682) 

Electricity Consumption Growth 
-0.0205** -0.0214* -0.0201* -0.0175 

(0.0103) (0.0113) (0.0116) (0.0129) 

Log Electricity Price 
0.224 0.386 0.349 0.643 

(0.266) (0.288) (0.486) (0.515) 

Population Growth 
0.0836 0.0652 0.0431 0.0357 

(0.0511) (0.0531) (0.0789) (0.0781) 

Log Per Capita Income 
1.062* 0.806 -0.169 -1.201 

(0.573) (0.647) (1.104) (1.038) 

Log Global Wind Capacity 
-0.150**  -0.0419  

(0.0761)  (0.0944)  

Wind Power Technical Potential 
0.0639** 0.0545*   

(0.0288) (0.0302)   

LCV Senate Score 
-0.201 -0.0503 -0.187 -0.00408 

(0.179) (0.180) (0.208) (0.188) 

LCV House Score 
-0.165 -0.0967 -0.194 0.0749 

(0.250) (0.261) (0.308) (0.352) 

Time Dummy  No Yes No Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 1.5 Tobit Model Regression Results with Original Count Variable 

  Random Effect Fixed Effect 

Neighbor Tax Incentive 
-1.941 -2.853* -0.479 -3.775 

(1.280) (1.672) (3.505) (6.471) 

Neighbor Subsidy Policy 
-6.477*** -3.414 -9.869* -5.471 

(1.648) (2.421) (5.435) (8.046) 

Neighbor Interconnection 
4.526 2.797 4.286 -4.51 

(3.133) (5.743) (7.865) (11.23) 

Neighbor Net Metering 
7.224*** 7.185* 1.744 5.22 

(2.496) (4.064) (4.461) (6.481) 

Neighbor RPS 
7.140*** 7.062* 10.93** 5.213 

(2.368) (3.772) (4.541) (11.18) 

Tax Incentive Index 
0.428** 0.435** 2.948** 2.632** 

(0.214) (0.218) (1.249) (1.278) 

Subsidy Policy Index 
0.326 0.437 1.007 1.267 

(0.318) (0.320) (0.731) (0.909) 

Interconnection 
1.027* 0.902 0.754 0.483 

(0.559) (0.604) (1.210) (1.548) 

Net Metering 
-0.23 -0.223 0.903 1.178 

(0.530) (0.538) (2.086) (1.633) 

RPS 
-0.161 -0.318 -1.243 -1.332 

(0.509) (0.506) (1.444) (1.526) 

Log Inflation Adjusted R&D 
0.184 0.301 -0.577 -0.0394 

(0.277) (0.283) (1.011) (0.971) 

Log Electricity Consumption 
1.838*** 1.668*** 3.793 1.082 

(0.474) (0.502) (5.220) (5.733) 

Electricity Consumption Growth 
-0.0763* -0.0844* -0.127* -0.150* 

(0.0426) (0.0472) (0.0730) (0.0782) 

Log Electricity Price 
2.710** 3.458*** 7.522** 9.872*** 

(1.147) (1.245) (3.037) (3.128) 

Population Growth 
0.245 0.162 -0.143 -0.155 

(0.217) (0.226) (0.609) (0.419) 

Log Per Capita Income 
3.383 1.74 8.949 2.305 

(2.471) (2.778) (7.755) (9.670) 

Log Global Wind Capacity 
-0.373  -0.117  

(0.320)  (0.521)  

Wind Power Technical Potential 
0.257** 0.231*   

(0.130) (0.135)   

LCV Senate Score 
-0.894 -0.44 -1.59 -1.175 

(0.745) (0.753) (1.641) (1.812) 

LCV House Score 
-1.234 -1.201 -1.79 -1.34 

(1.058) (1.103) (1.702) (1.770) 

Time Dummy  No Yes No Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 1.6 Tobit Model Regression Results with Contiguity Weighting 

  Random Effect Fixed Effect 

Neighbor Tax Incentive 
0.021 -0.111 -0.0917 -0.262* 

(0.0963) (0.108) (0.121) (0.144) 

Neighbor Subsidy Policy 
-0.473*** -0.352** -0.37 -0.285 

(0.153) (0.160) (0.266) (0.228) 

Neighbor Interconnection 
0.606** -0.0498 0.739*** -0.107 

(0.256) (0.297) (0.284) (0.380) 

Neighbor Net Metering 
0.444* 0.449* 0.237 0.279 

(0.232) (0.246) (0.285) (0.265) 

Neighbor RPS 
0.841*** 0.516** 0.498* 0.171 

(0.231) (0.240) (0.279) (0.238) 

Tax Incentive Index 
0.0693 0.0497 0.0986 0.0533 

(0.0487) (0.0494) (0.0761) (0.0589) 

Subsidy Policy Index 
0.0109 0.0547 0.0221 0.0341 

(0.0776) (0.0776) (0.0792) (0.0869) 

Interconnection 
0.243* 0.063 0.288** 0.0953 

(0.133) (0.135) (0.117) (0.121) 

Net Metering 
-0.0637 -0.0318 -0.0129 0.0344 

(0.126) (0.125) (0.126) (0.134) 

RPS 
0.103 -0.0368 0.00715 -0.0989 

(0.125) (0.123) (0.141) (0.112) 

Log Inflation Adjusted R&D 
0.110* 0.127* -0.0034 0.00833 

(0.0623) (0.0647) (0.106) (0.101) 

Log Electricity Consumption 
0.374*** 0.335*** 0.329 0.25 

(0.104) (0.110) (0.651) (0.523) 

Electricity Consumption Growth 
-0.0190* -0.0203* -0.018 -0.0141 

(0.00996) (0.0113) (0.0131) (0.0113) 

Log Electricity Price 
0.0955 0.357 0.47 0.499 

(0.260) (0.283) (0.588) (0.417) 

Population Growth 
0.0467 0.0691 -0.0193 0.022 

(0.0500) (0.0531) (0.0600) (0.0873) 

Log Per Capita Income 
1.508*** 0.788 1.442* -0.662 

(0.540) (0.632) (0.821) (1.285) 

Log Global Wind Capacity 
-0.111*  -0.0374  

(0.0616)  (0.0708)  

Wind Power Technical Potential 
0.0512* 0.0558*   

(0.0275) (0.0298)   

LCV Senate Score 
-0.334* -0.0492 -0.267 -0.0113 

(0.181) (0.181) (0.193) (0.223) 

LCV House Score 
-0.31 -0.0943 -0.225 0.0514 

(0.252) (0.261) (0.308) (0.342) 

Time Dummy  No Yes No Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.  Log transformed count variable is 

used.
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Table 1.7 Tobit Model Regression Results with Alternative Policy Variables 

  Cumulative Policy RPS Alternative 1 RPS Alternative 2 

Neighbor Tax Incentive 
-0.199 -0.708* -0.525* -0.826** -0.491 -0.839** 

(0.286) (0.380) (0.306) (0.396) (0.306) (0.398) 

Neighbor Subsidy Policy 
-1.889*** -0.778 -1.482*** -0.689 -1.406*** -0.566 

(0.482) (0.630) (0.392) (0.557) (0.391) (0.560) 

Neighbor Interconnection 
0.702 0.533 1.712** 0.456 1.690** 0.127 

(0.609) (0.895) (0.754) (1.396) (0.756) (1.381) 

Neighbor Net Metering 
1.722*** 1.143* 1.958*** 1.999** 1.921*** 2.218** 

(0.451) (0.673) (0.599) (0.923) (0.626) (0.970) 

Neighbor RPS 
0.354 0.173 1.484** 0.666 1.380* 0.239 

(0.403) (0.561) (0.684) (0.927) (0.718) (0.986) 

Tax Incentive Index 
0.0461 0.0405 0.0369 0.0423 0.0421 0.0445 

(0.0499) (0.0498) (0.0501) (0.0511) (0.0500) (0.0511) 

Subsidy Policy Index 
0.0523 0.0935 0.0417 0.0633 0.0554 0.0775 

(0.0797) (0.0791) (0.0758) (0.0760) (0.0768) (0.0769) 

Interconnection 
0.00189 -0.0235 0.167 0.0958 0.167 0.0847 

(0.0853) (0.0880) (0.136) (0.146) (0.136) (0.146) 

Net Metering 
-0.0304 -0.012 -0.0837 -0.0607 -0.0841 -0.0445 

(0.0878) (0.0874) (0.126) (0.126) (0.127) (0.128) 

RPS 
-0.069 -0.0973 0.134 0.0825 0.0183 -0.0578 

(0.0739) (0.0733) (0.125) (0.123) (0.124) (0.123) 

Time Dummy  No Yes No Yes No Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Tobit model with random effect is used for log transformed variable. 

Coefficients are reported for policy variables only.



48 

 

 

 

Table 1.8 Tobit Model Regression Results with Alternative Lags in Policies 

In State Policy Lags  1 1 1 2 2 2 3 3 3 

Out of State Policy Lags 1 2 3 1 2 3 1 2 3 

Neighbor Tax Incentive 
-0.541* -0.488 -0.416 -0.464 -0.438 -0.316 -0.453 -0.47 -0.357 

(0.307) (0.308) (0.319) (0.309) (0.311) (0.320) (0.311) (0.314) (0.324) 

Neighbor Subsidy Policy 
-1.584*** -1.184** -0.0583 -1.572*** -1.190** -0.042 -1.596*** -1.221** -0.122 

(0.404) (0.509) (0.619) (0.404) (0.508) (0.622) (0.408) (0.514) (0.621) 

Neighbor Interconnection 
1.569** 0.605 0.535 1.419* 0.464 0.292 1.500** 0.617 0.419 

(0.756) (0.762) (0.767) (0.752) (0.760) (0.768) (0.755) (0.757) (0.767) 

Neighbor Net Metering 
1.967*** 3.214*** 3.910*** 2.046*** 3.324*** 4.105*** 1.977*** 3.242*** 4.071*** 

(0.600) (0.612) (0.614) (0.594) (0.607) (0.617) (0.590) (0.601) (0.613) 

Neighbor RPS 
1.535*** 1.223** -0.527 1.540*** 1.282** -0.469 1.571*** 1.335** -0.324 

(0.579) (0.594) (0.627) (0.580) (0.589) (0.625) (0.581) (0.591) (0.619) 

Tax Incentive Index 
0.0391 0.0573 0.0843* 0.0543 0.0707 0.0926* 0.0304 0.0428 0.0592 

(0.0500) (0.0498) (0.0491) (0.0516) (0.0515) (0.0512) (0.0532) (0.0531) (0.0527) 

Subsidy Policy Index 
0.0487 0.0342 0.0576 0.0695 0.0649 0.083 0.0142 0.0111 0.0331 

(0.0769) (0.0771) (0.0777) (0.0847) (0.0844) (0.0855) (0.0925) (0.0923) (0.0926) 

Interconnection 
0.173 0.117 0.122 0.0203 -0.00595 -0.0385 -0.0186 0.00378 -0.015 

(0.136) (0.135) (0.136) (0.139) (0.138) (0.138) (0.142) (0.142) (0.142) 

Net Metering 
-0.0876 -0.0799 -0.0434 -0.0899 -0.112 -0.0697 -0.0223 -0.0845 -0.0736 

(0.127) (0.126) (0.125) (0.129) (0.128) (0.127) (0.130) (0.131) (0.129) 

RPS 
-0.0413 -0.0623 -0.0659 0.0332 -0.0143 -0.0368 0.0308 -0.00099 -0.049 

(0.125) (0.125) (0.125) (0.128) (0.128) (0.129) (0.133) (0.133) (0.133) 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Coefficients are reported for policy variables only. Log transformed count 

variable is used. 
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Table 1.9 Zero Inflated Poisson Model Regression Results 

  Model 1 Model 2 Model 3 Model 4 

Variable Count Inflate Count Inflate Count Inflate Count Inflate 

Previous Patent Count 
     -0.0670***      -0.0833 

   (0.0199)    (0.0594) 

Neighbor Tax Incentive 
0.531 2.968*** 0.476 2.532** 1.201 5.006** 1.113 4.812* 

(0.722) (0.998) (0.726) (1.148) (0.911) (2.406) (0.975) (2.799) 

Neighbor Subsidy Policy 
-2.207*** 0.956 -2.184*** 1.29 -1.208 1.544 -1.109 2.428 

(0.614) (1.438) (0.614) (1.235) (1.247) (5.275) (1.180) (3.850) 

Neighbor Interconnection 
0.339 -5.604** 0.458 -5.161** -0.302 -4.991 -0.295 -3.941 

(1.229) (2.562) (1.219) (2.422) (2.318) (20.71) (2.000) (14.70) 

Neighbor Net Metering 
0.11 -6.085** 0.216 -4.633* -0.426 -10.65** -0.183 -8.134** 

(0.871) (3.051) (0.845) (2.667) (1.320) (5.040) (1.280) (4.140) 

Neighbor RPS 
1.672** -0.207 1.510** -1.961 2.339 2.559 2.241 0.248 

(0.662) (2.297) (0.598) (2.365) (1.842) (6.924) (2.118) (7.179) 

Tax Incentive Index 
0.0137 0.00678 0.00888 0.0243 0.0502 0.0516 0.0417 0.0457 

(0.0673) (0.169) (0.0672) (0.148) (0.0695) (0.234) (0.0741) (0.219) 

Subsidy Policy Index 
0.0443 -0.0503 0.0417 0.0356 0.0851 -0.0534 0.0909 0.123 

(0.0763) (0.221) (0.0781) (0.236) (0.0788) (0.370) (0.0800) (0.388) 

Interconnection 
-0.0363 -0.144 -0.0426 -0.363 -0.107 0.104 -0.117 -0.105 

(0.171) (0.448) (0.160) (0.331) (0.200) (0.888) (0.184) (0.598) 

Net Metering 
0.457** 0.464 0.455*** 0.623** 0.437*** 0.299 0.442*** 0.476 

(0.181) (0.403) (0.173) (0.315) (0.166) (0.803) (0.149) (0.489) 

RPS 
-0.323 -0.718* -0.31 -0.770** -0.419* -1.148* -0.396 -1.083 

(0.255) (0.431) (0.266) (0.372) (0.248) (0.668) (0.270) (0.922) 

Time Dummy No No Yes Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Coefficients are reported for policy variables only. 
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Table 1.10 Regression Results for Poisson Model with Fixed or Random Effects 

  Random Effect Fixed Effect 

Neighbor Tax Incentive 
-0.531** -0.743* -0.580* -1.055** 

(0.271) (0.391) (0.301) (0.433) 

Neighbor Subsidy Policy 
-1.647*** -0.145 -1.581*** 0.0393 

(0.283) (0.475) (0.295) (0.494) 

Neighbor Interconnection 
1.802*** -0.879 1.862*** -1.196 

(0.640) (1.024) (0.674) (1.071) 

Neighbor Net Metering 
1.656*** 2.305*** 1.605*** 1.835* 

(0.521) (0.893) (0.535) (0.941) 

Neighbor RPS 
1.563*** -0.431 1.638*** -0.657 

(0.413) (0.768) (0.433) (0.799) 

Tax Incentive Index 
0.134*** 0.131*** 0.136** 0.123** 

(0.0481) (0.0492) (0.0527) (0.0537) 

Subsidy Policy Index 
0.0453 0.0703 0.0525 0.0639 

(0.0599) (0.0633) (0.0642) (0.0684) 

Interconnection 
0.0428 -0.148 0.0245 -0.202 

(0.104) (0.120) (0.108) (0.125) 

Net Metering 
0.143 0.299** 0.178 0.359*** 

(0.110) (0.119) (0.115) (0.125) 

RPS 
-0.242*** -0.393*** -0.258*** -0.394*** 

(0.0935) (0.0982) (0.0977) (0.103) 

Log Inflation Adjusted R&D 
-0.0732 0.0202 -0.186** -0.062 

(0.0759) (0.0800) (0.0908) (0.100) 

Log Electricity Consumption 
0.752*** 0.615*** 0.934** 0.757 

(0.135) (0.145) (0.459) (0.483) 

Electricity Consumption Growth 
-0.0304*** -0.0325*** -0.0284*** -0.0296*** 

(0.00941) (0.0105) (0.00956) (0.0107) 

Log Electricity Price 
1.235*** 1.178*** 1.294*** 1.122*** 

(0.272) (0.300) (0.351) (0.377) 

Population Growth 
0.0896* 0.0887 0.0656 0.0807 

(0.0531) (0.0560) (0.0592) (0.0633) 

Log Per Capita Income 
2.162*** 1.304* 2.125** -0.209 

(0.610) (0.727) (0.856) (1.126) 

Log Global Wind Capacity 
-0.0798  -0.0809  

(0.0788)  (0.0916)  

Wind Power Technical Potential 
0.0637 0.0536   

(0.0428) (0.0459)   

LCV Senate Score 
-0.286* -0.0547 -0.341** -0.116 

(0.156) (0.162) (0.163) (0.169) 

LCV House Score 
-0.598** -0.202 -0.767** -0.228 

(0.282) (0.303) (0.312) (0.337) 

Time Dummy  No Yes No Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 1.11 Tobit Model Regression Results with In-State Policy Varialbes ONLY 

  Random Effect Fixed Effect 

Tax Incentive Index 
0.155*** 0.0752 0.200*** 0.0734 

(0.0500) (0.0494) (0.0714) (0.0688) 

Subsidy Policy Index 
0.0768 0.102 0.0767 0.0386 

(0.0798) (0.0771) (0.105) (0.0738) 

Interconnection 
0.243* 0.0171 0.202 0.0426 

(0.135) (0.133) (0.148) (0.147) 

Net Metering 
0.0816 0.0493 0.111 0.0583 

(0.128) (0.124) (0.140) (0.145) 

RPS 
0.141 -0.0863 0.0458 -0.132 

(0.127) (0.124) (0.142) (0.147) 

Log Inflation Adjusted R&D 
0.142** 0.151** -0.00349 0.0064 

(0.0645) (0.0644) (0.111) (0.104) 

Log Electricity Consumption 
0.260** 0.275*** 0.0507 0.0561 

(0.105) (0.106) (0.583) (0.726) 

Electricity Consumption Growth 
-0.0213** -0.0199* -0.018 -0.017 

(0.0101) (0.0114) (0.0128) (0.0144) 

Log Electricity Price 
0.415 0.45 0.635 0.497 

(0.261) (0.284) (0.475) (0.439) 

Population Growth 
0.0263 0.0751 -0.0372 0.043 

(0.0522) (0.0534) (0.0659) (0.0919) 

Log Per Capita Income 
1.408** 0.574 1.754* -1.026 

(0.559) (0.631) (0.957) (1.344) 

Log Global Wind Capacity 
0.0367  0.0434  

(0.0519)  (0.0834)  

Wind Power Technical Potential 
0.0421 0.0590*   

(0.0296) (0.0302)   

LCV Senate Score 
-0.268 0.00942 -0.169 -0.00551 

(0.185) (0.180) (0.180) (0.227) 

LCV House Score 
-0.0341 0.0789 -0.0992 0.164 

(0.257) (0.259) (0.280) (0.336) 

Time Dummy  No Yes No Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.12 Probit and Ordered Probit Regression Results for Policy Variables 

  RPS Net Metering Interconnection Tax Incentive Index Subsidy Policy Index 

  Probit Random Effects Ordered Probit Random Effects 

Wind Power Technical Potential 
0.622 0.470* -0.428 0.2 0.151 

(0.488) (0.276) (0.366) (0.176) (0.245) 

Log Inflation Adjusted R&D 
1.102 -0.512 -0.216 -0.0766 -0.117 

(1.028) (0.443) (0.658) (0.108) (0.163) 

Log Electricity Consumption 
-1.91 -0.948 1.628 0.158 -1.158 

(1.754) (0.851) (1.227) (0.375) (0.866) 

Electricity Consumption Growth 
-0.0701 -0.047 -0.0795 0.00245 0.00385 

(0.0971) (0.0452) (0.0611) (0.0135) (0.0215) 

Log Electricity Price 
-4.687 -13.31*** -3.531 -2.259*** 0.798 

(2.964) (2.430) (3.469) (0.526) (0.808) 

Population Growth 
0.377 -1.417*** -0.43 0.0754 -0.362** 

(0.689) (0.295) (0.676) (0.0770) (0.148) 

Log Per Capita Income 
72.72*** 66.64*** 47.98*** 3.394** -5.227** 

(6.196) (4.395) (3.878) (1.400) (2.313) 

LCV Senate Score 
4.376** 1.358 0.489 0.232 0.414 

(2.189) (0.929) (1.198) (0.243) (0.408) 

LCV House Score 
1.317 -1.468 -2.756 0.0268 1.057** 

(2.874) (1.768) (2.241) (0.352) (0.495) 

Time Dummy Yes Yes Yes Yes Yes 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Appendix 1.1 Calculation of Marginal Effects in a Nonlinear Tobit Model 

For the nonlinear Tobit Model given in section 1.3, 

𝑦𝑖𝑡 = log ( 1 + #𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 ) = {
𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡                    𝑖𝑓 𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡 > 0
0                                    𝑖𝑓 𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡 ≤ 0

 

Since the marginal effect is the response in the number of patents corresponding to a unit 

change in a specific policy variable, first write the number of patents applications 𝐶𝑖𝑡 as, 

𝐶𝑖𝑡 ≡ #𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 = exp(𝑦𝑖𝑡) − 1 = {
exp (𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡) − 1              𝑖𝑓 𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡 > 0
0                                                𝑖𝑓 𝑥𝑖𝑡𝛽 + 𝜖𝑖𝑡 ≤ 0

, 

where 𝜖𝑖𝑡 = 𝜇𝑖 + 𝑢𝑖𝑡. Since 𝜇𝑖~𝐼𝐼𝐷 𝒩(0, 𝜎𝜇
2) and 𝑢𝑖𝑡~𝐼𝐼𝐷 𝒩(0, 𝜎𝑢

2), 𝜖𝑖𝑡would be distributed 

as 𝐼𝐼𝐷 𝒩(0, 𝜎𝑢
2 + 𝜎𝜇

2), denote 𝜎2 = 𝜎𝑢
2 + 𝜎𝜇

2 . 

    Now, the expected value of the number of patent applications is calculated as, 

𝐸(𝐶) = 𝐸(𝐶|𝑥𝛽 + 𝜖 > 0) Pr(𝑥𝛽 + 𝜖 > 0) + 𝐸(𝐶|𝑥𝛽 + 𝜖 ≤ 0) Pr(𝑥𝛽 + 𝜖 ≤ 0) 

= 𝐸(𝐶|𝑥𝛽 + 𝜖 > 0) Pr(𝑥𝛽 + 𝜖 > 0) 

= Pr(𝜖 > −𝑥𝛽)𝐸[(exp(𝑥𝛽) ∗ exp(𝜖) − 1)|𝜖 > −𝑥𝛽] 

= 𝐹 (
𝑥𝛽

𝜎
)

[
 
 
 

exp(𝑥𝛽)∫ exp(𝜖) 

1

√2𝜋𝜎
exp (−

𝜖2

2𝜎2)

𝐹(
𝑥𝛽
𝜎 )

+∞

−𝑥𝛽

𝑑𝜖 − 1

]
 
 
 

 

= exp (
𝜎2

2
) exp(𝑥𝛽) 𝐹 (

𝑥𝛽

𝜎
+ 𝜎) − 𝐹(

𝑥𝛽

𝜎
)    

where 𝐹 is the cumulative distribution function and 𝑓 would be the probability density function 

of the standard normal distribution.  
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      Given the fact that 
𝜕𝐹(

𝑥𝛽

𝜎
)

𝜕𝑥𝑗
=

𝛽𝑗

𝜎
𝑓(

𝑥𝛽

𝜎
) and 

𝜕𝐹(
𝑥𝛽

𝜎
+𝜎)

𝜕𝑥𝑗
=

𝛽𝑗

𝜎
𝑓(

𝑥𝛽

𝜎
+ 𝜎), the effect of a change in 

the 𝑗𝑡ℎ variable of 𝑥 on the expected value of 𝐶 could be calculated as, 

𝜕𝐸(𝐶)

𝜕𝑥𝑗
= 𝛽𝑗 exp(

𝜎2

2
) exp(𝑥𝛽) [𝐹 (

𝑥𝛽

𝜎
+ 𝜎) +

1

𝜎
𝑓 (

𝑥𝛽

𝜎
+ 𝜎)] −

𝛽𝑗

𝜎
𝑓 (

𝑥𝛽

𝜎
) 
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Chapter 2: Nonparametric Prediction for Spatially Dependent Data 

 

2.1 Introduction 

     Spatial data has become important in a variety of research areas such as econometrics, urban 

and regional science, environmental studies, image processing and many others. For an overview 

of theoretical and applied econometric studies involving spatial issues, see Aenselin and Bera 

(1998), Case (1991), Cliff and Ord (1973), Conley (1999), Kelejian and Robinson (1993) and 

Lee (2004). A primary goal of studying spatial data in economics is to understand and explain 

spatial spillovers where factors or outcomes in one location are correlated with outcomes in 

nearby locations. Prediction with spatially dependent data involves predicting the un-sampled 

outcome in a specific spatial location with outcomes sampled at nearby locations and factors 

(regressors) of all locations. 

     Typically, dependence between spatial units is modeled as a function of spatial distance, 

whether the distance can be geographic or economic, analogous to the lag structure in modeling 

time series data. However, the challenge is that unlike the unidirectional flow of time, no natural 

order is exhibited in spatial data. The problem with standard spatial econometric models is that 

they are parametric and rely heavily on an assumed model structure; however, the true model 

characterizing the interaction between spatial units is unknown, see Manski (1993) and Partridge 

(2012). In this paper, we will apply nonparametric estimation methods to prediction with 

spatially dependent data simulated on a regular integer lattice on a random field ℤ𝑁 , 𝑁 ≥ 1. 

Specifically, we will compare the prediction performances of the nonparametric k-Nearest 

Neighbors estimator of conditional expectation proposed by Li and Tran (2009), the Nadraya-
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Watson estimator suggested by Lu and Chen (2002) and P.M. Robinson (2011), and the local 

linear kernel estimator proposed by Hallin et al. (2004b) and Jenish (2012) when used with 

spatially dependent data. The prediction performance measured by root mean squared error 

(RMSE) is also compared to that of the maximum likelihood method assuming a linear data 

generating process. 

     There are two popular parametric model specifications in spatial econometrics. The first one 

is the spatial autoregressive model (SAR) used by Kelejian and Prucha (1998), which uses a 

weighted average of nearby values of the dependent variable as an explanatory variable: 𝒚 =

𝜌𝑾𝒚 + 𝑿𝛽 + 𝒖 = (𝑰 − 𝜌𝑾)−1(𝑿𝛽 + 𝒖), where 𝑾 is an 𝑛 × 𝑛 spatial weight matrix. The 

second specification is the spatial error model of Anselin (1996), uses a similar structure to 

directly model spatial relationship in the error term: 𝒚 = 𝑿𝛽 + 𝒖, with 𝒖 = 𝜃𝑾𝒖 + 𝒆 =

(𝑰 − 𝜃𝑾)−1𝒆. Although the two models provide convenient specifications to account for spatial 

relationship and may be used to estimate the relationship of neighboring dependent variable or 

explanatory variable on the dependent variable itself, the overuse of these models are still 

questionable since it is natural to expect an increase in explanatory power when adding a 

weighted average of nearby values of the dependent variable as explanatory variable. Actually, 

spatial econometric models like the SAR and spatial error model are fundamentally unidentified. 

We need to estimate 𝑛(𝑛 − 1) parameters characterizing the potential relationships among the 

observations in the spatial weight matrix with only 𝑛 observations. The standard spatial 

econometric models tried to overcome this problem by assuming that the spatial weight matrix is 

known a priori, which reduces the number of parameters to be estimated from 𝑛(𝑛 − 1) to a 

single parameter (𝜌 or 𝜃). According to Hansen (2004), in the nonparametric approaches we 

don’t assume that the true model structure is known and admit that the fitted models are 
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approximations of the true model. In order to strike a balance between the estimation bias and 

variance, the nonparametric approach choose the bandwidth to minimize the overall measure of 

fit, usually mean squared error (MSE) or root mean squared error (RMSE). 

     Given that the true model is unknown and the spatial weight matrix could be specified with 

error, this paper investigates the prediction performances measured by RMSE of various 

nonparametric estimation methods when applied to spatially dependent data. The performance of 

these methods are also compared to that of the maximum likelihood method assuming a linear 

data generating process which deviates slightly from the true data generating process. In the 

model, dependence structure is added to cross sectional data based on the geographic locations of 

individual observations. An observation for each individual is a realization of a random process 

at a point in a Euclidean space: the random field ℤ𝑁. The distribution of a random vector 

observed at a set of locations will be affected by the economic distance between these locations 

since closer locations will exhibit stronger dependence in their observations. A common 

approach to model spatial dependence is to assume that the data is normally distributed with a 

covariance structure decided by the distances between the sampling points. Case (1991), Kelejian 

and Prucha (1998) and Lee (2004) have used a spatial analogue to the auto-regressive moving-

average (ARMA) model for time series data to capture spatial dependence across individuals 

over space. Given a realization of the random field ℤ𝑁 at all points over an 𝑚 by 𝑛 rectangular 

grid, we first estimate the model by nonparametric methods following Li and Tran (2009), Lu 

and Chen (2002), P.M. Robinson (2011), Hallin et al. (2004b) and Jenish (2012). To fit the data 

with taable likelihood method assuming a linear data generating process, we first transform the 

data sample over the 𝑚 by 𝑛 rectangular grid into an 𝑚𝑛 dimensional vector. Based on the 

dependence structure of the random fields over the 𝑚 by 𝑛 rectangular grid, we construct an 𝑚𝑛 
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by 𝑚𝑛 spatial weight matrix whose elements are functions of the pair-wise distances between the 

sample points with corresponding indexes over the rectangular. We then estimate 𝑉𝑒𝑐(𝑌) =

𝜌𝑊𝑉𝑒𝑐(𝑋) + 𝜖 by maximum likelihood method. The RMSE of these different estimation 

techniques are then calculated and compared. 

     The rest of this paper is organized as follows, we will briefly talk about the related literature 

in section 2.2. The model setup and estimation procedures are introduced in section 2.3. In 

section 2.4, we will implement the Monte Carlo simulations and discuss the results. In section 

2.5, we will use the three nonparametric estimation methods and maximum likelihood method to 

predicting crop yield with precipitation for US counties within corresponding agriculture belts. 

Finally, we will conclude in section 2.6. 

2.2 Related Literature  

     Tremendous effort has been expended in the modeling and estimation of spatial dependence. 

There is a long tradition of studying lattice data sampled over an equally spaced domain in each 

of the 𝑁 ≥ 2 dimensions. For example, Whittle (1954) studied stationary processes in the plane 

as an extension to the autoregressive moving-average process in time series, shedding light on 

the fact that the realization of a time series process is only influenced by its past values, while 

dependence extends in all directions for a spatial process. Guyon (1982) and Dahlhaus and 

Kunsch (1987) considered the estimation of parameters of a stationary process on a 𝑁-

dimensional lattice and obtained efficient parameter estimators taking into account the “edge 

effect”. 

     Due to its flexibility and ease of use, the spatial autoregressive (SAR) models of Cliff and Ord 

(1981) has become very popular. In a spatial autoregressive model, the spatial observations or 

disturbances are modeled as a linear combination of the corresponding observations or 
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disturbances for neighboring locations. The transformation matrix captured by the spatial weight 

matrix is assumed to be known except for a single unknown parameter. Various estimation 

methods have also been proposed to estimate SAR models. For example, Lee (2004) investigated 

the asymptotic properties of the maximum likelihood estimator (MLE) and the quasi-maximum 

likelihood estimator (QMLE) for the SAR model under the normality assumption. It is shown 

that the spatial weight matrix plays a role in the rates of convergence of the MLE and QMLE. 

The MLE and QMLE may have a rate of convergence of the square root of the sample size and 

limiting normal distribution when each unit is influenced by only a few neighboring units. On the 

other hand, if each unit can be influenced by many neighbors, the estimators for some parameter 

components may have a slower rate of convergence and may even be inconsistent. Conley 

(1999) proposed a class of spatial GMM estimators based on moment conditions deduced from 

economic theory. The estimator is obtained by minimizing an objective function derived from 

the sample counterpart of the population moments. The only assumption is that the data is 

stationary and spatially mixing. Since there is no model specification, this GMM estimation 

technique is more robust in the sense that it can avoid the misspecification problem of MLE. 

Kelejian and Prucha (1999) suggested a generalized method of moments estimator for the 

parameter of  the spatial lag term in the SAR model. It is shown that the estimator is consistent 

under some regular conditions and computationally simple relative to the MLE and QMLE. 

     Given the scope for parametric and structural misspecification, researcher have turned to 

nonparametric methods to model and estimate spatial data. Under some mixing conditions, Tran 

(1990) established the asymptotic normality of the kernel density estimators for random fields 

indexed by a set of 𝑁-dimensional integer lattice points. Hallin et al. (2004a) studied kernel 

density estimators for spatial processes with linear or nonlinear structures. Convergence results 
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are obtained for either mixing or non-mixing processes. Lu and Chen (2002) and Lu and Chen 

(2004) investigated weak consistency as well as convergence rates of the Nadraya-Watson 

estimator for a spatial conditional regression model under spatial mixing. 

      A recent paper by Robinson (2011) established consistency and asymptotic distribution 

theory for the Nadaraya-Waston estimator by extending strong mixing time series to 𝑁 ≥ 2 

dimensional random fields. In their nonparametric regression, they assumed a linear structure 

that covers both lattice linear autoregressive-moving-average model and SAR models. The 

model can account for both short- and long-range dependence by assuming that the dependence 

between two observations decreases as the distance between them increases. The asymptotic 

theory is of the “increase domain” variety, where the distance between two closest neighboring 

observations is fixed, rather than the “infill asymptotics” on a bounded domain, where the 

distance between two closest neighboring observations tends to 0. Li and Tran (2009) used the 

nearest neighbor methods to estimate the conditional expectation for multivariate data observed 

over the integer lattice points in the 𝑁 −dimensional Euclidean space and have obtained the 

asymptotic normality of the estimator under general mixing assumptions. 

     Compared to the Nadaraya-Waston estimator, the local linear kernel estimator is 

advantageous in that it has reduced bias and has better boundary properties as pointed out by Fan 

(1993) and Fan and Yao (2003). Lu and Linton (2007) have considered local linear modeling in a 

time series context and have proved a central limit theorem for the local linear estimator under 

near epoch dependence, which is weaker than the strong (𝛼 −) mixing conditions extensively 

studied in the time series literature22. Some recent studies have applied the local linear kernel 

                                                           
22 Although a form of strong dependence analogous to long memory in time series is allowed under the framework of Robinson 

(2011), nonparametric estimation in the case of strong dependence in the data generating process is an interesting while under-

studied area. 
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estimator to the spatial random field framework. Hallin et al. (2004b) proposed a local linear 

kernel estimator for the conditional expectation of a spatial process observed over a rectangular 

domain and proved the asymptotic normality of the estimator and its first derivative as the size of 

the rectangular domain goes to infinity at different rates in different directions under general 

mixing conditions. Jenish (2012) has extended the result of the local linear estimator for 

stationary mixing random fields to a even larger class of dependent random fields. The uniform 

consistency and asymptotic normality of the local linear kernel estimator are established under 

near-epoch dependence and the results also allow heterogeneous data-generating process and 

unevenly spaced data. 

     Baltagi and Li (2006) considered prediction in a panel data model with spatial autocorrelation 

in the context of the demand for liquor. They compared the prediction performance of various 

estimators such as OLS, fixed effects with and without spatial correlation, random-effects GLS 

ignoring spatial correlation, and a random-effects estimator accounting for spatial correlation. 

Forecast performance based on RMSE showed that estimators taking into account spatial 

correlation and state heterogeneity outperform other estimators. Druska and Horrace (2004) have 

developed an estimator for the panel data model where disturbances are spatially correlated in 

the cross-sectional dimension as an extension to the cross-sectional model of Kelejian and 

Prucha. Under the stochastic frontier framework, they have applied the approach to a panel of 

Indonesian rice farms where spatial correlations represent productivity shock spillovers pertinent 

to geographic proximity and weather. 

2.3 Model Setup and Estimation Procedures 

Following Li and Tran (2009), Hallin et al. (2004b) and Li and Tran (2009), let ℤ𝑁 , 𝑁 ≥ 1 be 

the integer lattice point set in the 𝑁-dimensional Euclidean space. A point 𝒊 in ℤ𝑁 is decided by 
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its coordinate (𝑖1, 𝑖2, … , 𝑖𝑁) and will be referred to as a site in the space. Spatial data will be 

modeled as realizations of random fields, which are in essence vector stochastic processes 

indexed by 𝒊 ∈ ℤ𝑁. In this paper, we will consider the following strictly stationary (𝑑 + 1)-

dimensional random fields23: 

{(𝑌𝒊, 𝑿𝒊); 𝒊 ∈ ℤ𝑁}. 

where 𝑌𝒊 takes values in ℝ, and 𝑿𝒊 takes value in ℝ𝒅, and (𝑌𝒊, 𝑿𝒊) are defined over some 

probability space (Ω,ℱ, 𝑃). 

In econometrics, we are usually interested in how a vector 𝑿𝒊 of covariates will affect the 

response variable 𝑌𝒊 with the data exhibiting spatial dependence either in 𝑿𝒊 or 𝑌𝒊. Specifically, 

assuming that 𝑌𝒊 has finite expectation, the quantity of interest in a spatial regression problem 

might be: 

𝑔(𝒙) ≡ 𝐸[𝑌𝒊|𝑿𝒊 = 𝒙] 

The structure of spatial dependence remains unspecified. Let 𝑔 be a well-defined, real-valued 

𝒙-measurable function. In a particular case where  𝑿𝒊 itself is measurable with respect to a subset 

of 𝑌𝒋s, with 𝒋 ranging over some neighborhood of 𝒊, 𝑔 is called a spatial autoregressive function. 

To estimate the spatial regression equation, Li and Tran (2009) have used the nearest neighbor 

(kNN) method to estimate the conditional expectation. Robinson (2012) and Lu and Chen (2002) 

used the Nadaraya-Watson kernel estimator.  Hallin et al. (2004b) and Jenish (2012) have used 

the local linear kernel estimator in the spatial framework. This paper will use the nearest 

                                                           
23 Here 𝑑 is the dimension of 𝑿𝒊, means the number of covariates observed on a geographic site 𝒊. Note that 𝒊 in bold (same for 

small  in bold ) is a point in the 𝑁 dimensional Euclidean space, which has 𝑁 coordinates (𝑖1, 𝑖2, … , 𝑖𝑁) with 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘 for 

𝑘 = 1,… ,𝑁. For the Monte Carlo simulation, we take 𝑑 = 1, 𝑁 = 2 and denote 𝒊 ≡ (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. 
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neighbor method, Nadaraya-Watson estimator and local linear kernel method to prediction in the 

context of spatially dependent data. 

     Refer to a point 𝒊 = (𝑖1, 𝑖2, … , 𝑖𝑁) ∈ ℤ𝑁 as a site, and let 𝒮 and 𝒮′ be two sets of sites. Denote 

the 𝜎-field generated by the random variables (𝑌𝒏, 𝑿𝒏) with 𝒏 in 𝒮 and 𝒮′ as Borel fields, 

ℬ(𝒮) = ℬ((𝑌𝒏, 𝑿𝒏), 𝒏 ∈ 𝒮) and ℬ(𝒮′) = ℬ((𝑌𝒏, 𝑿𝒏), 𝒏 ∈ 𝒮′), respectively. Define the distance 

between 𝒮 and 𝒮′ as 

𝑑𝑖𝑠𝑡(𝒮, 𝒮′) = min{𝑑̂(𝒊, 𝒋): 𝒊 ∈ 𝒮, 𝒋 ∈ 𝒮′}, 

where 𝑑𝑖𝑠𝑡̂ (𝒊, 𝒋) = ‖𝒊 − 𝒋‖ = √(𝑖1 − 𝑗1)2 + ⋯+ (𝑖𝑁 − 𝑗𝑁)2 is the distance between two points 𝒊 

and 𝒋.  Assume that (𝑌𝒏, 𝑿𝒏) is observed on a rectangular region 𝐼𝒏 = {𝒊: 𝒊 ∈ ℤ𝑁 , 1 ≤ 𝑖𝑘 ≤

𝑛𝑘, 𝑘 = 1, … , 𝑁}, the asymptotic behavior of nonparametric estimators is often derived as 𝒏 →

∞, where 𝒏 → ∞ if min (𝑛1, … , 𝑛𝑁) → ∞ and denote 𝒏̂ ≡ ∏ 𝑛𝑘
𝑁
𝑘=1 . 

     For the asymptotic normality of the k-nearest neighbor estimator and the spatial local linear 

estimator, define the mixing coefficient as 

𝛼(ℬ(𝒮), ℬ(𝒮′)) = 𝑠𝑢𝑝{|𝑃(𝐴𝐵) − 𝑃(𝐴)𝑃(𝐵)|, 𝐴 ∈ ℬ(𝒮), 𝐵 ∈ ℬ(𝒮′)} 

for 𝒮, 𝒮′ ⊂ ℤ𝑁. ℬ(𝒮) and ℬ(𝒮′) are 𝜎-algebra generated by 𝒮 and 𝒮′. Li and Tran (2009) and 

Hallin et al. (2004b) assumed a general mixing condition for the random field24. Lu and Linton 

(2007) and Jenish (2012) studied the local linear kernel estimator for time series data and data 

                                                           
24 Hallin et al. (2004b) also obtained asymptotic results for random fields with dependence structure characterized by  

𝛼(ℬ(𝒮), ℬ(𝒮′)) ≤ 𝜑(𝐶𝑎𝑟𝑑(𝒮), 𝐶𝑎𝑟𝑑(𝒮′))𝜙(𝑑̂(𝒮, 𝒮′)), where 𝐶𝑎𝑟𝑑(𝒮) denotes the cardinality of 𝒮 and 𝜑 is a positive valued 

symmetric function non-decreasing in each variable and assumed to satisfy:  𝜑(𝑚, 𝑛) ≤ min(𝑚, 𝑛)    𝑜𝑟   𝜑(𝑚, 𝑛) ≤

𝐶(𝑚 +  𝑛 + 1)ℓ for some ℓ > 1 and 𝐶 > 0. The function 𝜙 is assumed to satisfy lim
𝑛→∞

𝑚𝑎 ∑ 𝑗𝑁−1(𝜙(𝑗))
𝛿

2+𝛿⁄∞
𝑗=𝑚 = 0  for some 

𝑎 > (4 + 𝛿)𝑁/(2 + 𝛿). 



64 

 

 

 

sampled on integer lattice points in a random field under the near epoch dependence, 

respectively. 

     To estimate a model for spatially dependent data using nonparametric methods, the random 

field used as the data generating process is generally assumed to be strictly stationary, with 

positive and continuous density function for 𝑿𝒊, finite absolute moments of order slightly higher 

than 2 for 𝑌𝒊, and continuous and twice differentiable regression equation 𝑔(𝒙) at all 𝒙, see for 

example Lu and Chen (2002) and Hallin et al. (2004b). For the kernel function 𝐾:ℝ𝑑 → ℝ and 

its corresponding bandwidth used in the estimation, Hallin et al. (2004b) used the following 

condition. For any 𝒄 = (𝑐0, 𝒄1
𝑇)𝑇 ∈ ℝ𝑑+1, the absolute value of  𝐾𝒄(𝒖) ≡ (𝑐0 + 𝒄1

𝑇𝒖)𝐾(𝒖) is 

uniformly bounded and integrable. The bandwidth 𝑏𝒏 tends to zero at a rate such that 𝒏̂𝑏𝒏
𝑑 → ∞ 

as  𝒏 → ∞. 

2.3.1 k-Nearest Neighbor Estimation 

     The 𝑘-nearest neighbor estimator of Li and Tran (2009) for 𝑔(𝒙) is the average of the 𝑘 

response variables in the neighborhood of 𝒙 consisting of those 𝑋’s that are the k closest to 𝒙, 

and is defined as: 

𝑔̂𝑛(𝒙, 𝑏𝒏) =
∑ 𝐼{𝑿𝒊: ‖(𝑿𝒊−𝒙)/𝑏𝒏‖≤1}𝑌𝑖𝒊∈𝐼𝒏

∑ 𝐼{𝑿𝒊: ‖(𝑿𝒊−𝒙)/𝑏𝒏‖≤1}𝒊∈𝐼𝒏

 

where 𝐼 is the indicator function. Define Γ𝒏 ≡ Γ𝒏(𝒙) to be the distance between 𝒙 and its 𝑘𝑡ℎ 

nearest neighbor among the 𝑿𝒊s, The k-nearest neighbor estimators are defined by 𝑔̂𝒏(𝒙, Γ𝒏). Li 

and Tran (2009) has shown that if the data generating process for (𝑌𝒏, 𝑿𝒏) satisfies some mixing 

conditions, then 𝑔̂𝒏(𝒙, Γ𝒏) is consistent, asymptotically normal and converges to 𝑔(𝒙) at rate 
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𝑘(𝒏)1/2, where 𝑘(𝒏) is a fixed integer sequence tending to infinity as 𝒏̂ → ∞ at such a rate that 

𝑘(𝒏) 𝒏̂−2/(𝑑+2) → 0 and 𝑘(𝒏)−1/2𝒏̂𝜃 → 0 for some 𝜃 > 025. 

2.3.2 Nadraya-Watson Estimator 

     Lu and Chen (2002) and P.M. Robinson (2011) have proposed and studied the asymptotic 

behavior of the Nadaraya-Watson estimator for spatial data. Lu and Chen (2002) investigated the 

weak consistency and convergence rate of the Nadaraya-Watson estimator for a non-isotropic 

mixing spatial data process. Weak consistency of the estimator is also obtained when sample size 

tends to infinity at different rates along different directions in space. P.M. Robinson (2011) 

considered a nonparametric kernel estimator for the conditional mean of a dependent variable 

given the explanatory variables assuming a linear disturbance process allowing for long range or 

short-range dependence. They have also established sufficient conditions for consistency and 

asymptotic normality of the kernel regression estimator. 

The Nadraya-Watson estimator of 𝑔(𝒙) suggested by Lu and Chen (2002) and P.M. Robinson 

(2011) is 

𝑔̂𝑛(𝒙, 𝑏𝒏) =
𝑣𝑛(𝒙)

𝑓𝑛(𝒙)
=

(𝒏̂𝑏𝒏
𝑑)

−1
∑ 𝑌𝒊𝐾 (

𝑿𝒊 − 𝒙
𝑏𝒏

)𝒊∈𝐼𝒏

(𝒏̂𝑏𝒏
𝑑)

−1
∑ 𝐾 (

𝑿𝒊 − 𝒙
𝑏𝒏

)𝒊∈𝐼𝒏

 

Where 𝐾(∗) is the kernel and 𝑏𝒏 is a scalar bandwidth sequence such that 𝑏𝒏 → 0 as 𝑛 → ∞. 

     As shown in P.M. Robinson (2011), if the sequence 𝑿𝒊 is identically distributed with 

probability density function 𝑓(𝒙). Then 𝑓𝑛(𝒙) = (𝒏̂𝑏𝒏
𝑑)

−1
∑ 𝐾 (

𝑿𝒊−𝒙

𝑏𝒏
)𝒊∈𝐼𝒏  is an consistent 

                                                           
25 For the asymptotic normality to hold, it is assumed that 𝜙(𝑥) = 𝒪(𝑒−𝜉𝑥) for 𝜉 > 0. The conclusion also holds if 𝜙(𝑥) =
𝒪(𝑥−𝜇) for some 𝜇 large enough. 
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estimator for 𝑓(𝒙) and 𝑣𝑛(𝒙) = (𝒏̂𝑏𝒏
𝑑)

−1
∑ 𝑌𝒊𝐾 (

𝑿𝒊−𝒙

𝑏𝒏
)𝒊∈𝐼𝒏  consistently estimates 𝑔(𝒙)𝑓(𝒙), so 

𝑔̂𝑛(𝒙) is a consistent estimate of 𝑔(𝒙), that’s to say 𝑔̂𝑛(𝒙)
𝑝
→𝑔(𝒙). Under some additional 

regularity conditions for the kernel and the density function, P.M. Robinson (2011) has also 

shown the consistency and the asymptotic normality of 𝑔̂𝑛(𝒙) when 𝑿𝒊 is not identically 

distributed. 

2.3.3 Local Linear Kernel Estimation 

    Hallin et al. (2004b) and Jenish (2012) have established asymptotic results for the local linear 

kernel estimator with spatial data. The basic idea in local linear regression involves 

approximating 𝑔(𝒙) in the neighborhood of 𝒙 as 

𝑔(𝒛) ≅ 𝑔(𝒙) + (𝑔′(𝒙))
𝑇
(𝒛 − 𝒙) ≡ 𝑎0 + 𝒂1

𝑇(𝒛 − 𝒙) 

Then, 𝑔(𝒙) and 𝑔′(𝒙) can be estimated using the kernel method rather than just 

nonparametrically estimating the conditional expectation 𝑔(𝒙). The estimator is constructed as 

(
𝑔𝒏(𝒙)

𝑔𝒏′(𝒙)
) = (

𝑎̂0

𝒂̂1
) ≡ arg min

(𝑎0,𝑎1)∈ℝ𝑑+1
∑ (𝑌𝒋 − 𝑎0 − 𝒂1

𝑇(𝑿𝒋 − 𝒙))
2

𝐾 (
𝑿𝒋 − 𝒙

𝑏𝒏
)

𝒋∈𝐼𝒏

 

The solution to this equation is given by Hallin et al. (2004b) as 

(
𝑎̂0

𝒂̂1𝑏𝒏
) = 𝑈𝒏

−1𝑉𝒏 

Where 𝑽𝒏 ≡ (
𝑣𝒏0

𝑣𝒏1
) and 𝑼𝒏 ≡ (

𝑢𝒏00 𝑢𝒏01

𝑢𝒏10 𝑢𝒏11
) with (

𝑿𝒋−𝒙

𝑏𝒏
)
𝑖
= 1 

(𝑽𝒏)𝑖 ≡ (𝒏̂𝑏𝒏
𝑑)

−1
∑ 𝑌𝒋 (

𝑿𝒋 − 𝒙

𝑏𝒏
)
𝑖

𝐾 (
𝑿𝒋 − 𝒙

𝑏𝒏
)

𝒋∈𝐼𝒏

        𝑖 = 0,… , 𝑑. 
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(𝑼𝒏)𝑖ℓ ≡ (𝒏̂𝑏𝒏
𝑑)

−1
∑ (

𝑿𝒋 − 𝒙

𝑏𝒏
)
𝑖

(
𝑿𝒋 − 𝒙

𝑏𝒏
)
ℓ

𝐾 (
𝑿𝒋 − 𝒙

𝑏𝒏
)

𝒋∈𝐼𝒏

         𝑖, ℓ = 0,… , 𝑑 

In addition, 

𝑯𝒏 ≡ (
𝑎̂0 − 𝑎0

𝒂̂1𝑏𝒏 − 𝒂1𝑏𝒏
) = (

𝑔𝒏(𝒙) − 𝑔(𝒙)

(𝑔𝒏
′ (𝒙) − 𝑔′(𝒙))𝑏𝒏

) = 𝑼𝒏
−1 {𝑽𝒏 − 𝑼𝒏 (

𝑎0

𝒂1𝑏𝒏
)} ≡ 𝑼𝒏

−1𝑾𝒏 

Where 𝑾𝒏 ≡ (
𝑤𝒏0

𝒘𝒏1
) ,𝑾𝒏𝑖 ≡ (𝒏̂𝑏𝒏

𝑑)
−1

∑ 𝑍𝒋 (
𝑿𝒋−𝒙

𝑏𝒏
)
𝑖
𝐾 (

𝑿𝒋−𝒙

𝑏𝒏
)𝒋∈𝐼𝒏 ,       𝑖 = 0,… , 𝑑. 

and 𝑍𝒋 ≡ 𝑌𝒋 − 𝑎0 − 𝒂1
𝑇(𝑿𝒋 − 𝒙). Under certain conditions, the local linear kernel estimator is 

consistent and asymptotically normal. For convergence speed and the asymptotic distribution of 

the local linear kernel estimator derived by Hallin et al. (2004b), see Appendix 2.1. 

2.4 Monte Carlo Study 

In this section, we report results of a Monte Carlo study using nonparametric estimation 

methods: the k-Nearest Neighbor Estimator of Li and Tran (2009), the Nadraya-Watson 

Estimator of Lu and Chen (2002) and P.M. Robinson (2011), the Local Linear Kernel Estimator 

of Hallin et al. (2004b) and the maximum likelihood method with a linear approximation of the 

data generating process26. For simplicity, suppose a univariate 𝑋 (𝑑 = 1) is observed on a site in 

a two dimensional space 𝒊 ≡ (𝑖, 𝑗) ∈ ℤ2 (𝑁 = 2) as 𝑋𝑖,𝑗. We will consider the following model: 

     Let {𝜉𝑖,𝑗, (𝑖, 𝑗) ∈ ℤ2} and {𝜀𝑖,𝑗 , (𝑖, 𝑗) ∈ ℤ2} be two mutually independent i.i.d. white noise 

processes with Normal distribution, and 

                                                           
26 All the simulation results in this section are generated with C++ code following the C++0x standard run under the Gnome3.4.2 

environment based on Kernel Linux 3.11.0-15-generic on a 64-bit machine with Intel Core i7-3770 CPU @3.40GHz×8 

processor.  
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𝑌𝑖,𝑗 = 𝑔(𝑋𝑖,𝑗)  + 𝜉𝑖,𝑗        with      𝑔(𝑥) =  
2

3
sin 𝑥 + 

1

3
𝑒𝑥 

 {𝑋𝑖,𝑗, (𝑖, 𝑗) ∈ ℤ2} is generated by a spatial autoregression, 

𝑋𝑖,𝑗 =
1

8
(𝑋𝑖−1,𝑗 + 𝑋𝑖,𝑗−1 + 𝑋𝑖+1,𝑗 + 𝑋𝑖,𝑗+1) + 𝜀𝑖,𝑗 

where 𝜀𝑖,𝑗 ∼ 𝒩(0, 𝜎1
2) and 𝜉𝑖,𝑗 ∼ 𝒩(0, 𝜎2

2). Here we choose the coefficients on all of 𝑋𝑖,𝑗′𝑠 

neighbors equal to 
1

8
, so that each of 𝑋𝑖,𝑗′𝑠 neighbors have an equal influence on 𝑋𝑖,𝑗. Analogous 

to the time series case, this data generating process is stationary since the sum of the absolute 

values of the four coefficients in this “autoregressive” process is less than 1. The functional form 

is chosen so that it is close to linear when 𝑥 is close to 0, which will give MLE, which assumes a 

linear data generating process, the best chance to perform well. The relative magnitude of 𝜎1
2 and 

𝜎2
2 will determine the relative proportion of variation in the dependent variable resulting from 

variation in the covariate 𝑋 and the white noise disturbance term 𝜉. 

     The data are generated iteratively by the following steps. We first draw from an i.i.d. random 

variable 𝜀𝑖,𝑗 for each site over a rectangular grid of (𝑚 +  200 ) × (𝑛 + 200), and initial values 

for 𝑋𝑖,𝑗s are set to 0. Next, 𝑋𝑖,𝑗 over {(𝑖, 𝑗), 𝑖 = 1,… , 200 + 𝑚, 𝑗 = 1, … , 200 + 𝑛} are generated 

using the spatial autoregressive model, 

𝑋𝑖,𝑗 =
1

8
(𝑋𝑖−1,𝑗 + 𝑋𝑖,𝑗−1 + 𝑋𝑖+1,𝑗 + 𝑋𝑖,𝑗+1) + 𝜀𝑖,𝑗, 

recursively. This process is then iterated 100 times. The first 99 steps are used as warm-up steps 

to achieve stationary and the data generated in these steps are discarded. The results at the final 

iteration step for sites (𝑖, 𝑗) over the domain {(𝑖, 𝑗)|101 ≤ 𝑖 ≤ 100 + 𝑚, 101 ≤ 𝑗 ≤  100 + 𝑛} 
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are taken as the simulated 𝑚 × 𝑛 sample for 𝑋𝑖,𝑗. The peripheral rows and columns are also 

discarded in order to mitigate “border effect” so that the final observations for 𝑋𝑖,𝑗 receive 

enough feedback from neighboring sites in all directions. 

      With (𝑋𝑖,𝑗 , 𝑌𝑖,𝑗) collected on the 𝑚 × 𝑛 rectangular grid, the three nonparametric methods are 

used to fit the data and the mean squared prediction errors are calculated for the whole 𝑚 × 𝑛  

sample. To estimate the model by maximum likelihood method, we first need to convert both 𝑋 

and 𝑌 sampled on the m by n rectangular grid into a vector of dimension 𝑚𝑛. We did column 

vectorization for the 𝑚 × 𝑛  matrix of the sampled observations of 𝑋 and 𝑌. For example, 

𝑋 =

[
 
 
 
 

𝑋1,1 𝑋1,2

𝑋2,1 𝑋2,2
⋯

𝑋1,𝑛−1 𝑋1,𝑛

𝑋2,𝑛−1 𝑋2,𝑛

⋮ ⋱ ⋮
𝑋𝑚−1,1 𝑋𝑚−1,2

𝑋𝑚,1 𝑋𝑚,2
⋯

𝑋𝑚−1,𝑛−1 𝑋𝑚−1,𝑛

𝑋𝑚,𝑛−1 𝑋𝑚,𝑛 ]
 
 
 
 

 

𝑉𝑒𝑐(𝑋) = [𝑋1,1 𝑋2,1 ⋯ 𝑋𝑚,1 𝑋1,2 ⋯ 𝑋𝑚,2 ⋯ 𝑋1,𝑛 ⋯ 𝑋𝑚,𝑛]𝑇 

The vectorization for Y is done similarly. In order to run a regression 𝑉𝑒𝑐(𝑌) = 𝜌𝑊𝑉𝑒𝑐(𝑋) +

𝑉𝑒𝑐(𝜖), we need to generate an 𝑚𝑛 × 𝑚𝑛 spatial weight matrix 𝑊 characterizing the spatial 

dependence in the data generating process of 𝑋. Since 𝑋 is sampled from a spatial autoregressive 

model 𝑋𝑖,𝑗 =
1

8
(𝑋𝑖−1,𝑗 + 𝑋𝑖,𝑗−1 + 𝑋𝑖+1,𝑗 + 𝑋𝑖,𝑗+1) + 𝜀𝑖,𝑗,  the four neighbors of 𝑋𝑖,𝑗 have equal 

influence on 𝑋𝑖,𝑗. We place equal weight on each unit (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), (𝑖 + 1, 𝑗) and (𝑖, 𝑗 +

1) to characterize the effects of unit (𝑖, 𝑗)’s neighbors on unit (𝑖, 𝑗). We first construct an 𝑚𝑛 ×

𝑚𝑛 spatial weight matrix 𝑊0 where how unit (𝑖, 𝑗)’s neighbors on the rectangular grid interact 

with unit (𝑖, 𝑗) will be characterized by row 𝑝 = 𝑚(𝑗 − 1) + 𝑖. Specifically, the effect of unit 

(𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), (𝑖 + 1, 𝑗) and (𝑖, 𝑗 + 1) on unit (𝑖, 𝑗) will be captured by the element in row 
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𝑝 = 𝑚(𝑗 − 1) + 𝑖, column 𝑚(𝑗 − 1) + 𝑖 − 1, 𝑚(𝑗 − 2) + 𝑖, 𝑚(𝑗 − 1) + 𝑖 + 1 and 𝑚𝑗 + 𝑖, 

respectively. We assign one to these elements in the 𝑝th row, and the rest of the elements are left 

as zero.27 We then do a row normalization to 𝑊0 to get the spatial weight matrix 𝑊 so that the 

𝑝th element of a vector resulting from left multiplying 𝑊 to a vector variable is the average of 

the elements that are neighbors of the 𝑝th element in the vector multiplied28. With this spatial 

weight matrix 𝑊, the model 𝑉𝑒𝑐(𝑌) = 𝜌𝑊𝑉𝑒𝑐(𝑋) + 𝑉𝑒𝑐(𝜖) is estimated by the maximum 

likelihood method and the RMSE is calculated. 

     We did Monte Carlo simulations for various pairs of 𝜎1
2 and 𝜎2

2 and two pairs of (𝑚, 𝑛) ( 

(𝑚 = 20, 𝑛 = 30) and (𝑚 = 40, 𝑛 = 50) ). With data sampled from an m by n rectangular grid 

for 𝑋 as described in the previous procedure, we randomly drew realization 𝜉𝑖,𝑗 from a normal 

distribution 𝒩(0, 𝜎2
2) for each point on the rectangular grid and add to 𝑔(𝑋𝑖,𝑗) to get 𝑌𝑖,𝑗. Then 

we used the three nonparametric methods and the maximum likelihood method to estimate 

𝐸[𝑌𝒊|𝑿𝒊 = 𝒙] for 𝑋 and 𝑌 sampled on this m by n rectangular grid and calculated the RMSE for 

each of the estimation methods29. 

     Given that 𝐸[𝑌𝑖,𝑗|𝑋𝑖,𝑗] = 𝐸[(𝑔(𝑋𝑖,𝑗)  + 𝜉𝑖,𝑗)|𝑋𝑖,𝑗] = 𝑔(𝑋𝑖,𝑗) , if 𝑔̂𝒏(𝑋𝑖,𝑗) is a consistent 

estimator of 𝑔(𝑋𝑖,𝑗), then the prediction error would be  𝑌𝑖,𝑗 − 𝐸̂[𝑌𝑖,𝑗|𝑋𝑖,𝑗] = 𝑌𝑖,𝑗 − 𝑔̂𝒏(𝑋𝑖,𝑗)

𝑝
→𝑌𝑖,𝑗 − 𝑔(𝑋𝑖,𝑗)= 𝑒𝑖,𝑗, where 𝑒𝑖,𝑗 is a sample from 𝜉𝑖,𝑗, which has a Normal distribution 𝒩(0,

                                                           
27 The neighbors on the borders of the matrix is a little bit different. For elements on the four corners of the 𝑋 matrix, they have 

only two neighbors. Elements that are on the border but not on the corners have three neighbors. For these elements, we also 

assign equal weights to their neighbors. 

28 The row normalization is done by left multiplying a diagonal matrix. The diagonal matrix is the inverse of the diagonal matrix 

whose 𝑘th diagonal element is the sum of elements in the 𝑘th row of matrix 𝑊0. 

29 For the nonparametric local linear estimator and the Nadaraya-Watson estimator, the normal kernel is used. As to the 

bandwidth choice, since there is no theoretical work on the bandwidth choice for nonparametric regression with spatial data, we 

chose the optimal bandwidth by minimizing the mean squared error for a given set of samples on the 𝑚 × 𝑛 rectangular grid. For 

the k-Nearest Neighbors method, k is chosen to be 19. 
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𝜎2
2). By the law of large numbers, the mean squared error (MSE) 

1

𝑚𝑛
∑ ∑   (𝑌𝑖,𝑗 −𝑛

𝑗=1
𝑚
𝑖=1

𝐸̂[𝑌𝑖,𝑗|𝑋𝑖,𝑗])
2 𝑝
→ 

1

𝑚𝑛
∑ ∑ 𝑒𝑖,𝑗

2𝑛
𝑗=1

𝑚
𝑖=1  

𝑝
→ 𝜎2

2. This process is repeated for 499 times with 𝑋 fixed 

and 𝑌 varying as a result of independent draws from 𝜉𝑖,𝑗. In the end, we calculated the mean and 

standard error of the 499 calculated RMSE. The mean can be seen as an estimate of 𝜎2. For each 

pair of 𝜎1
2 and 𝜎2

2, the above simulation process is repeated 8 times. Within each of these 8 sets 

of simulations, 𝑋 is kept fixed while 𝑌 varies as a result of the independent random draws of 𝜉𝑖,𝑗. 

     To do the simulation, we first fixed (𝑚, 𝑛) at (20, 30) and chose 𝜎1, 𝜎2 from 1, 0.5, 0.1. The 

results for cases when 𝜎1 and 𝜎2 are equal are reported in Table 2.1. These results show that the 

nonparametric local linear kernel method has the best in sample prediction performance and the 

mean value of the RMSE for the 499 repeated simulations is very close to the true value for all 

cases. The performance of the Nadaraya-Watson method is also good with the mean of RMSEs 

close to the true value. For the k-nearest neighbors method, the mean value of the RMSEs is 

about one standard deviation away from the desired true value, so we cannot reject the 

hypothesis that the mean of the RMSEs is statistically different from the true value with 

confidence level of 90% or 95%. However, the performance of maximum likelihood method is 

not acceptable since the mean value of the RMSEs diverges from the true value significantly. 

This is reasonable since we have assumed a linear relationship between 𝑋 and 𝑌 in the maximum 

likelihood estimation method while the true data generating process is nonlinear. 

     When 𝜎1 and 𝜎2 are not equal, the relative performances of these estimation methods still 

hold: the best performer is the nonparametric local linear kernel estimator, the Nadaraya-Watson 

estimator also performs well and the k-nearest neighbors estimator is in general not too far off 

the mark. However, the maximum likelihood estimator does not perform as well as the 
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nonparametric methods. These results are reported in Table 2.2 and Table 2.3. Another 

observation from these results is that the performance of these four estimation methods seems to 

be related to the ratio of 𝜎1 and 𝜎2, 
𝜎1

𝜎2
⁄ ; All four estimation methods perform better when this 

ratio is relatively small. When 𝜎1 = 0.1 and 𝜎2 = 1, even the mean value of the RMSEs of the 

maximum likelihood method approaches the true value, and the maximum likelihood method 

also outperforms the k-nearest neighbors method. However it does not perform as well as the 

nonparametric local linear kernel method and the Nadaraya-Watson estimator. 

     The asymptotic theory considered here is of the “increase domain” variety, where the 

asymptotic properties of an estimator are derived by increasing the sample size while keeping the 

distance between two closest neighboring observations fixed. To check whether the relative 

performance of these different estimators varies with the sample size, we increased the sample 

size to 𝑚 = 40 and 𝑛 = 50 and run the same regressions of 𝑌 on 𝑋 sampled on the 40 by 50 

rectangular grid. The mean of the RMSEs are in general closer to the true value compared to the 

corresponding case with a smaller sample size and the relative performances of these different 

estimation methods are preserved. The simulation results are reported in Table 2.4 through Table 

2.6. 

2.5 An Application to Predicting Crop Yield with Precipitation 

In this section, we use these estimation methods to predict agricultural crop yield with 

monthly average precipitation. With synthesized climate data and corn and soybean yields at US 

county level for the period 1982-98, Lobell and Asner (2003) found evidence of a strong but 

spatially explicit coupling between inter-annual climate and crop yield anomalies. From a 

biological perspective, at least a certain amount of water is needed for any plants to survive. 
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While a regular rainfall pattern is of crucial importance to healthy crops, too much or too little 

can be both harmful. Drought can kill crops and increase erosion, as can be seen from the impact 

of the U.S. drought in 2012 on crop yields. For example U.S. corn growers produced 10.8 billion 

bushels in 2012, 13 percent below the 2011 level30. At the same time, excess precipitation can be 

harmful to crop growth, since excess soil moisture or continued soil saturation prevents healthy 

root growth. Rosenzweig et. al. (2002) have simulated US corn production losses due to excess 

precipitation under climate change. Based on these facts, we expect that precipitation can be used 

to predict crop yield and that the relationship is probably not linear31. 

We will use monthly average precipitation during the growing season to forecast crop yields at 

the county level from 1990 to 2012 in four agriculture belts (areas) in the United States32. The 

four agriculture belts are the Barley Belt, the Corn Belt, the Soybean Belt and the Wheat Belt33. 

The Barley Belt consists of Colorado, Idaho, Minnesota, Montana, North Dakota, South Dakota, 

Washington and Wyoming. The Corn Belt consists of Illinois, Indiana, Iowa, Kansas, Minnesota, 

Nebraska, Ohio and South Dakota. The Soybean Belt consists of Illinois, Indiana, Iowa, 

Minnesota, Missouri Nebraska and Ohio. The Wheat Belt consists of Idaho, Minnesota, 

Montana, North Dakota, South Dakota and Washington. The growing season of these four crops 

are selected based on information about the usual planting and harvesting dates from U.S. field 

crops, from United States Department of Agriculture report34. The growing seasons for barley, 

                                                           
30 Detailed facts can be found here: http://www.ers.usda.gov/topics/in-the-news/us-drought-2012-farm-and-food-impacts.aspx 

and here: http://www.nass.usda.gov/Newsroom/2013/01_11_2013.asp  

31 The advantage of using nonparametric methods, rather than simply run a least squares regression, lies in the fact that the 

relationship between crop yield and precipitation is not linear and we don’t need to explicitly assume a functional form in 

nonparametric estimation methods. 

32 Due to data disclosure restrictions, the study period for wheat is from 1990 to 2008. 

33 In some cases, Grain Belt is also referred to as Wheat Belt, meaning northern Midwestern states where most of North 

America’s grain and soybeans are grown. We choose those contiguous states with the highest barley productions as the Barley 

Belt. 
34 http://swat.tamu.edu/media/90113/crops-typicalplanting-harvestingdates-by-states.pdf 

http://www.ers.usda.gov/topics/in-the-news/us-drought-2012-farm-and-food-impacts.aspx
http://www.nass.usda.gov/Newsroom/2013/01_11_2013.asp
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corn, soybean and wheat are April to August, April to September, May to September and 

November to July next year, respectively35. 

The crop yield data are from the United States Department of Agriculture’s National 

Agricultural Statistical Service36, which provides data on agricultural production, area harvested, 

yield and sales at the county level. We queried available yearly crop yields for all the counties of 

those states located in the four corresponding agriculture belts. The unit for yield data is bushel 

per acre. The precipitation data are from the National Oceanic and Atmospheric Administration’s 

National Climate Data Center37. The National Climate Data Center provide climate data based on 

observations at climate stations across the country. We extracted all the available monthly 

precipitation data for all the stations located in states belonging to the four agriculture belts. With 

information on the latitude and longitude of the stations, we could identify to which state and 

county each of these stations belongs to. Then we average precipitation levels observed at all the 

stations located in a specific county in a given month and use it as the precipitation level for that 

county in that month. The location of this precipitation observation is taken to be the average of 

the latitudes and longitudes of all those stations in that county. With monthly precipitation data 

for each county, we take the average of monthly precipitation levels during the growing season 

of a crop and use it as the precipitation level for that growing season. Lastly, the precipitation 

data is merged with the yield data by state, county and year of observation. 

With data for county level crop yield and precipitation, we fit the data with the three 

nonparametric methods and the maximum likelihood method. Since the spatial correlation more 

                                                           
35 Winter wheat grows from October to June, comprising 65% of all wheat produced. Spring wheat grows from April to July. 

These two growing seasons are combined and the monthly average precipitation from October to July is calculated for wheat. 

36 http://www.nass.usda.gov/Data_and_Statistics/index.asp 

37 http://www.ncdc.noaa.gov/cdo-web/ 

http://www.nass.usda.gov/Data_and_Statistics/index.asp
http://www.ncdc.noaa.gov/cdo-web/
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likely exists in the precipitation variable, the simple spatial regression 𝑌 = 𝜌𝑊𝑋 + 𝜖 is used to 

fit the crop yield and precipitation data. The spatial weight matrix is constructed as the inverse 

distance-measure. With latitude and longitude information for two precipitation observations, we 

assume that their correlation is inversely related to the distance between them and only 

contemporary correlation exists38. For precipitation observed at two points with (latitude, 

longitude) pairs, (𝜙𝑖 , 𝜆𝑖) and (𝜙𝑗 , 𝜆𝑗), suppose ∆𝜙 = 𝜙𝑗 − 𝜙𝑖, ∆𝜆 = 𝜆𝑗 − 𝜆𝑖 and the mean 

latitude is labeled as 𝜙𝑚 = (𝜙𝑗 + 𝜙𝑖)/2, the geographic distance between them is39: 

𝑑𝑖𝑠𝑡𝑖𝑗 = 𝑅√(∆𝜙)2 + (cos (𝜙𝑚)∆𝜆)2 

After calculating the distance 𝑑𝑖𝑠𝑡𝑖𝑗 capturing the correlation between precipitation in county 𝑖 

and county 𝑗 in a given year, we assign the corresponding element in the spatial weight matrix to 

be 
1

𝑑𝑖𝑠𝑡𝑖𝑗
. Then we do a row normalization to this matrix so that the weight matrix has the effect 

of taking the average of the precipitation levels in the neighboring counties. 

     Before coming to our main results for the prediction performance of the various estimation 

methods for the crop yield data, let’s first take a look at the crop yield data and the precipitation 

data. Figure 2.1 to Figure 2.4 depict the average yields in each state over time for each of the 

four crops. There seems to be an increasing trend in yield for barley, corn and soybean. But the 

yield for wheat seems to be flat over time, or at least no trend is obvious. There was a 

contemporaneous increase in yield of barley, corn and soybean for all the states in 2004. The 

sharp decrease in yield of corn and soybean seen in most of the states in 2012 reflects the 

                                                           
38 We assume the dependence in precipitation levels in two counties is inversely related to the geographic distance between them. 

The geographic distance is calculated with information on the latitudes and longitudes of climate stations in the two counties. 

39 R is the radius of the earth, which equals 6,371.009 kilometers. All latitude and longitude are denominated in unit of radians. 
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drought that hit America’s Midwest. In Figure 2.5, we mapped the average yield over time of the 

four crops for each county. From the map, colors indicating high yield counties and low yield 

counties are geographically clustered. In Figure 2.6, we mapped the average precipitation in 

selected months (March, June, September, December) over time for these counties. It is obvious 

that precipitation is spatially correlated. Large areas of the same colors in contiguous counties 

mean that a county with high precipitation level is more likely to be surrounded by counties with 

high precipitation levels. 

     The estimation results for the crop yield data are reported in Table 2.7. Consistent with our 

simulation results, the nonparametric local linear kernel method has the best predictive 

performance since it has the lowest RMSE for all the four crops. The Nadaraya-Watson 

estimator performs well with the second lowest RMSE for the four crops. However, what’s 

different from the simulation results is that with an inverse distance weighting, the maximum 

likelihood method is performing better than the K-Nearest Neighbors method, which deserves 

further exploration. 

2.6 Conclusions 

     In this paper, we have compared the prediction performance of the nonparametric local linear 

kernel methods, the Nadaraya-Watson estimator, the k-Nearest Neighbors method, and the 

maximum likelihood method applied to spatially dependent data. The Monte Carlo results show 

that nonparametric local linear kernel methods have the best prediction performance. The 

Nadaraya-Watson estimation method also performs well. In general, these two nonparametric 

methods outperform the k-Nearest Neighbors method and the maximum likelihood method 

regardless of the data generating process and sample size. In most of the cases, the mean of the 
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RMSEs for the Nadaraya-Watson estimation method is within one standard deviation of the true 

value, which means that we cannot reject the hypothesis that the RMSE is significantly different 

from the true value. However, this depends on the data generating process and in some cases the 

mean of the RMSEs is significantly different from the true value. In general, the maximum 

likelihood does not perform well because the spatial weight matrix can only estimate linear 

structure while the true data generating process is nonlinear. This also gives some support to the 

idea of using nonparametric methods when various misspecification may exist either in the 

functional form or spatial weight matrix. 

     We have also used these methods to predict crop yield with precipitation at the county level. 

The results are in general consistent with the simulation results. The nonparametric local linear 

kernel method has the best predictive performance. The Nadaraya-Watson estimation method 

also performs better than the other two estimation methods. However, with an inverse distance 

weighting matrix, the maximum likelihood estimator outperforms the k-Nearest Neighbors 

method in predicting crop yield.  
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Table 2.1 Root Mean Squared Prediction Error for Spatially Dependent Data Sampled on a 20 by 30 Grid on a Random Field 

Variance Estimation Method (1) (2) (3) (4) (5) (6) (7) (8) 

  

𝜎1 = 1,
𝜎2 = 1 

Local Linear 
1.00510 1.00589 1.00434 1.00865 1.02687 1.00512 1.00523 1.00941 

(0.02789) (0.02877) (0.03033) (0.02986) (0.02728) (0.02983) (0.02888) (0.02842) 

Nadaraya-Watson 
1.00748 1.01180 1.00821 1.08904 1.04439 1.00825 1.00666 1.01575 

(0.02820) (0.02921) (0.03056) (0.02813) (0.02840) (0.03003) (0.02888) (0.02832) 

K-Nearest Neighbors 
1.03123 1.03094 1.03199 1.03430 1.08541 1.03309 1.03525 1.05117 

(0.02956) (0.03017) (0.03218) (0.03150) (0.03002) (0.03140) (0.03096) (0.03032) 

Maximum Likelihood 
1.39261 1.36347 1.44790 1.46420 1.47076 1.40586 1.45096 1.47221 

(0.03465) (0.03546) (0.03548) (0.03597) (0.03485) (0.03447) (0.03539) (0.03624) 

  
𝜎1 = 0.5,
𝜎2 = 0.5 

Local Linear 
0.50290 0.50236 0.50191 0.50171 0.50239 0.50125 0.50023 0.50194 

(0.01361) (0.01516) (0.01437) (0.01464) (0.01489) (0.01477) (0.01476) (0.01382) 

Nadaraya-Watson 
0.50482 0.50607 0.50573 0.50540 0.50895 0.50309 0.50250 0.50409 

(0.01374) (0.01530) (0.01455) (0.01500) (0.01480) (0.01475) (0.01486) (0.01395) 

K-Nearest Neighbors 
0.51476 0.51471 0.51457 0.51399 0.51507 0.51316 0.51295 0.51466 

(0.01470) (0.01625) (0.01514) (0.01578) (0.01556) (0.01545) (0.01569) (0.01458) 

Maximum Likelihood 
0.70837 0.68715 0.70566 0.71371 0.71502 0.70088 0.68109 0.70439 

(0.01656) (0.01747) (0.01706) (0.01669) (0.01820) (0.01726) (0.01833) (0.01653) 

𝜎1 = 0.1,
𝜎2 = 0.1 

Local Linear 
0.10011 0.10016 0.10012 0.10004 0.10016 0.10021 0.10017 0.10000 

(0.00284) (0.00295) (0.00280) (0.00294) (0.00282) (0.00292) (0.00307) (0.00284) 

Nadaraya-Watson 
0.10108 0.10120 0.10104 0.10121 0.10106 0.10117 0.10110 0.10090 

(0.00288) (0.00294) (0.00280) (0.00293) (0.00285) (0.00297) (0.00308) (0.00289) 

K-Nearest Neighbors 
0.10281 0.10302 0.10275 0.10307 0.10291 0.10305 0.10293 0.10270 

(0.00307) (0.00314) (0.00298) (0.00306) (0.00305) (0.00311) (0.00329) (0.00304) 

Maximum Likelihood 
0.14553 0.14387 0.14304 0.14391 0.14440 0.14315 0.14596 0.14355 

(0.00346) (0.00364) (0.00348) (0.00373) (0.00332) (0.00367) (0.00360) (0.00364) 
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Table 2.2 Root Mean Squared Prediction Error for Spatially Dependent Data Sampled on a 20 by 30 Grid on a Random Field 

Variance Estimation Method (1) (2) (3) (4) (5) (6) (7) (8) 

  
𝜎1 = 1,
𝜎2 = 0.1 

Local Linear 
0.10246 0.13142 0.11169 0.10248 0.15131 0.15363 0.10253 0.10270 

(0.00310) (0.00244) (0.00715) (0.00295) (0.00251) (0.00833) (0.00295) (0.00304) 

Nadaraya-Watson 
0.11130 0.12478 0.19078 0.10659 0.13905 0.26182 0.10517 0.10399 

(0.00421) (0.00273) (0.00463) (0.00317) (0.00242) (0.00468) (0.00315) (0.00309) 

K-Nearest Neighbors 
0.29970 0.12782 0.40619 0.23248 0.19370 0.46097 0.17712 0.13671 

(0.00377) (0.00311) (0.00381) (0.00359) (0.00357) (0.00392) (0.00316) (0.00324) 

Maximum Likelihood 
1.12766 0.98198 1.18992 1.15977 1.09845 1.17221 1.03750 1.07417 

(0.00434) (0.00422) (0.00416) (0.00389) (0.00391) (0.00402) (0.00403) (0.00402) 

  
𝜎1 = 1,
𝜎2 = 0.5 

Local Linear 
0.50945 0.50580 0.51238 0.51044 0.50437 0.50566 0.50415 0.52491 

(0.01547) (0.01428) (0.01656) (0.01633) (0.01438) (0.01472) (0.01396) (0.02168) 

Nadaraya-Watson 
0.51455 0.50963 0.53063 0.52895 0.51082 0.51094 0.50965 0.56648 

(0.01461) (0.01385) (0.01513) (0.01576) (0.01430) (0.01483) (0.01392) (0.01692) 

K-Nearest Neighbors 
0.56862 0.53317 0.57705 0.58325 0.58603 0.52866 0.55573 0.65838 

(0.01576) (0.01494) (0.01636) (0.01626) (0.01508) (0.01554) (0.01542) (0.01672) 

Maximum Likelihood 
1.15187 1.15449 1.23932 1.16858 1.22399 1.07753 1.21286 1.22401 

(0.01913) (0.01911) (0.01955) (0.01913) (0.01951) (0.02002) (0.02021) (0.01935) 

𝜎1 = 0.5,
𝜎2 = 0.1 

Local Linear 
0.10178 0.10073 0.10072 0.10340 0.10071 0.10103 0.10108 0.10174 

(0.00299) (0.00274) (0.00298) (0.00428) (0.00284) (0.00295) (0.00309) (0.00332) 

Nadaraya-Watson 
0.10768 0.10181 0.10201 0.14227 0.10309 0.10372 0.10179 0.13473 

(0.00307) (0.00278) (0.00305) (0.00265) (0.00291) (0.00308) (0.00307) (0.00231) 

K-Nearest Neighbors 
0.11916 0.10855 0.10925 0.13398 0.11276 0.11284 0.10815 0.10854 

(0.00321) (0.00293) (0.00300) (0.00350) (0.00316) (0.00322) (0.00326) (0.00316) 

Maximum Likelihood 
0.53908 0.50510 0.52185 0.52053 0.52277 0.53351 0.50132 0.51686 

(0.00417) (0.00405) (0.00400) (0.00400) (0.00408) (0.00409) (0.00399) (0.00396) 
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Table 2.3 Root Mean Squared Prediction Error for Spatially Dependent Data Sampled on a 20 by 30 Grid on a Random Field 

Variance Estimation Method (1) (2) (3) (4) (5) (6) (7) (8) 

  
𝜎1 = 0.1,
𝜎2 = 1 

Local Linear 
1.00030 1.00015 1.00145 1.00238 1.00064 1.00021 1.00190 1.00145 

(0.02909) (0.02944) (0.02857) (0.02862) (0.03133) (0.02910) (0.02980) (0.02999) 

Nadaraya-Watson 
1.00099 1.00108 1.00239 1.00310 1.00133 1.00097 1.00271 1.00240 

(0.02906) (0.02943) (0.02857) (0.02872) (0.03142) (0.02910) (0.02979) (0.02995) 

K-Nearest Neighbors 
1.02484 1.02450 1.02639 1.02738 1.02512 1.02532 1.02674 1.02613 

(0.03084) (0.03136) (0.03032) (0.03027) (0.03317) (0.03094) (0.03218) (0.03135) 

Maximum Likelihood 
1.00267 1.00292 1.00466 1.00520 1.00338 1.00264 1.00444 1.00375 

(0.02905) (0.02942) (0.02875) (0.02883) (0.03125) (0.02896) (0.02964) (0.03016) 

  
𝜎1 = 0.5,
𝜎2 = 1 

Local Linear 
1.00084 1.00241 1.00067 1.00220 1.00101 1.00204 0.99995 1.00102 

(0.02604) (0.02966) (0.02830) (0.02804) (0.02986) (0.03063) (0.02797) (0.02844) 

Nadaraya-Watson 
1.00488 1.00716 1.00433 1.00597 1.00513 1.00651 1.00395 1.00519 

(0.02608) (0.03023) (0.02836) (0.02805) (0.02992) (0.03118) (0.02804) (0.02868) 

K-Nearest Neighbors 
1.02560 1.02788 1.02541 1.02614 1.02608 1.02675 1.02441 1.02644 

(0.02805) (0.03115) (0.02978) (0.02921) (0.03176) (0.03194) (0.02974) (0.03107) 

Maximum Likelihood 
1.12733 1.11791 1.11026 1.11936 1.12564 1.12437 1.11989 1.11329 

(0.01477) (0.01446) (0.01500) (0.01445) (0.01456) (0.01512) (0.01535) (0.01457) 

𝜎1 = 0.1,
𝜎2 = 0.5 

Local Linear 
0.49993 0.50119 0.49950 0.50079 0.50243 0.49972 0.50016 0.49867 

(0.01477) (0.01446) (0.01500) (0.01445) (0.01456) (0.01512) (0.01535) (0.01457) 

Nadaraya-Watson 
0.50108 0.50237 0.50068 0.50172 0.50361 0.50088 0.50152 0.50025 

(0.01464) (0.01421) (0.01469) (0.01428) (0.01430) (0.01498) (0.01497) (0.01444) 

K-Nearest Neighbors 
0.51244 0.51360 0.51184 0.51295 0.51511 0.51231 0.51270 0.51112 

(0.01518) (0.01533) (0.01533) (0.01519) (0.01491) (0.01555) (0.01559) (0.01533) 

Maximum Likelihood 
0.50830 0.50948 0.50835 0.50899 0.51036 0.50885 0.50892 0.50892 

(0.01477) (0.01446) (0.01500) (0.01445) (0.01456) (0.01512) (0.01535) (0.01457) 
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Table 2.4 Root Mean Squared Prediction Error for Spatially Dependent Data Sampled on a 40 by 50 Grid on a Random Field 

Variance Estimation Method (1) (2) (3) (4) (5) (6) (7) (8) 

 
𝜎1 = 1,
𝜎2 = 1 

Local Linear 
1.00669 1.00319 1.00289 1.00574 1.00890 1.00180 1.00363 1.00343 

(0.01504) (0.01637) (0.01599) (0.01578) (0.01697) (0.01504) (0.01563) (0.01609) 

Nadaraya-Watson 
1.01874 1.00458 1.00637 1.01252 1.02012 1.00311 1.00521 1.00640 

(0.01614) (0.01634) (0.01581) (0.01591) (0.01632) (0.01508) (0.01556) (0.01588) 

K-Nearest Neighbors 
1.07396 1.02973 1.03097 1.04038 1.06029 1.02841 1.02929 1.03282 

(0.01636) (0.01709) (0.01637) (0.01717) (0.01733) (0.01611) (0.01623) (0.01669) 

Maximum Likelihood 
1.49158 1.45535 1.46460 1.44173 1.50104 1.44283 1.43527 1.45929 

(0.01922) (0.01960) (0.01959) (0.02058) (0.01906) (0.01856) (0.02014) (0.02028) 

  
𝜎1 = 0.5,
𝜎2 = 0.5 

Local Linear 
0.50112 0.50056 0.50048 0.50042 0.50051 0.50077 0.50051 0.50100 

(0.00775) (0.00806) (0.00776) (0.00773) (0.00784) (0.00841) (0.00794) (0.00805) 

Nadaraya-Watson 
0.50858 0.50151 0.50150 0.50146 0.50152 0.50193 0.50178 0.50246 

(0.00767) (0.00807) (0.00781) (0.00783) (0.00785) (0.00848) (0.00797) (0.00813) 

K-Nearest Neighbors 
0.51395 0.51298 0.51299 0.51281 0.51294 0.51317 0.51300 0.51403 

(0.00821) (0.00856) (0.00815) (0.00827) (0.00843) (0.00874) (0.00859) (0.00853) 

Maximum Likelihood 
0.71078 0.70603 0.71605 0.70899 0.70649 0.69879 0.72222 0.70917 

(0.00957) (0.00966) (0.00955) (0.00950) (0.00979) (0.01021) (0.00983) (0.00973) 

𝜎1 = 0.1,
𝜎2 = 0.1 

Local Linear 
0.10000 0.10017 0.10002 0.10004 0.10006 0.10006 0.09995 0.10006 

(0.00162) (0.00154) (0.00159) (0.00152) (0.00150) (0.00154) (0.00165) (0.00161) 

Nadaraya-Watson 
0.10093 0.10056 0.10045 0.10047 0.10095 0.10047 0.10033 0.10048 

(0.00162) (0.00155) (0.00159) (0.00154) (0.00149) (0.00157) (0.00165) (0.00164) 

K-Nearest Neighbors 
0.10263 0.10279 0.10268 0.10266 0.10268 0.10268 0.10252 0.10265 

(0.00172) (0.00164) (0.00168) (0.00159) (0.00162) (0.00167) (0.00177) (0.00168) 

Maximum Likelihood 
0.14185 0.14346 0.14404 0.14260 0.14368 0.14267 0.14407 0.14514 

(0.00201) (0.00199) (0.00196) (0.00194) (0.00192) (0.00192) (0.00194) (0.00205) 
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Table 2.5 Root Mean Squared Prediction Error for Spatially Dependent Data Sampled on a 40 by 50 Grid on a Random Field 

Variance Estimation Method (1) (2) (3) (4) (5) (6) (7) (8) 

  
𝜎1 = 1,
𝜎2 = 0.1 

Local Linear 
0.150418 0.100936 0.139038 0.100869 0.102351 0.103018 0.117797 0.102415 

(0.00130) (0.00169) (0.00130) (0.00156) (0.00183) (0.00177) (0.00499) (0.00173) 

Nadaraya-Watson 
0.131632 0.103748 0.126817 0.102605 0.131465 0.135981 0.208155 0.1292 

(0.00138) (0.00169) (0.00130) (0.00158) (0.00139) (0.00156) (0.00214) (0.00149) 

K-Nearest Neighbors 
0.143182 0.144898 0.130574 0.158741 0.179604 0.147421 0.259991 0.247754 

(0.00183) (0.00179) (0.00179) (0.00197) (0.00188) (0.00193) (0.00214) (0.00204) 

Maximum Likelihood 
1.12908 1.05525 1.03298 1.0718 1.08461 1.01978 1.15415 1.13594 

(0.00224) (0.00229) (0.00228) (0.00226) (0.00221) (0.00221) (0.00224) (0.00215) 

  
𝜎1 = 1,
𝜎2 = 0.5 

Local Linear 
0.502569 0.502324 0.503575 0.503047 0.505016 0.501728 0.623685 0.502869 

(0.00801) (0.00811) (0.00812) (0.00866) (0.00892) (0.00812) (0.01168) (0.00787) 

Nadaraya-Watson 
0.506952 0.506004 0.508379 0.508128 0.517339 0.50386 0.68265 0.511577 

(0.00810) (0.00822) (0.00830) (0.00816) (0.00851) (0.00816) (0.01175) (0.00800) 

K-Nearest Neighbors 
0.536086 0.524006 0.549623 0.525722 0.542368 0.542567 0.75105 0.543438 

(0.00836) (0.00863) (0.00907) (0.00887) (0.00908) (0.00871) (0.01046) (0.00830) 

Maximum Likelihood 
1.24579 1.15425 1.2238 1.2053 1.20254 1.26506 1.29239 1.20996 

(0.01054) (0.01056) (0.01111) (0.01128) (0.01026) (0.00990) (0.01103) (0.01071) 

𝜎1 = 0.5,
𝜎2 = 0.1 

Local Linear 
0.100264 0.100524 0.100329 0.100451 0.100381 0.100265 0.100412 0.100418 

(0.00152) (0.00164) (0.00165) (0.00164) (0.00161) (0.00160) (0.00165) (0.00162) 

Nadaraya-Watson 
0.10075 0.102406 0.100736 0.101075 0.101319 0.100676 0.100795 0.101043 

(0.00151) (0.00166) (0.00167) (0.00166) (0.00163) (0.00162) (0.00167) (0.00170) 

K-Nearest Neighbors 
0.103097 0.107184 0.103962 0.10657 0.105608 0.102942 0.106898 0.105682 

(0.00159) (0.00177) (0.00173) (0.00174) (0.00176) (0.00167) (0.00181) (0.00174) 

Maximum Likelihood 
0.518021 0.514192 0.512713 0.517591 0.50912 0.507655 0.519842 0.526547 

(0.00203) (0.00222) (0.00225) (0.00227) (0.00203) (0.00224) (0.00219) (0.00226) 
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Table 2.6 Root Mean Squared Prediction Error for Spatially Dependent Data Sampled on a 40 by 50 Grid on a Random Field 

Variance Estimation Method (1) (2) (3) (4) (5) (6) (7) (8) 

  
𝜎1 = 0.1,
𝜎2 = 1 

Local Linear 
1.00064 0.99922 1.00029 1.00115 1.00081 0.99948 1.00043 1.00090 

(0.01589) (0.01565) (0.01620) (0.01592) (0.01666) (0.01644) (0.01604) (0.01523) 

Nadraya-Watson 
1.00131 0.99993 1.00101 1.00186 1.00152 1.00021 1.00117 1.00159 

(0.01589) (0.01568) (0.01619) (0.01595) (0.01664) (0.01648) (0.01607) (0.01520) 

K-Nearest Neighbors 
1.02626 1.02542 1.02566 1.02700 1.02624 1.02541 1.02598 1.02652 

(0.01683) (0.01661) (0.01717) (0.01693) (0.01766) (0.01736) (0.01694) (0.01607) 

Maximum Likelihood 
1.00505 1.00384 1.00491 1.00573 1.00555 1.00397 1.00502 1.00517 

(0.01581) (0.01575) (0.01605) (0.01607) (0.01663) (0.01662) (0.01611) (0.01518) 

  
𝜎1 = 0.5,
𝜎2 = 1 

Local Linear 
1.00166 1.00108 1.00203 1.00092 1.00051 1.00243 1.00014 1.00119 

(0.01607) (0.01433) (0.01547) (0.01573) (0.01629) (0.01619) (0.01556) (0.01563) 

Nadraya-Watson 
1.00436 1.00351 1.00451 1.00219 1.00295 1.00492 1.00385 1.00385 

(0.01620) (0.01438) (0.01550) (0.01578) (0.01642) (0.01632) (0.01553) (0.01573) 

K-Nearest Neighbors 
1.02676 1.02635 1.02718 1.02600 1.02573 1.02739 1.02540 1.02622 

(0.01747) (0.01547) (0.01673) (0.01721) (0.01754) (0.01707) (0.01667) (0.01686) 

Maximum Likelihood 
1.12482 1.11431 1.11696 1.11936 1.11953 1.11846 1.12227 1.11997 

(0.01759) (0.01634) (0.01605) (0.01719) (0.01716) (0.01776) (0.01665) (0.01768) 

𝜎1 = 0.1,
𝜎2 = 0.5 

Local Linear 
0.50020 0.50047 0.49975 0.49984 0.49985 0.50023 0.50057 0.50009 

(0.00738) (0.00779) (0.00788) (0.00786) (0.00740) (0.00829) (0.00809) (0.00791) 

Nadraya-Watson 
0.50069 0.50102 0.50026 0.50034 0.50043 0.50073 0.50105 0.50058 

(0.00739) (0.00779) (0.00788) (0.00787) (0.00740) (0.00831) (0.00807) (0.00793) 

K-Nearest Neighbors 
0.51293 0.51344 0.51265 0.51275 0.51272 0.51316 0.51330 0.51277 

(0.00806) (0.00823) (0.00840) (0.00847) (0.00797) (0.00875) (0.00854) (0.00827) 

Maximum Likelihood 
0.50987 0.51059 0.50973 0.51020 0.51003 0.51016 0.51045 0.51013 

(0.00757) (0.00816) (0.00791) (0.00809) (0.00760) (0.00836) (0.00825) (0.00799) 
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Table 2.7 Root Mean Squared Error for Predicting Crop Yield with Precipitation 

Estimation Method \ Crop Barley Corn Soybean Wheat 

Local Linear 23.2103 33.3685 8.28392 20.0992 

Nadaraya-Watson 23.184 33.3792 8.28634 20.2162 

K-Nearest Neighbors 23.7871 34.2133 8.50096 20.4713 

Maximum Likelihood 23.571 34.6139 8.42354 20.2922 

Total Variation 23.6645 34.6909 8.42654 20.2924 

Sample Size 4926 14690 12706 4409 
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Figure 2.1 State Average Barley Yield for States in the Barley Belt 
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Figure 2.2 State Average Corn Yield for States in the Corn Belt 
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Figure 2.3 State Average Soybean Yield for States in the Soybean Belt 
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Figure 2.4 State Average Wheat Yield for States in the Wheat Belt 
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Figure 2.5 County Level Average Yield over Time 
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Figure 2.6 County Level Historical Average Precipitation over Time 
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Appendix 2.1 Asymptotic Distribution of Local Linear Kernel Estimator for Spatial Data  

(Hallin et al. (2004b)): 

Under sufficient assumptions, let 𝜙(𝑥) = 𝑂(𝑥−𝜇) for some 𝜇 > 2(3 + 𝛿)𝑁/𝛿 and suppose that 

there exists a sequence of positive integers 𝑞 = 𝑞𝒏 → ∞ such that 𝑞𝒏 = 𝑜((𝒏̂𝑏𝒏
𝑑)1 (2𝑁)⁄ ) and 

𝒏̂𝑞−𝜇 → 0 as 𝒏 → ∞, and the bandwidth 𝑏𝒏 tends to zero in a way that 𝑞𝑏𝒏
𝜹𝒅 [𝑎(2+𝛿)]⁄

> 1 for 

some 
(4+𝛿)𝑁

2+𝛿
< 𝑎 <

𝜇𝛿

2+𝛿
− 𝑁 as 𝒏 → ∞40. Then, 

(𝒏̂𝑏𝒏
𝑑)

1 2⁄
[(

𝑔𝒏(𝒙) − 𝑔(𝒙)

(𝑔𝒏
′ (𝒙) − 𝑔′(𝒙))𝑏𝒏

) − 𝑼−1 (
𝐵0(𝒙)

𝑩1(𝒙)
) 𝑏𝒏

2]
𝑑
→ 𝒩(𝟎,𝑼−1𝚺(𝑼−1)𝑇)   as 𝒏 → ∞  

Where 

𝑼𝒏

𝑝
→ 𝑼 ≡ 𝑓(𝒙)(

∫𝐾(𝒖)𝑑𝒖 ∫𝒖𝑻𝐾(𝒖)𝑑𝒖

∫𝒖𝐾(𝒖)𝑑𝒖 ∫𝒖𝒖𝑻𝐾(𝒖)𝑑𝒖
)    as 𝒏 → ∞, 

lim
𝒏→∞

𝑉𝑎𝑟((𝒏̂𝑏𝒏
𝑑)

1 2⁄
𝑾𝒏) = 𝚺 ≡ 𝑉𝑎𝑟(𝑌𝒋|𝑿𝒋 = 𝒙)𝑓(𝒙)(

∫𝐾2(𝒖)𝑑𝒖 ∫𝒖𝑻𝐾2(𝒖)𝑑𝒖

∫𝒖𝐾2(𝒖)𝑑𝒖 ∫𝒖𝒖𝑻𝐾2(𝒖)𝑑𝒖
), 

𝐵0(𝒙) ≡
1

2
𝑓(𝒙)∑∑𝑔𝑖𝑗(𝒙)

𝑑

𝑗=1

𝑑

𝑖=1

∫𝑢𝑖 𝑢𝑗𝐾(𝒖)𝑑𝒖, 

                                                           
40 This condition for 𝑞 and 𝑏𝒏 are clearly explained in Hallin et al. (2004b). For two sequences of positive integer vectors, 𝒑 =

𝒑𝒏 ≡ (𝑝1, … , 𝑝𝑁) ∈ ℤ𝑁 and 𝒒 = 𝒒𝒏 ≡ (𝑞, 𝑞,… , 𝑞) ∈ ℤ𝑁, with 𝑞 = 𝑞𝒏 → ∞ such that 𝑝 = 𝑝𝒏 ≡ 𝒑̂ = 𝑜(( 𝒏̂𝑏𝒏
𝑑)1/2), 𝑞/𝑝𝑘 → 0 

and 𝑛𝑘/𝑝𝑘 → ∞ for all 𝑘 = 1, 2,… , 𝑁, and 𝒏̂𝜙(𝑞) → 0. 𝑏𝒏 tends to zero at such a rate that 𝑞𝑏𝒏
𝛿𝑑/[𝑎(2+𝛿)] > 1 and 

𝑏𝒏
−𝛿𝑑/(2+𝛿) ∑ 𝑡𝑁−1∞

𝑡=𝑞 [𝜙(𝑡)]
𝛿

2+𝛿⁄ → 0    𝑎𝑠    𝒏 → ∞ . 
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𝑩1(𝒙) ≡
1

2
𝑓(𝒙)∑∑𝑔𝑖𝑗(𝒙)

𝑑

𝑗=1

𝑑

𝑖=1

∫𝑢𝑖 𝑢𝑗𝒖𝐾(𝒖)𝑑𝒖, 

𝑔𝑖𝑗(𝒙) =
𝜕2𝑔(𝒙)

𝜕𝑥𝑖𝜕𝑥𝑗
, 𝑖, 𝑗 = 1,… , 𝑑, 𝑎𝑛𝑑 𝒖 ≡ (𝑢1, … , 𝑢𝑑)𝑻 ∈ ℝ𝒅. 

In addition, if the kernel 𝐾(∙) is a symmetric density function, then the above asymptotic 

distribution can be reduced to: 

(
(𝒏̂𝑏𝒏

𝑑)
1 2⁄

(𝑔𝒏(𝒙) − 𝑔(𝒙) − 𝑩𝑔(𝒙)𝑏𝒏
2)

(𝒏̂𝑏𝒏
𝑑+2)

1 2⁄
(𝑔𝒏

′ (𝒙) − 𝑔′(𝒙))
)

𝑑
→ 𝒩 (𝟎, (

𝜎0
2(𝒙) 0

0 𝝈1
2(𝒙)

))    

Where 

𝑩𝑔(𝒙) ≡
1

2
∑𝑔𝑖𝑖(𝒙)

𝑑

𝑖=1

∫𝑢𝑖
2 𝐾(𝒖)𝑑𝒖, 

𝜎0
2(𝒙) ≡

𝑉𝑎𝑟(𝑌𝒋|𝑿𝒋 = 𝒙)∫𝐾2(𝒖)𝑑𝒖

𝑓(𝒙)
, 𝑎𝑛𝑑 

𝝈1
2(𝒙) ≡  

𝑉𝑎𝑟(𝑌𝒋|𝑿𝒋 = 𝒙)

𝑓(𝒙)
× [∫𝒖𝒖𝑻𝐾(𝒖)𝑑𝒖]

−1

[∫𝒖𝒖𝑻𝐾2(𝒖)𝑑𝒖] [∫𝒖𝒖𝑻𝐾(𝒖)𝑑𝒖]
−1

. 

To get the variance-covariance matrix of the local linear estimator, we need to estimate 𝑓(𝒙) and 

𝑉𝑎𝑟(𝑌𝒋|𝑿𝒋 = 𝒙) = 𝐸(𝑌𝒋
𝟐|𝑿𝒋 = 𝒙) − 𝑔(𝒙)𝟐 by the standard kernel method. The following 

estimators would be used: 

𝑓(𝒙) =
1

𝒏̂𝑏𝒏
𝑑 ∑ 𝐾 (

𝑿𝒋 − 𝒙

𝑏𝒏
)

𝒋∈𝐼𝒏

 



97 

 

 

 

𝐸̂(𝑌𝒋
𝟐|𝑿𝒋 = 𝒙) =

1

𝒏̂𝑏𝒏
𝑑 ∑ 𝑒̂𝒋

2(𝒙)𝐾 (
𝑿𝒋 − 𝒙

𝑏𝒏
)

𝒋∈𝐼𝒏

    𝑤𝑖𝑡ℎ 𝑒̂𝒋(𝒙) = 𝑌𝒋 − 𝑔𝒏(𝒙). 
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Chapter 3: Modeling Extreme Price Movements in the Energy Markets 

 

3.1 Introduction 

     Two of the most important lessons we can learn from the recent financial crisis is that tail 

events, such as a sharp fall in asset prices, could happen unexpectedly, and in an episode of 

deleveraging, illiquidity and flight to quality, the degree of co-movements in asset prices can 

spike with conventional uncorrelated asset prices - rising or falling together, see Vineer Bhansali 

(2008). In this paper, we use univariate and multivariate extreme value theory are to investigate 

the limit distributions of extreme returns, and more importantly, the correlation of extreme price 

movements in the energy markets. Specifically, the “exceedances over high threshold” model of 

Davidson and Smith (1990) is used to fit the univariate tail distribution of the return series 

derived from daily spot prices of WTI crude oil, New York Harbor No.2 Heating Oil, Gulf Coast 

Conventional Gasoline, TX Propane and LA Ultra-Low Sulfur Diesel. Next, we adopt the 

multivariate extreme value approach of Ledford and Tawn (1996) to estimate the bivariate tail 

dependence index for different pairs of returns on these energy products. 

     Extreme value theory has played an important methodological role in risk management for 

insurance and finance since the increasing complexity of the financial markets has exposed 

financial institutions to catastrophic losses. For a large class of distribution functions 𝐹, which 

may be unknown, of a random variable 𝑋, the tail distribution of 𝑋 is given by the second 

theorem in extreme value theory, also called the Pickands-Balkema-de Haan theorem established 

by Balkema and de Haan (1974) and Pickands (1975). The limit tail distribution is usually 

approximated by a gerneralized Pareto distribution. For example, Davidson and Smith (1990) 
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detailed estimation procedures and specification analysis on how to use the generalized Pareto 

distribution to fit the size and occurrence of exceedances over high thresholds for a univariate 

random variable. Since then, extreme value theory has been widely used to model tail-related 

loss distribution and to construct risk measures for univariate data. 

     The statistical distribution assumption for the returns on the underlying asset plays a central 

role in financial modeling. It is necessary to test asset pricing theories, to construct optimal 

portfolios, to value and hedge derivative positions, and to measure and manage financial risk, see 

Embrechts (2002) and Lombardi and Ravazzolo (2013). Previous research has usually assumed 

that the underlying asset returns follow an IID normal distribution. However, the fact that the 

frequency of extreme price movements in the financial markets are much higher than that 

implied by the normal distribution seems to contradict the normality assumption. In response, 

Hols and De Vries (1991) advocated the use of extreme value distribution for modelling fat-

tailed exchange rate return distributions. The advantage is that the parameter characterizing the 

degree of tail fatness can be estimated without a pre-assumed underlying distribution. One can 

assess the very small probability of an exceedance over a high threshold with the estimated 

parameters. Longin (2005) also showed that extreme value theory can be useful to more 

precisely characterize the distribution of asset returns and help to choose a more suitable model 

where the tails of the distribution is concerned.  

     Since risk management is in essence the practice of allocating capital to absorb potential 

losses in instances of adverse market movements, risk managers are particularly concerned about 

extreme price movements in the underlying asset. Hence, extreme value theory has become a 

popular and suitable tool in risk management. To calculate value at risk (VaR) and expected 

shortfall, McNeil and Frey (2000) used extreme value theory to estimate the tail distribution of 
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the disturbance term in the Garch model for current volatility. The advantage of this approach 

compared to other methods that ignore either the heavy tails in the disturbance term distribution 

or the stochastic nature of volatility is shown by back-testing with historical daily return series. 

Longin (2000) pointed out that computing VaR based on extreme values can cover both the 

normal market conditions considered by existing VaR methods and periods of turbulence 

concerned by stress testing since the limit distribution of extreme returns, which is usually fit by 

a generalized Pareto distribution, is to a large extent independent of the underlying distribution 

of returns. Marimoutou et. al. (2009) calculated VaR for long and short positions in the oil 

market applying both unconditional and conditional EVT. Their results showed that conditional 

EVT and filtered historical simulation approach provide major improvements over other 

conventional methods. Using extreme value theory, Cotter (2001) computed unconditional 

optimal margin levels for stock index futures traded on European exchanges. 

     While most of the applications of extreme value theory focus on fitting the tail distribution or 

calculating risk measures such as VaR or expected shortfall based on the univariate underlying 

asset returns; recently multivariate extreme value theory has also been used to model correlation 

and dependence in different assets or markets. Hartmann et. al. (2004) have constructed an 

extremal dependence measure for asset market linkages. Their results show that simultaneous 

crashes are more likely to happen in stock markets than in bond markets for the G-5 countries. At 

the same time, the frequency of stock-bond contagion could be comparable to that of flight to 

qualify from stocks into bonds. Using multivariate extreme value theory, Longin and Solnik 

(2001) have modeled the extreme dependence in international equity returns and their results 

show that correlation tend to be higher in bear markets. Poon et. al. (2004) presented a general 

framework for modeling the joint-tail distribution based on multivariate extreme value theory. 
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Their results using returns on five major stock indices have shown that the use of traditional 

dependence measures could lead to inaccurate portfolio risk assessment, especially when 

studying extreme events such as systemic risk and crisis. 

     In this paper, we investigate the tail distribution of the returns on spot prices of crude oil, 

Gasoline, Heating Oil, Propane and Diesel and study the bivariate extreme dependence between 

the price movements in these energy products. Special attention should be paid to this issue since 

recent increases in the frequency of sharp falls in energy prices, especially in oil prices, have 

significant impact on economic activity and have become a major concern for consumers, firms 

and governments. In addition, as a result of rapidly growing index investment, synchronized 

price booms and busts of a series of conventionally unrelated commodities have become a 

common phenomenon, see Tang and Xiong (2010). As an important part of commodity markets, 

we would also expect increased correlation between energy prices. Studying the extreme 

movements and extreme correlation in the energy markets is thus of crucial importance for 

energy portfolio optimization and risk management. 

     The rest of the paper is organized as follows: Section 3.2 gives out the modeling framework 

based on both univariate and multivariate extreme value theory. Section 3.3 deals with the 

econometric methodology and presents the empirical results. Section 3.4 concludes. 

3.2 Models for multivariate extreme returns 

     The model used for joint tail estimation is the multivariate extreme value threshold model of 

Ledford and Tawn (1996).  Analogous to the Copula theory, this multivariate extreme value 

threshold model decomposes the joint tail distribution into its marginal tail distributions and a 

dependence function characterizing the dependence between the marginal tail distributions. The 
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limit results involve the marginal structure and the dependence structure, which we will discuss 

separately in the following sections. 

3.2.1 Univariate Tail Distribution 

     We will follow the “peaks over threshold” approach of Pickands (1975) and Davison and 

Smith (1990) for marginal distribution of tail events. Suppose the 𝑑-dimensional random 

variable (𝑅𝑗; 𝑗 = 1,… , 𝑑) has a joint distribution function 𝐹. Consider the unknown cumulative 

distribution function 𝐹𝑗 of univariate random variable 𝑅𝑗, which denotes the return on the 𝑗th 

energy price. Extreme returns of 𝑅𝑗 are defined as those returns in exceedance of a certain 

threshold 𝑢𝑗 . In this paper, we will identify right tail exceedances as those observations of 𝑅𝑗 

greater than the threshold 𝑢𝑗;  Similarly, left tail exceedances observations are those with the 

negative of 𝑅𝑗 greater than the threshold 𝑢𝑗 . For a given small positive value 𝑝𝑗, if the probability 

of  𝑅𝑗 exceeding threshold 𝑢𝑗  equals 𝑝𝑗, then 𝑝𝑗 = 1 − 𝐹𝑗(𝑢𝑗).   Here, we are interested in 

estimating the conditional distribution function 𝐹𝑗,𝑢𝑗
 of 𝑅𝑗 above a certain threshold 𝑢𝑗 , which is 

characterized by the “conditional excess distribution function”, defined as 

𝐹𝑗,𝑢𝑗
(𝑦) = 𝑃(𝑅𝑗 − 𝑢𝑗  ≤ 𝑦 | 𝑅𝑗 > 𝑢𝑗)  =  

 𝐹𝑗(𝑢𝑗 + 𝑦) − 𝐹𝑗(𝑢𝑗)

1 − 𝐹𝑗(𝑢𝑗)
     𝑓𝑜𝑟 0 ≤ 𝑦 ≤  𝑅 𝐹𝑗

− 𝑢𝑗  

where 𝑅 𝐹𝑗
 is the right endpoint of the underlying marginal distribution  𝐹𝑗, it can be finite or 

infinite. The function 𝐹𝑗,𝑢𝑗
 describes the distribution of the excess value over a threshold 𝑢𝑗 , 

conditional on the threshold is exceeded. 

     Given a sequence of observations (𝑅𝑗1, 𝑅𝑗2, … , 𝑅𝑗𝑛) from 𝑅𝑗, with conditional excess 

distribution function 𝐹𝑗,𝑢𝑗
, extreme value theory will try to search for a possible non-degenerate 



103 

 

 

 

limiting distribution for 𝐹𝑗,𝑢𝑗
 as the threshold  𝑢𝑗  tends to the upper point 𝑅 𝐹𝑗

. Balkema and de 

Haan (1974) and Pickands (1975) pointed out that for a very wide class of underlying 

distribution functions 𝐹𝑗, and large  𝑢𝑗 , 𝐹𝑗,𝑢𝑗
 is well approximated by the generalized Pareto 

distribution. That is: 

𝐹𝑗,𝑢𝑗
(𝑦)  → 𝐺𝜉,𝜎(𝑦),       𝑎𝑠 𝑢 → ∞ 

𝐺𝜉,𝜎(𝑦) = {1 − (1 +
𝜉𝑦

𝜎
)
−

1
𝜉
,        𝑖𝑓   𝜉 ≠ 0

1 − 𝑒−
𝑦
𝜎,                      𝑖𝑓   𝜉 = 0.

 

Here 𝜎 > 0, 𝑦 ≥ 0 when 𝜉 ≥ 0 and 0 ≤ 𝑦 ≤  −𝜎 𝜉⁄  when 𝜉 < 0. The case 𝜉 = 0 corresponds 

to the exponential distribution with mean 𝜎. If 𝜉 = 1, 𝐺𝑘,𝜎(𝑦) is a uniform distribution on 

[0, 𝜎].  If 𝜉 < 0, 𝐺𝜉,𝜎(𝑦) is the Pareto distribution. The properties of the distribution tail is 

determined by the tail index 𝜉. For a given threshold, the univariate distribution tail could be 

characterized by three parameters: the tail probability 𝑝𝑗, the dispersion parameter 𝜎, and the tail 

index 𝜉. The case of 𝜉 > 0 corresponds to a power-declining tail, usually called fat-tailed 

distributions; The case of 𝜉 = 0 corresponds to exponentially declining tail, usually called thin-

tailed distributions; The case of 𝜉 < 0 corresponds to distributions with no tail or finite tail 

distributions. 

3.2.2 Modeling Multivariate Tail Dependence 

     To model the 𝑑-dimensional random variable (𝑅𝑗; 𝑗 = 1,… , 𝑑) with joint distribution function 

𝐹, and marginal distribution functions 𝐹𝑗 for 𝑅𝑗 (𝑗 = 1,… , 𝑑), following Ledford and Tawn 

(1996)  and Heffernan and Tawn (2004), we first do a transformation 𝑍𝑗 = −1/𝑙𝑜𝑔𝐹𝑗(𝑅𝑗) for 
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each 𝑗, which transforms the marginal variable 𝑅𝑗 into a unit Frechet variable 𝑍𝑗 with 

Pr(𝑍𝑗 ≤ 𝑧) = exp (−1/𝑧) for 0 < 𝑧 < ∞. Let 𝐹∗ be the joint distribution function of (𝑍1, … , 𝑍𝑑), 

then 𝐹∗(𝑧1, . . ., 𝑧𝑑) = 𝐹(𝑟1, … , 𝑟𝑑). Multivariate extreme value theory is based on the 

assumption that 𝐹 is in the domain of attraction41 of a multivariate extreme value distribution, 

which means that the normalized componentwise maxima of observations from 𝐹 will have a 

non-degenerate multivariate limit distribution. This is equivalent to 𝐹∗ being in the domain of 

attraction of a multivariate extreme value distribution with unit Frechet as marginal distribution, 

see Resnick (1987) and Tawn (1990). The joint distribution 𝐹∗ is required to satisfy the following 

condition 

𝐹∗(𝑧1, . . . , 𝑧𝑑) = exp (−𝑉(𝑧1, . . . , 𝑧𝑑)) 

for 𝑍𝑗 > 𝑣𝑗  (𝑗 = 1,… , 𝑑), where 𝑣𝑗  is the threshold for 𝑍𝑗 related the threshold of 𝑅𝑗 by 𝑣𝑗 =

−1/𝑙𝑜𝑔𝐹𝑗(𝑢𝑗), and 𝑉(∗) is a function capturing the dependence structure between marginal 

distributions. This could also be expressed in terms of the original random variable (𝑅𝑗; 𝑗 =

1, … , 𝑑)  as 

𝐹(𝑟1, … , 𝑟𝑑) = exp(−𝑉 (−
1

𝑙𝑜𝑔𝐹1(𝑟1)
, . . . , −

1

𝑙𝑜𝑔𝐹𝑑(𝑟𝑑)
)) 

when each 𝑟𝑗 exceeds its corresponding threshold 𝑢𝑗 . 

                                                           
41 Given a sequence of i.i.d. sample 𝑋1, 𝑋2, … , 𝑋𝑛 from distribution function 𝑓, if lim

𝑛→∞
𝑃{𝑎𝑛

−1(max(𝑋1, 𝑋2, … , 𝑋𝑛) − 𝑏𝑛) ≤ 𝑥} =

𝐺𝐸𝑉(𝑥) for some non-degerate distribution function 𝐺𝐸𝑉(∗) , where 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ are normalizing constants that could be 

appropriately chosen so that 𝐺𝐸𝑉(𝑥) = 𝐺𝐸𝑉𝜉(𝑥) = 𝑒𝑥𝑝(−(1 + 𝜉𝑥)−1/𝜉) for all x such that 1 + 𝜉𝑥 > 0, then we say that the 

distribution function 𝑓 belongs to the domain of attration of 𝐺𝐸𝑉𝜉(𝑥). Actually, the extreme value distribution 𝐺𝐸𝑉𝜉(𝑥) can be 

characterized by three classes of distributions, the Gumbel, Frechet and Weibull distribution, which in turn contain distribution 

functions with exponential tail, polynomially decaying tail and light tail with finite right endpoint in its domain of attraction, 

respectively. 
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     For the marginal distribution 𝐹𝑗, we could use the generalized Pareto distribution to model 

each marginal distribution above a threshold following Davison and Smith (1990). Making the 

marginal thresholds coincide with the thresholds 𝑢𝑗  in the dependence structure gives, 

𝐹𝑗,𝑢𝑗
(𝑟𝑗) = 1 − 𝑝𝑗 (1 +

𝜉(𝑟𝑗 − 𝑢𝑗)

𝜎
)

+

−
1
𝜉

,      𝑟𝑗 ≥ 𝑢𝑗  

where 𝑝𝑗 is some small probability chosen so that 𝑢𝑗  is the 1 − 𝑝𝑗 quantiles of the marginal 

distribution of 𝑅𝑗
42. The transformed marginal variable is given by 𝑍𝑗 = −

1

𝑙𝑜𝑔𝐹𝑗(𝑅𝑗)
. 

     For the dependence structure 𝑉(∗), we use the popular multivariate logistic function43, 

𝑉(𝑧1, . . . , 𝑧𝑑) =  (𝑧1
−

1
𝛾 + ⋯+ 𝑧𝑑

−
1
𝛾)𝛾 

with dependence parameter 𝛾 ∈ (0, 1]. When the marginal variables are independent, 

𝑉(𝑧1, . . . , 𝑧𝑑) =  ∑ 𝑧𝑗
−1. The multivariate distribution function can be factorized into the product 

of the marginal distributions as 

𝐹(𝑟1, … , 𝑟𝑑) = exp(−𝑉(𝑧1, . . . , 𝑧𝑑)) = exp [−∑𝑧𝑗
−1

𝑑

𝑗=1

] = ∏exp(−(−
1

𝑙𝑜𝑔𝐹𝑗(𝑟𝑗)
)

−1

)

𝑑

𝑗=1

= ∏𝐹𝑗,𝑢𝑗
(𝑟𝑗)

𝑑

𝑗=1

 

                                                           
42 𝐹𝑗,𝑢𝑗

(𝑟𝑗) ≡ 𝑃(𝑅𝑗 ≤ 𝑟𝑗) = 𝑃(𝑅𝑗 ≤ 𝑢𝑗) + 𝑃(𝑢𝑗 ≤ 𝑅𝑗 ≤ 𝑟𝑗) = 1 − 𝑝𝑗 + 𝑃(𝑅𝑗 ≤ 𝑟𝑗|𝑅𝑗 > 𝑢𝑗)𝑃(𝑅𝑗 > 𝑢𝑗) = 1 − 𝑝𝑗 +

[1 − (1 +
𝜉(𝑟𝑗−𝑢𝑗)

𝜎
)
+

−
1

𝜉
] 𝑝𝑗 = 1 − 𝑝𝑗 (1 +

𝜉(𝑟𝑗−𝑢𝑗)

𝜎
)
+

−
1

𝜉
. 

43 The dependence structure 𝑉(∗) has to satisfy certain conditions in order to be used to represent multivariate extreme value 

distributions with unit Freshet margins, and logistic function is a simple example that satisfies those conditions.See for example, 

Pickands (1981), Joe (1990), Tawn (1990), Coles and Tawn (1991) and Ledford and Tawn (1997). 
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for 𝑟𝑗 > 𝑢𝑗 . In this study, we will focus on the 2-dimensional case44, the relationship between 

correlation coefficient 𝜌 for the two marginal distributions and the dependence parameter 𝛼 is 

𝜌 = 1 − 𝛾2 as shown by Tiago de Oliveira (1973). The variables tend to be totally dependent as 

𝛾 → 0. As 𝛼 increases the dependence weakens, and the variables are independent when 𝛾 = 1. 

3.2.3 Maximum Likelihood Estimation 

     When all the component 𝑅𝑗 exceed their corresponding thresholds, we could calculate the 

distribution function or likelihood by just plugging the transformed 𝐹𝑗,𝑢𝑗
(𝑟𝑗) into the dependence 

structure. If one marginal component occurs below the threshold, we only know that it does not 

exceed the threshold, but not its actual value. To construct the likelihood for the sample, we take 

marginal components below their respective thresholds as if they are censored at the 

corresponding thresholds. Ledford and Tawn (1996) derived the likelihood contribution of an 

observation (𝑟1, … , 𝑟𝑑) with components (𝑗1, … , 𝑗𝑚) exceeding their corresponding thresholds as 

𝜕𝑚𝐹(𝑟1, … , 𝑟𝑑)

𝜕𝑟𝑗1 …𝜕𝑟𝑗𝑚
|
{𝑟𝑗=max(𝑢𝑗,𝑟𝑗),𝑗=1,…,𝑑 }

 

where 𝐹(𝑟1, … , 𝑟𝑑) = exp (−𝑉 (−
1

𝑙𝑜𝑔𝐹1(𝑟1)
, . . . , −

1

𝑙𝑜𝑔𝐹𝑑(𝑟𝑑)
)). To construct the likelihood 

function with the logistic dependence structure in the 2-dimensional case, we need to consider 

four cases how a given sample point will contrtibute to the likelihood function according to 

                                                           
44 We did this just for simplicity of computation. A multivariate model to estimate all the parameters for all the five energy 

products at the same time may produce more consistent parameter estimates and lead to better model fit. However, as will be 

shown in the following procedures of maximum likelihood estimation, due to the combinatorial explosion, the number of cases 

how a sample point will contribute to the likelihood function would be 2𝑑, where 𝑑 equals 5, the number of dimensions. 
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whether a sample component exceeds the corresponding threshold. The space of the marginal 

components in the bivariate case could be partitioned into four regions 

{𝑅𝑒𝑔𝑘𝑙; 𝑘 = 𝐼{𝑅1>𝑢1}, 𝑙 = 𝐼{𝑅2>𝑢2}}, 

and 𝐼 is the indicator function. For convenience, write 𝑣𝑗 = −1/log (1 − 𝑝𝑗) as the threshold for 

the transformed marginal variables 𝑍𝑗 = −
1

𝑙𝑜𝑔𝐹𝑗(𝑅𝑗)
. Then the likelihood contribution of a point 

(𝑟1, 𝑟2) in region 𝑅𝑒𝑔𝑘𝑙 would be 𝐿𝑘𝑙(𝑟1, 𝑟2), defined as 

𝐿00(𝑟1, 𝑟2) = exp(−𝑉(𝑣1, 𝑣2)), 

𝐿01(𝑟1, 𝑟2) = exp(−𝑉(𝑣1, 𝑧2))𝑉2(𝑣1, 𝑧2)𝐾2, 

𝐿10(𝑟1, 𝑟2) = exp(−𝑉(𝑧1, 𝑣2))𝑉1(𝑧1, 𝑣2)𝐾1, 

𝐿11(𝑟1, 𝑟2) = exp(−𝑉(𝑧1, 𝑧2))(𝑉1(𝑧1, 𝑧2)𝑉2(𝑧1, 𝑧2) − 𝑉12(𝑧1, 𝑧2))𝐾1𝐾2, 

where 𝐾𝑗 = −𝑝𝑗𝜎𝑗
−1 ((1 +

𝜉𝑗(𝑟𝑗−𝑢𝑗)

𝜎
)
+

−
1

𝜉𝑗
)

1+𝜉𝑗

𝑧𝑗
2exp (1/𝑧𝑗), 𝑉𝑗 and 𝑉12 are the partial 

derivatives of 𝑉 with respect to the jth component and the mixed derivative, respectively. The 

likelihood contribution from a typical point (𝑦1𝑡, 𝑦2𝑡) in the model using logistic function with 

parameter 𝛼 for the dependence structure and generalized Pareto distribution with parameters 

Θ: {𝜎𝑗 , 𝜉𝑗 , 𝑝𝑗: 𝑗 = 1, 2} for the marginal distributions can be written as 

𝐿𝑡(𝛼, Θ) = ∑ 𝐿𝑘𝑙(𝑟1𝑡, 𝑟2𝑡)

𝑘,𝑙 ∈{0,1}

𝐼𝑘𝑙(𝑟1𝑡, 𝑟2𝑡) 
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where 𝐼𝑘𝑙(𝑟1𝑡, 𝑟2𝑡) = 𝐼{(𝑟1𝑡,𝑟2𝑡)∈ 𝑅𝑒𝑔𝑘𝑙}. Then the likelihood for a set of 𝑇 independent points is 

given by 𝐿(𝑇)(𝛼, Θ) ≡ ∏𝐿𝑡(𝛼, Θ). Maximizing the likelihood function will give the estimate for 

(𝛼, Θ). 

3.3 Empirical Results 

     We will estimate both the univariate tail distribution parameters and the pairwise bivariate 

dependence parameter for daily return series derived from spot prices of WTI crude oil, Gulf 

Coast Conventional Gasoline, New York Harbor No.2 Heating Oil, TX Propane and LA Ultra-

Low Sulfur Diesel. The data is from EIA’s website45. In this section, we will first give a brief 

summary of the data. Then we will present the estimation results for both univariate parameter 

and bivariate dependence parameter. Since risk managers are usually concerned about the 

negative tail of the return distribution, we will first report results for the negative tail estimates. 

Although estimates for the positive tail are also reported. 

3.3.1 Summary Statistics 

     The price data downloaded from EIA ranges from April 18, 1996 to May 5, 2014 with 4532 

observations in total. We take the percentage changes in the price series to get the return data for 

each of the energy products. The summary statistics for the return series are given in Table 3.1. 

Both the mean and the median are very close to 0 for all the five return series. Also there are 

sharp increase and decrease in all the five return series with minimum returns -16.414%, -

22.954%,  -37.954%, -17.674% and -26.8264% and maximum returns 17.092%, 47.012%, 

38.676%, 49.913% and 22.716%. These extreme observations in the energy markets necessitate 

the modelling of tail behavior in the energy markets. The return series for heating oil and 

                                                           
45 http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm 
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propane are also slightly skewed with a skewness index -1.54598 and -2.64803, respectively. 

The prices and returns for the five energy products are also given in Figure 3.1 and Figure 3.2. 

3.3.2 Univariate Tail Distribution Parameter Estimation 

     Table 3.2 and Table 3.3 gives the parameter estimates for tail exceedances fitted by the 

generalized Pareto distribution. The first column is the percentage quantile used to decide a 

threshold for the model, which means 0.5%, 1%, 2%, 3%, 4%, 5%, 7.5% and 10% of most 

extreme observations are chosen to estimate parameters of the limiting generalized Pareto 

distribution. Notice that as the percentage quantile increases, one expects smaller standard errors 

for the parameter estimates. This is because more observations included in parameter estimation 

will lead to more precise parameter estimates. However, it is not necessarily better since the 

increased number of observations may induce bias as more observations that do not belong to the 

tail are included for parameter estimation. 

     The maximum likelihood estimates for the distribution parameters based on left tail 

observations are given in the Table 3.2. Most of the tail index estimates are between 0.2 and 0.4. 

Since a Student’s t-Distribution with 𝑘 degrees of freedom has a tail index 1 𝑘⁄ , this means that 

the return distribution in general has a tail similar to that of Student’s t-Distribution with 2 to 4 

degrees of freedom. What’s different from others is the tail index estimates for crude oil, they are 

generally smaller, ranging from 0.048 to 0.2311. This means that the tail of the return 

distribution for crude oil is not as fat as that of the other energy products and is closer to the tail 

of a normal distribution46. As to the scale index, almost all the estimates are between 1 and 3, 

                                                           
46 Although the results show that the tail of the distribution of returns on crude oil is not as fat as those on heating oil, gasoline, 

diesel and propane, which are refined using crude oil as a primary input, this does not imply that returns on crude oil have lower 

volatility than the returns on other energy products. One reason is that the volatility of returns depends not only on tail fatness, 

but also whether there is high peak near the center of the distribution, which cancels the effect of fat tails on volatility. In fact, the 
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which makes sense since they are comparable to the unconditional standard errors of the return 

series reported in Table 3.1, although usually slightly lower than the corresponding standard 

errors. 

     Table 3.3 gives the parameter estimates for the limiting distribution of the right tail 

observations. The tail index estimates are similar to those for the left tail observations for most of 

the energy products. Most of the tail index estimates for propane and diesel are between 0.2 and 

0.4, meaning a tail fatness similar to that of a Student’s t-Distribution of 2 to 5 degrees of 

freedom. For heating oil and gasoline, the tail index estimates are higher when thresholds are 

high (lower quantile percentage), with values above 0.5. Similar to the left tail observations, the 

tail index estimates for the crude oil also tend to be smaller. This is consistent to a previous claim 

that the distribution of crude oil returns may be closer to a normal distribution with regard to tail 

fatness. 

3.3.3 Bivariate Dependence Parameter Estimation 

     In this section, we report estimation results of the bivariate extreme models for the return 

dependence between crude oil and the other four energy products. We used separate bivariate 

models for pairs of extreme values of crude oil/gasoline, crude oil/heating oil, crude oil/propane, 

crude oil/diesel. The parameter estimates for the univariate models and the unconditional 

correlation are used as starting values when we maximize the likelihood function for the 

bivariate models. 

                                                           
volatility estimates are 0.01096, 0.01090, 0.01250, 0.01010, and 0.01044 for returns on crude oil, heating oil, gasoline, diesel and 

propane, respectively. 
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     Table 3.4 through Table 3.7 present the estimation results of bivariate threshold exceedance 

models for the four pairs of energy products. The thresholds used for the returns of the two 

energy products in a pair are the same each time we estimate the bivariate threshold exceedance 

model. For every pair of energy products, estimation results for both the negative tail exceedance 

(both returns lower than the threshold corresponding to a low quantile of the distribution) and the 

positive tail exceedance (both returns are higher than the threshold corresponding to a high 

quantile of the distribution) are reported in the same table. In general, the correlation coefficients 

calculated from the dependence index estimates are different from the unconditional correlation 

coefficient estimated with all the data. The implied correlation coefficients of the threshold 

exceedance models are in most cases higher than the unconditional and vary with the threshold 

chosen. 

     Specifically, for the bivariate threshold exceedance model for Crude Oil/Heating Oil, the 

correlation coefficients implied by the dependence index are 0.6774, 0.7007, 0.6849, 0.8714, 

0.8702, 0.7371 and 0.8492 for negative thresholds corresponding to 1%, 2%, 3%, 4%, 5%, 7.5% 

and 10% quantiles, respectively. These numbers are 0.7139, 0.7570, 0.5927, 0.8710, 0.8692, 

0.7115 and 0.7084 for positive thresholds corresponding to the same quantiles. All these 

estimates for the correlation coefficients are higher than the unconditional estimates for the 

correlation coefficients, which is 0.6497. Similar for Crude Oil/Gasoline, the correlation 

coefficients implied by the dependence index are also larger than the unconditional correlation 

coefficients. These results are consistent with the observed increased correlation in the financial 

markets during the crisis periods, as pointed out by Vineer Bhansali (2008). However, the case 

for Crude Oil/Propane and Crude Oil/Diesel is a little bit different, as can be seem from Table 

3.6 and Table 3.7. For both the Crude Oil/Propane and Crude Oil/Diesel threshold exceedance 
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models, the correlation coefficients is smaller than the unconditional correlation coefficients 

when a threshold corresponding to a low percentage quantile is used, and the correlation 

coefficient will increase and exceed the unconditional correlation coefficient as the percentage 

quantile increases. How the implied correlation coefficients changes with the thresholds used for 

the threshold exceedance model is demonstrated in Figure 3.3 through Figure 3.6. 

3.4 Conclusions 

     In this paper, we have investigated the univariate tail distribution for the returns on various 

energy products such as Crude Oil, Gasoline, Heating Oil, Propane and Diesel. Tail index 

estimates for univariate threshold exceedance models show that these returns generally have fat 

tails similar to those of a Student’s t-Distribution with 2 to 5 degrees of freedom except that the 

tail index estimates for the returns on Crude Oil is closer to that of a normal distribution. 

     We have also used the bivariate threshold exceedance model to study the extreme dependence 

between returns on two energy products. Parameters characterizing the extreme dependence are 

estimated for four pairs of energy products, crude oil/gasoline, crude oil/heating oil, crude 

oil/propane, crude oil/diesel. Correlation coefficients implied by the dependence index estimates 

show that correlations conditional on threshold exceedance are generally higher than the 

unconditional correlation for the correlation between crude oil/heating oil and crude oil/gasoline. 

However, there are some variation in the implied correlation between crude oil/propane and 

crude oil/diesel, whether the extreme correlation will be higher or lower than the unconditional 

correlation will depend on the threshold chosen. 
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Figure 3.1  Historical Price of Energy Products from April 17, 1996 to May 5, 2014 
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Figure 3.2 Historical Returns on Energy Products from April 18, 1996 to May 5, 2014 
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Table 3.1 Summary Statistics for Returns in Energy Prices 

  Mean Sdv Min Max 

10%  

Quantile 

25%  

Quantile Median 

75%  

Quantile 

90%  

Quantile Skewness Kurtosis 

Crude Oil 0.0308 2.4629 -16.414 17.092 -2.713 -1.3613 -0.0921 1.2370 2.7128 -0.1689 7.9238 

Heating Oil 0.0326 2.5497 -22.954 47.012 -2.8259 -1.3498 0 1.2512 2.6511 -1.5460 43.5526 

Gasoline 0.0332 3.0733 -37.954 38.676 -3.3959 -1.7011 0 1.552 3.4309 0.1186 17.8133 

Propane 0.0246 2.4874 -17.674 49.913 -2.3894 -1.0615 0 0.9217 2.2771 -2.6480 58.1162 

Diesel 0.0252 2.3251 -26.826 22.716 -0.2532 -1.1429 0 1.1217 2.3931 0.2332 14.1507 

Note: Data ranges from April 18, 1996 to May 5, 2014 with 4532 observations in total. 

          Data downloaded from: http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm 
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Table 3.2 Parameter Estimates for the Left Tail Exceedances Modeled as Generalized Pareto Distribution 

Threshold 

Quantile 

Crude Oil Heating Oil Gasoline Propane Diesel 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

0.50% 
0.1216 2.3277 0.6632 1.6299 0.4992 1.2968 0.3607 2.8036 0.3287 2.0238 

(1.3205) (1.6899) (0.0132) (0.0841) (0.0438) (0.0152) (0.1143) (0.0045) (0.0882) (0.3028) 

1% 
0.048 2.3047 0.3689 1.9506 0.3946 1.463 0.3805 2.0942 0.2208 1.9684 

(0.2764) (0.6941) (0.0285) (0.0797) (0.0604) (0.0786) (0.0286) (0.0993) (0.0103) (0.0699) 

2% 
0.1324 2.1463 0.5354 1.1805 0.1422 2.1882 0.3262 2.0438 0.2677 1.5906 

(0.1572) (0.2778) (0.0560) (0.0614) (0.0061) (0.0411) (0.0466) (0.2263) (0.0456) (0.0959) 

3% 
0.0744 2.1448 0.4438 1.2371 0.0873 2.1754 0.3209 1.9583 0.2276 1.5663 

(0.0132) (0.0401) (0.0834) (0.0507) (0.0531) (0.2002) (0.0230) (0.0446) (0.0377) (0.0608) 

4% 
0.1957 1.8051 0.3034 1.145 0.2212 1.702 0.3483 1.7515 0.2288 1.4981 

(0.0663) (0.0661) (0.0652) (0.0233) (0.0627) (0.1374) (0.0380) (0.0364) (0.0466) (0.0470) 

5% 
0.2231 1.5407 0.3414 1.0847 0.2148 1.7166 0.3553 1.6009 0.2356 1.4519 

(0.0213) (0.0313) (0.0004) (0.03650) (0.0781) (0.1268) (0.0432) (0.0557) (0.0483) (0.0029) 

7.5% 
0.2311 1.4629 0.1941 1.4099 0.2058 1.6722 0.3465 1.5597 0.174 1.4247 

(0.0108) (0.0458) (0.0340) (0.1426) (0.0729) (0.0887) (0.1142) (0.1132) (0.006) (0.003) 

10% 
0.219 1.5015 0.1848 1.3107 0.2074 1.6081 0.2638 1.5266 0.0606 1.466 

(0.0762) (0.0037) (0.0090) (0.0033) (0.1172) (0.2002) (0.0002) (0.0045) (0.0488) (0.0057) 

Note: Standard Errors of parameter estimates in parenthesis. 
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Table 3.3 Parameter Estimates for the Right Tail Exceedances Modeled as Generalized Pareto Distribution 

Threshold 

Quantile 

Crude Oil Heating Oil Gasoline Propane Diesel 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

Tail 

Index 

Scale 

Index 

0.50% 
0.0741 2.5886 1.1007 1.2243 0.8746 1.51 0.0703 3.2268 0.2879 2.7723 

(1.1839) (1.8805) (0.1350) (0.2247) (0.0462) (0.2537) (3.0127) (5.2279) (0.0732) (0.3430) 

1% 
0.1743 2.316 0.7626 0.9156 0.5114 1.7944 0.1599 2.6409 0.5782 1.1422 

(0.6261) (1.0987) (0.0194) (0.1005) (0.0220) (0.1256) (0.2952) (0.5679) (0.0387) (0.1092) 

2% 
0.3487 1.6899 0.4995 1.3765 0.4985 1.3741 0.2071 2.1325 0.3946 1.3532 

(0.2581) (0.3196) (0.1278) (0.1457) (0.0217) (0.0165) (0.1299) (0.3098) (0.0860) (0.1825) 

3% 
0.2267 0.23 0.2342 1.4368 0.3904 1.3629 0.3548 1.7012 0.2327 1.7132 

(0.0448) (0.0091) (0.0736) (0.1243) (0.0302) (0.0557) (0.1559) (0.1654) (0.0215) (0.0164) 

4% 
0.226 1.5053 0.2311 1.4106 0.2723 1.491 0.3483 1.5688 0.2302 1.5067 

(0.0091) (0.0326) (0.0845) (0.2551) (0.02530) (0.0331) (0.1117) (0.1006) (0.0018) (0.0100) 

5% 
0.2323 1.4167 0.2134 1.3242 0.2334 1.5799 0.2511 1.531 0.2297 1.5038 

(0.0256) (0.0475) (0.0556) (0.1085) (0.0020) (0.0042) (0.0467) (0.0755) (0.0388) (0.0559) 

7.5% 
0.1801 1.3945 0.2635 1.1219 0.2471 1.5459 0.2319 1.4197 0.2268 1.4687 

(0.0848) (0.2114) (0.0002) (0.0069) (0.0594) (0.0392) (0.0633) (0.1201) (0.0055) (0.1253) 

10% 
0.0727 1.3928 0.1509 1.3656 0.2283 1.4941 0.2322 1.4335 0.1691 1.4084 

(0.0823) (0.0970) (0.0618) (0.2497) (0.0475) (0.0300) (0.0650) (0.2522) (0.0395) (0.1139) 

Note: Standard Errors of parameter estimates in parenthesis.
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Table 3.4 Parameter Estimates for Crude Oil/Heating Oil Extreme Value Distributions 

Threshold  

Quantile 

Tail  

Index 1 

Scale  

Index 1 

Tail  

Index 2 

Scale  

Index 2 

Dependence  

Index 

Negative Tail 

1% 
0.0302 2.2666 0.308 1.89 0.568 

(0.0039) (0.674) (0.0157) (0.1379) (1.4431) 

2% 
0.0821 2.08 0.4692 1.1143 0.5471 

(0.0048) (0.5189) (0.0257) (0.2599) (1.4728) 

3% 
0.046 2.0868 0.3494 1.1422 0.5613 

(0.0006) (0.6015) (0.1539) (0.3772) (1.4386) 

4% 
0.1211 0.7827 0.2066 0.7453 0.3586 

(0.0624) (2.1893) (0.0162) (0.9989) (1.2694) 

5% 
0.1383 1.4747 0.211 0.6744 0.3603 

(0.07) (2.2724) (0.0592) (1.4903) (0.9090) 

7.50% 
0.149 1.4187 0.1212 0.9373 0.5127 

(0.0744) (1.4647) (0.0501) (1.1567) (0.9761) 

10% 
0.1418 1.0582 0.1168 1.2518 0.3883 

(0.1419) (1.0935) (0.929) (0.5438) (3.0414) 

Positive Tail 

1% 
0.1099 2.097 0.5419 0.7804 0.5349 

(0.0168) (0.0785) (0.0971) (0.3136) (1.4453) 

2% 
0.2174 0.5155 0.3251 1.202 0.493 

(0.0135) (0.3930) (0.0338) (0.5194) (1.4681) 

3% 
0.3584 0.1421 0.1464 1.1966 0.6382 

(0.0033) (0.0018) (0.0036) (0.0562) (0.0269) 

4% 
0.1421 1.4838 0.145 1.0372 0.3591 

(0.0064) (0.8575) (0.0165) (0.7812) (1.2720) 

5% 
0.1437 0.897 0.1319 1.1147 0.3616 

(0.0527) (0.5066) (0.0485) (0.071) (1.4802) 

7.50% 
0.1115 1.3961 0.1629 0.7916 0.5371 

(0.0483) (1.2634) (0.0775) (0.5317) (1.4264) 

10% 
0.045 1.2998 0.0933 1.3044 0.54 

(0.0152) (0.0346) (0.052) (1.2126) (0.1456) 

Note: Standard Errors of parameter estimates in parenthesis. 
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Table 3.5 Parameter Estimates for Crude Oil/Gasoline Extreme Value Distributions 

Threshold  

Quantile 

Tail  

Index 1 

Scale  

Index 1 

Tail  

Index 2 

Scale  

Index 2 

Dependence  

Index 

Negative Tail 

1% 
0.0297 2.2734 0.3518 1.42 0.6187 

(0.0027) (0.56) (0.0227) (0.2924) (1.4425) 

2% 
0.0821 2.08 0.0925 2.122 0.5982 

(0.0036) (0.4402) (0.0047) (0.4987) (1.47) 

3% 
0.046 2.0888 0.0592 2.1194 0.6125 

(0.0065) (0.1793) (0.0147) (0.5205) (1.5138) 

4% 
0.121 1.658 0.1475 1.5549 0.5821 

(0.0083) (0.4182) (0.0101) (0.1858) (1.4877) 

5% 
0.1379 1.0477 0.1713 1.6332 0.4 

(0.0232) (1.2638) (0.068) (0.2193) (1.2078) 

7.50% 
0.143 1.0153 0.1359 1.5679 0.5744 

(0.042) (0.6163) (0.0582) (1.1511) (1.4713) 

10% 
0.1355 0.1824 0.1314 1.3882 0.5783 

(0.0642) (0.5677) (0.0536) (1.4629) (1.8888) 

Positive Tail 

1% 
0.1078 2.2284 0.3839 1.6643 0.5871 

(0.0154) (0.7456) (0.0446) (0.4266) (1.4627) 

2% 
0.2166 1.4186 0.3145 0.1043 0.5314 

(0.01) (0.437) (0.036) (0.4705) (1.4593) 

3% 
0.3667 0.1422 0.2446 1.1718 0.6866 

(0.004) (0.0013) (0.0099) (0.0495) (0.0316) 

4% 
0.1397 1.2578 0.1683 1.2669 0.5744 

(0.0146) (0.4166) (0.0193) (0.0805) (1.4323) 

5% 
0.1436 1.1597 0.1459 1.4291 0.573 

(0.023) (0.3958) (0.0343) (0.3364) (1.4773) 

7.50% 
0.1113 0.0924 0.1528 1.4987 0.4979 

(0.0253) (0.7668) (0.0797) (0.213) (1.2291) 

10% 
0.0449 1.3382 0.1412 1.5111 0.4886 

(0.0088) (0.0834) (0.0387) (0.5954) (0.3367) 

Note: Standard Errors of parameter estimates in parenthesis. 
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Table 3.6 Parameter Estimates for Crude Oil/Propane Extreme Value Distributions 

Threshold  

Quantile 

Tail  

Index 1 

Scale  

Index 1 

Tail  

Index 2 

Scale  

Index 2 

Dependence  

Index 

Negative Tail 

1% 
0.0298 2.2807 0.3565 2.0702 0.8261 

(0.0017) (0.3364) (0.0146) (0.2299) (1.4576) 

2% 
0.0819 2.081 0.227 1.9452 0.805 

(0.0043) (0.3093) (0.0089) (0.291) (1.4873) 

3% 
0.0461 2.1076 0.2837 1.9211 0.8195 

(0.0014) (0.3914) (0.022) (0.1174) (1.4689) 

4% 
0.1217 1.7072 0.2504 1.6536 0.7891 

(0.0033) (0.3970) (0.0014) (0.2697) (0.5165) 

5% 
0.1427 0.9966 0.2515 1.5836 0.5179 

(0.0115) (0.8962) (0.0481) (0.2779) (1.1961) 

7.50% 
0.2044 1.2891 0.2261 1.5808 0.5179 

(0.0265) (1.1377) (0.0228) (0.4687) (1.3925) 

10% 
0.1353 1.0289 0.1631 1.5419 0.7831 

(0.0395) (0.9746) (0.0439) (0.784) (1.3302) 

Positive Tail 

1% 
0.1135 2.236 0.0999 2.5609 0.7981 

(0.0088) (0.4012) (0.0051) (0.2707) (1.4672) 

2% 
0.2218 1.6422 0.1291 2.0818 0.7848 

(0.0109) (0.2814) (0.0072) (0.3579) (1.4879) 

3% 
0.3667 0.1623 0.2192 1.5284 0.9597 

(0.013) (0.0094) (0.0145) (0.0922) (0.0201) 

4% 
0.1397 1.2689 0.2159 0.3558 0.781 

(0.0009) (0.3471) (0.0083) (0.2052) (1.4705) 

5% 
0.1436 0.9095 0.1857 1.4864 0.5223 

(0.017) (0.8286) (0.0418) (0.7127) (1.1081) 

7.50% 
0.1153 1.1284 0.1436 1.365 0.7781 

(0.0162) (0.3616) (0.0361) (0.3572) (1.5054) 

10% 
0.0449 0.8623 0.1436 1.0164 0.584 

(0.0067) (0.9799) (0.0453) (0.4097) (0.6445) 

Note: Standard Errors of parameter estimates in parenthesis. 
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Table 3.7 Parameter Estimates for Crude Oil/Diesel Extreme Value Distributions 

Threshold  

Quantile 

Tail  

Index 1 

Scale  

Index 1 

Tail  

Index 2 

Scale  

Index 2 

Dependence  

Index 

Negative Tail 

1% 
0.0303 2.2671 0.1575 1.9088 0.7859 

(0.0018) (0.3348) (0.0023) (0.1432) (1.4579) 

2% 
0.0821 2.0801 0.2015 1.5244 0.7651 

(0.0028) (0.3061) (0.0032) (0.2298) (1.4839) 

3% 
0.0461 2.1076 0.1904 1.5291 0.7796 

(0.0005) (0.3544) (0.0214) (0.0136) (1.4718) 

4% 
0.121 1.64313 0.1548 1.3159 0.7489 

(0.007) (0.218) (0.0043) (0.2751) (1.4985) 

5% 
0.1379 1.1893 0.1468 1.3929 0.7421 

(0.0095) (0.2742) (0.0151) (0.0361) (1.5046) 

7.50% 
0.1429 1.2443 0.1076 1.2928 0.7543 

(0.0407) (0.3991) (0.0179) (0.07) (1.7534) 

10% 
0.1355 1.5039 0.0375 1.2879 0.5545 

(0.0285) (0.4381) (0.0066) (0.1094) (0.2388) 

Positive Tail 

1% 
0.1084 2.2961 0.5566 1.0784 0.7531 

(0.0079) (0.3969) (0.0148) (0.1878) (1.4655) 

2% 
0.2213 1.4298 0.2443 1.1787 0.7102 

(0.0077) (0.2837) (0.0195) (0.3316) (1.471) 

3% 
0.3664 0.1421 0.1805 1.373 0.9506 

(0.0351) (0.0067) (0.1199) (0.877) (0.2665) 

4% 
0.1397 1.215 0.1448 1.3997 0.7413 

(0.0041) (0.2997) (0.0112) (0.1423) (1.4676) 

5% 
0.1456 1.0653 0.142 1.2978 0.7391 

(0.0097) (0.2414) (0.0188) (0.0029) (1.4911) 

7.50% 
0.1116 1.211 0.142 1.2694 0.4934 

(0.0109) (0.1842) (0.0651) (0.3413) (1.6532) 

10% 
0.0462 1.3716 0.1045 1.4071 0.6671 

(0.0078) (0.1068) (0.0392) (0.7607) (0.6336) 

Note: Standard Errors of parameter estimates in parenthesis.  
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Figure 3.3 Estimates of Extreme Correlation between Crude Oil and Heating Oil 

 

Figure 3.4 Estimates of Extreme Correlation between Crude Oil and Gasoline 
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Figure 3.5 Estimates of Extreme Correlation between Crude Oil and Propane 

 

Figure 3.6 Estimates of Extreme Correlation between Crude Oil and Diesel 
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