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Energetics and geometry of excitations in random systems

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

(July 24, 2000)

Methods for studying droplets in models with quenched disorder are critically examined. Low
energy excitations in two dimensional models are investigated by finding minimal energy interior
excitations and by computing the effect of bulk perturbations. The numerical data support the
assumptions of compact droplets and a single exponent for droplet energy scaling. Analytic calcula-
tions show how strong corrections to power laws can result when samples and droplets are averaged
over. Such corrections can explain apparent discrepancies in several previous numerical results for
spin glasses.

75.10.Nr, 74.60.Ge, 02.70.Lq, 02.60.Pn

Magnets and superconductors are examples of physi-
cal systems where quenched disorder often plays a dom-
inant role. Such systems can exhibit hysteresis effects
and long relaxation times that are the manifestation of
the large energy barriers created by the quenched disor-
der. One scenario that makes predictions for the equilib-
rium and nonequilibrium behavior of disorder dominated
phases is the droplet or scaling picture [1]. Predictions
in this scenario follow from scaling assumptions for the
energetic and geometric properties of excitations. For
simple topological reasons, excitations can be defined as
regions where the configuration is uniformly related by
a symmetry to a global ground state (e.g., spin flipped
domains.) In the droplet picture, the low lying excita-
tions of size l are connected and compact: they have
volume ∼ ldf , with dimension df equal to the system di-
mension d, and the surface to volume ratio decreases as
l increases. Droplet boundaries are fractal, with surface
dimension ds < d. The central ansatz is that the prob-
ability distribution ρ(∆, l) for the energy ∆ of a droplet
of size l in a given volume ∼ ld has a characteristic scale
∼ lθ. This distribution is argued to have finite weight
at ∆ = 0. The two exponents θ and ds can be used,
for example, to predict many of the properties of a spin
glass [1]. This scenario is consistent with numeric results
for excitations created by modifying boundary conditions
[2,3]. However, other work [4–6] has suggested that there
may be more than one important energy scaling expo-
nent and more complicated geometries for excitations.
The proposed distinct exponents separately describe (i)
boundary induced domain wall excitations and (ii) exci-
tations induced by internal constraints or external fields.
It has also been suggested that there is distinct scaling
for large droplets created by modifying the quenched dis-
order [7]. It is important to understand these claims, as
they suggest that the standard droplet picture is, at best,
incomplete.

To provide perspective, it is useful to investigate in
detail systems which lend themselves to precise study,
where some analytic results are known and large systems

can be simulated efficiently. Results are presented here
for a 2D elastic medium and a 2D Ising spin glass. Single
interior droplets, which include a specified central point,
are computed for the elastic medium. In contrast with
work on interior droplets in 2D spin glasses [4], a fast, ex-
act algorithm is used, allowing for precise checks of scal-
ing. The responses of the elastic medium and the spin
glass to bulk perturbations are also calculated. The nu-
merical results for droplet energies and geometrical char-
acteristics show that logarithmic or small power law cor-
rections are quite strong. These corrections can be under-
stood in detail by arguments within the droplet picture.
Droplets that are not induced by boundary conditions
are only bounded above by the system size L and below
by a discretization scale, so that all scales between must

be considered when computing averages. Corrections to
scaling for droplets of fixed scale l, such as l−1 or L−1

corrections (e.g., from lattice discreteness) or unknown
irrelevant operators, might also be considered. However,
the scale averaging corrections are apparently dominant
for some quantities. Such corrections lead to an effec-
tive energy exponent distinct from θ, as boundary condi-
tion induced domain walls do not have such corrections.
To remove scale averaging corrections, one can group the

droplets by scale l and study the geometry and energy as
a function of l (or l/L if one is interested in large droplets
[6]), as L → ∞. With this analysis, the numerical results
provide strong evidence that the droplets are “compact”,
with fractal domain walls, and that there is a single en-
ergy exponent θ.

One model that I study here is for a two dimensional
elastic medium, with scalar displacement field u(x), in-
teracting with quenched periodic disorder. The contin-
uum energy functional is H[u(x)] =

∫

d2x [∇u(x)]2 +
V (u(x), x), where V has short range correlations in its
second argument and is periodic in its first argument,
V (u(x) + 1, x) = V (u(x), x). This model has been used
for vortex lattices in superconductors, incommensurate
charge density waves, and crystal growth on a disordered
substrate [8]. The continuum model can be discretized
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on a scale a, where the disorder and elastic energies bal-
ance [9]. As an effective degree of freeedom i is pinned
to a preferred configuration (up to periodic shifts), the
displacements ui are of the form ni + βi, for integer ni

and fixed {βi}. Elastic interactions tend to minimize
nearest neighbor differences in ui, with excitations of the
medium being regions displaced relative to the ground
state. Since the ui are discretized, domain walls separate
regions relatively shifted by unit amounts. Numerical
work for zero temperature (T = 0) has determined prop-
erties of the ground state and the scaling of boundary
induced domain wall energies [10,11,13,12]. Finite tem-
perature simulations [14], both Monte Carlo and combi-
natorial, have shown that the T = 0 phase is stable at
finite T . This model is thus a useful prototype for models
with finite T transitions, such as the 3D spin glass [15].

Another model treated here is the 2D Ising spin glass,
with Hamiltonian H = −

∑

〈ij〉 Jijsisj , with spins si =
±1 on a triangular lattice and Gaussian distributed Jij .
The ground states

{

s0
i

}

for samples in this model were
found by a combinatorial method for a standard graph
representation [11,16].

For the elastic medium, minimal energy domain walls
about the center of a sample were studied on a square
lattice using a polynomial time algorithm [17] that cal-
culated the energy ∆o and the droplet boundary. One
method to characterize the compactness of droplets is to
compare RO, the radius of the smallest circle that en-
closes the droplet, with RI , the radius of the largest cir-
cle contained by the boundary vertices. Droplets can be
studied in spin glasses by finding the ground state and
then recomputing the ground state {sǫ

i} with modified
couplings Jij → Jij − ǫL−ds0

i s
0
j [18,7]. This bulk per-

turbation can introduce excitations on all scales. Sample
excitations are depicted in Fig. 1.

RORI

(a) (b)

FIG. 1. (a) Diagram of the geometry of a sample droplet
in the 2D elastic medium. The droplet is the region which can
be displaced with minimal energy cost and contains the sam-
ple center (dot). The radii RO and RI are defined in the text.
(b) Droplets induced by a bulk perturbation (ǫ = 16) in a 642

spin glass sample. The filled areas have spins flipped relative
to the unperturbed ground state (so

i 6= sǫ
i). For the results

shown in Fig. 4, ǫ ≈ 0.35, 1.3 and droplets rarely intersect.

The droplet energies are of great interest, as these
are believed to determine the static correlation func-
tions at finite temperature and the relaxation to equi-

librium. Consider the problem of finding the minimal
energy droplet around the origin in a system of size L
[4]. Assume that there is a factor b which gives a sepa-
ration of length scales: droplets differing in size by b are
independent. One independent droplet excitation could
be excited at each scale, so that sums over all scales must
be performed (for similar sums, see Refs. [19,18,6].) At
each length scale s, s = 1, 2, . . . , logb(L), the distribu-
tion for the energy ∆(bs) has characteristic scale bsθ and
has finite weight b−sθ at ∆ = 0 [1]. The total density
of states ρ(∆o) for ∆o < Lθ is then a sum over s, giving
ρ(∆o) ∼ L−θ

∣

∣1 − (b′L)θ
∣

∣, for θ 6= 0, where b′ > 0 is set by
b and the lattice and boundary conditions, which affect
the lower and upper ends of the sum. The expected min-

imum value for ∆o scales as ∼ Lθ
∣

∣1 − (b′L)θ
∣

∣

−1
, the sub-

dominant term reflecting that the minimal energy droplet
is chosen from all length scales from 1 to L. The effective
energy exponent is then (for θ < 0)

θeff =
d ln(∆o)

d ln(L)
=

θ

1 − (b′L)θ
. (1)

Applying Eqn. (1) to the 2D spin glass, taking b′ = 2
and L = 16, gives an effective exponent θeff = −0.45,
apparently quite different from the domain wall value
θ = −0.28 [2] and consistent with the alternate energy
exponent proposed in earlier numerical work [4]. The ef-
fective exponent converges to θ quite slowly with L (and
is relatively insensitive to b′), as θ is near zero.

One case where θ = 0 for domain walls created by
boundary conditions is the 2D elastic medium. Large
domain walls can be created by external strains. By sta-
tistical tilt invariance of the disorder [20], the change in
the sample averaged energy can be found by computing
the elastic energy only, as the change in the sample av-
eraged pinning energy is zero. Displacing one end of a
sample by δu = 1 to induce one domain wall gives an
elastic energy density ∼ L−2 over the volume L2, so that
the total domain wall energy scales as a constant (θ = 0.)
This result is consistent with previous numerical simula-
tions of boundary induced domain walls [10]. However,
the mean interior droplet energy ∆o(L) can be fit over
a decade with −0.15 < θ < −0.23, to within a few per-
cent for smaller L. Arguments similar to those for θ 6= 0
can be applied to explain this. There are ln(L/a)/ ln(b)
independent scales to choose from, each with identical
droplet energy distributions (θ = 0). The inverse of the
minimal droplet energy [∆o(L)]−1 is therefore linear in
ln(L). This result can also be derived using elasticity
theory. The displacement at the origin of a region of size
a costs an elastic energy that scales as ∼ [ln(L/a)]−1. By
tilt symmetry, the pinning can be averaged over, so that
∆o(L) ∝ [ln(L/a)]−1 for interior droplets constrained to
contain the origin. The numerical results are quite con-
sistent with these expectations, as shown by the two pa-
rameter fit displayed in Fig. 2 (in addition, the computed
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probability of generating a droplet of size l is consistent
with a distribution uniform in ln(l) [17].)

Similar corrections are important for the magnetiza-
tion m(h) of a spin glass in response to an external field
h [1]. For the case θ 6= 0 and h < O(Lθ−d/2), m is found
by summing over scales the product of the probability
hld/2−θ of generating a droplet, its expected contribution
ld/2L−d to the magnetization, and the number of droplets
(L/l)d at scale l. This gives m ∝ h

∣

∣(b′hL)−θ − 1
∣

∣, with
b′h > 0 a constant, to be compared with the uncorrected
singular piece m ∝ hL−θ (for numerics, see Ref. [5]). The
size of the corrections are quite similar to those for θ.

20 50 100 200 500

L

1

1.2
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1.6

1.8

2

    ∆
o

  -1

FIG. 2. Plot of the inverse of the mean droplet energy ∆o

vs. system size L in the 2D elastic medium, averaged over
at least 104 samples for each L. 1σ error bars are shown.
The line indicates the fit ∆o(L) = [0.363 + 0.263 ln(L)]−1 for
512 ≥ L ≥ 32, with χ2 = 1.3 for 3 d.o.f.

The measurement of geometrical quantities, such as
boundary length and droplet area, can also be strongly
influenced by scale averaging corrections if one averages

over all length scales from 1 to L. When the sample
averaged area A(L) of interior droplets in the 2D elas-
tic medium is computed as a function of L and the lo-
cal exponent deff

f
= d[ln(A(L))]/d[ln(L)] is computed,

the local dimension is less than two, which might sug-
gest fractal droplets. This local exponent slowly changes
with L, though (Fig. 3.) The local exponent for A(L)
is deff

f
= 2 − [ln(L/a′)]−1 + O(L−2), where a′ depends

on the boundary and lattice cutoffs. A useful procedure
to reduce the corrections to deff

f is to separate out the

scales and plot the droplet area A(RO, L) as a (binned)
function of R0. Changing the order of the averages gives
local exponents that are much better fit by a constant.

For L > 32 and R0 > 8, A(Ro) ∼ R
df
o , with bulk droplet

dimension df = 2.01(2) (Fig. [3].) A similar plot for the
perimeter confirms [11] that ds = 1.25(1), with the sur-
face to volume ratio vanishing as ld−ds for large droplets.
Droplet compactness can also be confirmed by plotting
the ratio k = RO/RI binned according to RO; it is
found that the distribution of k converges, with mean

〈k(RO, L)〉 = 2.85(5), when L/2 > RO > 32.
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L = 16
L = 32
L = 64
L = 128
L = 256
L = 512
Finite size, from A(L)

FIG. 3. Estimates of the droplet fractal dimension in a 2D
elastic medium (1σ statistical uncertainties shown.) Fixing L,
binning droplets by linear size RO , and computing the discrete
logarithmic derivative to estimate d[ln(A))]/d[ln(RO)] gives
the droplet dimension deff

f (RO) values connected by the solid
lines. From this method df = 2.01(2). Averaging droplet
area A over samples and computing the discrete logarithmic
derivative to estimate d[ln(A)]/d[ln(L)] gives the finite size
estimate deff

f
(L). The dashed line shows a fit using the cor-

rection derived in the text with a′ = 1.7(3).

Corrections to geometric and energetic quantities are
also important when computing link overlaps, such as
those found in comparing the unperturbed Jij ground
state,

{

s0
i

}

, with the ǫ-perturbed state. The link overlap
ql is the fraction of link values sisj on bonds 〈ij〉 which
are unchanged. By summing the contributions over all
scales (note the small droplets in Fig. 1(a)), it can be
shown that the local exponent for the fraction 1 − ql of
changed bonds behaves as

µeff

l = −
d[ln (1 − ql)]

d ln(L)
= µl −

c′

(cL)d−µl − 1
, (2)

where µl = θ + 2(d − ds) and c, c′ are constants charac-
terizing the upper and lower cutoffs. The computed local
exponent for the 2D spin glass is shown in Fig. 4 (µeff

l is
relatively insensitive to ǫ, at least for 0.35 < ǫ < 1.3.)
Only for L > 100 does µeff

l approach the large L limit of
µl ≈ 1.18 (using the values θ = −0.28 and ds = 1.27.)
Similar results are found for the 2D elastic medium [17].
The exponent µ for spin overlaps q = L−d

∑

so
i s

ǫ
i , with

1 − q ∼ L−µ, has smaller corrections of this form and
may well be dominated by corrections to scaling from
unknown operators or inverse lengths. Numerics [17]
show that µ converges much more quickly than µl in
the 2D spin glass. The measurement of µl (relative to
µ) has been used by Palassini and Young [7] to conclude
that a second energy exponent θ′ affects the response
to bulk perturbations in the 3D spin glass. In three di-
mensions, the scale averaging corrections decrease more
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quickly with L, as d−µl ≈ 1.3 compared with the 2D cor-
rection exponent d−µl ≈ 0.82, but the system sizes that
can be simulated are much smaller. It may be that cor-
rections due to irrelevant variables or possible 1/L effects
are dominant, but scale averaging corrections clearly con-

tribute to errors in µl. A correction of δµl ≈ −0.2 for
L ≈ 8, from similar c and c′, would invalidate the con-
clusions of Ref. [7].

10 20 50 100 200

L

1.2

1.1

1.0

0.9

µ
l

eff

ε = 2
27

/10
8 ≈ 1.342, open boundaries

ε = 2
25

/10
8 ≈ 0.336, link periodic boundary condition

FIG. 4. Plot of the local exponent µeff

l (from the discrete
derivative between L = 8, 16, . . . , 256) for the link overlap ql

in the 2D spin glass as a function of system size. Results
are shown for distinct ǫ and boundary conditions (open, with
boundary spins fixed under perturbation, and link periodic.)
The expected limit at large L is µl = 1.18(3) (shaded region.)

In summary, analysis of numerical data provides a pre-
cise confirmation of the droplet picture in the bulk of a
sample, both for the scaling of the energies and for the ge-
ometrical structure of droplets. In comparing the numer-
ical results with the droplet picture, care must be taken
to understand where strong corrections might arise. The
corrections arising from averaging over multiple scales
can be predicted in some detail and apply to spin glasses
and other models where θ is near zero. The corrections
to averaged quantities such as the droplet energy ∆o(L)
are satisfactorily explained, for L2 > 102 systems, by av-
eraging simple power laws over scales between 1 and L.
The link overlap, which inherently averages over scales,
is strongly affected by finite size corrections for small θ
and d − ds, with effective exponent corrections greater
than 0.1 for L < 30 in the 2D spin glass. It has been sug-
gested that, for topological reasons, distinct θ exponents
exist only in d ≥ 3 [6]. The numerics in this Letter are
for d = 2, but they and the general analysis suggest that
large finite size effects strongly affect results in three di-
mensions. To reduce these types of corrections, data can
be binned over droplet size l (or over l/L) at fixed system
size L, checking for convergence by then increasing L.
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attention some recent work on droplets, Olivier Martin
for a stimulating discussion, and Daniel Fisher for dis-
cussions. The LEDA library [21] was most useful in the
study of the geometry of the droplets. This work was
supported by the National Science Foundation (DMR-
9702242).
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