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Abstract 

This paper studies the asymptotic properties of within groups k-class estimators in a panel 

data model with weak instruments. Weak instruments are characterized by the coefficients of the 

instruments in the reduced form equation shrinking to zero at a rate proportional to nT δ ; where 

n is the dimension of the cross-section and T is the dimension of the time series. Joint limits as 

( , )n T →∞ show that this within group k-class estimator is consistent if 0 δ≤ ≤ ½ and 

inconsistent if  ½ δ≤ ≤ ∞ . 
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On the Estimation and Testing of Fixed Effects Panel Data Models

with Weak Instruments

Badi H. Baltagi∗, Chihwa Kao†, Long Liu‡

August 8, 2012

Abstract

This paper studies the asymptotic properties of within groups k-class estimators in a panel data
model with weak instruments. Weak instruments are characterized by the coefficients of the instruments
in the reduced form equation shrinking to zero at a rate proportional to

√
nT δ, where n is the dimension

of the cross-section and T is the dimension of the time series. Joint limits as (n, T ) → ∞ show that this
within group k-class estimator is consistent if 0 ≤ δ < 1

2
and inconsistent if 1

2
≤ δ < ∞.

Key Words: Weak Instrument; Panel Data; fixed effects; Pitman drift local-to-zero.

1 Introduction

This paper contributes to the literature on weak instrumental variable (IV) for panel data models with fixed

effects. The problem of weak instruments have attracted considerable attention in recent years, see Stock,

Wright and Yogo (2002) for an excellent survey. Weak instruments are characterized by the coefficients of the

instruments in the reduced form equation shrinking to zero at a rate proportional to the square root of the

sample size. In case of weak instruments, the usual asymptotic normal approximations of the 2SLS estimator

can be quite poor, even if the number of observations is large. Staiger and Stock (1997) use weak-instrument

asymptotics to show that the 2SLS estimator is inconsistent (i.e., converges to a random variable) and has a

nonstandard limiting distribution. This is a serious problem as inference, test of hypotheses and confidence

intervals in the case of weak-instruments becomes unreliable and misleading.

Bai and Ng (2010) show that for panel data models in which all regressors are endogenous but share

exogenous common factors, valid instruments can be constructed from the endogenous regressors that are

themselves invalid instruments in a conventional sense. This requires both dimensions of the panel n and T

∗Address correspondence to: Badi H. Baltagi, Department of Economics, Center for Policy Research, 426 Eggers Hall,
Syracuse University, Syracuse, NY 13244-1020; tel: 315-443-1630; fax: 315-443-1081; e-mail: bbaltagi@maxwell.syr.edu.

†Chihwa Kao: Department of Economics, Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse, NY
13244-1020; tel: 315-443-3233; fax: 315-443-1081; e-mail: cdkao@maxwell.syr.edu.

‡Long Liu: Department of Economics, College of Business, University of Texas at San Antonio, One UTSA Circle, TX
78249-0633; tel: 210-458-6169; fax: 210-458-5837; e-mail: long.liu@utsa.edu.
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to be large. More recently, Cai, Fang and Li (2012) argue that there may be benefits to using panel data

when the available instruments are cross-sectionally weak. They consider the within-group 2SLS (W2SLS)

estimator in a panel context where the degree of weakness of the instruments depends upon the number of

cross-sectional observations n only. For large n, and fixed T , they show that the bias of W2SLS is of order

1/T as n → ∞. They argue that leting the degree of weakness of the instruments depend on n only is an

“analytical device” and with T fixed, “it is natural to relate the degree of weakness to n only”. However,

from Staiger and Stock (1997), the degree of weakness of the instruments depends upon the total number

of observations nT and how n and T tend to infinity is crucial for the asymptotics of weak instruments

in panel data.1 This paper extends the results presented in Cai, Fang and Li (2012) to the case where

the weak instruments are modeled as “Pitman drift” local-to-zero sense, and the degree of weakness of the

instruments is allowed to depend upon both n and T , but with different impact. To be specific, we let the

degree of weakness of the instruments depend upon
√
nT δ where δ ≥ 0. When δ = 0, it reduces to the weak

instrument case in Cai, Fang and Li (2012). When δ = 1/2, it reduces to the weak instrument case in Staiger

and Stock (1997). The basic argument is that with enough time periods observed, panel data may provide

enough information to yield consistent estimation. In fact, it is well known that for cross-sectional data,

when the concentration parameter stays constant as the sample size grows, the signal of the model is too

weak compared to the corresponding noise. Hence the model is weakly identified, and 2SLS converges to a

random variable. However, in the panel data set-up, if the time series dimension is large, the weak signal can

be strengthened by the repeating regression across the time series dimension. This argument is similar in

spirit to the argument of establishing consistency for the panel spurious regression, see for example Phillips

and Moon (1999) and Kao (1999).

Cai, Fang and Li (2012) also considered the case where the degree of weakness of the instruments

depends upon nδ, where δ ≥ 0. For a fixed T , when 0 < δ < 1
2 , the correlation between the instruments

and endogenous variables converges to zero more slowly than the square root of the sample size, as n → ∞.

This corresponds to the nearly weak instruments case of Hahn and Kuersteiner (2002) and Hahn, Hausman

and Kuersteiner (2004). For δ = 1/2, this is the weak instruments case, and for δ > 1
2 , this is the nearly

non-identified case because the correlation converges to zero faster than the square root of the sample size,

as n → ∞. For cross-section or time-series models, Hahn and Kuersteiner (2002) showed that 2SLS for the

nearly weak instruments case is consistent and its limiting distribution is normal. However, for the weak

instruments case as well as the nearly non-identified case, 2SLS is inconsistent and its limiting distribution

is not normal. Cai, Fang and Li (2012) similarly showed that for panel data models with fixed T , the bias

1How n and T tend to infinity was emphasized by Phillips and Moon (1999) for panel unit root testing.

2



of W2SLS estimator with weak or nearly non-identified instruments is of order 1/T as n → ∞. They argue

that as T → ∞, W2SLS is consistent and asymptotically normal. They also consider a mixed case where

some instrumental variables are weak and others are nearly weak and show that as n → ∞, with T fixed,

the W2SLS estimator of the weak instruments is biased of order 1/T , while the W2SLS estimator of the

nearly weak instruments is consistent. We generalize the Cai, Fang and Li (2012) panel data results by

studying the asymptotic properties of the general within-group k-class estimator, which includes W2SLS

and within-group LIML as special cases. We allow the degree of weakness of the instruments to depend

upon
√
nT δ where δ ≥ 0. We study the asymptotics using joint limits in n and T , rather than fixing T

and letting n → ∞. We show that for the simple case of one right hand side endogenous variable and no

included exogenous variables, W2SLS is consistent if 0 ≤ δ < 1
2 and inconsistent if 1

2 ≤ δ < ∞. Next, we

generalize these results to the within group k-class estimator with included exogenous regressors applied to

fixed effects panel data. We show using joint limits that this within group k-class estimator is consistent

if 0 ≤ δ < 1
2 and inconsistent if 1

2 ≤ δ < ∞. We characterize these conditions for three special cases of

the within group k-class estimator including W2SLS, within group LIML, and within group bias-adjusted

2SLS. We also generalize the test for weak instruments proposed by Cragg and Donald (1993) and Stock

and Yogo (2005) to the case of fixed effects panel data as well as test of hypothesis that is robust to weak

instruments in the fixed effects panel data set-up. We study the asymptotic properties of these tests as both

(n, T ) → ∞.2

The rest of the paper is organized as follows. Section 2 introduces the fixed effects panel data model

with weak instruments. Section 3 discusses the within group k-class estimator. Section 4 generalizes the

test for weak instruments proposed by Cragg and Donald (1993) and Stock and Yogo (2005) to the case of

fixed effects panel data. Section 5 considers the problem of hypothesis testing whose size is robust to weak

instruments in the fixed effects panel data set-up. Section 6 provides Monte Carlo results, while Section 7

concludes. All the proofs are relegated to the appendix. All the limits in the paper are taken as (n, T ) → ∞

jointly, except when otherwise noted.

2 Model and Assumptions

Consider the following panel IV regression model with endogenous regressors

yt = Ytβ +Xtγ + µ+ ut (1)

2Cai, Fang and Li (2012) also consider some asymptotically pivotal tests in the case of fixed effects panel data and study

their asymptotic properties for fixed T and n → ∞.
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and

Yt = ZtΠ+XtΓ + α+ Vt (2)

for t = 1, 2, · · · , T , where yt is a n×1 vector and Yt is a n×L matrix of endogenous variables, Xt is a n×K1

matrix of K1 exogenous regressors, Zt is a n×K2 matrix of K2 instruments, and β, γ, Π, and Γ are unknown

parameters. µ and α denote the individual effects which are of dimensions n × 1 and n × L respectively.

The remainder disturbances (ut, V
′
t )

′
are of dimensions n × 1 and n × L respectively. These disturbances

(ut, Vt)
′
are assumed to be i.i.d. N (0,Σ) across t = 1, 2, · · · , T , with the elements of Σ denoted by σuu,

ΣV u, and ΣV V . Let Z∗ = [X,Z] , Y ∗ = [y, Y ] and let Φ = EZ∗′
itZ

∗
it, partitioned so that EXitX

′
it = ΦXX ,

EXitZ
′
it = ΦXZ , and EZitZ

′
it = ΦZZ . It is assumed throughout that EZ∗

it (uit, V
′
it) = 0 for all i and t.

This i.i.d. assumption for the errors can be relaxed to allow for weak dependence across the time series and

cross-section dimensions at the expense of more complicated notation. This will be taken up in a future

extension of this paper. Equation (1) is the structural equation and β is the parameter of interest. The

reduced-form equation (2) relates the endogenous regressors to the instruments. In matrix form, equations

(1) and (2) can be rewritten as

y = Y β +Xγ + µ⊗ ιT + u (3)

and

Y = ZΠ+XΓ + α⊗ ιT + V (4)

where y = (y′1, y
′
2, · · · , y′T )

′
is a nT × 1 vector, ιT is a vector of ones of dimension T , and Y , X, Z, u, and V

are similarly defined.

To wipe out the individual effects, we premultiply equations (3) and (4) by the within transformation

Q = In ⊗ET , where ET = IT − J̄T , J̄T = JT /T ; JT is a matrix of ones of dimension T and In is an identity

matrix of dimension n. This yields

ỹ = Ỹ β + X̃γ + ũ (5)

and

Ỹ = Z̃Π+ X̃Γ + Ṽ (6)

where ỹ = Qy, and Ỹ , X̃, Z̃, ũ, and Ṽ are similarly defined. This wipes out possible correlation between

these individual effects and the regressors. It also wipes out time-invariant variables that may cause omission

bias if not included in the model. We model weak instruments by focussing on Π being local to zero which

is analogous to the local-to-unity panel unit root literature as in Moon et al. (2007).

Assumption 1 Let Π = C√
nT δ , where C is a K2 × L constant matrix and δ ≥ 0.

4



Assumption 1 controls the relative magnitude of the instrument strength, as measured by δ. When

δ = 1/2, it is the standard weak instrument case introduced by Staiger and Stock (1997). When δ = 0, it

reduces to the weak instrument case in Cai, Fang and Li (2012).

Following Staiger and Stock (1997), we assume:

Assumption 2 The following joint limits hold, as (n, T ) → ∞

1.
(

1
Tn

∑T
t=1 u

′
tut,

1
Tn

∑T
t=1 V

′
t ut,

1
Tn

∑T
t=1 V

′
t Vt

)
p−→ (σuu,ΣV u,ΣV V ) ;

2. 1
Tn

∑T
t=1

(
X̃t, Z̃t

)′ (
X̃t, Z̃t

)
p−→ Φ ≡

ΦXX ΦXZ

ΦZX ΦZZ

 ;

3.
(

1√
Tn

∑T
t=1 X

′
tut,

1√
Tn

∑T
t=1 Z

′
tut,

1√
Tn

∑T
t=1 X

′
tVt,

1√
Tn

∑T
t=1 Z

′
tVt

)
d−→ (ΨXu,ΨZu,ΨXV ,ΨZV ), where

Ψ =
(
Ψ′

Xu,Ψ
′
Zu, vec (ΨXV )

′
, vec (ΨZV )

′)′
is distributed N (0,Σ⊗ Φ) .

Notice that Assumption 2 implies that
(

1
Tn

∑T
t=1 ũ

′
tũt,

1
Tn

∑T
t=1 Ṽ

′
t ũt,

1
Tn

∑T
t=1 Ṽ

′
t Ṽt

)
p−→ (σuu,ΣV u,ΣV V )

and
(

1√
Tn

∑T
t=1 X̃

′
tũt,

1√
Tn

∑T
t=1 Z̃

′
tũt,

1√
Tn

∑T
t=1 X̃

′
tṼt,

1√
Tn

∑T
t=1 Z̃

′
tṼt

)
d−→ (ΨXu,ΨZu,ΨXV ,ΨZV ) since

1
T

∑T
t=1 ut

p−→ 0 and 1
T

∑T
t=1 Vt

p−→ 0. Following Staiger and Stock (1997), we define

λ = Ω1/2CΣ
−1/2
V V , (7)

where Ω = ΦZZ − ΦZXΦ−1
XXΦXZ . Also define

zu = Ω−1/2′ (ΨZu − ΦZXΦ−1
XXΨXu

)
σ−1/2
uu , (8)

and

zV = Ω−1/2′ (ΨZV − ΦZXΦ−1
XXΨXV

)
Σ

−1/2
V V . (9)

The random variable
[
z′u, vec (zV )

′]′
is distributed N

(
0, Σ̄⊗ IK2

)
, where

Σ̄ =

1 ρ′

ρ IL

 (10)

with ρ = Σ
−1/2′
V V ΣV uσ

−1/2
uu and IL is an identity matrix of dimension L.

3 Estimation

Most of the Theorems in this section are developed for the within-group k-class estimator. However, we

start by deriving the asymptotic properties of W2SLS for the simple case of one right hand side endogenous

regressor and no included exogenous regressors.
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3.1 A special case: 2SLS when L = 1 and K1 = 0

Let PZ̃ = Z̃
(
Z̃

′
Z̃
)−1

Z̃ ′ be the projection matrix on the space spanned by the columns of Z̃. The W2SLS

estimator is defined as

β̂W2SLS =
Ỹ ′PZ̃ ỹ

Ỹ ′PZ̃ Ỹ
.

Theorem 1 As (n, T ) → ∞, for 0 ≤ δ < 1
2

T
1
2−δ

(
β̂W2SLS − β

)
d−→ N

(
0, σuu

(
C

′
ΦZZC

)−1
)

and for 1
2 ≤ δ < ∞

β̂W2SLS − β = Op (1) .

The results in Theorem 1 imply that β̂W2SLS is consistent only if 0 ≤ δ < 1
2 and inconsistent if

1
2 ≤ δ < ∞. The strength of the instruments is measured by the following concentration matrix ΛTn =

Σ
−1/2′
V V Π

′
Z̃

′
Z̃ΠΣ

−1/2
V V . Using Assumptions (1) and (2), we have

ΛTn =
1

T 2δ−1
Σ

−1/2′
V V C

′ Z̃
′
Z̃

Tn
CΣ

−1/2
V V

=
1

T 2δ−1
Σ

−1/2′
V V C

′
ΦZZCΣ

−1/2
V V + op (1)

= Op

(
T 1−2δ

)
.

Note that T 1−2δ can be interpreted as the rate at which ΛTn grows as T increases. Clearly, for the consistency

of W2SLS, one needs ΛTn → ∞ as T 1−2δ → ∞ which holds if 0 ≤ δ < 1
2 . We also note from Theorem 1

that the limiting distribution near the point of non-identification, i.e., δ = 1
2 , is discontinuous.

3

3.2 Within-group k-class Panel Data Estimators

We now generalize the results to the within-group k-class estimator with included regressors.4 Let PX̃ =

X̃
(
X̃

′
X̃
)−1

X̃ ′ be the projection matrix on the space spanned by the columns of X̃ and MX̃ = I − PX̃ .

Premultiplying equations (3) and (4) by MX̃ , we get

ỹ⊥ = Ỹ ⊥β + ũ⊥

and

Ỹ ⊥ = Z̃⊥Π+ V ⊥

3This is the Hahn and Kuersteiner (2002) result for a cross-sectional IV regression.
4See Stock, Wright and Yogo (2002) for an important summary of the advantages and disadvantages of k-class estimators.
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where the superscript “⊥” denotes the residuals from the projection on X̃, such as ỹ⊥ = MX̃ ỹ, Z̃⊥ = MX̃ Z̃,

and Ỹ ⊥ = MX̃ Ỹ . The within-group k-class estimator of β is given by

β̂ (k) =
[
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1 [

Ỹ ⊥′ (I − kMZ̃⊥) ỹ
⊥
]

for some choice of k. Note that the W2SLS estimator is a special case of the within-group k-class estimator

when k = 1. Theorem 2 derives the asymptotic properties of this within-group k-class panel data estimator.

Theorem 2 Under Assumptions 1 and 2. As (n, T ) → ∞ we have

1. For 0 ≤ δ < 1
2 , joint with κTn = T 1/2+δn (k − 1)

d−→ κ,

T 1/2−δ
(
β̂ (k)− β

)
+ θTn

d−→ N

(
0, σuu

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1
)

where θTn =
[

1
T 1−2δ Ỹ

⊥′ (I − kMZ̃⊥) Ỹ ⊥
]−1

κTnΣV u.

2. For δ = 1
2 , joint with κTn = Tn (k − 1)

d−→ κ,

β̂ (k)− β
d−→ σ1/2

uu Σ
−1/2
V V ∆1 (κ)

where ∆1 (κ) =
[
(λ+ zV )

′
(λ+ zV )− κITn

]−1 [
(λ+ zV )

′
zu − κρ

]
.

3. For 1
2 < δ < ∞, joint with κTn = Tn (k − 1)

d−→ κ,

β̂ (k)− β
d−→ σ1/2

uu Σ
−1/2
V V ∆2 (κ)

where ∆2 (κ) = [z′V zV − κITn]
−1

[z′V zu − κρ] .

Similar to the results of Theorem 1 for β̂W2SLS , Theorem 2 shows that β̂ (k) is consistent if 0 ≤ δ < 1
2

and inconsistent if 1
2 ≤ δ < ∞. Similarly, using Assumptions (1), (2) and Lemma 2, the strength of the

instruments is measured by the following concentration matrix:

ΛTn = Σ
−1/2′
V V Π

′
Z̃⊥′

Z̃⊥ΠΣ
−1/2
V V

=
1

T 2δ−1
Σ

−1/2′
V V C

′ Z̃⊥′
Z̃⊥

Tn
CΣ

−1/2
V V

=
1

T 2δ−1
Σ

−1/2′
V V C

′
ΩCΣ

−1/2
V V + op (1)

= Op

(
T 1−2δ

)
.

Note that T 1−2δ can be interpreted as the rate at which ΛTn grows as T increases. Clearly, for consistency

of the within-group k-class estimator, one needs ΛTn → ∞ as T 1−2δ → ∞ which holds if 0 ≤ δ < 1
2 .
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For the W2SLS estimator with k = 1,it follows that T 1/2+δn (k − 1) = 0 and Tn (k − 1) = 0. Therefore,

the W2SLS estimator satisfies the conditions of κTn for the three cases considered in Theorem 2.

The within-group k-class estimator also includes the within-group bias-adjusted 2SLS (B2SLS) described

in Donald and Newey (2001) for the cross-section or time-series regression case. This is a special case of

the k-class estimator with k = nT/ (nT −K2 + 2) . Rothenberg (1984) showed that B2SLS is unbiased to

the second order for the fixed-instrument, normal error model. For this special case, T 1/2+δn (k − 1) =

(K2 − 2) /T 1/2−δ = op (1) and Tn (k − 1) = K2 − 2 = Op (1). Hence, the within-group B2SLS estimator

satisfies the conditions of κTn for the three cases considered in Theorem 2.

For the within-group LIML estimator in panel data, we obtain the following results:

Theorem 3 Under Assumptions 1 and 2, with Σ̄ is defined in equation (10), we have

1. For 0 ≤ δ < 1
2 , T

2δn
(
k̂LIML − 1

)
p−→ 0.

2. For δ = 1
2 , Tn

(
k̂LIML − 1

)
d−→ κ∗

LIML, where κ∗
LIML is the smallest root of the determinantal

equation,
∣∣Ξ2 − κΣ̄

∣∣ = 0, where Ξ2 =

 z′uzu z′u (λ+ zV )

(λ+ zV )
′
zu (λ+ zV )

′
(λ+ zV )

.

3. For 1
2 < δ < ∞, Tn

(
k̂LIML − 1

)
d−→ κ∗

LIML, where κ∗
LIML is the smallest root of the determinantal

equation,
∣∣Ξ3 − κΣ̄

∣∣ = 0, where Ξ3 =

z′uzu z′uzV

z′V zu z′V zV

 .

3.3 Wald Test Under Weak Identification

Next, we consider testing the q linear restrictions Rβ = r, where R is q × L. The standard formula for the

Wald statistic, based on the within-group k-class estimator, is given by

W (k) =
[
Rβ̂ (k)− r

]′{
σ̂uu (k)R

[
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1

R′
}−1 [

Rβ̂ (k)− r
]

where σ̂uu (k) = ̂̃u (k)′ ̂̃u (k) / (Tn−K1 − L), and ̂̃u (k) = ỹ − Ỹ β̂ (k)− X̃γ̂ (k) = ỹ⊥ − Ỹ ⊥β̂ (k).

Theorem 4 Under Assumptions 1 and 2. As (n, T ) → ∞ we have

1. For 0 ≤ δ < 1
2 , joint with κTn = T 1/2+δn (k − 1)

d−→ κ,

W (k)
d−→ χ2 (q,Λ)

a noncentral chi-squared distribution with q degrees of freedom and noncentrality parameter Λ =

θ′R′
[
σuuR

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1

R′
]−1

Rθ, where θ = κ
(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1

ΣV u.
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2. For δ = 1
2 , joint with κTn = Tn (k − 1)

d−→ κ,

W (k)
d−→ ∆′

1 (κ)Σ
−1/2
V V R′

{
S (∆1 (κ))R

{
Σ

1/2′
V V

[
(λ+ zV )

′
(λ+ zV )− κITn

]
Σ

1/2
V V

}−1

R′
}−1

RΣ
−1/2
V V ∆1 (κ) .

3. For 1
2 < δ < ∞, joint with κTn = Tn (k − 1)

d−→ κ,

W (k)
d−→ ∆′

2 (κ)Σ
−1/2
V V R′

{
S (∆2 (κ))R

{
Σ

1/2′
V V [z′V zV − κITn] Σ

1/2
V V

}−1

R′
}−1

RΣ
−1/2
V V ∆2 (κ) .

Note that for 0 ≤ δ < 1
2 , if κ = 0, then θ = 0 and Λ = 0. Hence W (k)

d−→ χ2 (q) a central chi-squared

distribution with q degrees of freedom.

4 Testing for Weak Instruments

Following Stock and Yogo (2005), we focus in this section on testing the null hypothesis that the set of

instruments is weak against the alternative that they are strong. In this case, the instruments are defined

to be strong if W2SLS inference is reliable for any linear combination of the coefficients. From the results in

Theorems 2 and 4, weak instruments can produce biased IV estimators and test of hypotheses with large size

distortions, e.g., when 1
2 ≤ δ < ∞. The Stock and Yogo (2005) test is based on the partial identification test

statistic proposed by Cragg and Donald (1993). For our case, this statistic is gmin, the smallest eigenvalue

of the matrix analog of the F statistic from the first stage regression of W2SLS, i.e.,

gmin = minevalGTn

where

GTn =
Σ̂

−1/2′

V V Ỹ ⊥′PZ̃⊥ Ỹ ⊥Σ̂
−1/2
V V

K2

with Σ̂V V = Ỹ ′MZ̃ Ỹ / (Tn−K1 −K2) . A small gmin indicates that the instruments are weak, see Stock and

Yogo (2005). Let W (K,Ω,Υ) denote the Wishart distribution with K denoting the degrees of freedom, Ω

denoting the covariance matrix, and Υ denoting the noncentrality matrix, we have the following result:

Theorem 5 Under Assumptions 1 and 2, we have

1. For 0 ≤ δ < 1
2 ,

1
T 1−2δK2GTn

p−→ λ′λ.

2. For δ = 1
2 , K2GTn

d−→ (λ+ zV )
′
(λ+ zV ) v W (K2, IL, λ

′λ).

3. For 1
2 < δ < ∞, K2GTn

d−→ z′V zV v W (K2, IL, 0).

9



Note that for 0 ≤ δ < 1
2 , GTn

∼= T 1−2δλ′λ/K2 → ∞. For δ = 1
2 , E

(
(λ+ zV )

′
(λ+ zV )

)
= K2IL + λ′λ,

hence GTn
∼= IL + λ′λ/K2. For 1

2 < δ < ∞, E (z′V zV ) = K2IL, hence GTn
∼= IL. Therefore, as pointed

out in Stock, Wright and Yogo (2002), tr (GTn) /L can be thought of as a measure of the strength of the

instruments. It is clear that gmin → ∞ if 0 ≤ δ < 1
2 , gmin

d−→ mineval (λ+zV )′(λ+zV )
K2

if δ = 1
2 , and gmin

d−→

mineval
z′
V zV
K2

if 1
2 < δ < ∞. Next we discuss how to use gmin to detect the presence of weak instruments.

When δ = 1
2 , K2GTn

d−→ (λ+ zV )
′
(λ+ zV ) which has a noncentral Wishart distribution with noncen-

trality matrix λ′λ. This noncentrality matrix is the limit of the concentration matrix

ΛTn = Σ
−1/2′
V V Π

′
Z̃

′
Z̃ΠΣ

−1/2
V V

p−→ λ′λ.

On the other hand, when 0 ≤ δ < 1
2 , K2GTn → ∞, because ΛTn −→ ∞. Also note that z′V zV has a Wishart

distribution (i.e., λ′λ = 0). This corresponds to

ΛTn
p−→ 0

when 1
2 < δ < ∞. Let δmin be the smallest eigenvalue of λ′λ. Following Stock and Yogo (2005), we propose

using the conservative critical value x which satisfies the relationship5

P (gmin ≤ x) ≤ P
(
χ2 (K2, δmin) ≥ νx

)
where χ2 (ν, δmin) denotes the noncentral chi-squared random variable with ν degrees of freedom and non-

centrality parameter δmin. Stock and Yogo (2005) focus on the worst-behaved linear combination and it is

in this sense that this test is conservative. We refer the reader to their tables for critical values.

5 Robust Inference with Weak Instruments

The above results indicate that for δ ≥ 1
2 , the within-group k-class estimator is inconsistent. In this section,

we discuss hypothesis testing whose size is robust to the weak instruments in the panel data set-up. Following

the survey by Stock, Wright and Yogo (2002), we will discuss the AR test of Anderson and Rubin (1949),

the Lagrange multiplier (LM) test of Kleibergen (2002) and Moreira (2009), and the conditional likelihood

ratio (CLR) test of Moreira (2003) but applied to the fixed effects panel data model. For simplicity, we only

consider the case of one right hand side endogenous variable, i.e., L = 1.6

5Stock and Yogo (2005) observe that the limiting distribution of gmin will depend upon all of the eigenvalues of λ′λ.
6It is important to note that Cai, Fang and Li (2012) also considered the Anderson and Rubin (1949), the Kleibergen (2002),

and the Moreira (2003) conditional likelihood ratio and studied their asymptotic properties for fixed T and n → ∞.
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For convenience, we assume that X̃t and Z̃t are non-stochastic such that Z̃
′

tX̃t = 0. The reduced form

equations corresponding to the structural equations (5) and (6) are as follows:

ỹ = Z̃Πβ + X̃γ∗ + ũ∗

and

Ỹ = Z̃Π+ X̃Γ + Ṽ

where γ∗ = γ + Γβ and ũ∗ = ũ + Ṽ β. The reduced-form errors are assumed to be homoskedastic with

covariance matrix

Σ∗ =

 σ∗
uu Σ∗′

V u

Σ∗
V u ΣV V

 .

The concentration parameter can be rewritten as Σ
−1/2′
V V Π

′
Z̃

′
Z̃ΠΣ

−1/2
V V .

Consider the null hypothesis

H0 : β = β0.

Define

S =

(
Z̃

′
Z̃
)−1/2

Z̃
′
Ỹ ∗b0(

b
′
0Σ

∗−1b0
)1/2

and

T =

(
Z̃

′
Z̃
)−1/2

Z̃
′
Ỹ ∗Σ∗−1a0(

a
′
0Σ

∗−1a0
)1/2

where b0 = [1,−β0]
′
, a0 = [β0, 1]

′
, and Ỹ ∗ =

[
ỹ, Ỹ

]
. Define

Θ =

 S′

T′

 [S,T] =

 S′S T′S

S′T T′T

 =

 ΘS ΘST

ΘST ΘT

 .

Three test statistics that are functions of Θ are the LM statistics of Kleibergen (2002) and Moreira

(2009), the Anderson and Rubin (1949) statistic (AR), and the Moreira (2003) conditional likelihood ratio

statistic (CLR). We now define the AR, LM, and CLR test statistics as follows:

AR =
ΘS

K2
,

LM =
Θ2

ST
ΘT

,

and

CLR =
1

2

(
ΘS −ΘT +

√
(ΘS −ΘT)

2
+ 4Θ2

ST

)
.
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see Andrews and Stock (2006a, b). Define

µπ =
(
Z̃

′
Z̃
)1/2

Π,

cβ =
β − β0(

b
′
0Σ

∗−1b0
)1/2 ,

and

dβ =
a

′
Σ∗−1a0(

a
′
0Σ

∗−1a0
)1/2 .

Note that Ỹ ∗ can be written as

Ỹ ∗ = Z̃Πa+ X̃η +
[
ũ∗, Ṽ

]
where a = (β, 1)

′
, and η = [γ∗,Γ]

′
. That is, Ỹ is multivariate normal with mean matrix Z̃Πa+ X̃η. Then S

is K2 × 1 multivariate normal with mean

E [S] = E


(
Z̃

′
Z̃
)−1/2

Z̃
′
Ỹ b0(

b
′
0Σ

∗−1b0
)1/2


=

(
Z̃

′
Z̃
)−1/2

Z̃
′
(
Z̃Πa+ X̃η

)
b0(

b
′
0Σ

∗−1b0
)1/2

=

(
Z̃

′
Z̃
)1/2

Π(β − β0)(
b
′
0Σ

∗−1b0
)1/2 = cβµπ

and

V ar [S] = IK2

using

Z̃
′
X̃ = 0

and

a
′
b0 = (β, 1)

 1

−β0

 = β − β0.

Similarly, T is K2 × 1 multivariate normal with mean

E [T] = dβµπ

and variance

V ar [T] = IK2 .
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It is also easy to show that S and T are independent using b
′

0a0 = 0. Under the null, H0 : β = β0

S ∼ N (0, IK2)

which does not depend on Π since cβ = 0. However, the distribution of T depends on Π under the null.

Assume Z̃
′
Z̃

Tn → DZ . The asymptotic distributions of S and T are given in the following theorem:

Theorem 6 Suppose Assumptions 1 and 2, hold. We have

S− cβµπ
d→ S∗ ∼ N (0, IK2)

and

T− dβµπ
d→ T∗ ∼ N (0, IK2)

where S and T are independent with

1. If 0 ≤ δ < 1
2 , µπ → ∞,

2. If δ = 1
2 , µπ = O (1) , and

3. If 1
2 < δ < ∞, µπ = o (1) .

Hence, under the null,

S d→ N (0, IK2)

and

AR =
ΘS

K2

d→
χ2
K2

K2

for all values of δ. Note that

LM =
Θ2

ST
ΘT

=

(
S′T
)2

T′T
= S

′
PTS

where PT = T
(
T′T

)−1

T′
is a symmetric idempotent matrix with rank(PT) = K2. By Proposition B.3.1 in

Lütkepohl (2005), we have

LM
d→ χ2

K2

for all values of δ. Because Σ∗ is unknown, it must be replaced by a consistent estimator, Σ̂∗. Critical values

for the CLR statistic can be found in Andrews et al. (2006).

CLR, LM and AR tests have good size properties under all values of δ, i.e., strong and weak IVs. However,

they may have different power properties. Deriving the asymptotic power envelops and power upper bounds

is an interesting question which we leave for future research.

13



6 Monte Carlo Simulation

In this section, we report some Monte Carlo results that examine the finite sample properties of the cross-

section 2SLS and the panel data W2SLS estimator when L = 1. Following Staiger and Stock (1997),

instruments Z1t, Z2t, Z3t, and Z4t are assumed to be standard normal variables and Xt is the constant 1;

the errors (ut, Vt)
′
are generated from an i.i.d. bivariate normal distribution with Σ =

 1 0.99

0.99 1

. The

true value of β, γ, and Γ is set as 0, 1, and 1 respectively. We set C = 0.5. Individual fixed effects µ and α

are generated from independent standard normal distributions. To summarize, the data generating process

(DGP) is given by

yt = 1 + µ+ ut (11)

and

Yt = 1 +
0.5√
nT δ

(Z1t + Z2t + Z3t + Z4t) + α+ Vt (12)

for t = 1, 2, · · · , T . The cross-section sample size n takes the values (50, 100), while the time-series sample

size T takes the values (1, 10, 20, 50, 100). δ takes the values (0, 0.2, 0.5, 0.8) for the panel data case, i.e., for

T > 1 and δ = 0 for the cross-sectional case, i.e., T = 1. For each experiment, we perform 1, 000 replications.

For each replication we estimate the model using W2SLS and LIML estimators of β. Table 1 reports the

root mean squared error (RMSE) of these estimators for various values of n, T and δ. Following Kelejian

and Prucha (1999), RMSE is defined as
[
bias2 + (IQR/1.35)

2
]1/2

, where bias is the difference between the

median and the true parameter value and IQR is the interquantile range. That is IQR = c1 − c2, where

c1 and c2 are the 0.75 and 0.25 quantiles respectively. As explained in Kelejian and Prucha (1999), these

characteristics are closely related to the standard measures of bias and root mean squared error (RMSE)

but, unlike these measures, are assured to exist. We can see that LIML has a smaller bias than the W2SLS

estimator, however, W2SLS has a smaller IQR and RMSE than the LIML estimator. Figure 1 shows the

density function of W2SLS estimator for n = 100. As we can see in the graph, when δ = 0 or 0.2, the

distribution tends to center at zero as T increases. when δ = 0.5 or 0.8, the distribution does not change

much as T increases. Table 2 reports the size of the t-test for β = 0. Results from table 2 confirm that the

t-tests using the W2SLS and LIML estimators are not robust with respect to weak instruments. Table 3

reports the results of the AR, LM and CLR tests. Table 3 indicates that the robust tests are indeed, robust

to the weak instruments in this panel data design.
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7 Conclusion

Following the extensive literature on weak instruments surveyed by Stock, Wright and Yogo (2002), this paper

proposes k-class IV estimators and test statistics and studies their behaviour when the available instruments

are weak in a fixed effects panel data model. It is important to note that Cai, Fang and Li (2012) studied

this fixed effects panel data model, but they let the degree of weakness of the instruments depend upon nδ,

where δ ≥ 0, and studied the asymptotic properties of W2SLS and pivotal statistics for fixed T and n → ∞.

In contrast, our study let the degree of weakness of the instruments depend upon
√
nT δ and studies the

asymptotic properties of k-class IV estimators and pivotal test statistics as both (n, T ) → ∞. Both papers

argue that there are benefits to panel data in reducing the bias of W2SLS and k-class IV estimators in case

of weak instruments. Monte Carlo results confirm these asymptotic results.
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Table 1: Bias, IQR and RMSE of W2SLS and LIML Estimators

Bias IQR RMSE

n T δ W2SLS LIML W2SLS LIML W2SLS LIML

50 1 0 0.473 0.447 0.647 1.692 0.673 1.331

50 10 0 0.259 -0.014 0.293 0.485 0.338 0.359

50 10 0.2 0.490 0.010 0.299 0.779 0.537 0.577

50 10 0.5 0.798 0.329 0.262 0.913 0.821 0.752

50 10 0.8 0.933 0.735 0.194 1.057 0.944 1.074

50 20 0 0.142 0.004 0.225 0.297 0.219 0.220

50 20 0.2 0.367 0.012 0.275 0.581 0.419 0.430

50 20 0.5 0.769 0.300 0.263 0.822 0.793 0.679

50 20 0.8 0.943 0.776 0.180 0.825 0.952 0.988

50 50 0 0.059 0.010 0.173 0.189 0.142 0.140

50 50 0.2 0.253 0.021 0.275 0.416 0.325 0.309

50 50 0.5 0.758 0.299 0.260 0.795 0.782 0.661

50 50 0.8 0.954 0.858 0.147 0.693 0.960 1.000

50 100 0 0.037 0.008 0.121 0.132 0.097 0.098

50 100 0.2 0.179 0.020 0.231 0.332 0.248 0.246

50 100 0.5 0.758 0.327 0.242 0.796 0.779 0.674

50 100 0.8 0.969 0.928 0.131 0.502 0.974 1.000

100 1 0 0.447 0.375 0.621 1.593 0.641 1.238

100 10 0 0.246 -0.027 0.287 0.488 0.325 0.362

100 10 0.2 0.477 0.004 0.292 0.777 0.523 0.576

100 10 0.5 0.784 0.303 0.287 0.887 0.813 0.724

100 10 0.8 0.929 0.723 0.214 1.156 0.943 1.121

100 20 0 0.139 0.007 0.241 0.324 0.227 0.240

100 20 0.2 0.361 0.014 0.271 0.605 0.413 0.449

100 20 0.5 0.767 0.317 0.271 0.936 0.793 0.762

100 20 0.8 0.941 0.798 0.183 0.885 0.951 1.033

100 50 0 0.052 -0.005 0.161 0.186 0.130 0.138

100 50 0.2 0.224 -0.010 0.267 0.430 0.299 0.319

100 50 0.5 0.755 0.266 0.260 0.915 0.780 0.728

100 50 0.8 0.964 0.857 0.157 0.684 0.971 0.995

100 100 0 0.031 0.000 0.126 0.135 0.098 0.100

100 100 0.2 0.170 -0.001 0.237 0.349 0.244 0.258

100 100 0.5 0.760 0.303 0.246 0.953 0.782 0.768

100 100 0.8 0.973 0.916 0.142 0.511 0.978 0.991
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Table 2: Size of t-test

n T δ W2SLS LIML

50 1 0 0.153 0.098

50 10 0 0.347 0.091

50 10 0.2 0.587 0.127

50 10 0.5 0.851 0.208

50 10 0.8 0.946 0.393

50 20 0 0.191 0.075

50 20 0.2 0.461 0.108

50 20 0.5 0.862 0.213

50 20 0.8 0.972 0.473

50 50 0 0.118 0.062

50 50 0.2 0.331 0.087

50 50 0.5 0.835 0.214

50 50 0.8 0.967 0.534

50 100 0 0.098 0.055

50 100 0.2 0.252 0.091

50 100 0.5 0.862 0.201

50 100 0.8 0.988 0.634

100 1 0 0.132 0.080

100 10 0 0.309 0.084

100 10 0.2 0.565 0.115

100 10 0.5 0.850 0.188

100 10 0.8 0.935 0.384

100 20 0 0.211 0.081

100 20 0.2 0.444 0.116

100 20 0.5 0.847 0.215

100 20 0.8 0.963 0.468

100 50 0 0.102 0.049

100 50 0.2 0.289 0.085

100 50 0.5 0.849 0.161

100 50 0.8 0.974 0.527

100 100 0 0.080 0.054

100 100 0.2 0.232 0.077

100 100 0.5 0.879 0.198

100 100 0.8 0.974 0.609
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Table 3: Size of Robust Tests

n T δ AR LM CLR

50 1 0 0.065 0.065 0.069

50 10 0 0.055 0.057 0.056

50 10 0.2 0.055 0.055 0.055

50 10 0.5 0.055 0.055 0.051

50 10 0.8 0.055 0.050 0.053

50 20 0 0.050 0.048 0.046

50 20 0.2 0.050 0.050 0.052

50 20 0.5 0.050 0.058 0.059

50 20 0.8 0.050 0.062 0.057

50 50 0 0.058 0.053 0.053

50 50 0.2 0.058 0.053 0.052

50 50 0.5 0.058 0.057 0.057

50 50 0.8 0.058 0.056 0.056

50 100 0 0.050 0.042 0.042

50 100 0.2 0.050 0.042 0.042

50 100 0.5 0.050 0.045 0.047

50 100 0.8 0.050 0.054 0.048

100 1 0 0.054 0.050 0.050

100 10 0 0.040 0.053 0.053

100 10 0.2 0.040 0.053 0.054

100 10 0.5 0.040 0.048 0.047

100 10 0.8 0.040 0.046 0.046

100 20 0 0.050 0.045 0.045

100 20 0.2 0.050 0.046 0.046

100 20 0.5 0.050 0.042 0.041

100 20 0.8 0.050 0.044 0.043

100 50 0 0.043 0.047 0.047

100 50 0.2 0.043 0.048 0.048

100 50 0.5 0.043 0.049 0.050

100 50 0.8 0.043 0.041 0.054

100 100 0 0.044 0.056 0.056

100 100 0.2 0.044 0.058 0.058

100 100 0.5 0.044 0.064 0.061

100 100 0.8 0.044 0.057 0.055
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Figure 1: Density of the W2SLS Estimator (n=100)
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Appendix

To prove Theorem 1, we need the following Lemma.

Lemma 1 As (n, T ) → ∞, for 0 ≤ δ < 1
2

1

T 1−δn
1
2

Z̃ ′Ỹ = ΦZZC +Op

(
1

T
1
2−δ

)
,

for δ = 1
2

1√
Tn

Z̃ ′Ỹ
d−→ ΦZZC +ΨZV ,

and for 1
2 < δ < ∞

1√
Tn

Z̃ ′Ỹ
d−→ ΨZV .

Proof. First we note that for 0 ≤ δ ≤ 1
2

1

T 1−δn
1
2

Z̃ ′Ỹ =
1

T 1−δn

T∑
t=1

Z̃ ′
tỸt

=
1

T 1−δn
1
2

T∑
t=1

Z̃ ′
tZ̃tΠ+

1

T 1−δn
1
2

T∑
t=1

Z̃ ′
tṼt

=
1

Tn

T∑
t=1

Z̃ ′
tZ̃t

(
T δn

1
2Π
)
+

1

T 1−δn
1
2

T∑
t=1

Z̃ ′
tṼt

=
1

Tn

T∑
t=1

Z̃ ′
tZ̃tC +

1

T
1
2−δ

1√
Tn

T∑
t=1

Z̃ ′
tṼt

= ΦZZC +Op

(
1

T
1
2−δ

)
as (n, T ) → ∞ since 1√

Tn

∑T
t=1 Z̃

′
tṼt = Op (1) .

For δ = 1
2

1√
Tn

Z̃ ′Ỹ =
1

Tn

T∑
t=1

Z̃ ′
tZ̃t

(√
TnΠ

)
+

1√
Tn

T∑
t=1

Z̃ ′
tṼt

d−→ ΦZZC +ΨZV .

Finally, for 1
2 < δ < ∞

1√
Tn

Z̃ ′Ỹ =
1√
Tn

T∑
t=1

Z̃ ′
tỸt

=
1√
Tn

T∑
t=1

Z̃ ′
tZ̃tΠ+

1√
Tn

T∑
t=1

Z̃ ′
tṼt

=

(
1

Tn

T∑
t=1

Z̃ ′
tZ̃t

)(
C

T δ−1/2

)
+

1√
Tn

T∑
t=1

Z̃ ′
tṼt

d−→ ΨZV +Op

(
1

T δ−1/2

)
using 1

Tn

∑T
t=1 Z̃

′
tZ̃t = Op (1) and

1√
Tn

∑T
t=1 Z̃

′
tṼt

d−→ ΨZV .This proves the lemma.
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A Proof of Theorem 1

Proof. Consider

β̂W2SLS − β =
Ỹ ′PZ̃ ũ

Ỹ ′PZ̃ Ỹ
=

Ỹ ′Z̃
(
Z̃Z̃
)−1

Z̃ ′ũ

Ỹ ′Z̃
(
Z̃Z̃
)−1

Z̃ ′Ỹ
.

For 0 < δ < 1
2 ,

T
1
2−δ

(
β̂W2SLS − β

)
=

(
1

T 1−δ
√
n
Ỹ ′Z̃

)(
1
nT Z̃Z̃

)−1 (
1√
Tn

Z̃ ′ũ
)

(
1

T 1−δ
√
n
Ỹ ′Z̃

)(
1
nT Z̃Z̃

)−1 (
1

T 1−δ
√
n
Z̃ ′Ỹ

) d−→ ΨZu

ΦZZC
= N

(
0, σuu

(
C

′
ΦZZC

)−1
)
,

for δ = 1
2 ,

β̂W2SLS − β =

(
1√
Tn

Ỹ ′Z̃
)(

1
nT Z̃Z̃

)−1 (
1√
Tn

Z̃ ′ũ
)

(
1√
Tn

Ỹ ′Z̃
)(

1
nT Z̃Z̃

)−1 (
1√
Tn

Z̃ ′Ỹ
) =

(ΦZZC +ΨZV )
′
Φ−1

ZZΨZu

(ΦZZC +ΨZV )
′
Φ−1

ZZ (ΦZZC +ΨZV )
= Op (1) ,

and for 1
2 < δ < ∞,

β̂W2SLS − β =
Ỹ ′PZ̃ ũ

Ỹ ′PZ̃ Ỹ
=

(
1√
Tn

Ỹ ′Z̃
)(

1
nT Z̃Z̃

)−1 (
1√
Tn

Z̃ ′ũ
)

(
1√
Tn

Ỹ ′Z̃
)(

1
nT Z̃Z̃

)−1 (
1√
Tn

Z̃ ′Ỹ
) =

Ψ′
ZV Φ

−1
ZZΨZu

Ψ′
ZV Φ

−1
ZZΨZV

= Op (1) .

This proves the theorem.

To prove Theorem 2, we need the following Lemma.

Lemma 2 Under Assumptions 1 and 2, as (n, T ) → ∞,

1. 1
Tn ũ

⊥′ũ⊥ p−→ σuu,
1
Tn Ỹ

⊥′ũ⊥ p−→ ΣV u,
1
Tn Ỹ

⊥′Ỹ ⊥ p−→ ΣV V , and
1
Tn Z̃

⊥′Z̃⊥ p−→ ΦZZ−ΦZX̃Φ−1

X̃X̃
ΦX̃Z =

Ω.

2. 1√
Tn

Z̃⊥′ũ⊥ d−→ ΨZu − ΦZX̃Φ−1

X̃X̃
ΨX̃u, P

1/2

Z̃⊥ ũ⊥ d−→ σ
1/2
uu zu, and ũ⊥′PZ̃⊥ ũ⊥ d−→ σuuz

′
uzu.

3. For 0 ≤ δ ≤ 1
2 ,

1

T 1−δn
1
2
Z̃⊥′Ỹ ⊥ p−→ ΩC, 1

T 1/2−δP
1/2

Z̃⊥ Ỹ ⊥ p−→ λΣ
1/2
V V ,

1
T 1/2−δ Ỹ

⊥′PZ̃⊥ ũ⊥ d−→ σ
1/2
uu Σ

1/2′
V V λ′zu, and

1
T 1−2δ Ỹ

⊥′PZ̃⊥ Ỹ ⊥ p−→ Σ
1/2′
V V λ′λΣ

1/2
V V ; For δ = 1

2
1√
Tn

Z̃⊥′Ỹ ⊥ d−→ ΩC + Ω1/2zV Σ
1/2
V V , P

1/2

Z̃⊥ Ỹ ⊥ d−→

(λ+ zV )Σ
1/2
V V , Ỹ

⊥′PZ̃⊥ ũ⊥ d−→ σ
1/2
uu Σ

1/2′
V V (λ+ zV )

′
zu, and Ỹ ⊥′PZ̃⊥ Ỹ ⊥ d−→ Σ

1/2′
V V (λ+ zV )

′
(λ+ zV )Σ

1/2
V V ;

For 1
2 < δ < ∞, 1√

Tn
Z̃⊥′Ỹ ⊥ d−→ Ω1/2zV Σ

1/2
V V , P

1/2

Z̃⊥ Ỹ ⊥ d−→ zV Σ
1/2
V V , Ỹ

⊥′PZ̃⊥ ũ⊥ d−→ σ
1/2
uu Σ

1/2′
V V z′V zu, and

Ỹ ⊥′PZ̃⊥ Ỹ ⊥ d−→ Σ
1/2′
V V z′V zV Σ

1/2
V V .
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Proof. Consider part (1). First we note that

1

Tn
ũ⊥′ũ⊥ =

1

Tn
ũ′MX̃ ũ

=
1

Tn
ũ′ũ−

(
1

Tn
ũ′X̃

)(
1

Tn
X̃ ′X̃

)−1(
1

Tn
X̃ ′ũ

)
p−→ σuu

using 1
Tn ũ

′ũ
p−→ σuu,

1
TnX̃

′X̃ = Op (1) , and
1
TnX̃

′ũ = op(1). Next,

1

Tn
Ỹ ⊥′ũ⊥ =

1

Tn
Ỹ ′MX̃ ũ

=
1

Tn
Π′Z̃ ′MX̃ ũ+

1

Tn
Ṽ ′MX̃ ũ

= Π′

[
1

Tn
Z̃ ′ũ−

(
1

Tn
Z̃ ′X̃

)(
1

Tn
X̃ ′X̃

)−1(
1

Tn
X̃ ′ũ

)]

+

[
1

Tn
Ṽ ′ũ−

(
1

Tn
Ṽ ′X̃

)(
1

Tn
X̃ ′X̃

)−1(
1

Tn
X̃ ′ũ

)]
p−→ ΣV u

using Π = o(1), 1
Tn Z̃

′ũ = op(1),
1
Tn Z̃

′X̃ = Op (1) ,
1
TnX̃

′X̃ = Op (1),
1
TnX̃

′ũ = op(1),
1
Tn Ṽ

′X̃ = op(1), and

1
Tn Ṽ

′ũ
p−→ ΣV u. Similarly,

1

Tn
Ỹ ⊥′Ỹ ⊥ =

1

Tn
Ỹ ′MX̃ Ỹ

=
1

Tn
Π′Z̃ ′MX̃ Z̃Π+

1

Tn
Ṽ ′MX̃ Z̃Π+

1

Tn
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1

Tn
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=

[
1

Tn
Ṽ ′ũ−

(
1

Tn
Ṽ ′X̃

)(
1

Tn
X̃ ′X̃

)−1(
1

Tn
X̃ ′Ṽ

)]
+ op (1)

p−→ ΣV V

since Π = o(1), 1
TnX̃

′X̃
p−→ ΦX̃X̃ , 1

Tn Ṽ
′X̃

p−→ 0, and 1
Tn Ṽ

′ũ
p−→ ΣV u. Finally,

1

Tn
Z̃⊥′Z̃⊥ =

1

Tn
Z̃ ′MX̃ Z̃ =

1

Tn
Z̃ ′Z̃−

(
1

Tn
Z̃ ′X̃

)(
1

Tn
X̃ ′X̃

)−1(
1

Tn
X̃ ′Z̃

)
p−→ ΦZZ −ΦZX̃Φ−1

X̃X̃
ΦX̃Z = Ω

as (n, T ) → ∞ proving part (1).

Consider (2). Note that

1√
Tn

Z̃⊥′ũ⊥ =
1√
Tn

Z̃ ′MX̃ ũ

=
1√
Tn

Z̃ ′ũ−
(

1

Tn
Z̃ ′X̃

)(
1

Tn
X̃ ′X̃

)−1(
1√
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X̃ ′ũ

)
d−→ ΨZu − ΦZX̃Φ−1

X̃X̃
ΨX̃u

since 1√
Tn

X̃ ′ũ
d−→ ΨX̃u and 1√

Tn
Z̃ ′ũ

d−→ ΨZu. Therefore,

P
1/2

Z̃⊥ ũ⊥ =

(
1

Tn
Z̃⊥′Z̃⊥

)−1/2(
1√
Tn

Z̃⊥′ũ⊥
)

d−→ Ω−1/2
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)
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uu zu
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and

ũ⊥′PZ̃⊥ ũ
⊥ =

(
ũ⊥′P

1/2

Z̃⊥

)(
P

1/2

Z̃⊥ ũ⊥
)

d−→ σuuz
′
uzu.

Consider (3). For 0 ≤ δ < 1
2 , we have

1
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1
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Z̃⊥′Ỹ ⊥ =
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1
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)

+
1
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1√
Tn

Z̃ ′Ṽ

)
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1
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1

Tn
X̃ ′X̃

)−1(
1√
Tn

X̃ ′Ṽ

)]
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(
1
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)

with Ω = ΦZZ − ΦZX̃Φ−1

X̃X̃
ΦX̃Z because 1√

Tn
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d−→ ΨZV ,
1
Tn Z̃

′X̃
p−→ ΦZX̃ , 1

TnX̃
′X̃

p−→ ΦX̃X̃ , and

1√
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X̃ ′Ṽ
d−→ ΨX̃V . Together with Lemmas (1) and (2), we obtain
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1
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Z̃⊥′Z̃⊥

)−1/2(
1
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1
2

Z̃⊥′Ỹ ⊥
)

p−→ Ω−1/2ΩC = Ω1/2C = λΣ
1/2
V V ,

1√
Tn

Ỹ ⊥′PZ̃⊥ ũ
⊥ =

(
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V V λ′zu,

and
1
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Next for δ = 1
2 , we have

1√
Tn

Z̃⊥′Ỹ ⊥ =
1√
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Z̃ ′MX̃ Z̃Π+
1√
Tn

Z̃ ′MX̃ Ṽ

=

[(
1

Tn
Z̃ ′Z̃

)
−
(

1

Tn
Z̃ ′X̃

)(
1
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)−1(
1
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+
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1
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)−1(
1√
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)]
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(
ΦZZ − ΦZX̃Φ−1

X̃X̃
ΦX̃Z

)
C +

(
ΨZV − ΦZX̃Φ−1

X̃X̃
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= ΩC +Ω1/2zV Σ
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by the definition of Ω and zV . Together with Lemmas (1) and (2), we have
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)
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]
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⊥ =

(
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and

Ỹ ⊥′PZ̃⊥ Ỹ
⊥ =

(
Ỹ ⊥′P

1/2

Z̃⊥

)(
P
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Finally for 1
2 < δ < ∞, we have
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1√
Tn

Z̃ ′MX̃ Ṽ
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Using Lemmas (1) and (2), we have
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(
1
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This proves (3).

B Proof of Theorem 2

Proof. We write

β̂ (k) = β +
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Ỹ ⊥′PZ̃⊥ ũ
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uniformly in κ. Therefore,
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Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1 [

1

T 1/2−δ
Ỹ ⊥′ (I − kMZ̃⊥) ũ

⊥ − κTn

(
1

Tn
Ỹ ⊥′ũ⊥

)
+ κTnΣV u

]
d−→
(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1 (
σ1/2
uu Σ

1/2′
V V λ′zu

)
∼ N

(
0, σuu

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1
)

as (n, T ) → ∞ joint with κTn
d−→ κ.

Consider δ = 1
2 and let κTn = Tn (k − 1). Using k =

(
1 + κTn

Tn

)
and MZ̃⊥ = I − PZ̃⊥ , by Lemmas 2.1

and 2.3, we have

Ỹ ⊥′ (I − kMZ̃⊥) Ỹ
⊥ = Ỹ ⊥′

[
I −

(
1 +

κTn

Tn

)
(I − PZ̃⊥)

]
Ỹ ⊥

=
(
1 +

κTn

Tn

)(
Ỹ ⊥′PZ̃⊥ Ỹ

⊥
)
− κTn

(
1

Tn
Ỹ ⊥′Ỹ ⊥

)
d−→ Σ

1/2′
V V (λ+ zV )

′
(λ+ zV )Σ

1/2
V V − κΣV V = Σ

1/2′
V V

[
(λ+ zV )

′
(λ+ zV )− κITn

]
Σ

1/2
V V

and

Ỹ ⊥′ (I − kMZ̃⊥) ũ
⊥ = Ỹ ⊥′

[
I −

(
1 +

κTn

T 1/2+δn

)
(I − PZ̃⊥)

]
ũ⊥

=

(
1 +

κTn√
Tn

)(
Ỹ ⊥′PZ̃⊥ ũ

⊥
)
− κTn

(
1

Tn
Ỹ ⊥′ũ⊥

)
d−→ σ1/2

uu Σ
1/2′
V V (λ+ zV )

′
zu − κΣV u = σ1/2

uu Σ
1/2′
V V

[
(λ+ zV )

′
zu − κρ

]
uniformly in κ. Therefore,

β̂ (k)−β
d−→
{
Σ

1/2′
V V

[
(λ+ zV )

′
(λ+ zV )− κITn

]
Σ

1/2
V V

}−1 {
σ1/2
uu Σ

1/2′
V V

[
(λ+ zV )

′
zu − κρ

]}
= σ1/2

uu Σ
−1/2
V V ∆1 (κ) ,

as (n, T ) → ∞ joint with κTn
d−→ κ, where ∆1κ =

[
(λ+ zV )

′
(λ+ zV )− κITn

]−1 [
(λ+ zV )

′
zu − κρ

]
.

Consider 1
2 < δ < ∞ and let κTn = Tn (k − 1). Using k =

(
1 + κTn

Tn

)
and MZ̃⊥ = I − PZ̃⊥ , by Lemmas

2.1 and 2.3, we have

Ỹ ⊥′ (I − kMZ̃⊥) Ỹ
⊥ = Ỹ ⊥′

[
I −

(
1 +

κTn

Tn

)
(I − PZ̃⊥)

]
Ỹ ⊥

=
(
1 +

κTn

Tn

)(
Ỹ ⊥′PZ̃⊥ Ỹ

⊥
)
− κTn

(
1

Tn
Ỹ ⊥′Ỹ ⊥

)
d−→ Σ

1/2′
V V z′V zV Σ

1/2
V V − κΣV V

= Σ
1/2′
V V [z′V zV − κITn] Σ

1/2
V V
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and

Ỹ ⊥′ (I − kMZ̃⊥) ũ
⊥ = Ỹ ⊥′

[
I −

(
1 +

κTn

Tn

)
(I − PZ̃⊥)

]
ũ⊥

=
(
1 +

κTn

Tn

)(
Ỹ ⊥′PZ̃⊥ ũ

⊥
)
− κTn

(
1

Tn
Ỹ ⊥′ũ⊥

)
d−→ σ1/2

uu Σ
1/2′
V V z′V zu − κΣV u

= σ1/2
uu Σ

1/2′
V V [z′V zu − κρ] .

Therefore,

β̂ (k)− β
d−→
{
Σ

1/2′
V V [z′V zV − κITn] Σ

1/2
V V

}−1 {
σ1/2
uu Σ

1/2′
V V [z′V zu − κρ]

}
= σ1/2

uu Σ
−1/2
V V ∆2 (κ) ,

as (n, T ) → ∞ joint with κTn
d−→ κ, where ∆2 (κ) = [z′V zV − κITn]

−1
[z′V zu − κρ].

C Proof of Theorem 3

Proof. Let us denote J , partitioned conformably with Ỹ ∗⊥, to be J11 = IT , J21 = −β ⊗ ιT , J11 =

0 ⊗ ι′T and J11 = ITn. Because ỹ⊥ = Ỹ ⊥β + ũ⊥, hence Ỹ ∗⊥J =
[
ũ⊥, Ỹ ⊥

]
. By Lemma 2.1, we have

1
TnJ

′Ỹ ∗⊥′Ỹ ∗⊥J =

 1
Tn ũ

⊥′ũ⊥ 1
Tn ũ

⊥′Ỹ ⊥

1
Tn Ỹ

⊥′ũ⊥ 1
Tn Ỹ

⊥′Ỹ ⊥

 p−→

σuu ΣuV

ΣV u ΣV V

 = Υ′Σ̄Υ where Υ = diag
(
σ
1/2
uu ,Σ

1/2
V V

)
and Σ̄ is defined in Equation (10). If 1

TnJ
′Ỹ ∗⊥′PZ̃∗⊥ Ỹ ∗⊥J = op (1) which will be shown below, then we have

1
TnJ

′Ỹ ∗⊥′MZ̃∗⊥ Ỹ ∗⊥J = 1
TnJ

′Ỹ ∗⊥′Ỹ ∗⊥J − 1
TnJ

′Ỹ ∗⊥′PZ̃∗⊥ Ỹ ∗⊥J
p−→ Υ′Σ̄Υ.

For 0 ≤ δ < 1
2 , note that for any nonsingular (n+ 1)T×(n+ 1)T matrix J , the roots of

∣∣∣Ỹ ∗⊥′
[
ITn − k̂LIMLMZ̃∗⊥

]
Ỹ ∗⊥

∣∣∣ =
0 are the same as the roots of∣∣∣∣ 1

T 1−2δ
J ′Ỹ ∗⊥′

[
ITn − k̂LIMLMZ̃∗⊥

]
Ỹ ∗⊥J

∣∣∣∣ =

∣∣∣∣ 1

T 1−2δ
J ′Ỹ ∗⊥′

[
PZ̃∗⊥ −

(
k̂LIML − 1

)
MZ̃∗⊥

]
Ỹ ∗⊥J

∣∣∣∣
=

∣∣∣∣( 1

T 1−2δ
J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ

∗⊥J

)
− κ̂LIML

(
1

Tn
J ′Ỹ ∗⊥′MZ̃∗⊥ Ỹ

∗⊥J

)∣∣∣∣ = 0,

where κ̂LIML = T 2δn
(
k̂LIML − 1

)
. By Lemma 2.2 and 2.3, we have

1

T 1−2δ
J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ

∗⊥J =

 1
T 1−2δ

(
ũ⊥′PZ̃∗⊥ ũ⊥) 1

T 1/2−δ

(
1

T 1/2−δ ũ
⊥′PZ̃∗⊥ Ỹ ⊥

)
1

T 1/2−δ

(
1

T 1/2−δ Ỹ
⊥′PZ̃∗⊥ ũ⊥

) (
1

T 1−2δ Ỹ
⊥′PZ̃∗⊥ Ỹ ⊥

)


d−→

0 0

0 Σ
1/2′
V V λ′λΣ

1/2
V V


= Υ′Ξ1Υ,
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where Ξ1 =

0 0

0 λ′λ

. The solutions to
∣∣∣( 1

T 1−2δ J
′Ỹ ∗⊥′PZ̃∗⊥ Ỹ ∗⊥J

)
− κ̂LIML

(
1
TnJ

′Ỹ ∗⊥′MZ̃∗⊥ Ỹ ∗⊥J
)∣∣∣ = 0

therefore converge to those of
∣∣Ξ1 − κΣ̄

∣∣ = 0, among them the smallest root is zero. Thus κ̂LIML =

T 2δn
(
k̂LIML − 1

)
p−→ 0.

For δ = 1
2 , the roots of

∣∣∣Ỹ ∗⊥′
[
ITn − k̂LIMLMZ̃∗⊥

]
Ỹ ∗⊥

∣∣∣ = 0 are the same as the roots of∣∣∣J ′Ỹ ∗⊥′
[
PZ̃∗⊥ −

(
k̂LIML − 1

)
MZ̃∗⊥

]
Ỹ ∗⊥J

∣∣∣ = ∣∣∣∣(J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ
∗⊥J

)
− κ̂LIML

(
1

Tn
J ′Ỹ ∗⊥′MZ̃∗⊥ Ỹ

∗⊥J

)∣∣∣∣ = 0,

where κ̂LIML = Tn
(
k̂LIML − 1

)
. By Lemma 2.2 and 2.3, we have

J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ
∗⊥J =

 ũ⊥′PZ̃∗⊥ ũ⊥ ũ⊥′PZ̃∗⊥ Ỹ ⊥

Ỹ ⊥′PZ̃∗⊥ ũ⊥ Ỹ ⊥′PZ̃∗⊥ Ỹ ⊥


d−→

 σuuz
′
uzu σ

1/2
uu z′u (λ+ zV )Σ

1/2
V V

σ
1/2
uu Σ

1/2′
V V (λ+ zV )

′
zu Σ

1/2′
V V (λ+ zV )

′
(λ+ zV )Σ

1/2
V V


= Υ′Ξ2Υ

where Ξ2 =

 z′uzu z′u (λ+ zV )

(λ+ zV )
′
zu (λ+ zV )

′
(λ+ zV )

. The solutions to
∣∣∣(J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ ∗⊥J

)
− κ̂LIML

(
1
TnJ

′Ỹ ∗⊥′MZ̃∗⊥ Ỹ ∗⊥J
)∣∣∣ =

0 therefore converge to those of
∣∣Ξ2 − κΣ̄

∣∣ = 0. Thus κ̂LIML = Tn
(
k̂LIML − 1

)
d−→ κ∗

LIML, where κ∗
LIML

is the smallest root of
∣∣Ξ2 − κΣ̄

∣∣ = 0.

For 1
2 < δ < ∞, the roots of

∣∣∣Ỹ ∗⊥′
[
ITn − k̂LIMLMZ̃∗⊥

]
Ỹ ∗⊥

∣∣∣ = 0 are the same as the roots of∣∣∣J ′Ỹ ∗⊥′
[
PZ̃∗⊥ −

(
k̂LIML − 1

)
MZ̃∗⊥

]
Ỹ ∗⊥J

∣∣∣ = ∣∣∣∣(J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ
∗⊥J

)
− κ̂LIML

(
1

Tn
J ′Ỹ ∗⊥′MZ̃∗⊥ Ỹ

∗⊥J

)∣∣∣∣ = 0,

where κ̂LIML = Tn
(
k̂LIML − 1

)
. By Lemma 2.2 and 2.3, we have

J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ
∗⊥J =

 ũ⊥′PZ̃∗⊥ ũ⊥ ũ⊥′PZ̃∗⊥ Ỹ ⊥

Ỹ ⊥′PZ̃∗⊥ ũ⊥ Ỹ ⊥′PZ̃∗⊥ Ỹ ⊥


d−→

 σuuz
′
uzu σ

1/2
uu z′uzV Σ

1/2
V V

σ
1/2
uu Σ

1/2′
V V z′V zu Σ

1/2′
V V z′V zV Σ

1/2
V V


= Υ′Ξ3Υ

where Ξ3 =

z′uzu z′uzV

z′V zu z′V zV

. The solutions to
∣∣∣(J ′Ỹ ∗⊥′PZ̃∗⊥ Ỹ ∗⊥J

)
− κ̂LIML

(
1
TnJ

′Ỹ ∗⊥′MZ̃∗⊥ Ỹ ∗⊥J
)∣∣∣ = 0

therefore converge to those of
∣∣Ξ3 − κΣ̄

∣∣ = 0. Thus κ̂LIML = Tn
(
k̂LIML − 1

)
d−→ κ∗

LIML, where κ∗
LIML is

the smallest root of
∣∣Ξ3 − κΣ̄

∣∣ = 0.
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D Proof of Theorem 4

Proof. Using Rβ̂ (k)− r = R
[
β̂ (k)− β

]
, we have

W (k) =
[
Rβ̂ (k)− r

]′{
σ̂uu (k)R

[
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1

R′
}−1 [

Rβ̂ (k)− r
]

=

{[
β̂ (k)− β

]′
R′
}{

σ̂uu (k)R
[
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1

R′
}−1 {

R
[
β̂ (k)− β

]}
.

and note that ̂̃u (k) = ỹ⊥ − Ỹ ⊥β̂ (k) = ũ⊥ − Ỹ ⊥
[
β̂ (k)− β

]
, so

σ̂uu (k) =
1

Tn−K1 − L
̂̃u (k)′ ̂̃u (k)

=
1

Tn−K1 − L

{
ũ⊥ − Ỹ ⊥

[
β̂ (k)− β

]}′ {
ũ⊥ − Ỹ ⊥

[
β̂ (k)− β

]}
=

Tn

Tn−K1 − L

{(
1

Tn
ũ⊥′ũ⊥

)
− 2

[
β̂ (k)− β

]′( 1

Tn
Ỹ ⊥′ũ⊥

)
+
[
β̂ (k)− β

]′( 1

Tn
Ỹ ⊥′Ỹ ⊥

)[
β̂ (k)− β

]}
.

For 0 ≤ δ < 1
2 , Theorem 2 implies β̂ (k)− β

p−→ 0. By Lemma 2.1,

σ̂uu (k)
p−→ σuu

as (n, T ) → ∞. Because θTn =
[

1
T 1−2δ Ỹ

⊥′ (I − kMZ̃⊥) Ỹ ⊥
]−1

κTnΣV u
p−→ κ

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1

ΣV u = θ,

then

RT 1/2−δ
(
β̂ (k)− β

)
∼ N

(
Rθ, σuuR

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1

R′
)

Recall that 1
T 1−2δ Ỹ

⊥′ (I − kMZ̃⊥) Ỹ ⊥ p−→ Σ
1/2′
V V λ′λΣ

1/2
V V by the proof of Theorem 2. By Proposition B.7 in

Lütkepohl (2005), we have

W (k) =

{
T 1/2−δ

[
β̂ (k)− β

]′
R′
}{

σ̂uu (k)R

[
1

T 1−2δ
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1

R′

}−1 {
RT 1/2−δ

[
β̂ (k)− β

]}
=

{
T 1/2−δ

[
β̂ (k)− β

]′
R′
}{

σuuR
(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1

R′
}−1 {

RT 1/2−δ
[
β̂ (k)− β

]}
+ op(1)

d−→ χ2
∗ (Φ,Λ) ,

which is a noncentral chi-squared distribution with Φ degrees of freedom and noncentrality parameter Λ =

θ′R′
[
σuuR

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)−1

R′
]−1

Rθ. Note that if κ = 0, θ = 0 and Λ = 0, hence W (k)
d−→ χ2 (Φ), a

central chi-squared distribution with Φ degrees of freedom.

For δ = 1
2 , by Lemma 2.1,
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σ̂uu (k)
d−→ σuu − 2σ1/2

uu

[
(λ+ zV )

′
zu − κρ

]′ [
(λ+ zV )

′
(λ+ zV )− κITn

]−1
Σ

−1/2
V V ΣV u

+σuu

[
(λ+ zV )

′
zu − κρ

]′ [
(λ+ zV )

′
(λ+ zV )− κITn

]−1 [
(λ+ zV )

′
(λ+ zV )− κITn

]−1 [
(λ+ zV )

′
zu − κρ

]
= σuuS (∆1 (κ))

where S (b) = 1− 2ρ′b+ b′b and ∆1 (k) =
[
(λ+ zV )

′
(λ+ zV )− κITn

]−1 [
(λ+ zV )

′
zu − κρ

]
.Therefore,

W (k) =

{[
β̂ (k)− β

]′
R′
}{

σ̂uu (k)R
[
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1

R′
}−1 {

R
[
β̂ (k)− β

]}
d−→
[
σ1/2
uu Σ

−1/2
V V ∆1 ((κ))

]′
R′
{
σuuS (∆1 ((κ)))R

{
Σ

1/2′
V V

[
(λ+ zV )

′
(λ+ zV )− κITn

]
Σ

1/2
V V

}−1

R′
}−1

R
[
σ1/2
uu Σ

−1/2
V V ∆1 ((κ))

]
= ∆′

1 ((κ))Σ
−1/2
V V R′

{
S (∆1 ((κ)))R

{
Σ

1/2′
V V

[
(λ+ zV )

′
(λ+ zV )− κITn

]
Σ

1/2
V V

}−1

R′
}−1

RΣ
−1/2
V V ∆1 ((κ)) .

as (n, T ) → ∞ because Ỹ ⊥′ (I − kMZ̃⊥) Ỹ ⊥ d−→ Σ
1/2′
V V

[
(λ+ zV )

′
(λ+ zV )− κITn

]
Σ

1/2
V V .

For 0 ≤ δ < 1
2 , by Lemma 2.1,

σ̂uu (k)
d−→ σuu − 2σ1/2

uu [z′V zu − κρ]
′
[z′V zV − κITn]

−1
Σ

−1/2
V V ΣV u

+σuu [z
′
V zu − κρ]

′
[z′V zV − κITn]

−1
[z′V zV − κITn]

−1
[z′V zu − κρ] = σuuS (∆2 ((κ)))

where S (b) = 1− 2ρ′b+ b′b and ∆2 ((κ)) = [z′V zV − κITn]
−1

[z′V zu − κρ].Therefore,

W (k) =

{[
β̂ (k)− β

]′
R′
}{

σ̂uu (k)R
[
Ỹ ⊥′ (I − kMZ̃⊥) Ỹ

⊥
]−1

R′
}−1 {

R
[
β̂ (k)− β

]}
d−→
[
σ1/2
uu Σ

−1/2
V V ∆2 ((κ))

]′
R′
{
σuuS (∆2 ((κ)))R

{
Σ

1/2′
V V [z′V zV − κITn] Σ

1/2
V V

}−1

R′
}−1

R
[
σ1/2
uu Σ

−1/2
V V ∆2 ((κ))

]
= ∆′

2 ((κ))Σ
−1/2
V V R′

{
S (∆2 ((κ)))R

{
Σ

1/2′
V V [z′V zV − κITn] Σ

1/2
V V

}−1

R′
}−1

RΣ
−1/2
V V ∆2 ((κ)) .

as (n, T ) → ∞ because Ỹ ⊥′ (I − kMZ̃⊥) Ỹ ⊥ d−→ Σ
1/2′
V V [z′V zV − κITn] Σ

1/2
V V .

E Proof of Theorem 5

Proof. Note that MZ̃∗ Ỹ = MZ̃∗ Ṽ , we have

Σ̂V V =
1

Tn−K1 −K2
Ṽ ′MZ̃∗ Ṽ

=
Tn

Tn−K1 −K2

[(
1

Tn
Ṽ ′Ṽ

)
− 1

Tn

(
1√
Tn

Ṽ ′Z̃∗
)(

1

Tn
Z̃∗′Z̃∗

)−1(
1√
Tn

Z̃∗′Ṽ

)]
p−→ ΣV V
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because 1√
Tn

Ṽ ′Z̃∗ =
(

1√
Tn

∑T
t=1 Ṽ

′
t X̃t,

1√
Tn

∑T
t=1 Ṽ

′
t Z̃t

)
d−→
(
Ψ′

X̃V
,Ψ′

ZV

)
and 1

Tn

∑T
t=1 Z̃

∗′
t Z̃∗

t
p−→ Φ.

For 0 ≤ δ < 1
2 , by Lemma 2.3,

K2

T 1−2δ
GTn = Σ̂

−1/2′
V V

(
1

T 1−2δ
Ỹ ⊥′PZ̃⊥ Ỹ

⊥
)
Σ̂

−1/2
V V

p−→ Σ
−1/2′
V V

(
Σ

1/2′
V V λ′λΣ

1/2
V V

)
Σ

−1/2
V V = λ′λ.

For δ = 1
2 , by Lemma 2.3,

K2GTn = Σ̂
−1/2′
V V

(
Ỹ ⊥′PZ̃⊥ Ỹ

⊥
)
Σ̂

−1/2
V V

d−→ Σ
−1/2′
V V

[
Σ

1/2′
V V (λ+ zV )

′
(λ+ zV )Σ

1/2
V V

]
Σ

−1/2
V V = (λ+ zV )

′
(λ+ zV ) ,

which is a noncentral Wishart distribution with K2 degrees of freedom and noncentrality parameter λ′λ.

For 1
2 < δ < ∞, by Lemma 2.3,

K2GTn = Σ̂
−1/2′
V V

(
Ỹ ⊥′PZ̃⊥ Ỹ

⊥
)
Σ̂

−1/2
V V

d−→ Σ
−1/2′
V V

(
Σ

1/2′
V V z′V zV Σ

1/2
V V

)
Σ

−1/2
V V = z′V zV .

which is a Wishart distribution with K2 degrees of freedom.

F Proof of Theorem 6

Proof. Consider (1). When 0 ≤ δ < 1
2 , we note that

µπ =
(
Z̃

′
Z̃
)1/2

π =

(
Z̃

′
Z̃

Tn

)1/2

(Tn)
1/2 C√

nT δ

=

(
Z̃

′
Z̃

Tn

)1/2

T 1/2 C

T δ
= O

(
T

1
2−δ
)
.

It follows that

S − cβµπ
d→ N (0, Ik)

and

T − dβµβ
d→ N (0, Ik) .

Consider (2). When δ = 1
2 , we have

µπ → DZC = Op (1) .

Then

S
d→ N (cβDZC, Ik)

and

T
d→ N (dβDZC, Ik) .
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Consider (3). When 1
2 < δ < ∞,

µπ = op (1) .

Then

S
d→ N (0, Ik)

and

T
d→ N (0, Ik) .

This proves the theorem.
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