
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics College of Arts and Sciences 

4-6-2000 

Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Viscoelastic Depinning of Driven Systems: Mean-Field Plastic 

Scallops Scallops 

Alan Middleton 
Syracuse University 

M. Cristina Marchetti 
Syracuse University 

Thomas Prellberg 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/phy 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Middleton, Alan; Marchetti, M. Cristina; and Prellberg, Thomas, "Viscoelastic Depinning of Driven Systems: 
Mean-Field Plastic Scallops" (2000). Physics. 195. 
https://surface.syr.edu/phy/195 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy/195?utm_source=surface.syr.edu%2Fphy%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ar
X

iv
:c

on
d-

m
at

/9
91

24
61

v2
  [

co
nd

-m
at

.d
is

-n
n]

  6
 A

pr
 2

00
0

Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops

M. Cristina Marchetti, A. Alan Middleton, and Thomas Prellberg
Physics Department, Syracuse University, Syracuse, NY 13244

(December 23, 1999)

We have investigated the mean field dynamics of an overdamped viscoelastic medium driven
through quenched disorder. The model allows for the coexistence of pinned and sliding regions and
can exhibit continuous elastic depinning or first order hysteretic depinning. Numerical simulations
indicate mean field instabilities that correspond to macroscopic stick-slip events and lead to pre-
mature switching. The model describes the elastic and plastic dynamics of driven vortex arrays in
superconductors and other extended disordered systems.

Extended condensed matter systems driven over
quenched disorder exhibit a very complex dynamics, in-
cluding nonequilibrium phase transitions and history de-
pendence. Such systems include vortex arrays in type-II
superconductors [1], charge density waves in anisotropic
conductors [2,3], and many others. Closely related be-
havior also arises in friction and lubrication [4], where a
surface or monolayer is brought in contact with another
solid surface and forced to slide relative to it.

Most of the theoretical work to date has focused on
the dissipative dynamics of driven elastic media that are
distorted by disorder, but cannot tear. At zero temper-
ature such systems exhibit a sharp depinning transition
from a pinned to a sliding state [3,5]. The transition,
first studied in the context of charge density waves, is
continuous, with universal critical behavior. The sliding
state is unique and there is no hysteresis or history de-
pendence [6]. More recent work, while still focusing on
elastic media, has shown that the dynamics is quite rich
well into the uniformly sliding state [7–11].

On the other hand, experiments [12,13] and simula-
tions [14,15] show that the elastic medium model is in-
adequate for many physical systems with strong disorder
that upon depinning exhibit a spatially inhomogeneous
plastic response, without long wavelength elastic restor-
ing forces. In this plastic flow regime, topological de-
fects proliferate and the system is broken up in fluid-like
regions flowing around pinned solid regions. Not much
progress has been made in describing this behavior ana-
lytically. The wealth of experimental work on driven vor-
tex arrays clearly indicates that, in most of the field and
temperature region of interest, the current-driven vortex
dynamics is strongly history dependent, with long-term
memory and switching as the system explores a variety
of nonequilibrium sliding states [12,13].

In this paper we describe a coarse-grained model for
the dynamics of a driven medium that allows for spatially
inhomogeneous response, with the coexistence of moving
and pinned regions. The model is inspired by the well-
known phenomenology of viscoelasticity in dense fluids
[16]. The elastic couplings between the local displace-

ments are replaced by couplings that are nonlocal in time
and allow for elastic restoring forces to turn into dissipa-
tive fluid flow on short time scales. The model yields
elastic depinning in one limit; as the parameters are
varied, it incorporates continuous depinning, hysteretic
plastic depinning and eventually viscous flow, allowing
the crossovers between these regimes (such as those, ob-
served in vortex arrays [12,15]) to be studied in detail.
For a wide range of parameter values the depinning tran-
sition is first order, with velocity hysteresis (switching.)
The nonlinear velocity-force characteristic can be evalu-
ated analytically in mean field for various types of pin-
ning forces, under the assumption of constant mean field
velocity. Numerical simulations confirm the inhomoge-
neous nature of the dynamics, with pinning and tearing
(coexisting moving and pinned degrees of freedom.) In
addition, the mean velocity near depinning fluctuates,
due to macroscopic stick-slip type events. These events
appear to only mildly violate the uniform mean-velocity
assumption but directly lead to switching from one veloc-
ity branch to another before the first branch terminates
(premature switching.) Models that account for switch-
ing in charge density waves and are in spirit similar to
ours have been proposed and studied by Strogatz and
collaborators [17]. In such models, plasticity is modeled
by a non-convex elastic potential, in contrast with the
velocity convolutions studied here. A model similar to
ours has also been proposed for crack propagation [18].

The model: a driven viscoelastic medium. To motivate
our model, we first recall the generic model of driven elas-

tic media [3] discussed extensively in the literature, where
the long-wavelength dynamics is described in terms of a
coarse-grained displacement field, u(r, t). The displace-
ment fields represent deformations of regions pinned col-
lectively by disorder (e.g., a Larkin domains) and are
coupled by convex elastic interactions. No topological
defects are allowed. Considering, for simplicity, the over-
damped dynamics of a scalar field (the model is easily
extended to the more general case) and modeling the
displacement field on lattice sites, u(r, t) → ui(t), the
equation of motion for the local field ui (measured in the
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laboratory frame [19]) at site i is

γ0u̇i =
∑

〈ij〉

µij (uj − ui) + F + Fi(ui), (1)

where the summation is restricted to nearest neighbor
pairs and γ0 is the friction. If all the nearest-neighbor
elastic couplings, µij ≥ 0, are equal, the first term on
the right hand side of Eq. (1) is the discrete Lapla-
cian in d dimensions. The second term is the homoge-
neous driving force, F , and Fi(ui) denotes the pinning
force arising from a quenched random potential, Vi(ui),
Fi(ui) = −dVi/dui = hif(ui − βi), with f(u) a periodic
function with period 1 and βi random phases uniformly
distributed in [0, 1]. The hi are chosen independently at
each site from a distribution ρ(h). One of the quantities
of interest is the average velocity of the driven medium,
v(F ) = N−1

∑

u̇i. For an elastic medium there is a
unique stationary sliding state for F > Fc, with critical
behavior v(F ) ∼ (F − Fc)

β [3], and no hysteresis at the
transition [6].

We now modify the elastic interactions in Eq. (1) to
allow for local tearing of the medium. Inspired by stan-
dard models of viscoelasticity, we replace the elastic in-
teraction by couplings to the local velocity field, vi = u̇i,
that are nonlocal in time. Our model equation for the
overdamped dynamics of a driven viscoelastic medium is
[20]

γ0u̇i =
∑

〈ij〉

∫ t

0

ds Cij(t − s)
[

u̇j(s) − u̇i(s)
]

+ F + Fi(ui),

(2)

where the viscous couplings Cij(s) have finite first mo-
ments,

∫ ∞

0
ds Cij(s) = ηij < ∞ and Cij(0) = µij . Such

nonlocal couplings to velocity are of course not present
at the microscopic level, but are generated generically
upon coarse-graining [16,21]. Eq. (2) is a coarse-grained
model for the dynamics of a driven disordered medium
that allows for slip or friction of the interacting Larkin
domains relative to each other.

A simple, yet successful, model of viscoelasticity due
to Maxwell is obtained when the memory kernels are as-
sumed to be uniform in space and to decay exponentially
in time, according to Cij(t) = µe−t/τ , with τ = η/µ the
Maxwell relaxation time. For τ → ∞ and fixed µ, Eq.
(2) reduces to Eq. (1) for a driven elastic medium. For
τ → 0 and η fixed, the first term on the right hand side
of Eq. (2) can be approximated as η

∑

〈ij〉[vj(t) − vi(t)],
which represents viscous forces coupling the local fluid
velocity at different spatial points. In this limit, Eq. (2)
describes an overdamped lattice-fluid of viscosity η. We
propose Eq. (2) as a simple, yet realistic model for a
driven disordered system that exhibits spatially inhomo-
geneous plastic response.

Mean Field Approximation. As for the driven elastic
media, substantial analytical progress in two or three di-
mensions is presumably only possible via perturbation
theory or by a functional renormalization group treat-
ment [22]. An alternative approach that has provided
valuable insight for a driven elastic medium is mean field
theory (MFT), first discussed by D. S. Fisher [3]. MFT
is formally valid in the limit of infinite-range interaction,
with

∑

j Cij = NC(t) held fixed. The equation of motion
for the displacement at each site is then given by

γ0u̇i =

∫ t

0

yds C(t − s)
[

v(s) − u̇i(s)
]

+ F + Fi(ui), (3)

where the mean field is given by u(t) = N−1
∑N

i=1 ui(t),
and v(t) = u̇(t).

If the memory kernel C(t) is chosen to be of the
Maxwell form, it is then possible to transform the integro-
differential equation (3) to a second-order differential
equation, given by

τü + γ(η, τ, h; ui)u̇ = F + Fi(ui) + ηv, (4)

with γ(η, τ, ui; h) = 1 + η − τ ∂Fi

∂ui

an effective friction.
We have scaled Eq. (4) by letting τ → τh0, t → th0,
η → η/γ0, F → F/(γ0h0) and h → h/(γ0h0), where h0

is the characteristic scale of the distribution ρ(h). With
this change of variables, the model is now characterized
by two parameters, η and τ , and the shape of ρ(h). The
MF equation for our viscoelastic model closely resembles
the MF equation for a driven massive elastic medium,
with τ playing the role of the mass. The most important
difference is that in the massive elastic medium the MF
term ηv is replaced by µu. As a result, the MFT of a
driven massive elastic medium even with constant v con-
tains three degrees of freedom (as opposed to the two of
our problem) and the dynamics of a single ui is chaotic
[26,27].

We are first interested here in steadily sliding solutions
of the MF model, Eq. (3). It is natural to look for peri-

odic solutions up(t; h) of period T (h), (
∫ T (h)

0
dt u̇p(t; h) =

1) that may set in after an initial transient (t ≫ T (h)).
Such solutions need not be unique. Guided by a large
body of previous work on driven elastic media, we focus
on the MFT for the case of a pinning potential with cusp-
like singularities, which better captures the physics of
the corresponding finite-dimensional model [23]. An ex-
plicit solution of Eq. (4) can be obtained for the scalloped
parabolic potential, V (u) = (h/2)(u2 − u + 1/4). In this
case Eq. (4) is linear and its general solution is up(t; h) =
C1 exp(−λ1t) + C2 exp(−λ2t) + 1/2 + (ηv + F )/h, with

λ1,2 =
(

1 + η + τh ±
√

(1 + η + τh)2 − 4τh
)

/(2τ). For

each fixed value of h, we obtain an implicit equation for
the period, T (h), ηv + F = G(T ; η, τ, h), with
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G(T ; η, τ, h) =
λ1(1 − e−λ1T ) − λ2(1 − e−λ2T ) + τλ1λ2(e

−λ1T − e−λ2T )

(λ1 − λ2)(1 − e−λ1T )(1 − e−λ2T )
−

h

2
. (5)

The solution of Eq. (5), together with the self-consistency
constraint v =< [T (h)]−1 >h, determines the drift veloc-
ity as a function of driving force, F . When T (hi) → ∞,
the ui is pinned.

Figure 1 shows the analytical solution for the mean ve-
locity as a function of driving force for ρ(h) = exp(−h).
The depinning occurs at F = 0 for all distributions of
pinning strengths, ρ(h), with support not bounded from
below by a positive hmin. For small η and τ , correspond-
ing to weak coupling among the local displacements, the
analytical solution is single-valued and the depinning is
continuous. For large η and τ the analytical solution
yields multi-valued velocity curves, reflecting the exis-
tence of multiple sliding states, and the depinning is hys-
teretic. As shown in the inset of Fig. 1, there is a criti-
cal value, ηc(τ), that separates single-valued from multi-
valued solutions. The value η = ηc is a critical point and
the velocity curve is expected to exhibit critical scaling.
While the value of ηc depends on τ , the existence of an
hysteretic region at large η, with coexistence of sliding
and moving states and early switching (see also Fig. 1)
occurs for all finite values of τ , including τ = 0. For
τ → ∞ and η → ∞, with the ratio µ = η/τ held fixed,
Eq. (4) reduces to the MFT of an overdamped elastic
medium [24]. In this case an analytical solution is avail-
able and the velocity vanishes linearly as F → Fc [25].

0.1 0.2 0.3
F

0.00

0.05

0.10

0.15

v

η = 12, τ = 4
η = 24, τ = 8
η = 96, τ = 32
η = 384, τ = 128
Elastic limit, µ = 3

0 10τ
0

10

20

30

η

FIG. 1. Analytical MFT velocity versus force curve for
ρ(h) = exp(−h) and selected values of τ and η along the
path η = 3τ in parameter space. As τ and η increase along
this path, the v(F ) curve becomes hysteretic. The dashed line
is the result for the purely elastic model with µ = 3, showing
the convergence of the viscoelastic model to the elastic model
for large τ and η. The inset shows the regions of parameters
where depinning is hysteretic (shaded region) and where it is
continuous (unshaded region.)

Numerical work. We have investigated the stability of
the branches of the analytically determined current-drive

relationship. We performed direct numerical simulation
of the equations of motion, for both force drive and con-
strained mean velocity. The simulations were performed
using two codes, for verification: a Runge-Kutta inte-
gration and an event-driven Euler integration, with the
“events” being crossings of a displacement ui from one
parabolic region to the next. The results were checked for
insensitivity to time step ∆t and size N . For the constant
v constraint, the drive-velocity relationship matches the
analytical prediction.

In the regions where the velocity is a unique function
of the drive, the simulation results with slowly chang-
ing F for the force-drive curve match very closely those
of the analytical results, which assume a constant v. In
the presumed hysteretic region, though, the simulation
results can be quite different. In particular, we note
two features: mean field velocity oscillations on the lower
branch and “early” switching, where the mean velocity
switches from the lower to upper branch prior to the end
of the analytically computed hysteresis region. A sam-
ple hysteresis curve indicating early switching is shown
in Fig. 2. We have computed the magnitude of the fluc-
tuations in the mean velocity on the upper branch as
a function of N : the results are numerically consistent
with a magnitude ∝ N−1/2, indicating that these fluctu-
ations vanish as N → ∞. The fluctuations on the lower
branch do not vanish in the limit of large N , however.
These fluctuations are presumably due to an instability
of the constant v solution in the large volume limit. We
hypothesize, with the support of detailed analysis of the
numerics, that nearly depinned degrees of freedom (which
would remain pinned at constant v) are made unstable by
velocity fluctuations and lead to an avalanche type of be-
havior, which causes a peak in v. The magnitude of this
instability apparently becomes large enough to drive the
mean velocity to the upper branch before the presumed
constant v velocity jump occurs.

In conclusion, we have introduced a coarse-grained
model of plastic flow that allows for slip of coherently
pinned domains. We have solved this model analytically
in mean field for the case of Maxwellian kernel, under the
assumption of non-fluctuating mean velocity. We find
that (1) the model exhibits both continuous and first or-
der hysteretic depinning as the parameters are varied,
(2) we can recover the case of elastic depinning in one
limit, (3) pinned and sliding regions coexist in the hys-
teretic regime, and (4) the mean velocity curves display
features observed in experiments. Numerical simulations
suggest that the behavior is much richer than suggested
by the MF calculation and includes stick-slip-like insta-
bilities which lead to early switching. Strong history de-
pendence has been observed in the dc response of vortex
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lattices in type-II superconductors [12,13] and in charge
density waves [28]. Hysteresis in vortex lattice motion
is most pronounced in the region of the so-called peak
effect, where the dc response during ramp-up of the cur-
rent proceeds via a series of jumps. These have been
attributed to strong spatial inhomogeneities in the dis-
tribution of vortex velocities, not unlike what is observed
in our model [29]. We expect that in finite dimensions,
the transition to hysteresis will be characterized by non-
trivial universal scaling exponents [30], similar to the sit-
uation for hysteresis in random magnets [22], and that
these exponents could be experimentally tested.

One of us (MCM) thanks Daniel Fisher and Jennifer
Schwarz for illuminating discussions. The work was sup-
ported by NSF through grants DMR-9730678, powre-
dmr9805818 and career-dmr9702242.
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FIG. 2. Comparison of direct numerical simulation (solid
line) with analytic predictions (dashed line), which assume a
constant v, for ρ(h) = exp(−h), η = 32, τ = 0.8, N = 16384,
and a ramp rate of dF/dt = 2.5 × 10−6. The field F is cyclic
in time. The results are in near exact agreement for much
of the history. In the hysteretic region, on the lower branch,
the mean field velocity occasionally spikes due to macroscopic
events.
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