Nucleophilic Carbon-Carbon Bond-Forming Reactions of 2-Methylenetetrahydropyrans

Laura Jean Bateman
Syracuse University

Follow this and additional works at: https://surface.syr.edu/che_etd

Part of the Chemistry Commons

Recommended Citation
https://surface.syr.edu/che_etd/193

This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry - Dissertations by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Abstract

Reactions with 2-methylenetetrahydropyrans are underutilized in the literature, especially with respect to general methods demonstrating their nucleophilic nature. This work provides three general methods toward the synthesis of 2-β-oxygenated pyranyl substrates, which are key structural components of many biologically active polyketides and natural products.

The use of exocyclic enol ethers as nucleophiles was first demonstrated as a general process in three-component coupling reactions with secondary nucleophiles. The 2-β-hydroxy tetrahydropyran products were obtained in good to excellent yields through promotion with stoichiometric levels of titanium(IV) chloride at reduced temperatures. Only activated aldehydes or ketones worked as efficient coupling partners for this method. The point at which the secondary nucleophile was added to the reaction in progress was governed by the level of electrophile activation and in turn the amount of oxonium ion present for immediate capture. NOE studies determined that cis-tetrahydropyran products are solely formed with C₆-substituted enol ether substrates.

The carbonyl-ene reaction of exocyclic enol ethers provides 2-β-hydroxy dihydropyrans in excellent yields at room temperature. This process only requires catalytic levels of zinc chloride, and both activated and non-activated carbonyl-enophiles act as appropriate coupling partners. These mild reaction conditions produce dihydropyranyl substrates, which are equipped for further functionalization through the newly formed olefin. 2-Methylenetetrahydropyrans, bearing either mono- or di-substitution about the tetrahydropyran ring, were synthesized to determine if any chiral influence could be channeled to the dihydropyranyl products. The diastereomeric ratios of resulting products showed that exocyclic enol ethers with C₃ mono-
substitution or 2-methylenetetrahydropyrans with di-substitution, where at least one group is held axial, produced moderate levels of selectivity. Alternatively, the other substrates studied in this project demonstrated only low levels of chirality induction.

The carbonyl-ene reaction of exocyclic enol ethers has been applied bi-directionally to iodomethyl-2-methylenetetrahydropyrans to provide bis-β-hydroxypyrans. Good to excellent yields were obtained for the initial carbonyl-ene coupling and subsequent iodine elimination. The second carbonyl-ene coupling of 2-methylenedihydropyran was only effected with highly activated enophile components with zinc(II) chloride as the promoter. This reaction with ethyl glyoxylate proceeded in good to excellent yield with catalytic zinc(II) chloride. Only moderate yields of the pyranyl products were obtained with p-nitrobenzaldehyde and equimolar levels of zinc chloride. The bis-β-hydroxy pyran products manufactured from this process are theoretically furnished for further functionalization into trioxadispiroketal systems. Attempted cyclization of these substrates under a number of acidic conditions failed to provide the desired bis-spiroketal systems. Therefore a step-wise approach to their manufacture was attempted, although this too failed to produce the bis-spiro cyclic system due to difficulties experienced with iodide elimination.
NUCLEOPHILIC CARBON-CARBON BOND-FORMING REACTIONS OF 2-METHYLENETETRAHYDROPYRANS

by

Laura Bateman

B.S., State University of New York at Oswego, 2005
M.S., Syracuse University, 2007

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry.

Syracuse University
December 2012
Acknowledgement

To my research advisor, Nancy Totah, I thank you for molding me into the independent researcher I am today. You have given me great advice, and I have learned so much from our conversations about chemistry, teaching, and life. Furthermore, you have aided considerably in my creation of this thesis, from which I really have learned so much.

To Dr. Chisholm and Dr. Clark, thank you for your research advice over the years along with occasionally allowing me to borrow a chemical or two. I would also like to extend my gratitude to the other organic chemistry faculty members who have helped to train me in reaction mechanism, methodology, and synthesis.

To my committee members: Dr. Baldwin, Dr. Kallmerten, and Dr. Maine, thank you for taking the time out of your busy schedules to review my thesis and dissertation.

Many thanks go out to the secretaries of the chemistry office. Thank you for all the years of kind reminders, “baby parking,” and assistance on multiple levels.

To the friends I made along the way, thank you for your support, help, and laughs. Mike and Yi, I have enjoyed working with both of you in lab, please take good care of my glassware that has served me well over the years. Bo, I enjoyed our conversations, and got a taste of what Chinese culture is really like. Alex, thank you for your sense of humor, you made me laugh so many times throughout the years. Dakin, my twin, thanks for traveling this long road beside me. Troy, you have really been an inspiration to me, and I wish you the best on your new career path. Sijie, you are the glue in our group. Thank you for your kindness and motivation.

Thank you Kathy Kinney for making my long trips back and forth to work a joy rather than a drudge. Those lake-effect storms didn’t seem quite so frightening with you there. I learned a lot about life and myself through our conversations. You have taught me the true value of happiness and are a great inspiration.

To my mom and dad, thank you for raising me into who I am. I can only hope to achieve your success in raising children. Now that I’m a mom myself, I am beginning to understand the patience and sacrifice you gave for your children. Thanks for choosing to raise me on a farm, where my love for science could begin at an early age. Thank you for teaching me to appreciate the value of hard work, responsibility, and humbleness.

To my brothers, Joe and Angus, thank you for steering me in the right direction when mom and dad weren’t looking. Joe, I still remember how you would unplug the TV so I couldn’t watch Dawson’s Creek or other stupid teenybopper shows. I’m sure I’m better for that. You also inspired me to go to SUNY Oswego as an undergraduate, where I fell in love with organic chemistry. Angus, you have always inspired my creativity and always make me want to do
better, which not only pertains to my hobbies, but also to my work. Now I have to make a fort for Sam that rivals the chicken coop/palace. You have a true Saunders spirit.

To my children, while you have made this one of the hardest projects to ever finish, you are also the greatest inspiration to finish. From bumping my belly into the bench to sitting on my lap while I’m typing you have been there in every last step. Although I have sacrificed some time with you in lieu of this project, know that I am doing this in hopes that you will have a better life with a happy mother.

To Jeremy, thank you for your patience. This has been a long, challenging journey, but you have been supportive every step of the way. Thank you for your willingness to move to a new area for my achievement. Thank you for watching two very young children while I teach and write. Without you I could not have juggled all of it.
Table of Contents

List of Figures X
List of Schemes XII
List of Tables XXII
List of Abbreviations XXIV

Chapter 1: The Synthesis and Reactivity of 2-Methylenetetrahydropyrans

1.1. Overview 1

1.2. Background and Significance 2

1.3. Synthesis of Exocyclic Enol Ethers 7

 A. Synthesis of Exocyclic Enol Ethers via Elimination 11
 B. Synthesis of Exocyclic Enol Ethers by Intramolecular Cyclization 15
 C. Synthesis of Exocyclic Enol Ethers via Direct Methylenation 22

1.4. Reactions of 2-Methylenetetrahydropyrans 33

 A. Addition Reactions 34
 B. Rearrangements 40
 C. Pericyclic Reactions 45
 D. Radical Reactions 51
 E. Use as Electrophiles 56
 F. Use as Nucleophiles 58

1.5. References 66

Chapter 2: Three-Component Coupling Reactions of 2-Methylenetetrahydropyrans

2.1. Overview 76

2.2. Background and Significance 77

2.3. Results and Discussion 89

 A. Synthesis of Exocyclic Enol Ethers 90
B. Three-Component Coupling of 2-Methylenetetrahydropyrans 92

2.4. Conclusions 110
2.5. Experimentalss 111
2.6. References 127

Chapter 3: Carbonyl-Ene Reactions of Exocyclic Enol Ethers: Chiral Induction Studies

3.1. Overview 130
3.2. Background and Significance 131
 A. The Carbonyl-Ene Reaction: Transition States of Thermal and Lewis Acid-Promoted Processes 132
 B. Carbonyl-Ene Reactions of Enol Ethers 140
 C. Asymmetric Carbonyl-Ene Reactions of Enol Ethers 147
 D. Stereoinduction from Enophile Components of the Carbonyl-Ene Reaction 153
 E. Stereoinduction and Transfer from Ene Components of the Carbonyl-Ene Reaction 160
3.3. Results and Discussion 168
 A. Synthesis of 2-Methylenetetrahydropyrans 169
 B. Chiral Induction and Transfer Studies 181
3.4. Conclusions 196
3.5. Experimentalss 198
3.6. References 224

Chapter 4: Formation of Pyrans and Trioxadispiroketalas via a Bi-Directional Carbonyl-Ene Approach

4.1. Overview 231
4.2. Background and Significance 232
A. Bis-β-Hydroxy-Tetrahydropyran-Containing Natural Products 232

B. Conformational Aspects of Trioxadispiroketals 240

C. Trioxadispiroketal Syntheses 252
 a. Synthesis of 1,6,8-Trioxadispiro[4.1.4.2]tridecanes 252
 b. 1,6,8-Trioxadispiro[4.1.4.3]tetradecane Synthesis 254
 c. Synthesis of 1,7,9-Trioxadispiro[5.1.5.3]hexadecanes 254
 d. 1,7,9-Trioxadispiro[5.1.5.2]pentadecane Synthesis 260
 e. Synthesis of 1,6,8-Trioxadispiro[4.1.5.3]pentadecanes 264

4.3. Results and Discussion 289
 A. Carbonyl-Ene Approach to the Synthesis of Trioxadispiroketals 289
 B. Synthesis of Bis-β-Hydroxy-Pyrans 294
 C. Progress Toward Trioxadispiroketal Synthesis 304

4.4. Conclusions 312

4.5. Experimentals 314

4.6. References 335

Appendix 1. Selected Spectral Data for Chapter 2: Three-Component Coupling Reactions of 2-Methylenetetrahydropyrans 342

Appendix 2. Selected Spectral Data for Chapter 3: Carbonyl-Ene Reactions of Substituted Exocyclic Enol Ethers 382

Appendix 3. Selected Spectral Data for Chapter 4: Formation of Pyrans via Bi-Directional Carbonyl-Ene Reactions 447

Curriculum Vitae 507
List of Figures

Chapter 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>β-Oxygenated cis-Tetrahydropyran-Containing Natural Products</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Exo and Endo Isomers of Ethyl and Methyl-cyclohexanes</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Chair and half-Chair Conformations of Exo and Endo Methyl-cyclohexane</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Chair and half-Chair Conformations of Exo and Endo Methyl-tetrahydropyrans</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Orbital Alignment in Exo and Endo Chair Conformations of tetrahydropyrans</td>
<td>10</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nucleoside Derivatives Synthesized through Three-Component Coupling</td>
<td>86</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of Spirastrellolide A</td>
<td>88</td>
</tr>
<tr>
<td>2.3</td>
<td>Exo Enol Ethers for Use in Three-Component Coupling</td>
<td>90</td>
</tr>
<tr>
<td>2.4</td>
<td>Proposed Three-Component Coupling Transition State for Exo Enol Ethers</td>
<td>99</td>
</tr>
<tr>
<td>2.5</td>
<td>Stereochemical Relationships in the Three-Component Coupled Products</td>
<td>103</td>
</tr>
<tr>
<td>2.6</td>
<td>NOE Enhancements in Products from Coupling of Enol Ether</td>
<td>105</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Thermal versus Lewis Acid Catalyzed Transition States</td>
<td>137</td>
</tr>
<tr>
<td>3.2</td>
<td>Titanium Binol Complex</td>
<td>148</td>
</tr>
<tr>
<td>3.3</td>
<td>Tridentate Chromium(III) Complexes</td>
<td>149</td>
</tr>
<tr>
<td>3.4</td>
<td>Transition States of Aziridine-2-carboxaldehyde Carbonyl-Ene Reactions</td>
<td>157</td>
</tr>
<tr>
<td>3.5</td>
<td>Transition States of Tin(II) Chloride Catalyzed Glyoxylate –Ene Reactions</td>
<td>161</td>
</tr>
<tr>
<td>3.6</td>
<td>Transition States of Aluminum Chloride Catalyzed Glyoxylate –Ene Reactions</td>
<td>161</td>
</tr>
<tr>
<td>3.7</td>
<td>Transition States of (R)-3-Phenyl-1-Butene</td>
<td>167</td>
</tr>
<tr>
<td>3.8</td>
<td>Substitution Patterns about the Ring of 2-Methylenetetrahydropyran</td>
<td>168</td>
</tr>
<tr>
<td>3.9</td>
<td>C_6, C_5, and C_4-Mono-substituted 2-Methylenetetrahydropyrans</td>
<td>169</td>
</tr>
<tr>
<td>3.10</td>
<td>Di-substituted 2-Methylenetetrahydropyrans</td>
<td>175</td>
</tr>
<tr>
<td>3.11</td>
<td>Model for Methyl Addition to Epoxide</td>
<td>177</td>
</tr>
</tbody>
</table>
Chapter 4

Figure 4.1. Bis-β-Oxygenated Pyran-Containing Natural Products 233
Figure 4.2. Salinomycin Family of Natural Products 235
Figure 4.3. Pinnatoxin Family of Natural Products 237
Figure 4.4. Spirastrellolide A and Derivatives 238
Figure 4.5. Exo and Endo Anomeric Configurations 242
Figure 4.6. *Cis* versus *Trans* Configurations of [6,6,6]-Trioxadispiroketal 257
Figure 4.7. Conformations of *Cis* and *Trans* [6,6,6]-Trioxadispiroketal 260
Figure 4.8. Pinnatoxin Trioxadispiroketal core 261
Figure 4.9. Face of Grignard Addition to Trioxadispiroketal 262
Figure 4.10. Conformation of Spirastrellolide Trioxadispiroketal 272
Figure 4.11. NOE Study of Tetrahydropyran 991 304
Figure 4.12. Spiroketal 1005 and 1006 Conformations 309
List of Schemes

Chapter 1

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Precursors of 2-Methylenetetrahydropyrans</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Retrosynthesis of β-Hydroxytetrahydropyrans</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Hydrolysis of 2-Methylenetetrahydropyrans</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Isomerization of 2-Methylenetetrahydropyrans</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Mechanism of Exo-Endo Isomerization</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Synthesis of 2-Methylenetetrahydropyrs by Elimination</td>
<td>11</td>
</tr>
<tr>
<td>1.7</td>
<td>Synthesis of 2-Methylenetetrahydropyran from Alcohol 22</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Exo Enol Ether Synthesis by Mesylate Elimination</td>
<td>12</td>
</tr>
<tr>
<td>1.9</td>
<td>Conversion of Iodide 25 to Exo Enol Ether 27</td>
<td>13</td>
</tr>
<tr>
<td>1.10</td>
<td>Synthesis of Exo Enol Ether 29</td>
<td>13</td>
</tr>
<tr>
<td>1.11</td>
<td>Synthesis of Exo Enol Ether 32 by C₂ Bromide Elimination</td>
<td>14</td>
</tr>
<tr>
<td>1.12</td>
<td>Conversion of C₂ Bromides to Endo Enol Ethers</td>
<td>14</td>
</tr>
<tr>
<td>1.13</td>
<td>Conversion of Methylsulfone 35 to Exo Enol Ether 36</td>
<td>14</td>
</tr>
<tr>
<td>1.14</td>
<td>Elimination of Halogenated Sulfone 35 to Provide Enol Ether 36</td>
<td>15</td>
</tr>
<tr>
<td>1.15</td>
<td>Mercury Induced Cyclization of Acetylenic Acids</td>
<td>16</td>
</tr>
<tr>
<td>1.16</td>
<td>Mercury Induced Cyclization of Acetylenic Alcohol 44</td>
<td>16</td>
</tr>
<tr>
<td>1.17</td>
<td>Silver Induced Cyclization of Acetylenic Acids and Alcohols</td>
<td>17</td>
</tr>
<tr>
<td>1.18</td>
<td>Copper Induced Cyclization of Hydroxy-Vinylc Bromides</td>
<td>17</td>
</tr>
<tr>
<td>1.19</td>
<td>Selective Cyclization of Di-Vinylc-Bromides</td>
<td>18</td>
</tr>
<tr>
<td>1.20</td>
<td>Copper Induced Cyclization of Acetylenic Acids</td>
<td>19</td>
</tr>
<tr>
<td>1.21</td>
<td>Cyclization of Amino-Acetylenic Acids with Copper</td>
<td>20</td>
</tr>
<tr>
<td>1.22</td>
<td>Gold Catalyzed Cyclization of di-Acetylenic Alcohols</td>
<td>21</td>
</tr>
<tr>
<td>1.23</td>
<td>Mechanism for Gold Catalyzed Cyclization</td>
<td>21</td>
</tr>
<tr>
<td>1.24</td>
<td>Ruthenium Catalyzed Cyclization of Hydroxy-Olefins</td>
<td>21</td>
</tr>
</tbody>
</table>
Scheme 1.25. Lanthanide Catalyzed Cyclization of Hydroxy-Acetylenes

Scheme 1.26. Wittig Olefination of Lactone

Scheme 1.27. Tebbe Olefination of Lactone

Scheme 1.28. Bi-Product Formation in Tebbe Olefination of Lactone

Scheme 1.29. Manufacture of Dimethyltitanocene

Scheme 1.30. Mechanism of Petasis Olefination Proposed by Petasis

Scheme 1.31. Mechanism of Petasis Olefination Proposed by Hughes

Scheme 1.32. Petasis versus Hughes Mechanism for Petasis Olefination

Scheme 1.33. Takai-Lombardo Olefination of Ester

Scheme 1.34. Takai Olefination of Lactone

Scheme 1.35. Takeda Olefination of Carbonyl Groups

Scheme 1.36. Proposed Mechanisms of Takeda Olefination

Scheme 1.37. Methylenation of Dihydrocoumarin by Bimetallic Catylization

Scheme 1.38. Epoxidation of Enol Ether

Scheme 1.39. Dihydroxylation of Enol Ether

Scheme 1.40. Ruthenium Induced Dihydroxylation of Enol Ether

Scheme 1.41. Simmons-Smith Spirocyclopropanation of Enol Ether

Scheme 1.42. Spirocyclopropanation of Enol Ether

Scheme 1.43. Hydroboration of Enol Ether

Scheme 1.44. Suzuki-Miyaura Cross Coupling of Enol Ether

Scheme 1.45. Suzuki Cross Coupling of Enol Ether

Scheme 1.46. Suzuki Coupling of Enol Ether Towards the Synthesis of Gambierol

Scheme 1.47. Hydroxymercuration and Subsequent Rearrangement of Enol Ether

Scheme 1.48. Hydroxymercuration and Subsequent Rearrangement of Enol Ether

Scheme 1.49. Ferrier Carbocyclization of Enol Ether

Scheme 1.50. Mercury Catalyzed Cyclization of Enol Ether
Scheme 1.51. Palladium Catalyzed Cyclization of Enol Ether 185
Scheme 1.52. Palladium Catalyzed Rearrangement of Enol Ether 191
Scheme 1.53. Aluminum Catalyzed Rearrangement of Enol Ether 194
Scheme 1.54. Aluminum Induced Ring-Opening of Enol Ether 198
Scheme 1.55. Ring Closing Metathesis of Enol Ether 200
Scheme 1.56. Acid Catalyzed Ring Contraction of Enol Ether 202
Scheme 1.57. Diels Alder Cycloaddition with Exocyclic Enol Ethers 46
Scheme 1.58. Hetero-Diels Alder Cycloaddition of Enol Ethers with Uracil derivatives 47
Scheme 1.59. Diels Alder Reaction of Enol Ethers with Sulfur-Containing Dienes 47
Scheme 1.60. Synthesis of Pyradines from Exocyclic Enol Ethers and Imine 215
Scheme 1.61. [3+2] Cycloaddition of Enol Ethers to form Spiroketal 219
Scheme 1.62. [3+2] Cycloaddition with Bis-isoxazoline 225
Scheme 1.63. Cu(I)-catalyzed imine alkynylation with Ligand 226
Scheme 1.64. Claisen Rearrangement of Exo Enol Ethers 51
Scheme 1.65. Claisen-Ireland Rearrangement of Exo Enol Ethers 51
Scheme 1.66. Addition of Enol Ether 236 to Radical 237
Scheme 1.67. Radical Addition of Exo Enol Ethers to Thiols Induced by Light 52
Scheme 1.68. Radical Addition of Exo Enol Ethers to Thiols Induced by AIBN 53
Scheme 1.69. Triphenylsilane Mediated Radical Addition 53
Scheme 1.70. Proposed Mechanism for Triphenylsilane Mediated Addition 54
Scheme 1.71. Radical Addition Towards the Synthesis of Tunicaminyuracil 54
Scheme 1.72. Silyl Tethered Radical Reaction of Enol Ether 255
Scheme 1.73. Silyl Tethered Radical Reaction of Enol Ether 257
Scheme 1.74. Hydrohydratization-Fisher Indolization of 2-Methylenetetrahydropyran 57
Scheme 1.75. O-Glycosidation of Exo-Glycals 58
Scheme 1.76. Haloetherification of Exo Enol Ethers 59
Scheme 1.77. Azaiiodination of Exo Enol Ethers 59
Scheme 1.78. Bromination and Subsequent Elimination of Enol Ether 273 59
Scheme 1.79. Synthesis of 1'-Iodo-Exo Enol Ethers From Exo Enol Ethers 60
Scheme 1.80. Halo-Enol Ether Synthesis with Iodonium Dicollidinium Triflate 60
Scheme 1.81. Acid Catalyzed Markovnikov Hydration of Exo Enol Ethers 61
Scheme 1.82. Lanthanide Catalyzed Hydration of Exo Enol Ethers 61
Scheme 1.83. Dimerization of Exoglycals 61
Scheme 1.84. 1,5-Diene Cyclization of Cyclohexene 288 62
Scheme 1.85. Mechanism for Georgywood Dimerization 62
Scheme 1.86. Nucleophilic Addition of Exoglycals to an Episulfonium Ion 63
Scheme 1.87. Three-Component Coupling Reactions of 2-Methylenetetrahydropyran 64
Scheme 1.88. Carbonyl-Ene Reactions of 2-Methylenetetrahydropyran 64
Scheme 1.89. Chiral Transfer in the Carbonyl-Ene Reaction of Exo Enol Ethers 65
Scheme 1.90. Bidirectional Studies of Iodomethyl-Exo Enol Ethers 65

Chapter 2

Scheme 2.1. Three-Component Coupling of 2-Methylenetetrahydropyrans 76
Scheme 2.2. Mechanism for Acetal Addition to Dihydropyrans 79
Scheme 2.3. Formation of Oxetanes from Enol Ethers 79
Scheme 2.4. Models for Stereoselective Oxetane Formation 81
Scheme 2.5. Competing Elimination in the Three-Component Coupling of Enol Ethers 82
Scheme 2.6. Attempted Eliminations of the Three-Component Coupled Product 349 84
Scheme 2.7. Transition States of Dihydropyran with Pyruvates 85
Scheme 2.8. Three-Component Coupling of Dihydropyran with Imines 86
Scheme 2.9. Synthesis of Nucleoside-Derived Three-Component Coupled Products 87
Scheme 2.10. Synthesis of Ebumamonine Through Three-Component Coupling 88
Scheme 2.11. Deconstruction of C₈-C₉ Bond of Spirastrellolide A 89
Scheme 2.12. Synthesis of 2-Methylenetetrahydropyran 91
Scheme 2.13. Synthesis of Exocyclic Enol Ethers 378 and 112 92
Scheme 2.14. Formation of Byproduct 396 98
Scheme 2.15. Oxidation of Tetrahydropyran 405 104
Scheme 2.16. Proposed Transition States for Secondary Nucleophile Addition 107
Scheme 2.17. Transition State for Nucleophile Addition to Acetals 414 and 417 108
Scheme 2.18. Addition of Nucleophiles to Tetrahydropyran Benzenesulfones 109
Scheme 2.19. Trans-Selective Rearrangement of Acetals 109

Chapter 3
Scheme 3.1. Carbonyl-Ene Reactions with Substituted 2-Methylenetetrahydropyrans 130
Scheme 3.2. Initial Discovery of Carbonyl-Ene reactions with 2-Methylenetetrahydropyran 131
Scheme 3.3. Pericyclic Mechanism of the Ene Reaction 132
Scheme 3.4. Range of Carbonyl-Ene Mechanisms 133
Scheme 3.5. Radical Pathway to Cyclobutane Byproduct Formation 133
Scheme 3.6. Deuterium Isotope Studies of the Ene Reaction with Allylbenzene 134
Scheme 3.7. Range of Appropriate Enophiles in the Ene Reaction 135
Scheme 3.8. Thermodynamic Considerations of the Carbonyl-Ene Reaction 136
Scheme 3.9. Thermal versus Lewis Acid Catalyzed Ene Reactions of Diene 446 137
Scheme 3.10. Thermal versus Lewis Acid Catalyzed Ene Reactions of 2-Methyl-2-Butene 138
Scheme 3.11. Thermal versus Lewis Acid Catalyzed Transition States of 2-Methyl-2-Butene 138
Scheme 3.12. Endo versus Exo Transition States of 2-Butene Ene Reaction 139
Scheme 3.13. Glyoxylate-Ene Reaction of 2-Butene 140
Scheme 3.14. Carbonyl-Ene Reaction of Methoxypropene, Reported by Careirra 141
Scheme 3.15. Carbonyl-Ene Reaction of Methoxypropene, Reported by Jacobsen 141
Scheme 3.16. Resonances of Dihydrocoumarin Derived Enol Ether 112 145
Scheme 3.17. Formation of Hydrolysis Byproducts in the Carbonyl-Ene Reaction 147
Scheme 3.18.	Asymmetric Carbonyl-Ene Reactions of 2-Methylenetetrahydropyran	151
Scheme 3.19.	Diastereoselective Carbonyl-Ene Reactions of Enol Ether	152
Scheme 3.20.	Diastereoselective Carbonyl-Ene Reaction with chiral aldehyde	153
Scheme 3.21.	Diastereoselective Carbonyl-Ene Reaction with chiral aldehyde	154
Scheme 3.22.	Bidentate versus Monodentate Chelation Transition State Models	156
Scheme 3.23.	Diastereoselective Carbonyl-Ene Reactions of Aziridine-2-carboxaldehydes	156
Scheme 3.24.	Carbonyl-Ene Reaction of N-Glyoxyloyl Camphorpyrazolidinone	158
Scheme 3.25.	Carbonyl-Ene Reaction of Glyoxylate	158
Scheme 3.26.	Diastereoselective Carbonyl-Ene Reactions of Exocyclic Enol Ether	159
Scheme 3.27.	Transition States Leading to Production of furans	159
Scheme 3.28.	Diastereoselective Ene Reactions of (Z) and (E) isomers of Enol Ether	162
Scheme 3.29.	Transition States Associated with Enol Ether	163
Scheme 3.30.	Ene Reactions of Chiral allyl alcohols with Phenyltriazolinedione	164
Scheme 3.31.	Facial Preference for Phenyltriazolinedione addition	164
Scheme 3.32.	Aryl Nitroso Addition to Olefin	165
Scheme 3.33.	Diastereoselective Addition of p-Nitrobenzaldehyde to β-Pinene Enol Ether	165
Scheme 3.34.	Chair Transition States Associated with β-Pinene Enol Ether	166
Scheme 3.35.	Chiral Transfer Reaction of (R)-3-Phenyl-1-Butene	166
Scheme 3.36.	Chiral Transfer from Allylic Silyl Ether	167
Scheme 3.37.	Carbonyl-Ene Reaction of Enol Ether	168
Scheme 3.38.	Conversion of Lactones to Enol Ethers	169
Scheme 3.39.	Synthesis of C₆-Substituted Enol Ether	170
Scheme 3.40.	Synthesis of C₅-Substituted Enol Ether	171
Scheme 3.41.	NHC-Mechanism of Ring Expansion/Lactonization	172
Scheme 3.42.	Synthesis of C₄-Substituted Enol Ether	173
Scheme 3.43.	Enantio versus Diastereoselective Reactions of C₃ Substituted Enol Ethers	174
Scheme 3.44. Major Chair Conformers of trans and cis-substituted Enol Ethers 616 and 619 175
Scheme 3.45. Synthesis toward 3,6-substituted Enol Ethers 628 and 630 175
Scheme 3.46. Retrosyntheses of Enol Ethers 622 and 623. 176
Scheme 3.47. Synthesis of 5,6-trans-Substituted Enol Ether 622 177
Scheme 3.48. Synthesis of 5,6-cis-Substituted Enol Ether 623 178
Scheme 3.49. Application of 6-iodomethyl Enol Ether 649 to bidirectional synthesis 179
Scheme 3.50. Synthesis of Lactones 655 and 656 179
Scheme 3.51. Major Chair Conformations of Lactones 655 and 656 180
Scheme 3.52. Synthesis of Enol Ethers 624 and 625 181
Scheme 3.53. Possible Chair Transition States of Enol Ether 590 186
Scheme 3.54. Possible Chair Transition States of Enol Ether 591 187
Scheme 3.55. Possible Chair Transition States of Enol Ether 592 188
Scheme 3.56. Possible Chair Transition States of Enol Ether 622 192
Scheme 3.57. Possible Chair Transition States of Enol Ether 623 193
Scheme 3.58. Possible Chair Transition States of Enol Ether 624 195
Scheme 3.59. Possible Chair Transition States of Enol Ether 625 196

Chapter 4

Scheme 4.1. Bi-Directional Carbonyl-Ene Approach to Spiroketalts 231
Scheme 4.2. Carbonyl-Ene Reaction of Exocyclic Enol Ethers 232
Scheme 4.3. Substituted Spiroketal Conformations 243
Scheme 4.4. Hydrogen bonding in Spiroketal Precursors to Monesin 245
Scheme 4.5. Acid Catalyzed Spiroketalization of Dihydropyran 731 247
Scheme 4.6. Isomerization of Spiroketalts 733 and 734 247
Scheme 4.7. Chelation-Driven Spiroketalization 248
Scheme 4.8. Chelation-Driven Isomerization 248
Scheme 4.9. 249
Scheme 4.10. Spiroketal Formation based on Reaction Conditions and Chelation 249

Scheme 4.11. Epimerization of C15 Methyl to Afford Spiroketal 751 250

Scheme 4.12. Control of α-Keto Stereocenters Through Spiroketal Conformations 251

Scheme 4.13. Synthesis of 1,6,8-Trioxadispiro[4.1.4.2]tridecanes from Furan 253

Scheme 4.14. Synthesis of 1,6,8-Trioxadispiro[4.1.4.2]tridecanes from Malic Anhydride 253

Scheme 4.15. Synthesis of 1,6,8-Trioxadispiro[4.1.4.3]tetradecane 255

Scheme 4.16. Oxidative Cyclization Towards 1,7,9-trioxadispiro[5.1.5.3]hexadecanes 256

Scheme 4.17. Brimble synthesis of 1,7,9-trioxadispiro[5.1.5.3]hexadecanes 256

Scheme 4.18. McGarvey I Synthesis of 1,7,9-trioxadispiro[5.1.5.3]hexadecanes 257

Scheme 4.19. McGarvey II Synthesis of 1,7,9-trioxadispiro[5.1.5.3]hexadecanes 258

Scheme 4.20. McGarvey III Synthesis of 1,7,9-trioxadispiro[5.1.5.3]hexadecanes 259

Scheme 4.21. Murai Synthesis of Pinnatoxin Trioxadispiroketal Core 261

Scheme 4.22. Hirama Synthesis of Pinnatoxin Trioxadispiroketal 263

Scheme 4.23. Kishi Approach to Pinnatoxin Bis-spiroketal 263

Scheme 4.24. Perron Salinomycin Trioxadispiroketal Model Study 265

Scheme 4.25. Kocienski Salinomycin Trioxadispiroketal Model Study 266

Scheme 4.27. Suarez Synthesis of Saliomycin Model 268

Scheme 4.28. Brimble Synthesis of [5,6,6]-trioxadispiroketal Model 269

Scheme 4.29. Kishi Total Synthesis of Salinomycin 270

Scheme 4.30. Yonemitsu Formal Synthesis of Salinomycin 270

Scheme 4.31. Brown Total Synthesis of Salinomycin 271

Scheme 4.32. Paterson General Approach to Spirastrellolide A Trioxadispiroketal 273

Scheme 4.33. First Paterson Synthesis of Spirastrellolide A Trioxadispiroketal 274

Scheme 4.34. Second Paterson Synthesis of Spirastrellolide A Trioxadispiroketal 276
Scheme 4.35.	Manufacture of intermediate 899	277
Scheme 4.36.	Final Paterson Synthesis of Spirastrellolide A Trioxadispiroketal	278
Scheme 4.37.	Forsyth Approach to Spirastrellolide A	279
Scheme 4.38.	Forsyth Work Toward Synthesis of Spirastrellolide A	280
Scheme 4.39.	Silver Triflate-Catalyzed Spiroketalization	281
Scheme 4.40.	Forsyth Second Route Toward Spirastrellolide’s Northern Fragment	281
Scheme 4.41.	Fürstner Approach and Model Studies Toward Spirastrellolide A	283
Scheme 4.42.	Synthesis of Isoxazoline 923	284
Scheme 4.43.	Fürstner Synthesis of Trioxadispiroketal 932	285
Scheme 4.44.	Brimble Synthetic Strategy Toward Spirastrellolide B Bis-Spiroketal	286
Scheme 4.45.	Preparation of Dithiane 937	286
Scheme 4.46.	Synthesis of Epoxide 939	287
Scheme 4.47.	Synthesis of Dithiane 943	287
Scheme 4.48.	Coupling of Fragments 937, 939, and 943 to Provide Bis-Spiroketal 948	288
Scheme 4.49.	Carbonyl-Ene Approach to Bis-Spiroketal Linear Precursor	290
Scheme 4.50.	Spirocyclization of Ene Adduct 954	290
Scheme 4.51.	Thermodynamic Equilibration of Spiroketalts 955 and 956	291
Scheme 4.52.	Mechanism for Spiroketal Hydroxyl Epimerization	292
Scheme 4.53.	Spirocyclization of Ene Adduct 260	292
Scheme 4.54.	Spirocyclization of Ene Adduct 589	293
Scheme 4.55.	Bis-β-Hydroxyypyrant Design	294
Scheme 4.56.	Preparation of 6-Iodomethyane-2-Methylenetetrahydropyran	294
Scheme 4.57.	Synthesis of Aldehyde 971	297
Scheme 4.58.	Synthesis of Aldehyde 974	297
Scheme 4.59.	Silver Fluoride Elimination of Ene Adduct 969	297
Scheme 4.60. Dess-Martin Oxidation of β-Hydroxy-2-Methylenedihydropyran 980 300

Scheme 4.61. Preparation of Tetrahydropyran 991 302

Scheme 4.62. Face of Nucleophile Addition to Dihydropyran 979 303

Scheme 4.63. Attempted Elimination of Iodide 922 304

Scheme 4.64. Attempted Cyclization of Pyran 986 305

Scheme 4.65. Routes Toward Cyclization of Pyran 983 306

Scheme 4.66. Application of HCl to Pyran 981 306

Scheme 4.67. Attempted Cyclization of Pyran 981 by via Reduction. 307

Scheme 4.68. Route for Step-wise Cyclization 308

Scheme 4.69. Synthesis of Spiroketal 1006 and 1007 308

Scheme 4.70. Methods for Exocyclic Enol Ether Formation 310

Scheme 4.71. Synthesis of Selenoxide 1010 311
List of Tables

Chapter 1
Table 1.1. Gold Catalyzed Cyclization of Acetylenic Acids 20
Table 1.2. Petasis Olefination of Lactones 25
Table 1.3. Manufacture of E versus Z Isomers with Takai-Lombardo Olefination 30
Table 1.4. [1,3]-Dipolar Cycloaddition of Enol Ether 222 49

Chapter 2
Table 2.1. Mukiyama Electrophilic Addition to Dihydropyrans 78
Table 2.2. Formation of Oxetanes from Enol Ethers 80
Table 2.3. Three-Component Coupling of Enol Ethers with Ethyl Glyoxylate 82
Table 2.4. Competing Elimination in the Three-Component Coupling of Dihydropyran 83
Table 2.5. Three-Component Coupling of Enol Ethers with Pyruvates 85
Table 2.6. Initial Conditions for Three-Component Coupling of Exo Enol Ethers 93
Table 2.7. Evaluation of Reaction Time in The Three-Component Coupling Reaction 94
Table 2.8. Study of Reaction Equivalents in Three-Component Coupling Reaction 95
Table 2.9. Three-Component Coupling of Enol Ether 2 with Various Electrophiles 97
Table 2.10. Three-Component Coupling of Enol Ether 112 with Various Electrophiles 101
Table 2.11. Three-Component Coupling of Enol Ether 378 with Various Electrophiles 103

Chapter 3
Table 3.1. Carbonyl Ene Reactions of 2-Methylene-2,5-dihydrofuran 141
Table 3.2. Pericyclic Reaction Conditions of Enol Ether 481 142
Table 3.3. Carbonyl-Ene Reactions of 2-Methylenetetrahydropyran 144
Table 3.4. Carbonyl-Ene Reactions of Substituted Exocyclic Enol Ethers 145
Table 3.5. Carbonyl-Ene Reactions of C₃-Substituted 2-Methylenetetrahydropyrans 146
Table 3.6. Carreira Carbonyl-Ene Reactions of Enol Ethers 148
Table 3.7. Jacobsen Carbonyl-Ene Reactions of Enol Ethers 150
Table 3.8. Asymmetric Carbonyl-Ene Reactions of 2-Methylene-2,5-dihydrofuran 151
Table 3.9. Carbonyl-Ene Reactions of α-Aminoaldehydes 155
Table 3.10. Carbonyl-Ene Reactions of Exocyclic Enol Ether 2 with Chiral aldehyde 547 160
Table 3.11. Carbonyl-Ene Reactions of (E) and (Z)-2-Butenes 161
Table 3.12. Carbonyl-Ene Reactions of mono-Substituted 2-Methylenetetrahydropyrans 183
Table 3.13. Carbonyl-Ene Reactions of di-Substituted 2-Methylenetetrahydropyrans 190

Chapter 4

Table 4.1. Rabbit-Ear Effects Associated with Tetrahydropyranyl Ring Conformations 241
Table 4.2. Cyclization Conditions for Spiroketal Formation 246
Table 4.3. Isomerization of 1,7,9-Trioxadispiro[5.1.5.3]hexadecanes in Different Solvents 259
Table 4.4. Carbonyl-Ene Reactions of 6-Iodomethyane-2-Methylenetetrahydropyrans 296
Table 4.5. DBU Elimination of Carbonyl-Ene Adducts 298
Table 4.6. Ene Reactions of 2-Methylenedihydropyrans with Ethyl Glyoxylate 299
Table 4.7. Ene Reactions of 2-Methylenedihydropyrans with p-Nitrobenzaldehyde 300
Table 4.8. Ene Reactions of 2-Methylenedihydropyrans with unactivated aldehydes 301
Table 4.9. Elimination of Iodide 1006 311
Table 4.10. Elimination of Selenoxide 1010 312
List of Abbreviations

Ac Acetyl
AIBN Azobis(isobutyronitrile)
BBN Borabicyclo[3.3.1]nonane
BINOL 1,1’-Bi-2-naphthol
Bn Benzyl
Boc t-Butyloxycarbonyl
BPS t-Butyldiphenylsilyl
Bz Benzoyl
Cbz Carbobenzyloxy
Cp Cyclopentadienyl
CSA Camphorsulfonic Acid
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCM Dichloromethane
DET Diethyl Tartrate
DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DHP Dihydropyranyl
(DHQ)2AQN Bis-Dihydroquinone Anthra-1,4-quinone
(DHQ)3PHAL Bis-Dihydroquinone 1,4-Phthalazinediyl Diether
DIBAL Diisobutylaluminum Hydride
DMAP 4-Dimethylaminopyridine
DMF Dimethylformamide
DMP Dess-Martín Periodinane
DMSO Dimethylsulfoxide
dppe (diphos) 1,2-Bis(diphenylphosphino)ethane
Dppf 1,1’-Bis(diphenylphosphino)ferrocene
EDTA Ethylenediaminetetraacetic Acid
EOM Ethoxymethyl
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Compound Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMPA</td>
<td>Hexamethylenetetraamine</td>
</tr>
<tr>
<td>Im</td>
<td>Imidazole</td>
</tr>
<tr>
<td>IPC</td>
<td>Isopinocampheyl</td>
</tr>
<tr>
<td>LBDD</td>
<td>Lithium p,p'-di-t-butylbiphenylide</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium Diisopropylamine</td>
</tr>
<tr>
<td>mCPBA</td>
<td>m-Chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>MEM</td>
<td>β-Methoxyethoxymethyl</td>
</tr>
<tr>
<td>MOM</td>
<td>Methoxymethyl</td>
</tr>
<tr>
<td>MPM</td>
<td>p-Methoxybenzyl</td>
</tr>
<tr>
<td>Ms</td>
<td>Methanesulfonyl</td>
</tr>
<tr>
<td>NaHMDS</td>
<td>Sodium Dexamethyldisilazide</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NCS</td>
<td>N-Chlorosuccinimide</td>
</tr>
<tr>
<td>NHC</td>
<td>N-Heterocyclic Carbene</td>
</tr>
<tr>
<td>NMO</td>
<td>N-Methylmorpholine-N-oxide</td>
</tr>
<tr>
<td>NOE</td>
<td>Nuclear Overhauser Effect</td>
</tr>
<tr>
<td>PCC</td>
<td>Pyridinium chlorochromate</td>
</tr>
<tr>
<td>PhthN</td>
<td>Phthalimido</td>
</tr>
<tr>
<td>Piv</td>
<td>Pivaloyl</td>
</tr>
<tr>
<td>PMB</td>
<td>p-Methoxybenzyl</td>
</tr>
<tr>
<td>PPTS</td>
<td>Pyridinium p-Toluenesulfonate</td>
</tr>
<tr>
<td>pTol</td>
<td>p-Toluene</td>
</tr>
<tr>
<td>pTsOH</td>
<td>p-Toluenesulfonic Acid</td>
</tr>
<tr>
<td>Pyr</td>
<td>Pyridine</td>
</tr>
<tr>
<td>Red-Al®</td>
<td>Sodium Bis(2-Methoxyethoxy)aluminum Hydride</td>
</tr>
<tr>
<td>SPHOS</td>
<td>2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl</td>
</tr>
<tr>
<td>TASF</td>
<td>Tris(dimethylamino)sulfonium difluorotrimethylsilicate</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetra-N-butylammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-Butyldiphenylsilyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>TBME</td>
<td>t-Butylmethylether</td>
</tr>
<tr>
<td>TBS</td>
<td>t-Butyldimethylsilyl</td>
</tr>
<tr>
<td>TES</td>
<td>Triethyldimethylsilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>Trifluoromethylsilyl</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic Acid</td>
</tr>
<tr>
<td>TFAA</td>
<td>Trifluoroacetic Anhydride</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>THP</td>
<td>Tetrahydropyranil</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropylsilyl</td>
</tr>
<tr>
<td>TMEDA</td>
<td>N,N,N',N'-Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>TPAP</td>
<td>Tetra-N-propylammonium Perruthenate</td>
</tr>
</tbody>
</table>
Chapter 1. The Synthesis and Reactivity of 2-Methylenetetrahydropyrans

1.1 Overview

β-Hydroxytetrahydropyrans and their derivatives are present in a number of biologically active natural products. Organic synthesis is used to manufacture natural products, because often these molecules are not isolated from nature in reasonable yields. Therefore the synthesis of tetrahydropyrans is of importance to the synthetic organic community and beyond. β-Hydroxytetrahydropyran functionalities like 1 can be accessed through reactions of 2-methylenetetrahydropyrans (2). These exocyclic enol ethers can be synthesized by one of several methods (Scheme 1.1).

Scheme 1.1

This chapter will examine the different methods of exocyclic enol ether synthesis, which includes the elimination of alkyl halides (3), cyclization of acetylenic alcohols (4), and direct methylenation and alkylidenation of the corresponding lactone (5). Secondly, the reactivity of exocyclic enol ethers is addressed. Exocyclic enol ethers have been reported to undergo a number of processes, including their use as substrates in addition reactions, rearrangements, pericyclic reactions, and radical reactions, and their use as electrophiles and nucleophiles. The reactions of greatest significance in organic chemistry are those involving new carbon-carbon bonding.
Therefore, the primary focus will be on these transformations and the use of exocyclic enol ethers as nucleophiles.

1.2 Background and Significance

β-Hydroxytetrahydropyrans and their derivatives are common moieties found in many natural products. These natural products are of synthetic interest because of their varied biological activities, which makes them effective drugs or worthy drug candidates. There are a number of interesting tetrahydropyranyl ketide derivative-containing natural products, which include, but are not limited to popular synthetic targets such as leucascandrolide A (6),

diospongin A (7) and B (8),

amphotericin B (9),

spiroketal-containing natural product spirangian A (10)

and rapamycin (11) (Figure 1.1).

Leucascandrolide A (6) contains within it a cis-1,6-substituted tetrahydropyranyl diketide. This natural product has a remarkable set of biologically active properties, making it a potential drug candidate. Leucascandrolide A shows marked cytotoxicity against human KB tumor cell lines and P388 leukemia cell lines, displaying IC\textsubscript{50} values of 0.05 and 0.25 \(\mu \)g/mL respectively. Leucascandrolide A also shows antifungal inhibition against "Candida albicans," a pathogenic yeast that attacks immune-compromised individuals including AIDS patients.6 The natural product is theorized to inhibit the cytochrome bc1 complex, which is used by cells to make ATP, an important source of a cell’s energy. Blocking ATP formation triggers the cell to undergo apoptosis and eventually die.7

Leucascandrolide A was isolated in 1996 from the calcareous sponge "Leucascandra caveolata," however attempts at re-isolation were unsuccessful.8 The natural product is believed to originate from a microbial colony present on the sponge rather than the sponge itself.
The high biological activity of leucascandrolide A, coupled with the inability to re-isolate the natural product, has led to a variety of synthetic approaches.9
Diospongin A (7) and B (8) are simple examples of tetrahydropyranyl ketide-containing natural products that differ only in the stereochemistry at the C₃ position of the tetrahydropyranyl ring. Both natural products were isolated from Dioscorea spongiosa in 2004,¹⁰ and since then a number of syntheses have been reported.¹¹ Diaspongin B has displayed anti-osteoporotic activity similar to the clinically used drug elcitionin.¹² Interest in the diospongins stems from the observed bioactivity and their relatively simple structure. Since diospongin is not an overwhelmingly complex molecule, it can be synthesized in a minimal number of steps. This makes diospongin B a synthetic target of possible pharmacological use, since fewer synthetic steps would reduce production costs and consequently cost to consumers.

Amphotericin B (9) was isolated from Streptomyces nodosus and is used as an antifungal and antiprotazoal agent.¹³ Oral preparations of this drug have been used to treat thrush, and it is also administered intravenously as a last resort to treat systematic fungal infections (cryptococcal meningitis) and parasitic protozoan infections (leishmaniasis and amoebic meningoencephalitis).¹⁴ Additionally, inoculation of amphotericin B to tissue cultures prevents fungal contamination. Amphotericin B causes cell death by associating with ergosterol, a component of the cellular membrane, forming trans-membrane channels that cause monovalent ion leakage. Because mammalian membranes contain similar sterols, toxicity can occur in amphotericin-treated patients.¹⁵ Thus Amphotericin is used as a last resort in critically ill patients. The structure of amphotericin B was fully established via X-ray crystallographic analysis,¹⁶ and both the total synthesis¹⁷ and biosynthesis¹⁸ of this molecule have been reported.

Spirangien A (6) is another example of a tetrahydropyranyl spiroketal-containing natural product of recent interest that was isolated from the Sorangium cellulosum strain of myxobacteria.¹⁹ Spirangien A exhibits both antifungal and cytotoxic biological activities, with
IC$_{50}$ values of 1.0×10^{-9} M against a L929 mouse fibroblast cell line. This level of cytotoxicity is comparable to the popular anticancer drug Taxol, which also exhibits nanomolar cytotoxicity against human cancer lines. Hence, spirangien A is a potential drug target for cancer treatment. To date, the mechanism of action that gives rise to the promising anticancer activity has not yet been determined. Total syntheses have been published by the Paterson and Ley groups.

Rapamycin (5), also known as sirolimus, is a tetrahydropyranyl polyketide-containing natural product that is used in treatment of a multitude of diseases. Within this macrolide there exists a cis-tetrahydropyranyl ketide unit. This natural product was isolated from the bacterium Streptomyces hygroscopicus, which was found in a soil sample local to Easter Island in 1975. Originally developed as an antifungal treatment, rapamycin is currently marketed by Wyeth (Rapamune) as a highly effective immunosuppressant amongst other uses. The drug is biosynthesized through the use of polyketide synthase and additional enzyme modifications.

Although quite similar in structure to tacrolimus, a tetrahydropyranyl ketide-containing, immunosuppressive, calcineurin-inhibiting drug, rapamycin works by a different mode of action. Rapamycin binds to the cytosolic protein, FK-binding protein 12 (FKBP12), and inhibits the mammalian target of rapamycin (mTOR) pathway by directly binding to mTOR complex 1. Thus rapamycin inhibits the response to interleukin-2 and blocks the activation of T and B-cells.

The use of rapamycin as an immunosuppressant is preferred over other drugs because lower toxicities to the liver are observed. Alternatively, internal use of tacrolimus has lead to impaired kidney function and even chronic renal failure in patients. This makes rapamycin an especially effective drug for preventing organ rejection in kidney transplantations.
Not only is rapamycin a great drug candidate for immunosuppressive therapy, but it has also found use in a number of other treatments. Rapamycin has been found to exhibit antiproliferative properties and has been used in conjunction with coronary stents to prevent restenosis in coronary arteries following balloon angioplasty. This natural product is marketed as a sirolimus-eluting coronary stent (Cypher) by Cordis, a sub-division of Johnson and Johnson.

In studies of patients with tuberous sclerosis complex (TSC), a disease marked by benign tumor growth in various organs, inhibitory effects were observed, diminishing the reoccurrence of tumor formation in these patients. As part of this study researchers also discovered that symptoms of attention deficit hyperactive disorder (ADHD) and autism decreased. In fact autistic mice treated with rapamycin demonstrated marked increases in intellect within three days. A treatment for autism would be especially valuable, with no current available treatment.

Additional studies have shown rapamycin to be an effective treatment toward autosomal dominant polycystic kidney disease, decreasing cancer risk in patients with renal failure, and inhibiting HIV replication via downregulation of coreceptor CCR5 and inhibition of the induction of autophagy. Rapamycin’s demonstrated bioactivity against a wide variety of high-impact diseases and disorders is convincing evidence that tetrahydropyranyl ketide-containing natural products are of value to the world.

These natural products are a small selection of biologically active tetrahydropyranyl-containing synthetic targets that attract interest. Not only are these tetrahydropyranyl ketides and derivatives interesting synthetic targets, but they also are prepared for use in the medical field. Our interest in these functional groups stems from the desire to showcase the nucleophilic nature of neutral exocyclic enol ethers. The approach focuses on utilizing 2-methylenetetrahydropyrans (2) as synthetic precursors (Scheme 1.2). The combination of these
exocyclic enol ethers with aldehydes under Lewis acid conditions yields tetrahydropyran 1. This approach provides a highly convergent synthetic approach toward these tetrahydropyranyl moieties. We expect a broad application of our methodology to synthetic organic chemistry based on the varied interest in synthesizing tetrahydropyranyl ketide subunits.

Scheme 1.2

Exocyclic enol ethers have been underutilized in synthetic organic transformations, especially as nucleophiles. The limited study of these exocyclic enol ether substrates is possibly due to the tendency of these systems to undergo isomerization and hydrolysis in the presence of trace acid or heat. These substrates, however, can be manufactured and successfully applied in organic transformations. In fact the manufacture and use of these substrates has sparked some interest in the field and has lead to the publication of two review articles. The synthesis and subsequent chemistry of exocyclic enol ethers is discussed herein.

1.3 Synthesis of Exocyclic Enol Ethers

The synthesis of 2-methylene tetrahydropyran has been achieved using several different strategies: two-step addition/elimination processes, cyclization of alkynyl alcohols, and direct methylenation of the corresponding lactone. In all cases their synthesis is not trivial. The synthesis and subsequent chemistry of exocyclic enol ethers is complicated by their possible hydrolysis (Scheme 1.3), and the propensity of these systems to undergo isomerization to the

Scheme 1.3
endocyclic isomer, dihydropyran 14, in the presence of trace acid or excessive heat (Scheme 1.4). Use of appropriate reaction conditions and proper handling, however, makes these moieties accessible through a number of reactions.

Scheme 1.4

2-Methylenetetrahydropyran 2 can isomerize to dihydropyran 14 with trace acid or heat because the later heterocycle is stabilized by three factors: increased hyperconjugative effects, decreased steric repulsions, and increases in favorable orbital overlap between the ring oxygen and pi electrons. The transition from exocyclic enol ether 2 to endocyclic enol ether 14 involves an increase in olefin substitution. The increase in substitution is associated with greater hyperconjugative effects, which stabilize the olefin through delocalization of alkyl bonding electrons with the double bond pi electrons. Isomerization studies of the corresponding carbocycles, however, indicates that the stability of endocyclic over exocyclic olefins involves more than just hyperconjugative effects.

The heats of hydrogenation for ethylidencyclohexane (15) and ethyl cyclohexenes (16) were compared (Figure 1.2). In this system the exo and endo olefins possess similar conjugative effects due to equivalent substitution, but an energy gap between the isomers still exists, favoring the endocyclic double bond. The energy difference between isomers 15 and 16 is 1.2 Kcal/mol, favoring the endocyclic olefin, as opposed to 2.4 Kcal/mol for the corresponding methylene/methyl derivatives (17 and 18) where the degree of hyperconjugation differs. The energy values for the carbocycles can be related to the corresponding heterocyclic olefins 2 and 14. In fact studies have shown exocyclic enol ether 2 is stabilized (4.3 kJ/mol) when a methyl
group is attached to the exocyclic olefin like the stabilization seen for (Z)-ethylidenetetrahydropyran. Nonetheless, an energy difference still exists between isomers 15 and 16 and indicates that stabilizing effects beyond hyperconjugation are responsible for thermodynamically-favored endocyclic enol ether formation.

Figure 1.2

![Figure 1.2](image)

Steric factors also contribute to energy differences between exo and endo isomers. Methylene cyclohexane 17 experiences steric repulsion between equatorial hydrogens (Hb and Hd) and hydrogens Ha and Hc of the exocyclic methylene unit respectively (Figure 1.3). These non-bonding interactions are not present in the endocyclic system 18. Between hyperconjug

Figure 1.3

![Figure 1.3](image)

-ative effects and steric repulsions there exists an enthalpy difference of 8.7 kJ/mol between isomers 17 and 18, with 18 existing as the lower energy isomer. Alternatively, the energy difference between corresponding enol ethers 2 and 14 was calculated to be 15.1-16.8 kJ/mol. By subtracting the calculated hyperconjugative effects observed in the tetrahydropyranyl system (4.3 kJ/mol) a large energy difference is still observed, greater than that of the carbocyclic system.

The difference in energy between the two systems cannot be based solely on non-bonding repulsions. In fact the heterocyclic system should have less steric repulsion between hydrogens
because a ring methylene group is replaced by an oxygen atom (Figure 1.4). With one less steric effect, the energy difference between the two heterocyclic isomers should be less than that between the carbocycles. However this is not observed, indicating that another factor contributes to dihydropyran 14’s stability over exo enol ether 2.

Figure 1.4

![Figure 1.4](image)

The third contributing factor towards endocyclic stability is the increased orbital overlap between the ring oxygen lone pairs and the olefin pi electrons. If the ring oxygen is sp\(^3\) hybridized, endo enol ether 14 can orient the oxygen lone pairs so that they fully overlap with the double bond’s pi electrons (Figure 1.5). The steric arrangement of oxygen lone pairs and pi electrons yields an enol ether conformation that is analogous to the most stable methyl vinyl ether conformation. This orientation of orbitals causes endo enol ether 14 to have low energy because of the increased degree of resonance stabilization that can occur. Exo enol ether 2, however, is forced to hold one of the lone pair of electrons equatorial and out of plane with the olefin’s pi electrons (Figure 1.5). This steric arrangement does not result in an enol ether conformation with maximum orbital overlap, and hence lower resonance stabilization results.

Isomerization is thermodynamically favored in exo enol ether 2. The isomerization is also kinetically driven by formation of the oxonium cation intermediate. The oxonium ion
intermediate 19 is more readily formed than the less stable carbocation intermediate 20 of the analogous all carbon system (Scheme 1.5). Because exo enol ethers are prone to isomerization and hydrolysis, conditions employed toward their manufacture or subsequent chemistry must be carried out carefully without protic acids. However, exocyclic enol ether synthesis is routinely performed via elimination, cyclization or direct olefination.

Scheme 1.5

![Scheme 1.5 Diagram]

Synthesis of Exocyclic Enol Ethers via Elimination

One of the most traditional routes for synthesizing exocyclic enol ethers involves the elimination of a leaving group, typically a halide, sulfonate, or selenoxide (Scheme 1.6).

Scheme 1.6

![Scheme 1.6 Diagram]

Leaving group installation occurs at the exocyclic methylene position, adjacent to the anomeric center. A number of elimination conditions have proven successful in this transformation, however elimination can be accompanied with the formation of water and isomerization to the endocyclic enol ether 14. Use of elimination conditions in exocyclic enol ether formation is advantageous compared to other techniques in that often the reagents used are relatively inexpensive.
Commonly, thionyl chloride is used to prepare tetrahydropyanyl chloride 3 from 2-(hydroxymethyl) tetrahydropyran 22 (Scheme 1.7). Chloride 3 is transformed to desired exo enol ether 2 through elimination using KOH. Similar reactions, involving the elimination of a methylene halide at the anomeric position of a tetrahydropyran have been successfully performed through application of the following common bases: tBuOK, NaOH, KOH, NaH, NaOMe, DBU, and K₂CO₃. Silver fluoride has also facilitated elimination in a number of these systems.

Exo enol ethers have also been synthesized through base-induced elimination of mesylates (Scheme 1.8). Mesylate 23 was formed via the corresponding primary alcohol. Addition of the sulfonate group aids in activating this group towards elimination. Subjection of mesylate 23 to potassium tert-butoxide gives rise to the exocyclic enol ether 24 in good yield.

Phenyl selenides can be transformed into exocyclic enol ethers through oxidation and subsequent elimination of the selenoxide. This reaction is not as common as the related elimination of halogens because it involves formation of selenium byproducts and involves more synthetic steps. Enol ether 27 has been synthesized for use in the total synthesis of bioactive alkaloid (+)-K252a.
Intermediate enol ether 27 was synthesized from iodide 25 in three steps (Scheme 1.9). Initial attempts and dehydroiodination failed to yield the desired enol ether, instead

Scheme 1.9

resulting in an unwanted byproduct. Therefore a second route was employed for conversion of iodide 25 to the exo enol ether 27. Iodide 25 was converted to phenyl selenide 26 with diphenyl selenide and sodium borohydride. Selenide 26 was subsequently oxidized to the selenoxide, which was directly subjected to heat-induced elimination conditions. Exo enol ether 27 resulted without byproduct formation.

Epoxy-2-methylenetetrahydrofurans 29 have been effectively synthesized from corresponding glycals 28 in a one-pot synthesis (Scheme 1.10). First dihydrofuran 28 was subjected to bromination. Basic conditions effect concurrent epoxide formation, and elimination to produce epoxide target 29. This exo enol ether could subsequently be used as an electrophile, and produced alcohol 30 after palladium catalyzed (20 mol %) addition of dimethyl malonate.

Scheme 1.10
Exocyclic enol ethers have been selectively formed from anomeric bromides. Bromoketose 31 was converted to the corresponding exocyclic enol ether by modified Fisher-Zanch conditions (Scheme 1.11).\(^{59}\) Bromide 31 was reductively eliminated with zinc dust and N-methyl-imidazole (MIM) to provide enol ether 33 in 79% yield along with 11% of the endocyclic isomer. Exocyclic enol ether 32 predominates because the terminal hydrogens (Ha) are more accessible towards elimination than the secondary cyclic proton (Hb). The kinetic conditions of this reaction favor the exo enol ether formation and little isomerization occurs. Alternatively, the use of Zn/Cu and acetic acid on a similar substrate favored endo product 34 under thermodynamic conditions (Scheme 1.12).

\[
\text{Scheme 1.12}
\]

The Ramberg-Backlund rearrangement has been used effectively to form exocyclic enol ethers from sulfones (Scheme 1.13).\(^{60}\) Methylsulfone 35 can be subjected to either standard
Meyer conditions61 or milder Chan conditions62 to provide enol ether 36. In both cases halogen transfer is followed by deprotonation. The carbanion that results arranges into an unstable thirane dioxide that decomposes through elimination of sulfur dioxide (Scheme 1.14). The same conditions have been applied to enantiopure sulfones bearing longer carbon chains to yield substituted enol ethers with some E:Z selectivity.60a

\textit{Scheme 1.14}

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {35};
\node (b) at (3,0) {36};
\node (c) at (1.5,1.5) {37};
\draw[->] (a) -- (b) node[midway,above] (TextNode) {SO\textsubscript{2}};
\draw[->] (a) -- (c) node[midway,above] {SO\textsubscript{2}};
\draw[->] (c) -- (b) node[midway,above] {SO\textsubscript{2}};
\end{tikzpicture}
\end{center}

\textbf{Synthesis of Exocyclic Enol Ethers via Intramolecular Cyclization}

Exocyclic enol ethers have been synthesized via intramolecular cyclization of alkynyl alcohols, alkynyl carboxylic acids, vinyl halides, and hydroxy alkenes via metal and lanthanide catalysts. This technique involves both cyclization and the formation of an exo double bond in one step. A number of elements have been utilized for these cyclization reactions including catalysts containing mercury, silver, palladium, copper, gold, rhodium, and various lanthanides. The cyclizations prove to be useful methods for exo enol ether synthesis, especially from linear precursors.

Alkynyl carboxylic acids and alcohols were first cyclized through the use of mercury catalysts.63 Katzenellenbogen created simple and substituted exocyclic enol ether lactones 38 and 40 and halo enol ether lactones 41 via corresponding acetylenic acids 37, 39, and 41 using catalytic Hg(OTFA)\textsubscript{2} (Scheme 1.15).64 Use of mercury acetate in the same reaction was less effective, resulting in lower yields and longer reaction times. The lower yield observed for the
reaction involving carboxylic acid 41 is most likely due to a lack of positive charge stabilization at the β carbon. Halogenated acetylenic acids experience inductive destabilization of the intermediate cation created after mercury addition. Additionally, dehalogenation accompanies the reaction which substantially lowered yield.

Scheme 1.15

Schwartz demonstrated the manufacture of exocyclic enol ethers though mercury activation (Scheme 1.16). A variety of mercury species effected cyclization including HgCl₂, Hg(OAc)₂, and Hg(OCOCF₃)₂ although mercury acetate provided the best yields. Enol ether 43 was created from the cyclization of alkynyl alcohol 44. Interception of the organomercury intermediate by NBS yielded bromo enol ether 45 from alcohol 44. Similarly, Villemin utilized HgO and BF₃•Et₂O to transform internal alkynes into substituted enol ethers.

The cyclization of alkynyl alcohols and acids under silver catalysis has received little study. Silver carbonate (10 mol %) has induced cyclization of both acetylenic alcohol 46 and acids 48 and 50 to the corresponding exocyclic enol ethers 47, 49, and 51 (Scheme 1.17). The
reactions involving terminal alkynes 46 and 47 reached near quantitative yields of the desired products. Cyclization of acid 50 was less effective and resulted in a 1:1 mixture of E:Z isomers. Silver oxide and silver acetate also facilitated the conversion of acetylenic alcohol 46 to enol ether 47, albeit in lower yields and over a longer period of time (80%, 40 min and 80%, 30 min respectively as compared to 98%, 15 min for silver carbonate).

Scheme 1.17

Cyclizations involving copper catalysis have also been studied. Vinyl bromides were coupled, intramolecularly, to alcohols using copper iodide to form 6, 5, and 4-membered exocyclic enol ethers (Scheme 1.18). Hexene 52 was cyclized to 2- methylenetetrahydropyran.

Scheme 1.18
53 in modest yields. 2-Methylenetetrahydrofuran 55 was formed from alkenyl bromide 54, and even strained four-membered ring 57 was successfully manufactured from butene 56. In fact the four-membered exo enol ethers were created preferentially (Scheme 1.19).

Scheme 1.19

Cyclization to form four-membered exocyclic enol ethers was preferred over formation of the six and five-membered rings. All of the ring closure reactions are permissible by Baldwin’s rules, however, the 4-exo-trig cyclization is sterically favored. This preferred cyclization involves a 5-membered transition state that is thermodynamically favored and more sterically attainable than either the 5-exo-trig or 6-exo-trig cyclizations. If a palladium catalyst (Pd(OAc)$_2$/BINAP) is used as a catalyst in place of copper iodide, formation of the 5-exo products was preferred over the 4-exo products. Thus, tetrahydropyran 58 and tetrahydrofuran 61 were alternatively formed from dibromodienes 59 and 62 respectively. A Pd(0) 5-membered transition state is not sterically preferred in these reactions because Pd(0) is much larger than Cu(I), which effects the transition state geometry.

Copper iodide has also induced formation of enol lactones from carboxylic acids. Two methods were used to form the enol lactones: cyclization of bromoenoic acids and cycloisomerizations of alkynoic acids. The first method utilizes copper iodide as a cross-coupling catalyst in a modified Ullmann coupling. Best yields were obtained using a N,N’-dimethylcyclohexane-1,2-diamine (DMCHDA) ligand. Both 6-exo (65) and 5-exo (67) products
were synthesized in good yields (Scheme 1.20). 4-Exo products like 69 were not isolated, but instead provided ketone 71. Presumably the strained enol lactone undergoes ring-opening and subsequent decarboxylation, leading instead to the isolation of ketone 71.

Application of the modified Ullman conditions to alkynoic acids provided enol lactones in good yields without any further optimization. Pent-4-ynoic (72) and hex-5-ynoic (73) acids were successfully cyclized to enol lactones 67 and 74. Similarly, Mindt and Schibli discovered that amine-containing alkynoic acids like 75 were capable of cycloisomerization to enol lactones 76 using CuBr in aqueous media (Scheme 1.21).71

Scheme 1.21
Gold catalysts have recently received attention for their ability to induce alkyne cyclization reactions. AuCl was used to cyclize acetylenic acids to form exocyclic enol lactones (Table 1.1).72 5, 6, and 7-membered enol lactones were synthesized. Electrophilic activation of the alkyne by AuCl facilitates intramolecular cycloaddition of the deprotonated lactone. Acids 48 and 37 were successfully converted to enol lactones

Table 1.1: Gold Catalyzed Cyclization of Acetylenic Acids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Acetylenic acid</th>
<th>Lactone</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{48})</td>
<td>(\text{49})</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>(\text{37})</td>
<td>(\text{38})</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>(\text{77})</td>
<td>(\text{78})</td>
<td>25</td>
</tr>
</tbody>
</table>

49 and 38 in near quantitative yields. The reaction of acetylenic acid 77 with AuCl, alternatively afforded enol lactone 78 in low yield over a longer period of time (48 h). Nonetheless the exo products were always preferentially formed instead of endo cyclization products.

Cyclization of diacetylenic alcohols with AuCl and AgBF\(_4\) have provided 5-(80) and 6-membered (82) exocyclic enol ethers in good yields (Scheme 1.22).73 Because the enol ethers are sensitive to acidic conditions, the catalyst loading of AgBF\(_4\) was kept below that of the gold catalyst. The gold catalyst coordinates to the alkyne, forming metallacyclop propane 84. Intramolecular attack of the propene by the alcohol yields a vinyl gold intermediate that is protodeaaurated to form enol ether 86 (Scheme 1.23).
Scheme 1.22

Rhodium metal has facilitated cyclization of hydroxy alkene 88 to exo enol ether 90 (Scheme 1.24). This example differs from others because an olefin is acting as the cyclic precursor. Coordination of alkene 88 with rhodium complex 87 yielded rhodium alkoxide 89.

Scheme 1.23

The coordination results in the loss of the silylamide ligand. After isolation of intermediate 89, excess triethylphosphine is added and facilitates oxidative insertion of the hydroxyl group into the double bond. Insertion is followed by reductive elimination of the rhodium catalyst to yield the 2-methylenetetrahydrofuran 90.

Lanthanide catalysis has been used to transform alkynyl alcohols into enol ethers. Exocyclic enol ethers 92 and 2 were formed from the cyclization of alcohols 91 and 93 in the presence of lanthanide amide complexes \{Ln[N(SiMe_3)_2]_3, Ln = La, Nd, Sm, Y, and Lu\} (Scheme
Quantitative yields of enol ethers 92 and 2 were obtained by 1H NMR analysis. The mechanism of the reaction involves slow alkyne insertion followed by rapid substrate protonolysis.

Scheme 1.25

![Scheme 1.25](image)

Synthesis of Exocyclic Enol Ethers via Direct Methylenation

The most direct method for exo enol ether synthesis involves the direct methylenation of the corresponding lactones with phosphorus-based or organometallic reagents. Typically Wittig-type reactions are not effective at this transformation, although trisubstituted exocyclic enol ethers and dihaloolefins can be prepared in this way. Lactones 94 react with stabilized phosphoranes to form trisubstituted, conjugated products 95 and 96 (Scheme 1.26). Elevated temperatures or microwave irradiation was required to facilitate these reactions and little to no Z/E selectivity was observed.

Generally, methylene enol ethers 2 are better prepared using organometallic reagents. The Tebbe and Petasis reagents are most commonly used in these organometallic olefination

Scheme 1.26

![Scheme 1.26](image)
processes. Limited examples also make use of zinc/titanium(I) chloride mixtures,80 triethylphosphine-based titanium reagents,81 and titanium(IV) chloride/magnesium combinations.82 The advantage of using these titanium-based reagents is that aqueous work-ups are not required, which is important in avoiding hydrolysis and possible isomerization in these labile enol ethers.

The first use of organotitanium complexes was reported using the Tebbe reagent (98).83 Initially the Tebbe reagent was applied to esters as a new method for synthesizing enol ethers from esters.78 A protocol had not previously been devised for the direct olefination of esters. Thereafter the Tebbe reagent was applied toward 5 and 6-membered exocyclic enol ether synthesis (Scheme 1.27).84 Wilcox manufactured exocyclic enol ethers for use in C-glycoside synthesis. Wilcox used Tebbe’s reagent (98) to convert lactone 97 into exocyclic enol ether 99 in high yield, thus validating use of the Tebbe reagent towards the synthesis of these moieties.

Scheme 1.27

Use of Tebbe reagent towards the synthesis of enol ether 101 however, resulted in unwanted, hydrolyzed products. Application of Tebbe reagent to bicyclic γ-lactone 100 yielded unexpected products 102 and 103 (Scheme 1.28).85 Here, initial formation of the enol ether 101 was quickly followed by hydrolysis to give alcohol 102. Ring-opening of bicycle 102 leads to ketone 103, which subsequently undergoes a second methylenation to provide biproduct 104.
The Tebbe reagent has generally been effective toward the synthesis of exo enol ether, however there are several drawbacks of this method. The Tebbe reagent is relatively unstable and must be synthesized just prior to use from trimethyl aluminum and titanocene dichloride. The reagent also contains aluminum resulting in manufacture of aluminum salts after product synthesis. These aluminum salts can be difficult to remove from the product mixture, resulting in lower yields.

An alternative protocol for lactone olefination was developed by Petasis. This method employed the use of dimethyltitanocene (106), which can be easily prepared from titanocenedichloride (105) and methyllithium in either diethylether or toluene (Scheme 1.29). Benefits of using the Petasis reagent over Tebbe’s reagent include a shorter, less expensive preparation, longer shelf life (when stored as a solution in THF or toluene), enhanced stability, and a lack of residual aluminum reagents.
Like Tebbe, the Petasis olefination has been used successfully for the conversion of aldehydes, ketones, esters, and lactones to their corresponding olefins. Because lactones and esters are less reactive than ketones or aldehydes, the olefination of these functional groups occurred over a longer period of time. Petasis discovered that methylenation of lactones and esters was optimized by using two equivalents of dimethyltitanocene.

A number of different types of lactones are capable of undergoing Petasis olefination. Examples of 5, 13, and 6-membered lactones that have been converted to exo enol ethers using the Petasis olefination method are shown in Table 1.2. Lactone 107 was converted to exo enol ether.

\[\text{Table 1.2: Petasis Olefination of Lactones} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lactone</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>41%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>70%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>80%</td>
</tr>
</tbody>
</table>
ether 108 in moderate yield while the 13-membered lactone 109 provided enol ether 110 in fairly good yield. Petasis olefination was also effective in converting aromatic-containing lactone, dihydrocoumarin 111, to exocyclic enol ether 112.

The mechanism of the Petasis reaction was first proposed by Petasis. Petasis proposed that olefination occurred through a mechanism involving acyclic intermediates (Scheme 1.30). It was theorized that dimethyl titanocene 106 complexes with the ester carbonyl. Complexation is

\[
\text{Scheme 1.30}
\]

followed by migratory insertion of the ester into the titanium complex, which provides acyclic intermediate 113. This insertion involves methyl transfer from dimethyl titanocene 106 to the ester. Reductive elimination of titanium complex 113 results in the loss of methane and production of enol ether 114 and titanoceneoxide 115. By this mechanism, complexation is viewed to be the rate-determining step. Therefore the reaction kinetics should be second order and based on both the concentration of ethyl acetate and titanocene dichloride.

Petasis based his mechanistic hypothesis on his deuterium labeling studies. Hydrogen/deuterium scrambling occurred both in reactions of protio dodecyl acetate with \(\text{Cp}_2\text{Ti(CD}_3)_2 \) and dodecyl acetate-\(d_3 \) with \(\text{Cp}_2\text{Ti(CH}_3)_2 \). In both cases, Petasis’s proposed mechanism accounts for deuterium incorporation into the product or methane biproduct respectively. In either deuterium experiment, once methyl transfer is complete and intermediary complex 113 is formed, there is a 50% chance that the deuterated methyl group is transferred to the enol ether product or methane biproduct.
Hughes88 and Eberlin89 have each performed additional experiments that refute Petasis’s proposed olefination mechanism. Hughes proposed that enol ether \textbf{114} was formed through titanium carbene intermediate \textbf{116} (Scheme 1.31). Reductive elimination of methane from dimethyl titanocene \textbf{106} results in formation of titanium carbene species \textbf{116}. Addition of an ester to carbene \textbf{116} yields oxatitanocycle \textbf{117}. Subsequent retrocyclization of cyclic intermediate \textbf{117} provides enol ether \textbf{114} and titanoceneoxide \textbf{115}. Research performed by Eberlin supported the Hughes mechanism by detecting protonated versions of oxatitanacyclo \textbf{117} using tandem mass spectrometry.90

\textit{Scheme 1.31}

![Scheme 1.31](image)

Both isotopic labeling studies and kinetic experiments provided evidence for the revised Petasis mechanism. The reaction of ethyl acetate, 13C labeled at the C\textsubscript{2} position, with dimethyl titanocene yielded products that did not incorporate 13C at the methylene carbon.89 This evidence supports the Hughes’ methylenation mechanism. Via the Petasis mechanism there should be a fifty percent incorporation of the labeled carbon in the newly formed olefin. Both methyl groups of intermediate \textbf{113} are equivalent and are equally likely to form the methylene carbon of enol ether \textbf{114}. The Hughes’ proposed mechanism, alternatively, should not incorporate 13C into the methylene position of enol ether \textbf{114} because the labeled carbon is never part of oxatitanocycle intermediate \textbf{117}. The 13C labeling study is a more reliable method for mechanistic study than the deuterium labeling used by Petasis because carbon labeling avoids potential deuterium/hydrogen exchanges with cyclopentyl dienyl hydrogens.90
Furthermore, kinetic studies proved that the reaction is zero order in ethyl acetate, indicating that ethyl acetate is not involved in the rate-determining step. This observation is consistent with a mechanism involving a carbene intermediate (Scheme 1.31), but again does not agree with the Petasis mechanism, which involves both dimethyltitanocene and ethyl acetate in the rate-determining step. For the methyl addition mechanism (Scheme 1.30) the reaction is expected to be first order both in dimethyltitanocene and the ester. Secondly, if the rate-determining step of Petasis olefination is independent of the ester, as proposed by Hughes, reactions of electronically and sterically diverse esters should result in similar reaction rates. The similarity of olefination reaction rates observed by combining both ethyl acetate and phenyl methyl ester with dimethyltitanocene verified that esters aren’t involved in the rate-determining step.

Hughes’ third set of experiments showed a large primary kinetic isotope effects when Cp₂Ti(CD₃)₂ was used in a reaction with both dodecyl acetate and ethyl acetate. The primary kinetic isotope effect that is observed indicates loss of a methyl group in the rate-determining step of the reaction. The carbene olefination mechanism, opposed to the Petasis mechanism, involves the loss of methane from dimethyltitanocene in the rate-determining step. Only a small secondary isotope effect would be expected by the Petasis mechanism. Additionally, observations from this deuterium study did not demonstrate hydrogen/deuterium scrambling, which is consistent with the ¹³C isotope studies.

Finally, the regiochemical outcome of the exo enol ether products is inconsistent with the Petasis mechanism. In this proposed mechanism titanocene intermediate 119 is formed and subsequently eliminated (Scheme 1.32). In theory elimination should occur to form the more
stable trisubstituted endocyclic enol ether 120 as a major product. In practice, little endocyclic enol ether is formed in these reactions, and seems to arise from isomerization of the exocyclic product. A regiospecific carbene-mediated mechanism is more consistent with this observation.

A third titanium catalyzed protocol for one-step olefination was reported using 1,1-dibromoalkanes, zinc, titanium(IV)chloride, and TMEDA (Takai-Lombardo reagent) (Scheme 1.33). In this process the catalyst is generated in situ from commercially available starting materials, which is a major advantage. This method is useful for the conversion of esters to enol ethers, but less so for the olefination of lactones. Interestingly ester 122 was converted to enol ether 123 by Takai-Lombardo olefination, but application of the Tebbe reagent to the same system was unsuccessful. A number of different esters could be converted to enol ethers through Takai alkylidenation (Table 1.3). The reaction provided a mixture of Z-selective
Table 1.3: Manufacture of E versus Z Isomers with Takai-Lombardo Olefination

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R’</th>
<th>R''</th>
<th>Yield (%)</th>
<th>Z/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>86</td>
<td>92/8</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>i-Bu</td>
<td>79</td>
<td>96/4</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>t-Bu</td>
<td>Me</td>
<td>81</td>
<td>71/29</td>
</tr>
</tbody>
</table>

Stereoisomers. The Z-isomer formed preferentially to minimize the steric repulsion between R and R’ groups n olefin 125. As the size of the R or R’’ groups increase, the selectivity increases, which is observed when the R’’ group is changed from a methyl to a iso-butyl group (Table 1.3, entries 1 and 2). The opposite affect occurs when the size of the R’ group is increased. When R’ is changed from methyl to tert-butyl the Z/E selectivity decreased because a competing steric repulsion exists between the R’’ and R’ groups, increasing the formation of the E isomer (Table 1.3, entries 1 and 3).

Use of this methodology toward exo enol ether synthesis is complicated by hydrolysis. Significant amounts of hydrolysis products 128 were formed in addition to the desired, substituted exocyclic enol ethers 127 (Scheme 1.34). The Z/E stereoselectivity of this process is similar to that seen for the Takai alkylidenation of esters (Table 5.1). Currently there are no reports of simple methylenetetrahydropyran preparation using the Takai-Lombardo protocol.
In a related process, Takeda reported the synthesis of substituted enol ethers from thioacetals (Scheme 1.35). In this olefination process, titanium species 130 was synthesized from triethyl phosphite and titanocene dichloride. Complex 130 was combined with dithioacetals and carbonyl-containing compounds to yield the corresponding olefins.

This methodology proved useful with transforming aldehydes, ketones, esters, and lactones into olefins and is effective for synthesizing conjugated dienes with modest selectivity based on steric repulsion, similar to the Takai examples. Only the synthesis of tri- (131 and 132) and tetra-substituted (133) exocyclic enol ethers were demonstrated. This process was also used to prepare geminally disubstituted alkenes 135 from ketone 134. The formation of simple enol ethers like 2 was not reported in the communication.

Scheme 1.35

This reaction could proceed though one of two pathways. The first proposed mechanism (Path A, Scheme 1.36) involves the addition of dithiane 136 to the phosphate-titanium complex, which is accompanied with sulfur-titaniuim complex removal, resulting in formation of intermed-
Scheme 1.36

Path A

\[
\begin{align*}
136 & \quad \text{RS}_2 \quad \text{SR} \\
\text{Cp}_2\text{Ti}(\text{P(OEt)}_3)_2 & \quad (2 \text{ eq}) \\
\text{RS}_2 \quad \text{SR} & \quad \rightarrow \\
137 & \quad \text{R}_4 \\
\text{O} & \quad \rightarrow \\
138 & \quad \text{O} \\
\text{Cp}_2\text{Ti} & \quad \rightarrow \\
139 & \quad \text{R}_3 \\
\end{align*}
\]

Path B

\[
\begin{align*}
136 & \quad \text{RS}_2 \quad \text{SR} \\
\text{Cp}_2\text{Ti}(\text{P(OEt)}_3)_2 & \quad (2 \text{ eq}) \\
140 & \quad \text{RS}_2 \quad \text{SR} \\
\text{O} & \quad \rightarrow \\
141 & \quad \text{R}_1 \\
\text{Cp}_2\text{Ti} & \quad \rightarrow \\
139 & \quad \text{R}_3 \\
\end{align*}
\]

i ate 137. Addition of complex 137 with a carbonyl creates oxatitanocyclobutane intermediate 138. Intermediate 138 undergoes anti 2+2 addition to yield olefin 139 and titanocene oxide. An alternate proposed pathway (Path B, Scheme 1.36) proceeds through insertion of two equivalents of the titanium complex into the carbon sulfur bonds of dithiane 136. Addition of this gem-dimetallic species to a carbonyl yields intermediate 140, which undergoes elimination to olefin 139.

More recently, a CH₂Cl₂-Mg-TiCl₄-THF system has been devised for the conversion of esters into their corresponding olefinated products. This process involves a dichloromethane-derived methylene transfer to an ester through use of a bimetallic complex (Mg-TiCl₄). Although this process has not been thoroughly studied for its use on lactones, dihydrocoumarin 111 was successfully converted to the corresponding exocyclic enol ether 112 by this method (Scheme 1.37). Initially, only a 40% yield of enol ether 112 was isolated due to unwanted isomerization. Altering the solvent system from THF to 50% THF and 50% toluene, however, produced desired product 112 in good yield.

Scheme 1.37

\[
\begin{align*}
\text{111} & \quad \text{CH}_2\text{Cl}_2, \text{TiCl}_4, \text{Mg}^6 \\
\text{THF, toluene} & \quad 82\% \\
\text{112} & \\
\end{align*}
\]
The synthesis of exo enol ethers is key towards our methodology studies. The synthetic methods used by our group focus mainly on elimination and titanium-mediated olefination processes. Elimination is used as one of the methods, because access to the corresponding precursors is fairly straightforward and works with our synthetic strategy. Petasis olefination is also applied to a number of lactones, providing exo-enol ethers for the methodology studies. Petasis olefination is utilized for several reasons: The process can be applied to a wide variety of lactones without altering reaction kinetics, the methylenating reagent is relatively stable when properly stored, and the lactone precursors are generally stable intermediates.

1.4 Reactions of 2-Methylenetetrahydropyrans

Although exocyclic enol ethers are portrayed as labile functional groups that are prone to isomerization and hydrolysis, a wide variety of reactions have been applied to these moieties. Often these enol ethers act as alkenes in addition reactions, but have been reported in a number of other bond-forming reactions as well. Exo enol ethers have been repeatedly used as substrates in rearrangements, pericyclic reactions, radical reactions, and have been used as both electrophiles and nucleophiles. The carbon-carbon bond forming techniques of these enol ethers is of special interest to organic chemists, because of the application toward natural product synthesis. The use of 2-methylenetetrahydropyrans as nucleophiles, especially in carbon-carbon bond forming processes, has received limited attention. The research focus in our group is to demonstrate the inherent ability of 2-methylenetetrahydropyrans as nucleophiles in carbon-carbon bond forming reactions.

Addition Reactions

Many of the addition reactions of alkenes can be applied to exocyclic enol ethers. Addition reactions on chiral substrates like exo-glycals can yield stereoselective products due to
chiral induction from the substrate. Addition reactions of enol ethers include hydrogenation, oxidative additions, carbene addition processes, and hydroboration. The addition of carbenes and boron to the enol ether are the most meaningful transformations because these processes facilitate the manufacture of new carbon-carbon bonds.

The addition of hydrogen to exo enol ethers results in formation of the corresponding tetrahydropyran. Hydrogenation proceeds stereoselectively from the less hindered face of the 2-methylenetetrahydropyran. Typical reduction conditions are suitable for exo enol ether hydrogenation and include the use of palladium, rhodium, platinum, nickel, and enationselective ruthenium binol-derived catalysts.

Oxidative additions to exo enol ethers include epoxidation and dihydroxylation processes. Exo enol ether derived epoxides are synthesized using standard conditions (mCPBA or dimethyldioxirane) and can be subsequently subjected to nucleophilic attack, affording the corresponding alcohols. An intramolecular example of this process involves epoxidation of enol ether 142 (Scheme 1.38). Epoxidation occurs via in situ formation of methyl(trifluoromethyl) dioxirane from oxone and 1,1,1-trifluoroacetone to afford epoxide 147. Subsequent hydrolysis of oxonium ion 144, resulting from the opening of epoxide 143 yields diol 145. Concomitant oxonium ion formation and methanol elimination provides
intermediate 146. Intramolecular attack of the oxonium ion by the primary alcohol provided bicycle 147.

Metal-mediated dihydroxylations of exo enol ethers have been reported using osmium and ruthenium metals. Osmylation of exo-glycal 148 yielded epimeric diol 149, which was isolated as the hemiketal rather than the ring-opened ketone isomer (Scheme 1.39). Use of ruthenium(III) chloride and sodium periodate also provided dihydroxylated products. Under these oxidative conditions, enol ether 150 was converted to diol 151. (Scheme 1.40).

Addition occurred to the top face of 2-methylenetetrahydropyran 150, opposite to the axial C₆ methoxy substituent. Cyclization by silica gel chromatography, and DBU-induced rearrangement afforded bicycle 153, which could be used as a synthetic precursor to zaragozic acid natural products.

Carbene additions to exocyclic enol ethers are effective methods of carbon-carbon bond formation. Simmons-Smith conditions, addition of dihalocarbenes derived from chloroform or
bromoform,¹⁰⁵ and metal-mediated carbene additions¹⁰⁶ all afforded the corresponding cyclopropanes which were studied for their biological activity or could be carried on to more complex natural products. Robinson et al. seeked the discovery of new SGLT2 inhibitors that prevent re-uptake of filtered glucose from pro-urate and therefore aid in the treatment and prevention of diabetes.¹⁰⁵ The researchers made modifications to the glycoside portion of dapagliflozin, a diabetes drug candidate in phase 3 clinical trials, hoping to discover additional drug targets. As part of this effort, spirocyclopropyl tetrahydropyran 155 was synthesized from enol ether 154 under standard Simmons-Smith conditions (Scheme 1.41). Although no yield was reported for this step, the biological activity of spirocyclopropane 155 was evaluated. Spirocyclopropane 155 displayed potent activity against SGLT with an IC⁵₀ value of 3.0 nM. In spite of the high bioactivity, the short half-life of this molecule, when applied to live rat models, prevented further advancement of this molecule as a drug target.

Metal-catalyzed cyclopropanation of exo enol ethers results in formation of spiro 5,6-ring systems after subsequent modification. Cyclopropanation of enol ether 142 with ethyl diazoacetate and catalytic copper afforded cyclopropane 156 as a mixture of 4 diastereomers (Scheme 1.42).¹⁰⁷ Cyclopropane 156 was subsequently converted to 5,6 spiroketal 160 through reduction, oxidation, and Lewis acid-induced ring enlargement. LiAlH₄ reduction of cyclopropane 156 led to the corresponding primary alcohol 157. Oxidation of alcohol 157
yielded aldehyde 158, which was treated \textit{in situ} with a Lewis acid catalyst [Yb(OTf)$_3$] to provide the linear, zwitterionic intermediate 159. Intramolecular addition of the enolate from the less hindered, top face solely produced spiroketal 160 as the product. This methodology proved to be an effective way to make various 5,6-spiroketals from exo enol ethers via the formation of new carbon-carbon bonds. This study is an important entry towards the manufacture of 5,6-spiroketals, which are functional groups prevalent in many natural products.

Addition of boron to exocyclic enol ethers is a highly versatile addition process. Not only can these boron species be oxidized to primary alcohols, but they can also be used as coupling partners in metal-mediated coupling reactions. Hydroboration and oxidative workup of enol ether 161 resulted in alcohol 162 (55\%) (Scheme 1.43).55 Tetrahydropyranyl alcohol 162 resulted as the major product because boron approached the tetrahydropyranyl double bond from the opposite face of the adjacent methyl group.

Exocyclic enol ethers are hydroborated and used as coupling partners in Suzuki coupling.107 This is an effective carbon bond forming process that extends the utility of exocyclic enol ethers. Enol ethers are readily used to couple fragments together, to make larger,
more complex molecules. Thus, the hydroboration and subsequent Suzuki coupling of enol ethers has proven to be a very convergent synthetic process toward natural product synthesis.

Scheme 1.43

Suzuki-Miyaura cross coupling of an exocyclic enol ether was utilized in the first reported synthesis of brevisin (Scheme 1.44). Hydroboration of 2-methylene tetrahydropyran 163 with 9-BBN gave the corresponding alkylborane, which was treated with phosphonate 164 in the presence of catalytic palladium and cesium carbonate in situ to provide tetrahydropyran 165. Tetrahydropyranyl intermediate 165 was later carried on to form the ABC ring system of Brevisin.

Scheme 1.44

Suzuki coupling of an enol ether to a vinyl triflate was used as a key step in Nicalou’s synthesis of the GHIJKLMNO ring domain of maitotoxin (Scheme 1.45). Maitotoxin is a very large secondary metabolite possessing high levels of toxicity. Exo enol ether 166 was hydroborated and subsequently coupled to vinyl triflate 167 under palladium catalysis. Suzuki-coupled product 168 was produced, which formed the carbon framework for the GIJ ring system of maitotoxin.
Work towards the manufacture of gambierol has utilized B-alkyl Suzuki coupling of exo enol ethers in the synthetic approach. Gambierol is a marine polyether toxin isolated from dinoflagellate *Gambierdiscus toxicus*. This tetrahydropyranyl-containing natural product demonstrates toxicity against mice with LD$_{50}$ values of 50 µg/kg. Sasaki et al. stereoselectively synthesized the FGH ring system of this natural product (172), using a Suzuki coupling to obtain the required carbon framework (Scheme 1.46). Hydroboration of enol ether 169 was followed by palladium catalyzed addition of enol phosphonate 170 to afford cross coupled-product 171 in excellent yield. Thus, the Suzuki coupling of fragments 169 and 170 successfully formed the cyclization precursor 172 of the FGH ring system of gambierol.
Rearrangements

Enol ethers have been used in several types of rearrangement reactions. Although the reported rearrangements do not directly create new carbon-carbon bonds or couple large carbon fragments together, they serve as methods to make alternative functional groups from 2-methylenetetrahydropyrans. Rearrangements of 2-methylenetetrahydropyrans are used to synthesize functionalized cyclohexanones, cyclohexenes, tetrahydropyrans, and tetrahydrofurans through Ferrier carbocyclic rearrangements, metal catalyzed rearrangement, olefin metathesis, and hydrolysis/rearrangement reactions.

Ferrier carbocyclic rearrangement of exocyclic enol ethers provides substituted cyclohexenones. Ferrier rearrangement involves the coordination of the exo enol ether to a mercury salt, which is followed by ring-opening and ring-closing processes to afford β-ketols. A proposed mechanism for this reaction is shown in Scheme 1.47. Hemiacetal 174 is formed through hydoxymercuration of olefin 173. Loss of methanol is followed by intramolecular cyclization of diketone intermediate 176 to provide β-hydroxy ketone 177.

Scheme 1.47

This process was first used toward the manufacture of cyclitols from carbohydrates (Scheme 1.48). Treatment of enol ether 142 with mercury(II) chloride in aqueous acetone afforded cyclohexanone 178 as a mixture of epimeric diastereomers (3:1) in 80% yield. This reaction yielded low diastereoselective formation of the new alcohol chiral center. Elimination
of the β-hydroxyl group to form the corresponding enone avoids the formation of diastereomeric mixtures while maintaining a reactive functionality.

Scheme 1.48

\[
\begin{array}{c}
\text{BnO} \text{O} \text{O} \text{Bn} \\
\text{MeO} \text{O} \\
\end{array}
\xrightarrow{\text{HgCl}_2, \text{acetone, H}_2\text{O}}
\begin{array}{c}
\text{BnO} \text{O} \text{Bn} \\
\text{HO} \\
\end{array}
\]

80% 3:1

Ferrier carbocyclization followed by β-elimination is used towards the manufacture of α,β-unsaturated cyclohexanones. The transformation of exo enol ethers to enones has been utilized toward the manufacture of bioactive substrates such as PIMs (a glycolipid component of cell walls) and aminoglycosides (a large family of molecules with antibiotic activities) as well as bioactive natural products. A formal synthesis of paniculide A, a highly oxygenated bisabolene that was isolated from the culture broth of *Andrographis paniculata*, involves the formation of enone 180 from exo enol ether 179. After Ferrier carbocyclion, β-elimination of the intermediary alcohol afforded enone 180, which was further manipulated to provide a formal synthesis of paniculide A (181) (Scheme 1.49).

Ferrier rearrangement has also been used towards a formal synthesis of (-)-morphine, a well-known pharmaceutical alkaloid isolated from opium poppy (Scheme 1.50). Mercury-metal catalyzed cyclization of enol ether 182 followed by mesylation

Scheme 1.49

\[
\begin{array}{c}
\text{MOMO} \text{O} \text{O} \text{OPMB} \\
\text{179} \\
\end{array}
\xrightarrow{\text{Hg(OCOCF}_3)_2 (5 \text{ mol } \%)}
\begin{array}{c}
\text{MOMO} \text{O} \text{OPMB} \\
\text{180} \\
\end{array}
\xrightarrow{\text{MsCl, Et}_3\text{N, CH}_2\text{Cl}_2, 67\%}
\begin{array}{c}
\text{HO} \\
\text{paniculide A (181)} \\
\end{array}
\]
of the newly formed β-hydroxy alcohol yielded cyclohexenone 183. Enone 183 provided (-)-dihydroisocodeine (184), a known morphine precursor,119 after subsequent synthetic manipulations.

Substituted enol ethers have undergone palladium-catalyzed rearrangements. 5-membered exocyclic enol ethers, stabilized by pendant electron-withdrawing groups were converted to cyclopentanone products.120 The reaction involves coordination of the palladium catalyst to the pendant vinyl group of stabilized enol ether 185. Intramolecular, back-side attack of the π-allyl palladium species by the enolate provides the expected stereochemistry at the C\textsubscript{3} position of cyclopentanone 187 (Scheme 1.51).

Ionization of 185b is favored over the ionization of 185a due to unfavorable eclipsing interactions associated with complex 186a. Therefore ionization of 185b leads to the more favorable intermediate 186b with an inversion of the stereochemistry. At this point palladium-allyl complex 186b can either undergo bond rotations to form compounds 188, 189, and 190 via complex 186c or ring closure to afford cyclopentanone 187. Since enolate addition to the palladium complex is faster than syn-anti conversions, production of cyclopentanone 187 predominates.
More recently, 6-membered enol ethers have been employed in this reaction (Scheme 1.52).121 Cyclohexanone \textbf{193} was prepared stereoselectively from exocyclic enol ethers using palladium acetate (10 mol\%) and tributyl phosphine via a [1,3]-O-to-C rearrangement. The observed \textit{trans}-relative stereochemistry arises from chair transition state \textbf{192} where the phenyl and allyl groups are held in equatorial positions.
Exocyclic enol ethers containing electron-withdrawing groups at the C₆ position have been cyclized using Lewis acids to form hydroxy-cyclohexanes. Alcohols 196 and 197 are formed as a diastereomeric mixture from enol ether 194 (Scheme 1.53). This reaction occurs by transposition of the exocyclic carbon atom with the enol ether oxygen followed by hydride delivery to afford the cyclohexanyl products with retention of stereochemistry. By a similar process, enol ethers can also be converted to linear alcohols. Enol ether 198 was hydroaluminated and subsequently eliminated to yield alcohol 199 using tri-isobutyl aluminum (Scheme 1.54).
Ring closing metathesis of exocyclic enol ethers using Grubbs first generation catalyst yields fused ether ring systems like 201 from corresponding dienes 200 (Scheme 1.55).124 This methodology, is very effective at synthesizing 7 and 8-membered rings, which otherwise are difficult to access.

\textit{Scheme 1.55}

Exo enol ethers containing C\textsubscript{3} alcohols can undergo rearrangement to the corresponding keto-tetrahydrofurans (Scheme 1.56).125 Enol ether 202, after subjection to acidic conditions, produced furanose 203 as an anomic mixture via hydrolysis and subsequent rearrangement. This ring contraction was effective in manufacturing a precursor toward the synthesis of hygromycin A (204).

\textit{Scheme 1.56}

\textbf{Pericyclic Reactions}

Exocyclic enol ethers are used as partners in pericyclic reactions such as the Hetero-Diels Alder, Povarov, [3+2], and 1,3 dipolar cycloadditions. These carbon bond-forming processes are
principally used toward spiroketal synthesis. Claisen rearrangements of exo enol ethers have also been reported and are effective methods toward the manufacture of dihydropyrans and cyclooctanes.

The Inverse electron demand Hetero-Diels-Alder reaction of exo enol ethers is effective for the production of spirocyclic tetrahydropyrans. These subunits are present in a variety of polyether antibiotics and their analogs. Ireland first described the use of 2-methylene tetrahydropyrans 2 and tetrahydrofurans 92 as dienophile substrates. The cycloaddition of these enol ethers with acrolein 205 yielded the corresponding spiroketais 206 and 207 in good yields (Scheme 1.57). Use of heat or Lewis acid catalysis in this reaction rapidly led to isomerization of the exo enol ethers to the endocyclic enol ethers, however, reaction at room temperature over a number of days with 1 mol % hydroquinone yielded the desired spiroketais 206 and 207 in large scale. Oxidative ring contraction of spiroketal 207 and successive manipulations yielded racemic chalcogran 208, the principal aggregation phormone of the L. chalcographus beetle, a known pest of the Norway spruce.

Scheme 1.57

The Hetero-Diels-Alder reaction of exo enol ethers has been well utilized in the literature because it is an effective method for stereoselective spiroketal synthesis that tolerates a variety of different dienes, including those that are hindered. Palasz demonstrated that many hindered dienes work well in this reaction, and the application of diene 209 to the Diels-Alder reaction
proved interesting because two spiro centers could be stereoselectively made in one step (Scheme 1.58). One diastereomer was isolated in 89% yield, however the stereochemistry of that product could not be identified. Fused uracil-spirotetrahydropyranyl products like 210 were manufactured because they are reported to have a wide range of biological properties and are otherwise challenging to synthesize.

Scheme 1.58

Hetero-Diels-Alder reactions have also been performed on sulfur-containing dienes. The reaction of exo-glycal 36 with diketone 212 resulted in spiroketals 213 and 214 as a 2.5 to 1 mixture of diastereomers (Scheme 1.59). Pyridine was used to form the intermediate 212 from diketone 211 in-situ. This diene was then reacted with exo enol ether 36 to yield the inverse-electron demand hetero-Diels Alder products.

Scheme 1.59
Exo enol ethers can also be used as partners in the Povarov reaction, which is a [4+2] cycloaddition between an aromatic Schiff base and an activated olefin.129 The Povarov reaction of exo enol ethers was used to synthesize sugar-quinoline adducts that could potentially have high biological activity. The sugar portion could facilitate drug delivery and aid in DNA intercalation of the quinoline ring. The Pararov reaction between exo-glycal 36 and imine 215, under Lewis acid conditions, provided spiro-intermediate 216 (Scheme 1.60).130 Subsequent oxidation with manganese oxide resulted in cleavage of the spiro-ring and forms quinoline 217. This process was driven by the aromatization of the tetrahydroquinoline portion of intermediate 216.

Synthetic efforts towards the rubromycins was performed using a [3+2] cycloaddition of exo enol ethers and a β-hydroxy enone. The rubromycins represent an interesting class of bioactive spiroketal natural products that are found to inhibit Gram-positive bacteria.131 The Pettus group employed the cyclization of dihydrocoumarin-derived enol ether 112 and β-hydroxy enone 218 towards a model system study of the rubromycins (Scheme 1.61).132 A zwitterion is formed from enone 218, which successively adds to enol ether 112 via a [3+2]
cycloaddition to provide spiroketal 219 with no mention of diastereoselectivity. Further elaboration of spiroketal 219 provided naphthoquinone 220, which completed the model-system study for γ-rubromycin (221).

Scheme 1.61

The [1,3]-dipolar cycloaddition is a synthetically useful method toward carbon-carbon bond formation. This cycloaddition has been applied to exo enol ethers toward the formation of spiroisoxazolines, which are biologically active substrates. Spiroisoxazolines 223 were made from exo-glycal 222 through a [1,3]-dipolar cycloaddition with arynitrideoxides (Table 1.4).133

Table 1.4: [1,3]-Dipolar Cycloaddition of Enol Ether 222

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Yield of 224 (%)</th>
<th>Yield of 225 (%)</th>
<th>Kᵢ of 225 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p-MeO-Ph</td>
<td>83</td>
<td>98</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>p-Me-Ph</td>
<td>95</td>
<td>93</td>
<td>7.9</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>99</td>
<td>97</td>
<td>19.6</td>
</tr>
<tr>
<td>4</td>
<td>p-NO₂-Ph</td>
<td>94</td>
<td>99</td>
<td>92.5</td>
</tr>
<tr>
<td>5</td>
<td>2-Naphthyl</td>
<td>94</td>
<td>78</td>
<td>1.7</td>
</tr>
</tbody>
</table>
The anomerically stabilized sprioiisoxazoline isomers were exclusively produced in excellent yields. Deprotection of the alcohols yielded triols 224, which were subsequently evaluated for their biological activity against glycogen phosphorylase. Inhibitors of glycogen phosphorylase are possible drug candidates toward glycemic control in type-2 diabetes. The biological activity was measured by K_i values, and the 2-naphthyl derivative was found to have very high inhibitory effects toward glycogen phosphorylase, making it a likely drug candidate (entry 5, Table 1.4).

The [1,3] dipolar cycloaddition of bis-arylnitride oxides have also been reported to form bi-directional bis-spiroketal adducts for use as possible ligands in enantioselective catalyzed reactions (Scheme 1.62). Two equivalents of enol ether 222 were combined with bis-arylnitrile oxide 225 to provide bis-isoxazoline 226 as one diastereomer. A pyridine version of the bis-isoxazoline was successfully synthesized as well, in 71% yield. Application of bis-isoxazoline 226 as a ligand in the Cu(I)-catalyzed imine alkynylation reaction of imine 227 with phenyl acetylene 228 provided the desired alkyne products, but with poor enantioselectivity (Scheme 1.63).
Claisen rearrangements have been performed on olefin-containing enol ethers to form cyclooctenes (Scheme 1.64). This [3,3] sigmatropic rearrangement proceeds under Lewis acid catalysis, upon heating, or by microwave irradiation. This method was used to form the 7-8 fused ring system in micrandilactone A when ring-closing metathesis proved unsuccessful. Lewis acid addition to exo enol ether 230 yielded 7-8 ring system 232 as a single diastereomer after undergoing chair-like transition state 231. Subsequent oxidation of alcohol 232 yielded ketone 233 in 71% over two steps.

Claisen-Ireland rearrangements have been carried out using sugar derivatives (Scheme 1.65). Exocyclic enol ether 234 was transformed under basic conditions to enol ether 235 with little diastereoselectivity. This served as a method for the construction of β-C-glycosides.

Radical Reactions

Exocyclic enol ethers can react with radicals to give sulfides and create carbon-carbon bonds in a synthetically convergent manner. Typically, radical donors 237 react with an enol
ether 236 to form anomeric radicals 238. The anomeric radical will perform an axial capture of a hydrogen to yield diastereoselective tetrahydropyranyl products at that center (Scheme 1.66). The stereochemical outcome of the newly formed radical donor stereocenter is not always as straightforward.

Scheme 1.66

The coupling of exocyclic enol ethers to thiols has been reported using a radical process. This chemistry was used to manufacture carbohydrate mimics for biological studies and leads for new therapeutics. Exo enol ethers were coupled to anomeric sugar thiols 241 (Scheme 1.67).

Scheme 1.67

This light-induced radical reaction, utilizing 2,2-dimethoxy-2-phenylacetophenone (242) as photoinitiator, provided 1,6-linked S-disaccharide 243 in good yield with high diastereoselectivity at the newly formed anomeric carbon. Addition of thiol 241 to exo-glycal 240 resulted in formation of radical intermediate 243. Addition of hydrogen from the less hindered, bottom face of the intermediate is favorable, producing diastereomer 244.
The coupling of thiols to enol ethers has also been reported by AIBN initiation. Exocyclic glycal 36 and thiolacetate produced thiolacetate 245 (Scheme 1.68). Tetrahydropyran 245 was exclusively isolated as one isomer, based on the previously described steric argument.

Scheme 1.68

![Scheme 1.68](image)

Exocyclic enol lactones have been transformed into alkylated lactones through reactions mediated by triphenylsilane and thiol catalysts (Scheme 1.69). Racemic products were produced with triphenylsilanethiol as the catalyst (5 mole %) and di-"butyl hyponitrate acting as the radical initiator. Stereoselective products were created with chiral catalyst 248 (10 mol%) and radical initiator dilauroyl peroxide.

Scheme 1.69

![Scheme 1.69](image)

The proposed propagation cycle is outlined in Scheme 1.70. The "butyloxy radical abstracts a hydrogen from triphenylsilane to produce a chain-carrying silyl radical. Abstraction of a halide by the silyl radical produces an intermediate that adds to an electron-rich alkene. Subsequent hydrogen abstraction from a thiol produces the alkene addition product and a sulfide radical. The sulfide radical then facilitates manufacture of the initial silyl catalyst. Absence of the thiol catalyst caused little to no product formation.
Intramolecular radical addition has been facilitated by silane tethers to make carbon-carbon bonds. The use of a silane tether aids in the formation of the new carbon-carbon bond because the reaction proceeds through an intramolecular process rather than an unfavorable intermolecular nucleophilic addition. Myers reported this methodology in the synthesis of the antibiotic tunicaminy luracil (252) (Scheme 1.71). The carbon-selenium bond of enol ether 250 underwent radical cleavage. Subsequent addition of the carbon radical to the enol ether provided tetrahydropyran 251 after axial, anomeric hydrogen capture. C₅-stereocenter formation was controlled by the reaction solvent system. Toluene provided the undesired C₅-diastereomer,
while acetonitrile solvent produced tetrahydropyran 251 in 62% yield. Successive deprotection of the amine and hydroxyl functional groups rendered tunicaminylluracil. This sequence proved to be a highly convergent method for natural product synthesis.

Silyl tethers have been similarly used towards disaccharide synthesis. This cyclization reaction was used to manufacture bioactive disaccharides (Scheme 1.72). In this transition, an alkyl iodide is used as a progenitor of a radical donor. Alcohol 254 is coupled to enol ether 253 through a silyl tether. A 8-endo-trig cyclization is mediated by tributyltinhydride to form tetrahydropyran 256, in 37% yield from iodide 254, after de-tethering. The stereochemistry of the C4 stereocenter is expected on a steric basis because cyclohexyl and non-anomeric hexopyranosyl radicals prefer equatorial addition when there are adjacent equatorial substituents.

Scheme 1.72

Silyl-tethered radical processes have been used towards β-hydroxy tetrahydropyran synthesis. Enol ether 257 was converted to Diol 261, albeit in low yield, through hydrohydroxymethylation, a process initially applied to allylic alcohols by Nishiyama and Stork (Scheme 1.73). Hydroxy-exo enol ether 257 is transformed into silyl ether 258 and
subsequently treated with tributylstananne to yield intermediate 259. The silylmethylene radical successively cyclizes to the 5-membered siloxy ring 260. Tetrahydropyranyl diol 261 resulted from oxidative cleavage via a Tamao-Kumada process.\(^{149}\)

Scheme 1.73

![Scheme 1.73](image)

Use as Electrophiles

Amongst the uses of exocyclic enol ethers is their role as electrophiles. Nitrogen and oxygen nucleophilic additions occur at the anomeric carbon of exocyclic enol ethers. Both indole and ketal products have been synthesized by this method. The manufacture of these functional groups is important toward the synthesis of biologically active substrates.

Exocyclic enol ethers are assumed to be intermediates in the hydrohydrazination-Fisher indolization tandem reaction of arylhydrazines with acetylenic alcohols (Scheme 1.74).\(^ {150}\) A general method for the fabrication of these moieties is important towards the synthesis of indole-based pharmaceuticals like serotonin, indomethacin, and sumitrapant. The mechanism of this hydrohydrazination-Fisher indolization proceeds through an exo-enol ether intermediate. This reaction pathway is confirmed by using the corresponding exo enol ethers as reaction components rather than acetylenic alcohols.
Scheme 1.74

Acetylenic alcohol 262 forms a complex with a gold catalyst, which is subsequently cyclized, resulting in *in-situ* exo enol ether formation. Nucleophilic addition of hydrazine 263 to the enol ether intermediate is followed by *p*-toluenesulfonic acid induced hydration and subsequent Fisher indolization to yield indole 264. This nucleophilic addition of hydrazine demonstrates the use of exocyclic enol ethers as electrophiles for nitrogen addition.

To determine the plausibility of an exocyclic enol ether intermediate, 2-methylenetetrahydropyran 2 was subjected to only Fisher-indolization conditions. Addition of hydrazine 263 to enol ether 2 produced indole 264. The creation of the same indole product from either addition of an exo enol ether or acetylenic alcohol indicates that the exo enol ether is indeed the Fisher-indolization precursor in this reaction, whether it is added directly or made *in-situ*. By using acetylenic alcohols as reactants, the enol ether is made and used within the reaction, circumventing the need for isolation of this labile product.

Exo enol ethers have been coupled with numerous alcohols through nucleophilic addition to the anomeric center. In particular, enol ethers have been used for carbohydrate synthesis. The synthesis of carbohydrates and carbohydrate analogs is important because they are biologically active components that mediate cell-cell recognition and moderate behavior of enzymes. Glucose, galactose, and mannose-derived disaccharides have been synthesized by the *O*
glycosidations of exo-glycals with protected glycosides (Scheme 1.75).151 Exclusive formation of the O-glycosylation product 266 results from combining exo-glycal 36 with alcohol 265 under acid catalyzed conditions. Under these thermodynamic conditions, the β-glucoside 266 is formed preferentially.

Scheme 1.75

Use as Nucleophiles

Exo enol ethers have developed as effective nucleophiles and are similar in their reactivity to alkenes. Nucleophilic reactions of the exo olefin include the formation of halonium ions that are successively opened by secondary nucleophile addition and protic or Lewis acid hydrolysis. Less common is the use of exocyclic enol ethers in nucleophilic carbon-carbon bond formation. Examples of these types of transformations include exo-glycal dimerization and addition to an episulfonium ion.

Nucleophilic attack of an electrophilic halogen species by an exo enol ether produces intermediate halonium ions, which undergo nucleophilic attack to yield enol ether addition products. Bromoetherification152 or iodoetherification153 of exo enol ethers 267 and 269 formed racemic ketals 268 and 270 (Scheme 1.76). Similarly, secondary nucleophilic attack of an iodonium ion by azide resulted in the formation of iodide 272 with high levels of regio and stereoselectivity (Scheme 1.77).154 The observed stereoselectivity is due to preferential iodonium ion formation on the β-face of the molecule. In the absence of the C$_3$ hydroxy group,
no selectivity was observed. Other conditions used to manufacture iodides from exo enol ethers include NaNH₃, I₂, and [Bn(Et)₃]Cl,¹⁵⁵ I₂, MeCN,¹⁵⁶ and NIS, H₂O.¹⁵⁷

Scheme 1.76

Elimination of halides formed from exo enol ethers yields haloalkenes. Bromination of enol ether 273 in the presence of Hunig’s base produced allyl bromo-enol ether 275 (Scheme 1.78).¹⁵⁸ Formation of dibromide intermediate 274 was followed by β-elimination of the tertiary bromide to provide bromide 275. The more stable, internal olefin is produced rather than the exocyclic olefin.

Scheme 1.78

Iodo-enol ethers can also be synthesized through the nucleophilic attack of a halogen by an exo enol ether followed by elimination (Scheme 1.79). Iodonium intermediate 277 is directly eliminated as compared to the secondary bromide addition and subsequent elimination of
dibromide 274. Treatment of enol ether 276 with iodonium dicollidine perchlorate leads to oxonium ion intermediate 277. Elimination of a proton from the exocyclic carbon provided iodoenol ether 278 as a mixture of stereoisomers in low yield.

Scheme 1.79

Halo-enol ethers can be prepared by selective iodonium addition/elimination of exo enol ethers using iodonium dicollidinium triflate (Scheme 1.80). Exo-glycal 36 is transformed into iodo enol ether 280 through elimination of oxonium intermediate 279. Stereoselectivity is derived from the conformational preference of the intermediate oxonium ion 279. Abstraction of a proton that is aligned parallel to the oxonium ion pi bonds then provides halo enol ether 280. This proves to be an effective method for synthesizing iodo-enol ether substrates stereoselectively from the corresponding sugar derivatives. Iodo-enol ethers are used as partners in Sonogoshira, Suzuki, and Stille cross coupling reactions.

Scheme 1.80

Addition of water to exocyclic enol ether nucleophiles can be effected under both protic and Lewis acid conditions to yield both hemiketals and keto-products. Treatment of enol ether 281 with p-toluenesulfonic acid provided the expected Markovnikov product 282 (Scheme 1.81). Subjection of exo-glycal 283 with a lanthanum reagent system led to ring-opened
product 285 (Scheme 1.82).163 Hydration of the exocyclic double bond was followed by successive ring opening of hemiketal 284. Hemiketal cleavage proceeds with concomitant loss of methanol to provide keto-aldehyde 285.

\textit{Scheme 1.82}

The use of exocyclic enol ethers as nucleophiles in carbon-carbon bond forming reactions is limited. Dimerization of exoglycal 36 in the presence of a Lewis acid provided bis-tetrahydropyran 287 (Scheme 1.83).164 In this reaction one molecule of the enol ether is acting as a nucleophile while the other is an electrophile. One equivalent of exocyclic enol ether 36 attacks oxonium species 286 formed \textit{in-situ} from another molecule of the enol ether 36 and the
Lewis acid. Water workup leads to the anomeric dimer 287. Schroder’s group detected exo enol ether dimerization products in their research of acid-promoted 1,5-diene cyclizations. A mixture of isomers 289, 290, and 291 resulted upon subjection of pseudo-georgywood (288) to Lewis acidic conditions (Scheme 1.84). Typically the isomer mixture was converted to the most stable constituent, georgywood (291), through addition of catalytic p-toluenesulfonic acid. However, upon standing at room temperature for several weeks the product mixture also produces dimer 293 as a crystalline solid (Scheme 1.85). Addition of enol ether 290 to ketone

Scheme 1.84

\[
\begin{align*}
\text{georgywood (291)} \\
\text{288} \\
\text{Lewis Acid} \\
\text{289} \quad \Rightarrow \quad \text{290}
\end{align*}
\]

\[\text{dr} = 1:1\]

Scheme 1.85
results in formation of oxonium ion intermediate 292. Subsequent elimination and cyclization generates dimer 293 as a 1:1 mixture of E:Z stereoisomers.

The Smoliakova research group demonstrated the nucleophilic properties of exo-glycals for the preparation of β-C-glycosides. Nucleophilic addition of Exo-glycal 36 to episulfonium ion 294 yields oxonium ion 295 (Scheme 1.86). Intermediate 295 was quenched with water to provide hemiketal 296. Other external nucleophiles used in this process included methanol and sodium cyanoborohydride. The observed stereoselectivity of the secondary nucleophilic addition is based upon steric and electronic factors. Nucleophilic addition occurs from the face opposite that of the C₆ substituent to afford the anomerically-stabilized thermodynamic product. This example of exo-glycal nucleophilic addition to episulfonium ions demonstrates exocyclic enol ethers as viable nucleophiles when added to activated, electrophilic systems. The resulting products formed are β-oxygenated tetrahydropyrans, which are useful functional groups toward tetrahydropyranyl natural product synthesis.

With the exception of the dimerization and Smoliakova examples, the research utilizing exocyclic enol ethers as carbon-carbon nucleophiles is nearly non-existent. The research in our group is geared toward showcasing these nucleophilic nature of exocyclic olefins, namely in carbon-carbon bond forming reactions. The research method involves the synthesis of β-hydroxytetrahydropyran and dihydropyran through coupling of 2-methylenetetrahydropyran with aldehydes and ketones. Not only do these reactions demonstrate the use of exo enol ethers
as nucleophiles, but the products produced could also be used as key tetrahydropyranyl ketide intermediates in natural product synthesis.

Two different reactions were studied in order to demonstrate the nucleophilic character of exo enol ethers and their ability to create new carbon bonds: three component coupling (Scheme 1.87) and carbonyl-ene reactions (Scheme 1.86) of 2-methylenetetrahydropyrans. The three-component coupling reaction involves formation of oxonium ion intermediate 297 after nucleophilic attack of the enol ether to an activated aldehyde or ketone. Secondary nucleophile trapping of oxonium ion 297 provided β-hydroxy tetrahydropyrans 298 as diastereomeric mixtures in good yield.

Scheme 1.87

Use of exo enol ethers in the carbonyl ene reaction provided dihydropyrans 299 in excellent yields (Scheme 1.88). Activation of aldehydes and ketones by catalytic zinc(II) chloride (5-20 mol %) and subsequent addition to exo enol ethers produced racemic mixtures of β-hydroxy dihydropyrans. Chiral induction studies have been performed as an extension of this carbonyl-ene reaction. Through examination of chiral exo enol ethers, preferential stereoisomer formation can be determined (Scheme 1.89). Bi-directional studies were also carried out to assess if bis-β-hydroxypyran 304 and trioxadispiroketal 305 could be manufactured from the carbonyl-ene methodology (Scheme 1.90).
Scheme 1.89

\[
\text{R} + \text{O} \xrightarrow{\text{ZnCl}_2} \text{R'} \quad \text{R''}
\]

Scheme 1.90

\[
\text{I} \quad \xrightarrow{\text{ZnCl}_2} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH}
\]

\[
\text{acid}
\]

302

303

304

305
1.4 References

12 Wang, H.; Shuhler, B. J.; Xian, M. *Synlett* **2008**, *17*, 2651.

100 Enright, P. M.; O’Boyle, K. M.; Murphy, P. V. *Org. Lett.* **2000**, *2*, 3929.

103 Taillefumier, C.; Lakhrissi, M.; Chapleur, Y. *Synlett* **1999**, *697*.

Sollogoub, M.; Sinay, P. Molecules 2005, 10, 843.

Chapter 2: Three-Component Coupling Reactions of 2-Methylenetetrahydropyrans

2.1 Overview

Tetrahydropyranyl ketides are present in biologically active natural products. Therefore, new methodologies toward the synthesis of tetrahydropyrans and their analogs are synthetically significant. Our synthetic efforts toward β-hydroxy tetrahydropyrans include the use of exo enol ethers as neutral nucleophiles in a three component coupling reaction (Scheme 2.1). General methods utilizing exocyclic enol ethers as nucleophiles have not been published outside of our reports. Endo enol ethers have been more extensively studied as nucleophiles in carbon-carbon bond-forming reactions and lend argument to the use of enol ethers as neutral nucleophiles. This chapter reviews the use of endocyclic enol ethers as nucleophiles in coupling reactions and discusses the development of our three-component coupling reaction of exocyclic enol ethers.

The three component coupling reaction between 2-methylenetetrahydropyrans 2 and aldehydes or ketones occurs under Lewis acid activation (Scheme 2.1). β-Hydroxy-tetrahydropyrans 298 are produced through addition of nucleophiles to oxonium ion intermediates 297. This reaction demonstrates the nucleophilic nature of exocyclic enol ethers. Reaction conditions that were screened for this process include use of alternative Lewis acids, variation of the reaction stoichiometry, and evaluation of reagent addition times. The scope of the reaction was evaluated by screening different types of 2-methylenetetrahydropyrans and electrophiles.

Scheme 2.1

\[
\begin{array}{c}
\text{2} + \text{R} \xrightarrow{\text{Lewis acid}} \text{297} \xrightarrow{\text{nucleophile}} \text{298}
\end{array}
\]
2.2 Background and Significance

Exocyclic enol ethers have been scarcely used as nucleophiles in carbon-carbon bond-forming reactions, most likely due to the tendency of these systems to undergo isomerization and hydrolysis in the presence of trace acid or heat. Nonetheless chemical transformations can be successfully applied to these moieties as previously discussed. Endocyclic enol ethers have been more extensively studied as nucleophiles in carbon-carbon bond forming processes. These aldol-like reactions typically involve the Lewis-acid catalyzed addition of an endocyclic enol ether to an acetal or aldehyde, followed by secondary nucleophilic attack of the resulting oxonium ion. Such processes have been studied by Mukiyama, Sugimura, and Ghosh. Ghosh later applied three-component coupling strategies towards the synthesis of natural products and biologically active substrates.

Mukiyama initially reported the use of endocyclic enol ethers as nucleophiles in carbon-carbon bond-forming transformations. This methodology employed acetals as electrophiles, which were coupled to electron rich olefins under mild conditions. Olefin substrates included both endocyclic and vinyl ethers, as well as styrene. In most cases the best results were obtained using tin chloride and trimethylsilylchloride as an activator (Table 2.1, entries 1-4, and 6). Yields were optimized for the reaction between enol ether 315 and acetal 307 through use of a different activator, tin trifilate and trityl chloride (entry 5). In the case of tetrahydropyran 306, three adjacent stereocenters were created, giving rise to a complex mixture of diastereomeric products.

Styrene 317 provided a mixture of the desired aldol-like product along with chloride 318. When conditions were modified such that one equivalent of trimethylsilylchloride was used, the corresponding chloride 318 was isolated in 80% yield as the sole product (Table 2.1, entry 6).
Table 2.1: Mukiyama Electrophilic Addition to Dihydropyrans

![Chemical structure](image.png)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Olefin</th>
<th>Acetal</th>
<th>Activator</th>
<th>Product</th>
<th>Yield</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>SnCl₂ + TMSCl(^a)</td>
<td></td>
<td>84</td>
<td>70:14:13:3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>SnCl₂ + TMSCl(^a)</td>
<td></td>
<td>55</td>
<td>75:25</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>SnCl₂ + TMSCl(^a)</td>
<td></td>
<td>64(^b)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>SnCl₂ + TMSCl(^a)</td>
<td></td>
<td>70(^b)</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Sn(OTf)₂ + TrCl(^a)</td>
<td></td>
<td>74(^c)</td>
<td>60:40</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>SnCl₂ + TMSCl(^d)</td>
<td></td>
<td>80</td>
<td>55:45</td>
</tr>
</tbody>
</table>

\(^{a}\)1 eq of SnCl₂ used with 10 mol % TMSCl or TrCl
\(^{b}\)mixture of diastereomers
\(^{c}\)Quenched with NaOMe
\(^{d}\)1 eq of both SnCl₂ and TMSCl used

These results suggest the chloride as a key intermediate in the reaction path (Scheme 2.2). The first step in the reaction mechanism is the activation of acetal 307 by the tin catalyst, resulting in oxonium ion 319. Generation of oxonium intermediate 319 is followed by nucleophilic addition.
of dihydropyran 306, and provides the intermediate chloride 321 after chlorine addition. Chloride 321 is in turn replaced by methoxide to provide tetrahydropyran 308.

Scheme 2.2

A similar methodology was developed by Sugimura whereby enol ethers were combined with aldehydes to yield oxetane substrates. Lewis acid activation of aldose aldehyde derivates 322 was followed by nucleophilic attack of enol ether 323, resulting in zwitterion 324 (Scheme 2.3). Intramolecular addition of the oxide into the oxonium ion provided oxetane 325.

Scheme 2.3

Reaction yields and the extent of Lewis acid loading varied based on substrate. The reaction proceeded in moderate to high yields with enol ethers 326 and 329 and aldehyde 327 (Table 2.2, entries 1 and 2). Use of both cis and trans enol ethers 329 and 331 resulted in similar yields of the same cis product 330 (entries 2 and 3). The reaction yield dropped dramatically with dihydropyran 306 acting as the olefin despite equimolar addition of Lewis acid (entry 4). Aldehydes 333 and 336 were examined for use in the
Table 2.2: Formation of Oxetanes from Enol Ethers

![Reaction Scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Olefin</th>
<th>Eneophile</th>
<th>BF₃-OEt₂ (eq)</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂C=CHOEt</td>
<td>326</td>
<td>0.1</td>
<td>OEt</td>
<td>94%</td>
</tr>
<tr>
<td>2</td>
<td>PhHC=CHOMe</td>
<td>329</td>
<td>0.1</td>
<td>OMe</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>PhHC=CHOMe</td>
<td>331</td>
<td>0.1</td>
<td>Ph</td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>306</td>
<td>1.0</td>
<td></td>
<td>39%</td>
</tr>
<tr>
<td>5</td>
<td>H₂C=CHOEt</td>
<td>326</td>
<td>0.05</td>
<td>Et</td>
<td>64% +</td>
</tr>
<tr>
<td>6</td>
<td>PhHC=CHOMe</td>
<td>329</td>
<td>0.1</td>
<td>Me</td>
<td>21%</td>
</tr>
</tbody>
</table>

Coupling reaction. Aldehyde 333 resulted in a diastereomeric mixture of products and aldehyde 336 produced desired cycloadduct 337 in low yield (entries 5 and 6).

The stereoselective outcome is consistent with Cram’s cyclic chelation model where the nucleophile adds from the less hindered side. Additionally, the same oxetane product 330 was
formed with both the E and Z enol ethers \textbf{329} and \textbf{331}. Both E and Z enol ethers \textbf{329} and \textbf{331} result in similar reaction intermediates \textbf{340} and \textbf{341}. The reaction proceeds preferentially through intermediate \textbf{341} to produce the observed cis product \textbf{330}. Most likely the stereoselective outcome is based on reducing the steric and electronic repulsion between the methoxy group and the sugar side-chain (Scheme 2.4).

\textit{Scheme 2.4}

In 1999, Ghosh reported a three-component coupling methodology towards the synthesis of 2,3-disubstituted tetrahydropyrans and tetrahydrofurans.\cite{Ghosh1999} This reaction employed enol ethers and ethyl glyoxylate (\textbf{343}) in an efficient, high yielding, and one-pot aldol-type reaction. Titanium(IV) chloride activates glyoxylate \textbf{343}, leading to formation of oxonium species \textbf{344}, which can be trapped with secondary nucleophiles (Table 2.3). Ethyl glyoxylate was exclusively used as the electrophilic component in this reaction. These aldehydes possess high reactivity and form bidentate coordination complexes with Lewis acids.

The three-component coupling products were formed in good yield from vinyl enol ethers \textbf{345} (Table 2.3, entry 1), \textbf{347} (entry 2), and \textbf{306} (entries 3, 4, and 5). Allyltrimethylsilane (entries 1 and 4), triethyl silane (entries 2 and 3), and methanol (entry 5) all effectively trapped oxonium
species 344 to yield coupled products 346 and 348-351. These products were all formed in good yield with little to no diastereoselectivity.

Table 2.3: Three-Component Coupling of Enol Ethers with Ethyl Glyoxylate

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol ether</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Yield</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EtO</td>
<td>Me3Si</td>
<td>346</td>
<td>83</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>347</td>
<td>Et3SiH</td>
<td>348</td>
<td>88</td>
<td>1:1</td>
</tr>
<tr>
<td>3</td>
<td>306</td>
<td>Et3SiH</td>
<td>349</td>
<td>95</td>
<td>1:1</td>
</tr>
<tr>
<td>4</td>
<td>306</td>
<td>Me3Si</td>
<td>350</td>
<td>85</td>
<td>1:1</td>
</tr>
<tr>
<td>5</td>
<td>306</td>
<td>MeOH</td>
<td>351</td>
<td>65</td>
<td>2:1</td>
</tr>
</tbody>
</table>

Modification of reaction conditions, whereby the reaction is run at 0°C, led to the isolation of elimination products 352 (Scheme 2.5). Optimization of the reaction

Scheme 2.5
conditions resulted in exclusive formation of elimination products 352 (Table 2.4). This reaction provides an entry into the synthesis of functionalized 3-methylene tetrahydropyrans, a less common type of tetrahydropyryl derivative. A number of different secondary nucleophiles were effective in trapping the tetrahydropyryl alkenes including silanes (Table 2.4, entries Table 2.4: Competing Elimination in the Three-Component Coupling of Dihydropyran

1, 2 and 3), methanol (entry 4), and thiols (entries 5 and 6). Yields for this process were good except for the use of thiols as secondary nucleophiles. Subjection of dihydrofurans to the same reaction conditions did not provide the elimination products solely, but produced poor reaction mixtures of the 3-methylene tetrahydrofurans and corresponding hydroxy three-component coupling products.

Interestingly, the corresponding hydroxy tetrahydropyryl three-component coupling products are not prone to elimination. Both subjection of tetrahydropyran 349 to
camphorsulfonic acid and p-toluenesulfonic acid in refluxing benzene as well as the application of basic elimination conditions to the corresponding mesylate (DBU and triethylamine) did not yield eliminated product 352 (Scheme 2.6). The lack of elimination in the hydroxide product indicates that it is the oxonium ion-titanium complex 353 that is prone towards elimination. The same oxonium ion intermediate presumably forms, however elimination of the titanium as titanium dioxide yields α,β-unsaturated ester 352 after secondary nucleophile addition.

Scheme 2.6

When pyruvates were employed in place of glyoxylates the three-component coupling reaction occurred with good to excellent levels of diastereoselectivity (Table 2.5).4b This process results in the stereoselective preparation of quaternary centers. Excellent diastereoselectivity resulted for the three component coupling reaction of dihydropyran 306 (entries 1 and 2) and dihydrofuran 347 (entry 3) using both methyl and phenyl pyruvates 356 and 358 with triethylsilane. A lower yield and diastereoselectivity was observed for chiral enol ether 361 (entry 4). Diastereomer ratios were determined by 1HNMR and relative stereochemistry was determined by X-ray crystallography.

The observed diastereoselectivity can be explained by consideration of the following transition state (Scheme 2.7). The proposed transition state correctly predicts that the major diastereomer is formed preferentially. Both transition state 363a and 363b are stabilized by the
Table 2.5: Three-Component Coupling of Enol Ethers with Pyruvates

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol ether</th>
<th>Pyruvate</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Yield</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Et₃SiH</td>
<td></td>
<td>82%</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Et₃SiH</td>
<td></td>
<td>77%</td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Et₃SiH</td>
<td></td>
<td>83%</td>
<td>>99:1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Et₃SiH</td>
<td></td>
<td>65%</td>
<td>1:1</td>
</tr>
</tbody>
</table>

lone-pair donation of the ethoxy oxygen into the C₂ portion of the carbenium ion, yielding a ring-like transition state. Transition state 363a experiences an unfavorable interaction between the H₄ axial hydrogen with the chelated titanium species. When the stereochemistry on the side chain is switched, as is the case for transition-state 363b, the titanium species resides on the top-face where steric crowding is avoided.

Scheme 2.7

Since the initial investigation of the three-component coupling methodology, this transformation has been applied to a number of systems including the synthesis of amine...
derivatives,5b substituted pyrrolidines and prolines,5c modified nucleosides,5e cyclopentenoids,5d and the natural product eburnamonine.5a Aminotetrahydropyrans were created using N-tosyliminoesters as partners in the three-component coupling with dihydropyran 306 (Scheme 2.8).5b N-tosyliminoesters 364 acted as good electrophilic components in this reaction and gave the corresponding tetrahydropyryanyl products 365 in good to excellent yields. Diastereoselectivity varied with substrate and secondary nucleophile used.

\textit{Scheme 2.8}

Ghosh later applied the three-component coupling methodology towards the manufacture of biologically significant substrates. The coupling of dihydrofurans, ethyl glyoxylate, and purine or pyrimidine bases resulted in formation of modified nucleosides with excellent diastereoselectivites. The synthesis of modified nucleosides is valuable because of their widespread applications as antiviral, antitumor, and antibacterial agents.6 Furthermore modified nucleosides have been used as treatments for AIDS, herpes, hepatitis, and cancer.7 In particular, AZT (366) and floxuridine (367) have been synthesized and used in treatments for HIV/AIDS and cancer respectively (Figure 2.1).

\textit{Figure 2.1}

Ghosh utilized the three component coupling methodology designed in his lab to synthesize modified nucleosides (Scheme 2.9).5e Lewis acid activation of ethyl pyruvate 369 and
subsequent attack by dihydrofuran 268 yielded oxonium ion 370. Subsequent attack of intermediate 370 with a purine or pyrimidine nucleophile furnished modified nucleosides 371 and 372.

Ghosh extended the three-component coupling research to natural product synthesis. Eburnamonine (375) was synthesized in four steps from dihydropyran 306 (Scheme 2.10). Three component coupling of dihydropyran 306 with ethyl glyoxylate 343 and equimolar amounts of titanium(IV) chloride provided oxonium intermediate 354. Secondary nucleophilic addition of tryptamine yielded imine 373 as a mixture of diastereomers (E:Z = 1.2:1). Because separation of the imines led to decomposition, subsequent cyclization was performed on the diastereomeric mixture in aqueous acid, providing amine 374 as the only diastereomer over two steps, albeit in low yield. Attempts at improving the 25% yield using different acids resulted in similar yields. Presumably cyclization only occurred on the E-isomer, while the Z-isomer decomposed under the reaction conditions. The natural product was obtained from intermediate 374 in two successive steps.
The interest in natural product synthesis led our group towards the development of a mild reaction protocol between exocyclic enol ethers and electrophiles. Spirastrellolide A is a potent and selective inhibitor of Ser/Thr protein phosphatase 2A and thus a potential anticancer agent of synthetic interest (Figure 2.2). Initially, relative configurations were determined for three segments (C₃-C₇, C₉-C₂₄, and C₂₇-C₃₈), however, the stereochemical relationships between segments was not discovered until spirastrellolide B furnished structural insight. The lack of known relative stereochemistry led us to disconnect spirastrellolide at the C₈-C₉ bond (Scheme 2.11). The creation of the C₈-C₉ bond of spirastrellolide requires mild reaction conditions that do not result in β-elimination of the C₉ oxygen. Addition of a neutral nucleophile to an aldehyde
may be the best method for attaining the desired coupling, because anion addition to an aldehyde would undoubtedly yield elimination products. Therefore we sought to develop an aldol-like process with aldehydes using neutral exo enol ethers as nucleophilic substrates.

Scheme 2.11

As described, dihydropyrans and dihydrofurans are known to act as neutral nucleophiles in carbon-carbon bond-forming reactions with acetals or aldehydes. Similar application of exocyclic substrates to these aldol-like reactions has not been studied. The advantage of using 2-methylenetetrahydropyrans over endocyclic systems is that these groups possess higher levels of steric strain10 and a lower degree of stereoelectronic stability,11,12 resulting in a more highly activated nucleophile, although they are consequently prone to olefin isomerization. Our aim was to develop a coupling methodology between exo enol ethers and electrophiles such that addition will occur faster than double bond isomerization. The goal is to develop a general process that can be applied to a wide range of substrates using mild reaction conditions, all while yielding synthetically valuable tetrahydropyranyl ketides as products.

2.3 Results and Discussion

Because tetrahydropyranyl ketide moieties are present in bioactive natural products, new methods toward the synthesis of their analogs are synthetically significant. Our synthetic efforts toward β-hydroxy tetrahydropyrans include the use of exo enol ethers as neutral nucleophiles in a three component coupling reaction. The three-component coupling of 2-
methylenetetrahydropyran was developed through synthesis of the exocyclic enol ether components, and then subjection of these substrates to various Lewis acid conditions in conjunction with electrophilic components and secondary nucleophiles. After optimization of reaction conditions, the substrate scope of the reaction was evaluated through evaluation of different exo enol ethers and electrophiles.

Synthesis of Exocyclic Enol Ethers

Earlier reports have suggested the feasibility of exo enol ethers acting as nucleophiles in three-component coupling.\(^{13,14}\) Appropriate exo enol ethers were prepared to explore their possible use in three component coupling with electrophiles. Exo enol ethers 2, 112, and 378 were synthesized (Figure 2.3). Exo enol ether 2 was used to screen suitable reaction conditions. The other enol ethers allowed us to evaluate scope of the reaction, including the use of less electron rich enol ethers (112).

Figure 2.3

Preparation of enol ether 378 provided an opportunity to evaluate how a preexisting stereocenter affects the diastereoselectivity of the three component coupling reaction. Enol ether 2 is synthesized through dehydrohalogenation whereas enol ethers 112 and 378 are prepared from corresponding lactones using Petasis olefination.\(^{15}\) The synthesis of these enol ethers is discussed herein.

2-Methylenetetrahydropyran 2 was prepared from 2-(hydroxymethyl) tetrahydropyran 379 using a two-step literature procedure (Scheme 2.12).\(^{16,17,18}\) Alcohol 379 was converted to the corresponding alkyl chloride 3 upon treatment with thionyl chloride. Subsequent elimination
was achieved upon heating halide 3 in the presence of powdered KOH. Resulting enol ethers 2 and 14 were isolated by distillation from the reaction mixture as, at best, a 38:1 ratio, with the exocyclic isomer predominating.

Scheme 2.12

Dehydrohalogenation proved to be a successful method toward synthesis of enol ether 2. The volatility of this enol ether makes its preparation from δ-valerolactone difficult using Petasis’s olefination methodology. However, dehydrohalogenation is problematic in that a mixture of isomers results in the distilled product. The ratio of exo to endo enol ethers deviated considerably, from 3:1 to 38:1 with no discernable reason for the variation. Unwanted isomerization could be somewhat minimized through use of base-washed glassware. The minimum ratio of exo to endo cyclic enol ether used for the three-component coupling project was 10:1. Although a minimal amount of endocyclic enol ether is present in the three-component reaction mixture, and endocyclic enol ethers have been shown to participate in three component coupling reactions, it is believed to have little effect on the reaction. The exo enol ethers should be much more reactive towards the three component coupling reaction because of their high steric strain and low stereoelectronic stability.

Preparation of the exo enol ether was further complicated by its co-distillation with water. The presence of water is problematic in the subsequent three-component coupling reaction because isomerization of the exocyclic enol ether to the endo enol ether proceeds with the production of protic acid from Lewis acid and water. Hydrolysis of the resulting three-component coupled product is also possible. A number of desiccants were used to eliminate the
excess water from the distilled product, KOH, CaH, P₂O₅, and K₂CO₃, however addition of solid sodium metal yielded the best results.

Enol ethers 378 and 112 were both synthesized from commercially available octanolactone 380 and dihydrocoumarin 111 respectively through direct olefination (Scheme 2.13). The synthesis of enol ether 378 was achieved upon treatment of octanolactone 380 with freshly prepared dimethyl titanocene (Petasis reagent) in refluxing THF. Purification of the enol ether was achieved through triteration with hexanes and subsequent flash column chromatography using a 5% solution of Et₃N in hexanes. Addition of Et₃N to the column is essential to avoid isomerization of the exo enol ether on the acidic silica. By this method, enol ether 378 was isolated in 68% yield as a single regioisomer. Enol ether 112 was prepared similarly from dihydrocoumarin 111. Exo enol ether 112 was isolated in good yield as a single regioisomer. Without the need for a water work-up, Petasis olefination repeatedly provided exo enol ethers without competing endocyclic enol ether formation. With the exo enol ethers in hand, we next evaluated their utility as nucleophiles in the three-component coupling reaction.

Three-Component Coupling of 2-Methylenetetrahydropyrans

To demonstrate the feasibility of the three component coupling reaction of exo enol ethers, we first looked at the reaction of 2-methylenetetrahydropyran with ethyl glyoxylate and triethylsilane (Table 2.6). Preliminary studies included screening Lewis acids and identifying suitable reaction conditions to effect the transformation and optimize yield.
Initial efforts focused on screening Lewis acids (Table 2.6). The reaction was carried out by combining equal amounts of the enol ether and electrophile in dichloromethane at \(-78^\circ\text{C}\). Addition of Lewis acid immediately followed. After the reaction had stirred for an hour, three equivalents of triethylsilane were added and the reaction was left to stir at \(-78^\circ\text{C}\) for an additional five hours. Work up conditions included addition of aqueous sodium bicarbonate at \(-78^\circ\text{C}\), isolation of the organic layer, and flash column chromatography.\(^{21}\)

Table 2.6: Initial Conditions for Three-Component Coupling of Exo Enol Ethers

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lewis acid</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SnCl(_4)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>BF(_3)•Et(_2)O</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ZnCl(_2)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>EtAlCl(_2)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Et(_2)AlCl</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>TiCl(_4)</td>
<td>48</td>
</tr>
</tbody>
</table>

Prior work by Mukaiyama\(^2\) and Ghosh\(^4a\) suggests the need for a strong Lewis acid to effect an aldol-like addition of enol ethers to electrophiles. Therefore we began our study by looking at relatively strong Lewis acids. Use of tin chloride (entry 1, Table 2.6) did not produce the desired tetrahydropyranyl product, although this Lewis acid was successfully used in Mukaiyama’s transformations. BF\(_3\)•Et\(_2\)O (entry 2) was also unsuccessful in generating the reaction. Zinc chloride (entry 3), a weaker Lewis acid, was also evaluated. Rather than producing the desired tetrahydropyranyl product, a dihydropyranyl ene adduct was formed. Ethyl aluminum dichloride and diethyl aluminum chloride (entries 4 and 5) both did not yield the desired product.\(^{21}\)
Finally, titanium(IV) chloride was examined. This Lewis acid was previously reported by Ghosh to transform dihydropyrans to three component coupled products. Alas titanium(IV) chloride produced our coupled product 381, albeit in modest yield, and this success encouraged us to continue our studies. This data demonstrated the feasibility of the three component coupling reaction of exocyclic enol ethers with ethyl glyoxylate and the use of exo enol ethers as neutral nucleophiles.

In an effort to optimize yield, the time between the addition of titanium(IV) chloride to the reaction mixture and addition of the secondary nucleophile, triethylsilane, was evaluated (Table 2.7). Initial reaction conditions involved stirring enol ether 2 with Lewis acid an hour prior to triethylsilane addition (entry 1, Table 2.7). There was effectively no change in reaction yield when the stirring time between the enol ether and Titanium(IV) chloride was reduced to twenty minutes (entry 2). A modest increase in yield was observed when the time was further reduced to 10 minutes (entry 3). The best results were obtained when triethylsilane was added to the enol ether prior to the Lewis acid (entry 4). The best yields were obtained with instant access to the reducing agent, indicating that

\[
\begin{array}{ccc}
\text{Entry} & \text{Time}^a & \text{Yield} (\%) \\
1 & 1 \text{ hr} & 48 \\
2 & 20 \text{ min} & 45 \\
3 & 10 \text{ min} & 59 \\
4 & 0 \text{ min} & 86 \\
\end{array}
\]

*Time reaction stirred before triethylsilane addition
1:1 mixture of 2 and 343

Table 2.7: Evaluation of Reaction Time in The Three-Component Coupling Reaction

O H CO₂Et
O 1. TiCl₄, -78°C
 CH₂Cl₂
2. Et₂SiH, 5 hr
+
O
OH
CO₂Et
O 381
immediate reduction of the oxonium ion intermediate was key in production of the coupled product. Instant reduction of the oxonium intermediate following its formation could prevent the decomposition of this reaction intermediate and the production of other side-products.

Finally, changes to the reaction stoichiometry were evaluated, whereby the relative amounts of enol ether, electrophile, and Lewis acid were varied. The ratio of exocyclic enol ether to ethyl glyoxylate was determined to be of little consequence to the reaction yield. Use of either reactant in modest excess gave comparable yields of the tetrahydropyranyl ketide (entries 1 and 2, Table 2.8). Again, the best yields for the three-component coupling reaction were observed when the triethylsilane was added prior to Lewis acid addition, however the ratio of enol ether to aldehyde still had little consequence on the reaction yield (entries 3 and 5). Nonetheless ethyl glyoxylate was used in slight excess for the remainder of the experiments.

Table 2.8: Study of Reaction Equivalents in Three-Component Coupling Reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ratio 1:18</th>
<th>Lewis Acid eq.</th>
<th>Timeb</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1.2</td>
<td>1</td>
<td>1 hr</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>1.5:1</td>
<td>1</td>
<td>1 hr</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>1:1.2</td>
<td>1</td>
<td>0 min</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>1:1.2</td>
<td>1</td>
<td>0 min</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>1.2:1</td>
<td>1</td>
<td>0 min</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>1:1.2</td>
<td>0.5</td>
<td>0 min</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>1:1.2</td>
<td>0.2</td>
<td>0 min</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>1:1.2</td>
<td>0.1</td>
<td>0 min</td>
<td>10</td>
</tr>
</tbody>
</table>

a Three equivalents used except entry 4 where amount of triethylsilane was reduced to 1 equivalent
b Time reaction stirred before addition of triethylsilane

95
because it was more difficult to accurately determine the exact amount utilized in the reaction due to its tendency towards polymerization.21

Both excess and equimolar amounts of triethylsilane were equally effective in the three component coupling transformation (entries 3 and 4). Therefore only one equivalent of triethylsilane was used in the reactions that followed these experiments. Reducing the amount of triethylsilane in the reaction mixture not only increases the reaction economy, but also reduces any unwanted reduction in the products.21

Of greater significance was the quantity of titanium(IV) chloride used. The best yields for the three-component coupling reaction were obtained using equimolar amounts of the Lewis acid (entry 3, Table 2.7). When the amount of titanium(IV) chloride was reduced, there was a proportional decrease in the reaction yield. An 84\% yield was achieved with a full equivalent of Lewis acid (entry 3). The yield was nearly cut in half (45\%) with use of half an equivalent of Lewis acid (entry 5), and likewise yields of 23\% and 10\% were observed when the Lewis acid was reduced to 20 and 10 mole percent respectively (entries 6 and 7).21

The preliminary experiments demonstrated the feasibility of the three component reaction of exo enol ethers with ethyl glyoxylate. The best results were obtained using equimolar amounts of the aldehyde in the presence of a full equivalent of titanium(IV) chloride when time between oxonium ion intermediate formation and addition of the secondary nucleophile is minimized.

Once the basic reaction was demonstrated, studies were expanded to evaluate the scope and stereoselectivity of the three component coupling reaction (Table 2.9). Of particular interest was the range of electrophiles that could be used for this transformation. For these studies both triethylsilane and allyltrimethylsilane were used effectively at secondary nucleophiles. First
Table 2.9: Three-Component Coupling of Enol Ether 2 with Various Electrophiles

![Chemical reaction formula]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Electrophile</th>
<th>Time a</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Nu</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>HCO$_2$Et</td>
<td>5 min</td>
<td>Et$_3$SiH</td>
<td></td>
<td>H</td>
<td>86%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>5 min</td>
<td>CH$_2$=CHCH$_2$TMS</td>
<td></td>
<td>CH$_2$=CHCH$_2$</td>
<td>55%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>Et$_3$SiH</td>
<td></td>
<td>H</td>
<td>79%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>CH$_2$=CHCH$_2$TMS</td>
<td></td>
<td>CH$_2$=CHCH$_2$</td>
<td>51% b</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>Et$_3$SiH</td>
<td></td>
<td>H</td>
<td>tracec</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>CH$_2$=CHCH$_2$TMS</td>
<td></td>
<td>CH$_2$=CHCH$_2$</td>
<td>38% b</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>Et$_3$SiH</td>
<td></td>
<td>H</td>
<td>0% b</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>Et$_3$SiH</td>
<td></td>
<td>H</td>
<td>0% b</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1 hour</td>
<td>Et$_3$SiH</td>
<td></td>
<td>H</td>
<td>0% b</td>
</tr>
</tbody>
</table>

aTime before nucleophile addition; bReaction performed by Dr. G. Liang; cBiprodutct 396 primarily formed in % yield

explored was the range of electrophiles that could be used for this transformation. Electron deficient aldehydes and ketones worked well in this reaction whereas simple aromatic and aliphatic aldehydes were unreactive under the reaction conditions. Excellent results were obtained with ethyl glyoxylate 343 and 2,3-butane dione 382, using trimethylsilane as the secondary nucleophile (entries 1 and 3, Table 2.9). Product yields were slightly lower using
allyltrimethylsilane as the secondary nucleophile, but nonetheless resulted in synthetically useful quantities of the desired products (entries 2 and 4). The reaction was found to be efficient when triethylsilane and allyltrimethylsilane were both added to the reaction mixtures five minutes after the other components. A slight delay in reducing agent addition provided quick access of the secondary nucleophile to the oxonium ion intermediate, while avoiding direct reduction of the aldehyde.

The examples utilizing a ketone as the electrophile (entries 3 and 4, Table 2.9) are intriguing because an oxygen-containing quaternary center is formed. If allyltrimethylsilane is used as the secondary nucleophile two adjacent quaterinary centers are formed. Secondly the aldol-like transformation with 2,3-butane dione proceeds fairly rapidly in good to excellent yield whereas most reversible aldol transformations involving ketones favor the reverse reaction and fail to produce products in appreciable yields.

The reaction of enol ether 2 with p-nitrobenzaldehyde 383 was less successful and resulted in production of byproduct 396 along with low yields of the three-component coupled products 390 and 391 (entries 5 and 6, Table 2.9) Upon formation of oxonium ion intermediate 395, a competing reaction transpires with unreacted p-nitrobenzaldehyde 383 to give spiroketal product 396 (Scheme 2.14). No reaction was observed using unactivated aliphatic and aromatic aldehydes such as octyl aldehyde 384 (entry 7), benzaldehyde 386 (entry 8), and trifluoroacetone 387 (entry 9).
The three component coupled products were isolated as mixtures of diastereomers because they were inseparable by chromatographic methods. Diastereomer ratios were determined from 1H NMR integrations of purified products, however the relative stereochemistry of the products was not determined. Generally, little diastereoselectivity was observed for this process, resulting in stereoisomers that were isolated in ratios of 1:3:1 with the exception of tetrahydropyran 388. Tetrahydropyran 388 was produced as a 4:1 ratio of diastereomers.

The initial addition of the enol ether to the electrophile almost certainly proceeds unselectively. The addition of the secondary nucleophile to the oxonium intermediate is what gives rise to the observed diastereomeric ratios. The oxonium ion intermediate formed is likely stabilized through addition of a lone pair from an ethoxy or carbonyl oxygen into the pseudo-axial vacant orbital (Figure 2.4). Based on this conformation, the direction of secondary nucleophile addition into the oxo carbenium ion most likely occurs from the non-hindered bottom face, although a higher energy, boat-like transition state is required. Note that a simple chair flip would give rise to the opposite stereoisomer in equal amounts. Thus a 1:1 ratio of diastereomers is expected and addition from either face does not preferentially correlate with the initial hydroxy stereocenter formed.
Although a 1:1 mixture of diastereomers is predicted, higher ratios are experimentally obtained. Most noteworthy is the addition of 2-methylenetetrahydropyran to 2,3-butanedione, which yields a 1:4 diastereomeric ratio. There is no discernable reason that ketones should produce higher isomer ratios. Application of 2,3-butanedione to Figure 2.4 does not increase the facial preference towards secondary nucleophile addition. It must be noted that diastereomer ratios were obtained through 1H NMR integrations for products purified by flash column chromatography. Although diastereomer ratios are typically measured from crude spectra, impurities present in the product mixtures made these measurements difficult. Even though a majority of the column fractions were collected, combined, and tested for diastereomer ratios, the ratios could be affected from this purification process.

Previous studies (Table 2.7) suggested the need to minimize the time between oxonium ion formation and addition of the secondary nucleophile. In practice, however, the optimum time before addition of the secondary nucleophile (“pre-stir” time) had to be carefully balanced against the reactivity of the electrophile to avoid direct addition of triethylsilane to the carbonyl instead of the oxonium ion intermediate. The reaction pre-stir times varied based on the degree of electrophile activation. As activation increased, oxonium ion formation proceeded more quickly. Therefore secondary nucleophiles were introduced to the reaction mixture sooner when more highly activated electrophiles were used. In the case of ethyl glyoxylate 343, a pre-stir
time of only five minutes was required (entries 1,2, Table 2.9). With less activated enophiles pre-stir times of one hour were required (entries 3-6).

After study of 2-methylenetetrahydropyran in the three component reaction, we sought to extend the scope of enol ether used by evaluating dihydrocoumarin-derived enol ether 112 (Table 2.10). Enol ether 112 was expected to be less reactive than 2-methylenetetrahydropyran since the lone pair on oxygen is tied up in resonance with the aromatic ring. Nonetheless, the desired three component coupling resulted with excellent yields in the presence of electron deficient electrophiles and both triethylsilane and allyltrimethylsilane as secondary nucleophiles.

Table 2.10: Three-Component Coupling of Enol Ether 112 with Various Electrophiles

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Electrophile</th>
<th>Time(^a)</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Nu</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112</td>
<td>H CO₂Et</td>
<td>5 min</td>
<td>Et₃SiH</td>
<td>398° H</td>
<td>97(^b)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>112</td>
<td>CH₂=CH₂TMS</td>
<td>5 min</td>
<td>CH₂=CH₂TMS</td>
<td>399° CH₂=CHCH₂</td>
<td>97(^b)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>112</td>
<td></td>
<td>1 hour</td>
<td>Et₃SiH</td>
<td>400° H</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td></td>
<td>1 hour</td>
<td>CH₂=CH₂TMS</td>
<td>401° CH₂=CHCH₂</td>
<td>97(^b)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td></td>
<td>1 hour</td>
<td>Et₃SiH</td>
<td>402° H</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>112</td>
<td></td>
<td>1 hour</td>
<td>CH₂=CH₂TMS</td>
<td>403° CH₂=CHCH₂</td>
<td>97%</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Time before nucleophile addition; \(^b\)Reaction performed by Dr. G. Liang; \(^°dr\ 1:1; \(^\circ\)dr \ 1:1; \(^\circ\)dr \ 1:5; \(^7\)dr \ 1:1; \(^9\)dr \ 1:2; \(^h\)dr \ 1:1

Reaction of enol ether 112 with ethyl glyoxylate provided high yields of tetrahydropyran products with both triethylsilane and allyltrimethylsilane as secondary nucleophiles (entries 1 and 2, Table 2.10). Similar to the reaction of ethyl glyoxylate with enol ether 2, the high
reactivity of ethyl glyoxylate necessitated only five minutes of pre-stir time between enol ether 112, aldehyde, and Lewis acid before secondary nucleophile addition. Although less activated than ethyl glyoxylate, 2,3-Butanedione 382 (entries 3 and 4) and p-nitrobenzaldehyde 383 (entries 5 and 6) were successfully coupled with enol ether 112 in excellent yields.

The high yields observed for enol ether 112 are most likely attributed to the greater stability of this enol ether as compared to 2-methylenetetrahydropyran. The olefin owes its stability to the resonance it experiences with the aromatic ring. By having a greater level of stability, enol ether 112 is less likely to isomerize or decompose in solution. Secondly, enol ether 112 successfully produced product 402, whereas addition of enol ether 2 to the same aldehyde, p-nitrobenaldehyde 383, failed as previously discussed (Scheme 2.9). The increased steric bulk enol ether 112 experiences is enough to hinder approach of a second p-nitrobenzaldehyde molecule towards the oxonium ion intermediate. Therefore product 402 could be isolated in 95% yield.

Like the 2-methylenetetrahydropyran examples (Table 2.9), the three component coupled products of enol ether 112 were isolated as mixtures of diastereomers. Diastereomer ratios were determined from the 1H NMR integrations of purified products, and the relative stereochemistry was not determined. Here too the reaction generally proceeded with little diastereoselectivity except for the reaction with 2,3-butanedione and triethylsilane (entry 3).

The study of 6-propyl-2-methylenetetrahydropyran 378 provides an opportunity to explore the diastereoselectivity of the reaction when the enol ether bears a substituent at C₆. This system is similar to how the A-ring of spirastrellolide would be approached using this methodology. The reaction of 2-methylenetetrahydropyran 378 with ethyl glyoxylate provided desired β-hydroxytetrahydropyrans 404 and 405 in good to excellent yields with both
triethylsilane and allyltrimethylsilane as secondary nucleophiles (entries 1 and 2, Table 2.11)

Use of 2,3-butanedione 382 as the electrophilic component also provided the desired coupled product in moderate yield (entry 3).

The three component coupled products of enol ether 378 have three stereocenters and thus four diastereomer products could result. Figure 2.5 indicates the two different types of relationships that exist between the stereocenters. If the C2 hydroxy substituent and secondary nucleophile are on the same or opposite faces of the molecule they are said to be either syn or anti respectively. The other stereochemical relationship relates to the C2 and C6 ring substituents.

Table 2.11: Three-Component Coupling of Enol Ether 378 with Various Electrophiles

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Electrophile</th>
<th>Timea</th>
<th>Nucleophile</th>
<th>Product</th>
<th>Nu</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>378</td>
<td>369</td>
<td>5 min</td>
<td>Et3SiH</td>
<td>404b</td>
<td>H</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>378</td>
<td>CH2=CHCH2TMS</td>
<td>5 min</td>
<td>CH2=CHCH2TMS</td>
<td>405c</td>
<td>CH2=CHCH2</td>
<td>67%</td>
</tr>
<tr>
<td>3</td>
<td>378</td>
<td>382</td>
<td>1 hour</td>
<td>Et3SiH</td>
<td>406d</td>
<td>H</td>
<td>56%</td>
</tr>
</tbody>
</table>

These substituents are either cis or trans. Therefore the following four diastereomers could result: cis, syn; cis, anti; trans, syn; trans, anti.

Figure 2.5
Results from the three component coupling of enol ether 378 indicated that only two diastereomers were formed. The diastereomeric ratios of tetrahydropyranyl products obtained are most likely derived from syn/anti relationships, because as previously discussed with the three component couplings of 2-methylenetetrahydropyran systems, little to no stereoselectivity is expected at the newly generated C2' stereocenter. Secondary nucleophile addition, however, is highly controlled by the pre-existing C6 stereocenter on the enol ether. Nuclear Overhauser effect (nOe) studies of the resulting products confirmed this hypothesis by detecting only cis-configured products. Therefore only cis, syn and cis, anti products were obtained.

A 1:1 ratio of diastereomers results from the three component coupling of enol ether 378 to 2,3-butanedione (entry 2, Table 2.11), demonstrating the lack of stereoselective addition to the electrophile. The diastereomeric ratios of products 404 and 406 were 1:5 and 1:2 respectively (entries 1 and 3). Unlike previous examples where enol ethers 2 and 112 showed increased diastereomeric ratios for the 2,3-butanedione products, (entry 3, Table 2.9 and entry 3, Table 2.10), these results show an enhanced ratio for ethyl glyoxylate product 404 (entry 1). Again there exists no stereochemical model that would explain such a significant deviation from the expected 1:1 ratio of diastereomers. As previously discussed, purification of the crude product mixtures was necessary to determine diastereomer ratios. The diastereomer ratios could have been altered as a result of purification process.

All three component coupled products of enol ether 378 yielded only cis-2,6-substituted products, as was determined through nOe studies. In all cases the trans diastereomer was not observed. Oxidation of alcohol 405 was performed to simplify the 1H NMR spectrum for nOe analysis (Scheme 2.15). Alcohol oxidation reduced the number of diastereomers from two to
one, proving that the observed diastereoselectivity stems from the syn/anti selectivity, while also eliminating overlapping proton NMR signals.

Scheme 2.15

![Scheme 2.15](image)

The individual resonances for the protons adjacent to the tetrhydropyranyl oxygen on product 404 were identified in the 1H NMR on the basis of chemical shift. These two protons are also differentiated from the ethoxy protons, which integrate for two and have a quartet multiplicity. The relative stereochemistry at C$_2$ and C$_6$ was established by nOe experiments (Figure 2.6). Irradiation of H$_a$ resulted in the enhancement of resonances due to H$_b$. A nOe was not observed between either H$_a$ or H$_b$ and the C$_2$ or C$_6$ side chains. The nOe between H$_a$ and H$_b$ of alcohol 404 is only expected when the protons are on the same face of the tetrhydropyranyl ring.

Study of ketone 407 through nOe experiments also proved the preferential formation of 2,6-cis-products from the three component coupling of enol ether 378. The proton resonance for H$_a$ was determined by chemical shift, multiplicity, and integration. H$_a$ was differentiated from the ethoxy protons, which integrate for two and display a quartet splitting pattern. The allyl proton resonances in the 1H NMR spectrum derived from H$_b$ were identified by chemical shift,
and were the only signals present in the 2.10-2.80 ppm range. The resonances due to H_c were identified by chemical shift and integration. Irradiation of H_a on tetrahydropyran 407 caused a strong enhancement in the resonances associated with H_b and H_c, but not with any signals associated with the C_2 sidechain. The nOe between H_a, H_b, and H_c of product 407 is expected only when the ring junction proton and allyl sidechain are on the same face of the tetrahydropyranyl ring.

The relative stereochemistry about the tetrahydropyranyl ring of alcohol product 406 was determined similarly through nOe experiments, by separately irradiating both C_2 and C_6 protons. Both resonances associated with H_a and H_b were determined by chemical shift, and are the only two in the 3.10-3.50 ppm range. Upon irradiation of H_a, which resulted in the enhancement of resonances due to H_b. Likewise, irradiation of H_b caused enhancement in resonances due to H_a. A nOe was not observed between either irradiated protons and the C_2 or C_6 side chains. The nOe between H_a and H_b is only expected when these protons are on the same face of the tetrahydropyranyl ring. The three nOe experiments of products 404, 407, and 406 indicate that secondary nucleophile addition to the C_2 tetrahydropyranyl carbon is trans selective relative to the C_6 side chain. The 2,6-cis products result without detection of the 2,6-trans products.

The observed preference for formation of 2,6-cis-tetrahydropyran derivatives stems from both steric and stereoelectronic factors. The initial, nucleophilic attack by enol ether 378 results in formation of the oxonium ion intermediate. Subsequent attack of the oxonium ion intermediate by the secondary nucleophile is anticipated through one of two half-chair conformations (408 and 409, Scheme 2.16). Attack of these half-chairs from the top or bottom face through pathways a-d provides tetrahydropyrans 410-413.
Half-chair conformers 408 and 409 exist in equilibrium, favoring half-chair 408, which orients the propyl side chain pseudo equatorially. Addition of the secondary nucleophile through both pathways a and d (Scheme 2.16) is disfavored based on stereoelectronic grounds. The transition state for equatorial attack by the nucleophile requires a higher activation energy than the transition state for axial attack. The increased activation energy is derived from the high-energy, boat-like transition state.

Both pathways b and c proceed through more favorable, lower energy chair-like transition states. Of these pathways, c is disfavored on steric grounds. This transition state, which orients the n-propyl group pseudo axially, develops a severe 1,3-diaxial interaction between the C₆ substituent and the incoming nucleophile. Therefore b is the kinetically favored pathway by which the selective secondary nucleophilic addition occurs. The secondary nucleophile preferentially adds *trans* to the C₆ substituent, resulting in 2,6-*cis*-tetrahydropyran product formation in reference to the propyl and β-hydroxy side chains. These are also the
thermodynamically favored products where both tetrahydropyranyl substituents occupy equatorial positions.

Related \textit{trans}-selective additions of nucleophiles to C$_6$ substituted tetrahydropyranyl oxocarbenium ions have been previously reported. Acetal 414 was treated with propargyl trimethylsilane and Me$_3$SiOTf to yield allene 416 diastereoselectively as the \textit{trans} product (Scheme 2.17).23 Lewis acid activation of the methoxy group leads to formation of oxonium ion intermediate 415. Preferential, axial propargyl addition to the oxocarbenium ion from the top face leads to allene 416 where the nucleophile has added trans to the C$_6$ pentyl substituent. As was explained in Scheme 2.16, this reaction proceeds through chair-like transition state 415 due to its lower activation energy. This transition state also minimizes 1,3-diaxial interactions between the C$_6$ substituent and the incoming nucleophile.

\textit{Scheme 2.17}

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\textbf{414}};
\node (b) at (2,0) {\textbf{415}};
\node (c) at (4,0) {\textbf{416}};
\node (d) at (0,-1) {\textbf{417}};
\node (e) at (2,-1) {\textbf{418}};
\node (f) at (4,-1) {\textbf{419}};
\draw [->] (a) -- (b);
\draw [->] (b) -- (c);
\draw [->] (d) -- (e);
\draw [->] (e) -- (f);
\end{tikzpicture}
\end{center}

414 \begin{align*}
\text{Me}_3\text{SiOTf} & \quad \text{CH}_2\text{Cl}_2 \\
\text{Me}_3\text{Si} & \quad 57\%
\end{align*}

415 \begin{align*}
\text{Nu} & \\
\text{Nu} & \\
\end{align*}

416 \begin{align*}
\text{98:2}
\end{align*}

417 \begin{align*}
\text{BF}_3\text{-OEt}_2 & \quad \text{CH}_2\text{Cl}_2 \\
\text{Me}_3\text{Si} & \quad 80\%
\end{align*}

418 \begin{align*}
\text{Nu} & \\
\text{Nu} & \\
\end{align*}

419 \begin{align*}
\text{70:30}
\end{align*}

Likewise, Lucero and Woerpel discovered that allyltrimethylsilane addition to a similar oxonium intermediate formed from acetal 417 resulted in \textit{trans}-selective tetrahydropyranyl
product 78. Note the similarity of these examples to our transition state 408, which also favors trans addition of the nucleophile in relation to pre-existing C₆ substituents.

Addition of silyl enol ethers to 6-substituted tetrahydropyranyl 2-benzenesulfones preferentially produced the trans 2,6-products. Ley demonstrated that addition of sulfone 420 to a silyl enol ether generates solely trans product 421 under Aluminum trichloride promotion (Scheme 2.18). Addition of the same sulfone to a trisubstituted silyl enol ether under the same conditions produced solely the cis product 424. Ley also demonstrated the addition of other nucleophiles to tetrahydropyranyl benzenesulfones including addition of trimethyl aluminum to sulfone 420 to produce product 425.

Scheme 2.18

Cis product 424 arises from the equilibration of ring-opened intermediate 423, which originates from kinetic trans product 422. Ring opening followed by recyclization leads to thermodynamic 2,6-cis product 424. Product 421 is not prone to isomerization because a methyl group is substituted for the acidic proton, which resided on intermediate 422. The lack of acidic proton prevents ring opening and isomerization, providing solely the kinetic product. In all cases
production of the trans product predominates followed in some cases by thermodynamic equilibration to the more stable 2,6-cis product.

Both Ley\(^{26}\) and Rovis\(^{27}\) groups demonstrated related trans-selective rearrangement/additions of \(C_6\) substituted tetrahydropyranyl acetals (Scheme 2.19). Acetal 427

\[\text{Scheme 2.19}\]

was converted to the corresponding oxonium ion intermediate under Lewis acid catalysis. Subsequent addition from the opposite face of the pendant \(C_6\) hexyl group resulted in the expected trans-selective product 426. What all of these processes have in common is that they are kinetically controlled, giving rise to the trans product. Under thermodynamic conditions the cis-selective addition product predominates.\(^{15}\) We observed formation of the kinetically driven trans-addition product. This product is also the 2,6-cis-substituted product, which is thermodynamically favored.

2.4 Conclusions

Our lab has developed the three component coupling of exo enol ethers and activated electrophiles. This process is the first general method demonstrating the use of the exo enol ethers as nucleophiles. The reaction proceeds in good to excellent yield with both aromatic and aliphatic substituted enol ethers. The use of a highly activated electrophile is required, however, which limits the reaction scope. Use of substoichiometric levels of Lewis acid led to low product yields. Titanium(IV) chloride produced the best results when used in equimolar amounts, however, the need for stoichiometric quantities of Lewis acid is not ideal for developing related asymmetric processes which typically utilize expensive substrates.
The three component coupling process developed has demonstrated both a hydride and a carbon nucleophile to act as secondary nucleophiles toward the intermediate oxonium ion. Careful timing of secondary nucleophile addition to the oxonium ion intermediate formed is important so as to avoid byproduct formation. Typically the time required to add the secondary nucleophile is short. Presence of a preexisting C₆ substituent caused for diastereoselective addition the nucleophile. Overall this new method proved to be a useful way to synthesize tetrahydropyranyl ketides, containing up to two new quaternary oxygenated centers, from exocyclic enol ethers and activated electrophiles. This methodology we developed may have a broad impact on natural product synthesis and is most useful in creating new bonds from two carbon fragments.

2.5 Experimental

General Methods

All air sensitive reactions were performed in oven dried glassware under an atmosphere of argon. Reaction solvents were dried over CaH₂ (dichloromethane and pyridine) or sodium/benzophenone ketyl (tetrahydrofuran) and were distilled just prior to use. Ethyl glyoxylate and 2,3-butanedione were distilled just prior to use. Ethyl glyoxylate was distilled according to the procedure of Evans.28 All other reagents were reagent grade and were purified as necessary. Analytical thin layer chromatography was performed on EM silica gel 60 F₂₅₄ glass plates (0.25 mm). Flash column chromatography was performed using SiliaFlash P60 silica gel (40-63 μm) from SiliCycle, Inc. ¹H NMR spectra were recorded on a Bruker Avance DPX-300 (300 MHz) spectrometer. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl₃ (δ 7.27 ppm) as the internal standard. ¹³C NMR spectra were recorded on a Bruker Avance DPX-300 (75 MHz) spectrometer with complete proton decoupling. Chemical
shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl$_3$ as the internal standard (δ 77.0 ppm). IR spectra were obtained with a Thermo Nicolet IR-100 spectrometer on NaCl plates. Elemental analyses were performed by Complete Analysis Laboratories, Inc.; Parsippany, NJ. High resolution mass spectra were obtained using the positive ion electrospray mode on a 3-Tesla FT mass spectrometer at The Ohio State University, Columbus, OH.

Experimental Procedures:

![Chemical Structure](image)

2-(Chloromethyl)tetrahydropyran 3. Chloride 3 was prepared by a known literature procedure,17 using 2-(hydroxymethyl) tetrahydropyran 379 (10.0 g, 86.2 mmol), pyridine (8.6 ml, 106 mmol), and thionyl chloride (7.6 ml, 103 mmol). The product was purified via distillation (760mmHg, 70-75°C) to give 7.26 g of chloride 3 as a colorless liquid (72% yield). The identity of this compound was established by comparing 1H NMR data with that previously reported.22 TLC: $R_f = 0.61$ (hexanes: EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.05 (1H, m), δ 3.50 (4H, m), δ 1.90 (1H, m), δ 1.75-1.61 (5H, m).

![Chemical Structure](image)

2-Methylene tetrahydropyran 2. Enol ether 2 was formed by known literature procedure,29 using chloride 3 (3.86 g, 135 mmol), crushed potassium hydroxide (3.22 g, 57.3 mmol), and
oven dried, base-washed glassware. Distillation (760 mmHg, 100-110°C) yielded the desired enol ether (1.67 g) in a 60% yield in a ratio of 38:1 of 2 to 14. The resulting product was dried over a minimal amount of sodium metal (0.10 g). The identity of enol ether 2 was established by comparing ¹H NMR data with that previously reported.²⁸ TLC: \(R_f = 0.81 \) (hexanes: EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 4.31 (1H, s), δ 4.04 (1H, s), δ 3.88 (2H, m), δ 2.25 (1H, m) 1.72 (4H, m).

Enol Ether 378: To a solution of δ-octanolactone 380 (1.38g, 9.7 mmol) in 70 mL THF was added Cp₂TiMe₂ (39 mL of a 0.5M solution in THF, 19.5 mmol). The resulting mixture was warmed to reflux and stirred for 24 h in the dark. The solution was then cooled to room temperature, concentrated *in vacuo*, and the resulting residue was triturated with hexanes. (100 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO₂; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 378 as a yellow oil (0.82 g, 68%). TLC: \(R_f = 0.84 \) (hexanes: EtOAc, 10:1). ¹H NMR (CDCl₃, 300 MHz): δ 4.30 (1H, d, \(J = 1.4 \) Hz), 4.04 (1H, d, \(J = 1.4 \) Hz), 3.59 (1H, m), 2.25 (1H, dt, \(J = 14.0, 3.8 \) Hz), 2.12 (1H, m), 1.82 (1H, m), 1.74-1.32 (7H, m), 0.93 (3H, t, \(J = 6.9 \) Hz). ¹³C NMR (CDCl₃, 300 MHz): δ 160.6, 90.8, 78.9, 38.1, 30.3, 29.0, 22.7, 18.5, 14.0. IR (film): 3110, 2938, 2870, 1649 cm⁻¹. HRMS (ESI) Calcd for C₉H₁₆O ([2M+Na]⁺): 303.2294, found 303.2288.
3,4-Dihydro-2-methylene-2H-1-benzopyran 112. Enol ether 112 was prepared by known literature procedure using dihydrocumarin 111 (0.96 g, 6.5 mmol) and Cp₂TiMe₂ (0.5 M, 26 ml). Purification via column chromatography (SiO₂: 95% hexanes, 5% triethylamine) afforded the product as a colorless oil (0.60 g) in a yield of 63%. TLC: R₂f = 0.80 (Hexanes: ethyl acetate; 10:1). The identity of enol ether 112 was established by comparing ¹H NMR data with that previously reported. ³⁰¹H NMR (CDCl₃, 300 MHz): δ 7.17 (1H, m), 7.08 (1H, m), 6.91 (2H, m), 4.59 (1H, s), 4.17 (1H, s), 2.82 (2H, J = 5.1 Hz), 2.59 (2H, J = 5.1 Hz).

General Procedure for Three Component Coupling: To a stirred solution of the enol ether (1.00 mmol) in 5 mL CH₂Cl₂ was added the carbonyl derivative (1.20 mmol). The resulting mixture was cooled to -78°C and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) was added dropwise. After 5-60 minutes, triethylsilane or allyltrimethylsilane (1.00 mmol) was added dropwise and stirring continued for 5 hours at -78°C. Saturated NaHCO₃ (2 mL) was then added carefully and the mixture was warmed to room temperature. The layers were separated and the aqueous layer was extracted with additional CH₂Cl₂ (3x). The organic layers were combined, dried over MgSO₄, filtered, and concentrated in vacuo.

Tetrahydropyran 381: Production of tetrahydropyran 381 was conducted according to the general procedure. Ethyl glyoxylate (0.12g, 1.20 mmol), 2-methylenetetrahydropyran (0.098g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at -78°C. After stirring five minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at -78°C. Upon workup, the residue
was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 10:1 \rightarrow 5:1) to afford tetrahydropyran 381 (0.17g, 86%) as a colorless oil (1:1 mixture of diastereomers). TLC: R_f = 0.46 (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.40 (0.5H, m), 4.32 (0.5H, m), 4.24 (1H, dq, J = 7.0, 2.4 Hz), 4.23 (1H, q, J = 7.1 Hz), 3.99 (1H, dm, J = 11.2 Hz), 3.92 (1H, dm, J = 11.2 Hz), 3.56 (1H, m), 3.55 (0.5H, d, J = 3.3 Hz), 3.44 (0.5H, br s), 3.42 (1H, m), 1.97 (0.5H, ddd, J = 14.4, 10.2, 3.2 Hz), 1.90 (1H, m), 1.82 (1H, m), 1.72 (0.5H, ddd, J = 14.4, 8.2, 2.6 Hz), 1.49 (3.5, m), 1.36 (0.5, m), 1.30 (3H, t, J = 7.1 Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 175.0, 174.3, 75.5, 74.8, 69.2, 68.5, 68.4, 68.2, 61.3, 61.2, 40.4, 40.1, 32.0, 31.7, 25.8, 25.7, 23.2, 23.2, 14.2, 14.1. IR (film): 3460, 2935, 2856, 1735 cm$^{-1}$. Anal. Calcd for C$_{10}$H$_{18}$O$_4$: C, 59.39%; H, 8.97%. Found: C, 59.36%; H, 8.99%.

Tetrahydropyran 387: Production of tetrahydropyran 387 was conducted according to the general procedure. Ethyl glyoxylate (0.12g, 1.20 mmol), 2-methylenetetrahydropyran (0.098g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH$_2$Cl$_2$, 1.0 mmol) were combined in CH$_2$Cl$_2$ (5 mL) at -78°C. After stirring five minutes, allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at -78°C. Upon workup, the residue was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 15:1 \rightarrow 8:1) to afford tetrahydropyran 387 (0.13g, 55%) as a yellow oil (2:1 mixture of diastereomers). TLC: R_f = 0.53 (hexanes:EtOAc, 1:2). δ 5.78 (1H, m), 5.13 (2H, m), 4.52 (1H, m), 4.23 (0.7H, m), 4.23 (1.3H, q, J = 7.1 Hz), 4.04 (0.3H, d, J = 2.8 Hz), 3.93 (0.7H, d, J = 2.9 Hz), 3.73 (2H, m), 2.62 (1H, dd, J = 14.2, 6.6 Hz), 2.47 (0.3H, dd, J = 14.0, 7.2 Hz), 2.31 (0.7H, dd, J = 14.2, 7.9), 1.96 (2H, m), 1.78 (2H, m), 1.63 (1H, m), 1.53 (3H, m), 1.30 (2H, t, J = 7.1 Hz), 1.29 (1H, t, J = 7.1 Hz). 13C
NMR (CDCl₃, 75 MHz): δ 174.5, 133.2, 118.6, 118.3, 75.5, 68.5, 68.2, 61.5, 61.3, 41.1, 40.6, 39.4, 38.2, 33.0, 31.4, 29.7, 25.4, 18.8, 18.6, 14.2. IR: 3479, 3075, 2936, 2868, 1730, 1640 cm⁻¹. HRMS (ESI) Calcd for C₁₁H₂₂O₄ ([M+Na]⁺): 265.1410, found 265.1405.

Tetrahydropyran 388: Production of tetrahydropyran 388 was conducted according to the general procedure. 2,3-Butanedione (0.10g, 1.20 mmol), 2-methylenetetrahydropyran (0.098g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at –78°C. After stirring sixty minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO₂; hexanes:ethyl acetate, 15:1 → 10:1) to afford tetrahydropyran 388 (0.147g, 79%) as a yellow oil (4:1 mixture of diastereomers). TLC: Rᵥ = 0.47 (hexanes:EtOAc, 3:1). ¹H NMR (CDCl₃, 300 MHz): δ 4.85 (0.2H, s), 4.36 (0.8H, s), 3.98 (0.2H, dm, J = 11.0 Hz), 3.80 (0.8H, dm, J = 10.8 Hz), 3.44 (0.8H, m), 3.37 (0.2H, m), 3.24 (1H, m), 2.29 (0.6H, s), 2.22 (2.4H, s), 2.03 (0.2H, dd, J = 14.6, 2.0 Hz), 1.98 (0.8H, dd, J = 14.6, 10.1 Hz), 1.80 (1H, m), 1.75 (0.8H, dd, J = 14.6, 2.0 Hz), 1.71 (0.2H, dd, J = 14.4, 10.5 Hz), 1.48 (4H, m), 1.31 (2.4H, s), 1.27 (1H, m), 1.26 (0.6H, s). ¹³C NMR (CDCl₃, 75 MHz): δ 212.1, 73.5, 68.3, 68.0, 45.7, 44.5, 32.3, 31.9, 29.7, 26.5, 26.2, 26.0, 25.7, 24.1, 23.4, 22.9. IR (film): 3462, 2931, 2857, 1710 cm⁻¹. HRMS (ESI) Calcd for C₁₀H₁₈O₃ ([M+Na]⁺): 209.1148, found 209.1145.
Tetrahydropyran 389: Production of tetrahydropyran 389 was conducted according to the general procedure. 2,3-Butanedione (0.10g, 1.20 mmol), 2-methylene-tetrahydropyran (0.098g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at −78°C. After stirring sixty minutes, allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at −78°C. Upon workup, the residue was purified by flash chromatography (SiO₂; hexanes:ethyl acetate, 15:1 → 8:1) to afford tetrahydropyran 389 (0.12g, 51%) as a colorless oil (2:1 mixture of diastereomers). TLC: R_f = 0.46 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 5.77 (1H, m), 5.10 (2H, m), 4.99 (0.7H, s), 4.63 (0.3H, s), 3.68 (1.4H, m), 3.60 (0.6H, m), 2.59 (0.7H, dd, J = 14.1, 6.4 Hz), 2.42 (0.3H, dd, J = 14.2, 6.1 Hz), 2.32 (2.1H, s), 2.31 (0.7H, dd, J = 14.1, 8.0 Hz), 2.31 (0.3H, d, J = 14.9 Hz), 2.23 (0.9H, s), 2.22 (0.3H, dd, J = 14.4, 5.3 Hz), 2.20 (0.7H, d, J = 14.7 Hz), 1.98 (0.3H, m), 1.95 (0.7H, d, J = 14.7 Hz), 1.79 (0.3H, d, J = 14.9 Hz), 1.60 (2H, m), 1.45 (3.7H, m), 1.26 (0.9H, s), 1.22 (2.1H, s). ¹³C NMR (CDCl₃, 75 MHz): δ 215.7, 133.6, 133.4, 118.3, 118.1, 79.3, 78.7, 76.2, 75.0, 61.3, 61.3, 47.0, 45.9, 38.8, 37.8, 33.2, 32.1, 28.5, 28.4, 25.4, 25.2, 24.6, 18.9, 18.7. IR (film): 3445, 3075, 2933, 2863, 1711, 1639 cm⁻¹. Anal. Calcd for C₁₃H₂₂O₃: C, 68.99%; H, 9.80%. Found: C, 68.92%; H, 10.02%.

Tetrahydropyran 391: Production of tetrahydropyran 391 was conducted according to the general procedure. p-Nitrobenzaldehyde (0.18g, 1.20 mmol), 2-methylene-tetrahydropyran (0.098g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at −78°C. After stirring sixty minutes, allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at –
78°C. Upon workup, the residue was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 15:1 → 8:1) to afford tetrahydropyran 391 (0.095g, 38%) as a colorless oil (1:1 mixture of diastereomers). TLC: $R_f = 0.44$ (hexanes:EtOAc, 3:1). 1H NMR (CDCl$_3$, 300 MHz): δ 8.91 (2H, dd, $J = 8.9, 0.7$ Hz), 7.54 (2H, m), 5.77 (1H, m), 5.18 (3H, m), 4.92 (0.4H, s), 4.87 (0.6H, s), 3.81 (2H, m), 2.59 (2H, m), 1.72 (8H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 152.6, 152.5, 147.0, 133.4, 132.7, 126.5, 126.2, 123.5, 118.8, 118.6, 77.2, 76.7, 76.6, 70.3, 70.0, 61.6 (2), 47.9, 46.3, 38.5, 37.3, 33.8, 30.4, 25.4, 25.3, 18.8, 18.4. IR (film): 3438, 2943, 1520, 1346 cm$^{-1}$. HRMS (ESI) Calcd for C$_{16}$H$_{21}$NO$_4$ ([M+H]$^+$): 314.1363, found 314.1361.

Dihydrobenzopyran 398: Production of dihydrobenzopyran 398 was conducted according to the general procedure. Ethyl glyoxylate (0.12g, 1.20 mmol), 5,6-benzo-2-methylenetetrahydropyran (0.146g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH$_2$Cl$_2$, 1.0 mmol) were combined in CH$_2$Cl$_2$ (5 mL) at -78°C. After stirring five minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at -78°C. Upon workup, the residue was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 9:1 → 4:1) to afford dihydrobenzopyran 398 (0.24g, 97%) as a colorless oil (1.5:1 mixture of diastereomers). TLC: $R_f = 0.41$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.08 (2H, m), 6.84 (1.4H, m), 6.72 (0.6H, d, $J = 8.1$ Hz), 4.59 (0.4H, ddd, $J = 9.9, 6.0, 2.9$ Hz), 4.41 (0.6H, $J = 9.8, 5.2$ Hz), 4.35 (1H, m), 4.28 (2H, q, $J = 7.2$ Hz), 3.33 (0.6H, d, $J = 4.5$ Hz), 3.17 (0.4H, d, $J = 6.0$ Hz), 2.84 (2H, m), 2.18 (1.6H, m), 2.02 (1H, m), 1.82 (1.4H, m), 1.32 (1.2H, t, $J = 7.4$ Hz), 1.30 (1.8H, t, $J = 7.1$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 175.0, 174.7, 154.3, 154.2, 129.4, 127.0, 121.8, 121.7, 120.1, 116.7, 116.5, 72.0, 71.6, 67.6, 67.5, 61.6, 40.0, 38.8, 27.8, 27.1, 24.6, 24.3,

Dihydrobenzopyran 399: Production of dihydrobenzopyran 399 was conducted according to the general procedure. Ethyl glyoxylate (0.12g, 1.20 mmol), 5,6-benzo-2-methylenetetrahydropyran (0.146g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at –78°C. After stirring five minutes, allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO₂; hexanes:ethyl acetate, 9:1 → 5:1) to afford dihydrobenzopyran 399 (0.28g, 96%) as a colorless oil (1:1 mixture of diastereomers). TLC: Rᵥ = 0.59 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.09 (2H, m), 6.83 (2H, m), 5.88 (1H, m), 5.16 (2H, m), 4.52 (1H, m), 4.23 (1H, q, J = 7.1 Hz), 4.20 (1H, m), 3.30 (0.5H, dd, J = 14.7 Hz), 3.26 (0.5H, d, J = 4.8 Hz), 2.84 (2H, m), 2.60 (0.5H, dd, J = 14.2, 6.7 Hz), 2.54 (1H, d, J = 7.5 Hz), 2.45 (0.5H, dd, J = 14.1, 8.0 Hz), 2.22 (0.5H, dd, J = 14.8, 2.9 Hz), 2.16 (0.5H, dd, J = 14.7, 2.9 Hz), 1.97 (3H, m), 1.28 (1.5H, t, J = 7.1 Hz), 1.26 (1.5H, t, J = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 174.9, 174.6, 152.9, 132.9, 132.8, 132.7, 129.3, 127.3, 127.2, 121.0, 120.8, 120.1, 118.9, 118.6, 117.2, 117.1, 77.4, 77.2, 67.8, 67.6, 61.5, 41.2, 41.0, 40.9, 40.7, 28.7, 28.3, 21.5, 21.4, 14.0. IR: 3524, 3076, 2932, 2855, 1730, 1640, 1582, 755 cm⁻¹. Anal. Calcd for C₁₇H₂₂O₄: C, 70.32%; H, 7.64%. Found: C, 70.41%; H, 7.59%.
Dihydrobenzopyran 400: Production of dihydrobenzopyran 400 was conducted according to the general procedure. 2,3-Butanedione (0.10g, 1.20 mmol), 5,6-benzo-2-methylenetetrahydropyran (0.146g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH$_2$Cl$_2$, 1.0 mmol) were combined in CH$_2$Cl$_2$ (5 mL) at −78°C. After stirring sixty minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at −78°C. Upon workup, the residue was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 9:1 \rightarrow 4:1) to afford dihydrobenzopyran 400 (0.22g, 95%) as a yellow oil (5:1 mixture of diastereomers). TLC: R_f = 0.52 (ethyl acetate: hexanes, 1:3). 1H NMR (CDCl$_3$, 300 MHz): δ 7.07 (2H, m), 6.83 (1H, m), 6.65 (1H, d, J = 8.1 Hz), 4.38 (1H, br s), 4.23 (1H, tt, J = 10.3, 2.1 Hz), 2.86 (1H, m), 2.74 (1H, m), 2.35 (0.5H, s), 2.34 (2.5H, s), 2.30 (0.83H, dd, J = 14.7, 10.3 Hz), 2.18 (0.17H, dd, J = 14.5, 3.3 Hz), 2.03 (0.17H, dd, J = 14.5, 9.1 Hz), 2.00 (0.83H, dd, J = 14.7, 2.0 Hz), 1.94 (1H, m), 1.78 (1H, m), 1.40 (3H, s). 13C NMR (CDCl$_3$, 300 MHz): δ 214.3, 211.2, 154.1, 153.6, 129.7, 129.5, 127.2, 127.1, 121.8, 121.6, 120.8, 120.3, 116.4, 116.2, 79.2, 76.7, 74.2, 71.1, 45.2, 43.8, 28.1, 27.6, 26.8, 26.1, 24.8, 24.5, 24.0. IR (film): 3464, 3022, 2928, 1710, 1582, 755 cm$^{-1}$. Anal. Calcd for C$_{14}$H$_{18}$O$_3$: C, 71.77%; H, 7.74%. Found: C, 71.83%; H, 7.82%.

Dihydrobenzopyran 401: Production of dihydrobenzopyran 401 was conducted according to the general procedure. 2,3-Butanedione (0.10g, 1.20 mmol), 5,6-benzo-2-methylenetetrahydropyran (0.146g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH$_2$Cl$_2$, 1.0 mmol) were combined in CH$_2$Cl$_2$ (5 mL) at −78°C. After stirring sixty minutes,
allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO2; hexanes:ethyl acetate, 12:1 → 5:1) to afford dihydrobenzopyran 401 (0.27g, 97%) as a yellow oil (1:1 mixture of diastereomers). TLC: R_f = 0.46 (hexanes:EtOAc, 2:1). ^1H NMR (CDCl3, 300 MHz): δ 7.07 (2H, m), 6.84 (0.5H, m), 6.72 (0.5H, d, J = 8.1 Hz), 6.65 (1H, d, J = 8.2 Hz), 5.82 (1H, m), 5.14 (2H, m), 4.32 (0.5H, s), 4.19 (0.5H, s), 2.72 (2.5H, m), 2.53 (0.5H, d, J = 15.2 Hz), 2.38 (1.5H, s), 2.33 (3H, m), 2.22 (1.5H, s), 2.10 (0.5H, d, J = 15.2 Hz), 1.89 (0.5H, ddd, J = 13.8, 5.8, 4.4 Hz), 1.76 (0.5H, ddd, J = 14.1, 6.0, 2.3 Hz), 1.66 (0.5H, m), 1.36 (1.5H, s), 1.34 (1.5H, s). ^13C NMR (CDCl3, 75 MHz): δ 212.3, 211.2, 152.6, 152.5, 133.3, 132.8, 129.5, 129.4, 127.4, 127.2, 121.0, 120.9, 120.3, 120.2, 118.9, 118.8, 116.9, 116.6, 78.3, 78.0, 77.6, 77.3, 46.5, 45.9, 41.5, 39.6, 30.0, 28.4, 27.6, 24.4, 24.3, 21.6, 21.3. IR (film): 3458, 3075, 2930, 1709, 1583, 755 cm^-1. Anal. Calcd for C_{17}H_{22}O_3: C, 74.42%; H, 8.08%. Found: C, 74.62%; H, 8.18%.

Dihydrobenzopyran 402: Production of dihydrobenzopyran 402 was conducted according to the general procedure. p-Nitrobenzaldehyde (0.18g, 1.20 mmol), 5,6-benzo-2-methylenetetrahydropyran (0.146g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH2Cl2, 1.0 mmol) were combined in CH2Cl2 (5 mL) at –78°C. After stirring sixty minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO2; hexanes:ethyl acetate, 7:1 → 3:1) to afford dihydrobenzopyran 402 (0.26g, 87%) as a yellow oil (1:1 mixture of diastereomers). TLC: R_f = 0.26 (hexanes:EtOAc, 3:1). ^1H NMR (CDCl3, 300 MHz): δ 8.23 (2H,
Dihydrobenzopyran 403: Production of dihydrobenzopyran 403 was conducted according to the general procedure. p-Nitrobenzaldehyde (0.18g, 1.20 mmol), 5,6-benzo-2-methylene tetrahydropyran (0.146g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH$_2$Cl$_2$, 1.0 mmol) were combined in CH$_2$Cl$_2$ (5 mL) at -78°C. After stirring sixty minutes, allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at -78°C. Upon workup, the residue was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 12:1 \rightarrow 5:1) to afford dihydrobenzopyran 403 (0.33g, 97%) as a yellow oil (1:1 mixture of diastereomers). TLC: $R_f = 0.52$ (hexanes:EtOAc, 3:1). 1H NMR (CDCl$_3$, 300 MHz): δ 8.21 (1H, d, $J = 8.9$ Hz), 8.20 (1H, d, $J = 8.9$ Hz), 7.56 (1H, d, $J = 8.9$ Hz), 7.14 (2H, m), 6.92 (1H, m), 6.86 (1H, d, $J = 8.0$ Hz); 5.80 (1H, m), 5.24 (3H, m), 4.09 (0.5H, d, $J = 0.8$ Hz), 3.81 (0.5H, d, $J = 1.4$ Hz), 2.81 (3H, m), 2.45 (1H, m), 2.36 (1H, m), 1.94 (3H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 152.3, 152.1, 152.1, 152.0, 132.3, 132.2, 129.7, 129.7, 127.7, 127.6, 126.5, 126.3, 123.7 123.7, 121.1, 121.0, 119.7, 119.4, 117.5, 117.1, 79.1, 78.7, 70.1, 70.0, 47.2,
Tetrahydropyran 404: Production of tetrahydropyran 404 was conducted according to the general procedure. Ethyl glyoxylate (0.12g, 1.20 mmol), 2-methylene-6-propyltetrahydropyran (0.140g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at –78°C. After stirring five minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO₂; hexanes:ethyl acetate, 15:1 → 8:1) to afford tetrahydropyran 404 (0.19g, 77%) as a colorless oil (5:1 mixture of diastereomers). Relative stereochemistry about the tetrahydropyran was determined by NOE. TLC: R_f = 0.41 (hexanes:EtOAc, 3:1). ^1H NMR (CDCl₃, 300 MHz): δ 4.42 (0.83H, dt, J = 7.4, 3.2 Hz), 4.36 (0.17H, m), 4.23 (2H, m), 3.94 (0.17H, d, J = 2.8 Hz), 3.72 (0.83H, d, J = 7.4 Hz), 3.62 (0.17H, m), 3.57 (0.83H, m), 3.31 (1H, m), 1.96 (1H, m), 1.80 (2H, m), 1.62-1.25 (9H, m), 1.30 (3H, t, J = 7.1 Hz), 0.91 (3H, t, J = 7.3 Hz). ^13C NMR (CDCl₃, 300 MHz): δ 174.9, 77.8, 77.8, 76.4, 75.3, 70.2, 69.2, 61.2, 39.8, 39.8, 38.5, 38.5, 31.7, 31.6, 31.4, 31.2, 23.4, 23.4, 18.8, 18.7, 14.2, 14.2, 14.1. IR (film): 3480, 2932, 2863, 1733 cm⁻¹. HRMS (ESI) Calcd for C₁₃H₂₄O₄ ([M+Na]^+): 267.1567, found 267.1563.

Key NOE Enhancements:
Tetrahydropyran 405: Production of tetrahydropyran 405 was conducted according to the general procedure. Ethyl glyoxylate (0.12g, 1.20 mmol), 2-methylene-6-propyltetrahydropyran (0.140g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH₂Cl₂, 1.0 mmol) were combined in CH₂Cl₂ (5 mL) at –78°C. After stirring five minutes, allyltrimethylsilane (0.11g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO₂; hexanes:ethyl acetate, 15:1 → 8:1) to afford tetrahydropyran 405 (0.19g, 67%) as a yellow oil (1:1 mixture of diastereomers). Relative stereochemistry about the tetrahydropyran ring was determined by NOE studies on the corresponding ketone. TLC: R_f = 0.46 (hexanes:EtOAc, 3:1). ¹H NMR (CDCl₃, 300 MHz): δ 5.73 (1H, m), 5.12 (2H, m), 4.68 (0.5H, d, J = 1.3 Hz), 4.58 (1.5H, m), 4.22 (1H, dq, J = 7.1, 0.7 Hz), 4.21 (1H, q, J = 7.1 Hz), 3.60 (1H, m), 2.71 (1H, m), 2.45 (0.5H, ddd, J = 14.1, 6.9, 1.2 Hz), 2.18 (0.5H, dd, J = 14.5, 8.1 Hz), 2.08 (1H, m), 1.75 (3H, m), 1.62 (3H, m), 1.36 (4H, m), 1.30 (1.5H, t, J = 7.1 Hz), 1.29 (1.5H, t, J = 7.1 Hz), 1.16 (1H, m), 0.88 (1.5H, t, J = 7.1 Hz), 0.87 (1.5H, t, J = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 173.7, 133.2, 132.9, 118.5, 118.4, 77.1, 70.4, 70.1, 69.0, 68.7, 61.0, 61.0, 43.3, 42.2, 39.0, 38.8, 38.5, 35.7, 32.7, 31.1, 31.0, 30.2, 19.1, 19.0, 18.7, 18.6, 14.2, 14.1, 14.0. IR (film): 3468, 3075, 2934, 2871, 1732 cm⁻¹. HRMS (ESI) Calcd for C₁₆H₂₈O₄ ([M+Na]^+): 307.1880, found 307.1878.
Tetrahydropyran 406: Production of tetrahydropyran 406 was conducted according to the general procedure. 2,3-Butanedione (0.10g, 1.20 mmol), 2-methylene-6-propyltetrahydropyran (0.140g, 1.00 mmol), and titanium(IV) chloride (1.0 mL of a 1.0 M solution in CH$_2$Cl$_2$, 1.0 mmol) were combined in CH$_2$Cl$_2$ (5 mL) at –78°C. After stirring sixty minutes, triethylsilane (0.12g, 1.00 mmol) was added and stirring continued five more hours at –78°C. Upon workup, the residue was purified by flash chromatography (SiO$_2$; hexanes:ethyl acetate, 15:1 → 8:1) to afford tetrahydropyran 406 (0.13g, 56%) as a colorless oil (2:1 mixture of diastereomers). Relative stereochemistry about the tetrahydropyran ring was determined by NOE. TLC: R$_f$ = 0.65 (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 5.16 (0.3H, s), 4.45 (0.7H, s), 3.50 (1H, m), 3.28 (0.3H, m), 3.15 (0.7H, m), 2.30 (1H, s), 2.24 (2H, s), 2.01 (1H, m), 1.77 (1H, dd 14.6, 1.9 Hz), 1.70 (1H, m), 1.57-1.08 (9H, m), 1.31 (2H, s), 1.25 (1H, s), 0.90 (1H, t, $J = 7.3$ Hz), 0.88 (2H, t, $J = 7.2$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 216.5, 212.0, 80.3, 77.9, 77.6, 77.1, 76.7, 73.3, 45.4, 44.2, 38.4, 38.3, 32.0, 31.7, 31.2, 31.1, 26.3, 26.1, 24.6, 24.2, 23.5, 23.1, 18.9, 18.6, 14.2, 14.0. IR (film): 3463, 2932, 2862, 1711, cm$^{-1}$ HRMS (ESI) Calcd for C$_{13}$H$_{24}$O$_3$ ([M+Na]$^+$): 251.1618, found 251.1614.

Key NOE enhancements:

![Key NOE enhancements](image-url)
Tetrahydropyran 407: To a solution of alcohol 405 (0.020g, 0.070 mmol) in CH₂Cl₂ (0.35 mL) was added Dess-Martin periodinane (0.034g, 0.081 mmol) and solid NaHCO₃ (0.029g, 0.350 mmol). The reaction mixture was stirred at rt for two hours, after which time the reaction was shown to be complete by TLC. Hexane (4 mL) was added and the resulting solution was gravity filtered to remove precipitates. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography (SiO₂; 50:1, hexanes:EtOAc) to provide tetrahydropyran 407 (0.013 g, 66%) as a colorless oil. TLC: Rₜ = 0.79 (hexanes:ethyl acetate, 3:1). ¹H NMR (CDCl₃, 300 MHz): δ 5.79 (1H, m), 5.12 (2H, m), 4.25 (2H, dq, J = 7.2, 1.8 Hz), 3.50 (1H, m), 3.43 (1H, d, J = 12.6 Hz), 2.69 (1H, ddt, J = 14.4, 6.1, 1.4 Hz), 2.44 (1H, d, J = 12.6 Hz), 2.27 (1H, dd, J = 14.4, 8.3 Hz), 1.66 (2H, m), 1.56 (2H, m), 1.50 (1H, dm, J = 14.0 Hz), 1.38 (1H, m), 1.36 (3H, t, J = 7.2 Hz), 1.25 (3H, m), 1.09 (1H, m), 0.87 (3H, t, J = 7.0 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 195.4, 162.2, 133.2, 118.5, 76.5, 69.9, 61.9, 47.8, 38.8, 37.3, 31.6, 30.9, 19.2, 18.5, 14.1. 13.9. IR (film): 3077, 2937, 2871, 1728, 1640 cm⁻¹. HRMS (ESI) Calcd for C₁₆H₂₆O₄ ([M+Na]⁺): 305.1723, found 305.1718.

Key NOE enhancements:
2.6 References

20 Preliminary studies carried out by Ghohua Liang.

Chapter 3: Carbonyl-Ene Reactions of Exocyclic Enol Ethers: Chiral Induction Studies

3.1 Overview

Since its discovery nearly seventy years ago, the ene reaction has found abundant utility in making carbon-carbon bonds. Carbonyl-ene reactions are one segment of this chemistry and combine olefins with oxygenated double bonds. Herein we discuss the carbonyl-ene reaction of exocyclic enol ethers, again demonstrating their inherit nucleophilicity. Specifically chiral induction from substrate to ene product is studied on 2-methylenetetrahydropyrans with one or two pre-existing stereocenters.

This chapter will briefly review carbonyl-ene chemistry, focusing on diastereoselective processes. Previous research in this field focused on the production of racemic mixtures of β-hydroxydihydropyrans from carbonyl-ene reactions of exocyclic enol ethers and a variety of aldehydes and ketones. The utility of this carbon-carbon bond forming transformation would be enhanced through control of the newly formed stereocenter. Chiral induction from the enol ether to the resulting product is discussed here. Seven new substituted 2-methylenetetrahydropyrans were synthesized, three enol ethers containing one chiral center and four possessing two stereocenters. These exo enol ethers were subsequently subjected to carbonyl-ene conditions, which involved catalytic zinc chloride and aldehydes with a range of reactivity (Scheme 3.1). The extent of chiral induction these enol ethers have on the resulting β-hydroxydihydropyran products is discussed.

Scheme 3.1

\[
\begin{align*}
\text{R-O-} & + \text{H} = \text{O} \quad \overset{\text{ZnCl}_2}{\longrightarrow} \quad \text{R-O-} \quad \overset{\text{H} = \text{O}}{\longrightarrow} \\
\end{align*}
\]
3.2 Background and Significance

Previous work in our lab demonstrated the inherent nucleophilic nature of 2-methylene-tetrahydropyrans through their use in the three component coupling with electron deficient aldehydes and secondary nucleophiles. This coupling reaction successfully produced synthetically useful β-hydroxy-tetrahydropyran ketides, but only with the use of titanium(IV) chloride as the Lewis acid. Other Lewis acids were screened, but failed to yield the desired tetrahydropyran product. Although this is a useful method for the introduction of tetrahydropyran moieties, the reaction is somewhat limited in scope and utility for natural product synthesis. Ultimately, the goal was to find a more general method towards tetrahydropyranyl ketide synthesis that would take place under mild conditions.

Further evaluation of reaction conditions associated with the three component coupling reaction led to the discovery that zinc chloride promoted a similar process, the ene reaction of 2-methylene-tetrahydropyrans with aldehydes and activated ketones. Even in the presence of triethylsilane, carbonyl-ene products were formed, which upon treatment with BF$_3$·OEt$_2$ and triethylsilane, provided tetrahydropyran products (Scheme 3.2). This transformation holds advantage over the three component coupling reaction in that milder reaction conditions are used. Zinc(II) chloride, a mild Lewis acid, promoted minor carbonyl activation without decomposition of the labile exo enol ether. The use of a mild Lewis acid allows the carbonyl to participate in the reaction and abstract a hydrogen, six atoms away, thus leading to the carbonyl-
ene product. A strong Lewis acid like titanium(IV) chloride binds tightly to the carbonyl oxygen and prevents oxo-addition until work-up. The formation of these ene adducts inspired further investigation.

The Carbonyl-Ene Reaction: Mechanism and Transition States of Thermal and Lewis Acid Promoted Processes

The ene reaction has proven to be a valuable carbon-carbon bond-forming technique since Alder highlighted it in his 1943 publication and has been studied on a wide variety of substrates. Ene reactions are defined as pericyclic processes between an olefin possessing an allylic hydrogen and an enophile that contains an electron deficient multiple bond (Scheme 3.3). This reaction involves the transfer of the allylic hydrogen to the enophile oxygen, an allylic shift of the ene olefin, and bonding between the two alkenyl termini.

Scheme 3.3

Although mechanistically similar to the Diels-Alder reaction, the ene reaction possesses a higher activation energy when comparing bond dissociation energies between the two systems. The Diels-Alder mechanism requires breakage of only pi bonds. On the other hand, two of the electrons involved in the ene pericyclic process originate from a sigma bond. Sigma bonds possess higher bond dissociation energies than pi bonds, resulting in higher overall reaction activation energies. These two reactions are nonetheless mechanistically similar and with use of certain substrates ene byproducts can be detected in the Diels-Alder reaction and vice versa.

The ene reaction mechanism ranges from a concerted to a zwitterionic process based on the substrates at hand (Scheme 3.4). If simultaneous bond making at both ends
of the ene terminus is geometrically unfavorable and to a lesser extent if radical intermediates can be stabilized, a stepwise radical mechanism can also prevail \((433)^{2a}\). In the stepwise biradical approach radical intermediates like \(436\) are formed, which inevitably leads to some cyclobutane

Scheme 3.4

438 formation (Scheme 3.5).\(^3\) Thus the presence of cyclobutane derivatives indicates a radical stepwise mechanism. Ene reactions of substrates without strained transition states, however, typically follow a truly concerted course in the case of thermal, all carbon systems, or a partial ionic mechanism.

Scheme 3.5

Whether the mechanism is concerted, stepwise, or somewhere in-between, ene reactions involving Lewis acids undoubtedly develop a positive charge to some extent on the ene component.\(^4\) Ene reactions that exhibit any level of concerted mechanism, proceed through a single-barrier process, which can yield products with good stereoselectivity. The purely stepwise cationic method, on the other hand, proceeds through a cationic intermediate. Either
formation of the cationic intermediate or the secondary hydride transfer can be rate determining. In the latter case, creation of the cationic intermediate is reversible.

Deuterium isotope effects can aid in determining the type of mechanism the ene reaction proceeds through. Ene reactions of deuterated ene 439 and oxomalonate 440 were studied under both thermal and Lewis acid catalyzed conditions (Scheme 3.6).\(^5\) A primary deuterium isotope effect was observed for the thermal reaction. This result arises from CH bond-breakage in the transition state, indicating a concerted mechanism. The minimal primary isotope effect observed for the Lewis acid catalyzed ene reaction, however, indicates a concerted mechanism in which CH bond breakage has only minimally progressed in the transition state. The transition state would possess a partial cationic charge associated with the ene component. If a truly cationic mechanism prevailed no primary isotope effect would be expected. Without these kinetic studies, however, it is not always clear exactly what mechanism the ene reaction follows for different substrates.

A number of different enophiles have been utilized in ene reactions (Scheme 3.7). These include substrates from four different groups: carbon-carbon multiple bonds (olefinic,\(^6\) acetylenic,\(^7\) an benzyne\(^8\)), carbon-hetero multiple bonds (C=O,\(^9\) C=N,\(^10\) C=S,\(^11\) and C=P\(^12\)), hetero-hetero multiple bonds (N=N,\(^13\) O=O,\(^14\) Si=Si,\(^15\) N=O,\(^16\) and S=O\(^17\)), cumulene systems (N=S=O,\(^18\) N=S=N,\(^19\) C=C=O,\(^20\) C=C=S,\(^8\) and O=S=O\(^21\)), as well as other charged pi systems (C=N\(^+\),\(^22\) C=S\(^+\),\(^23\) C≡N\(^+\),\(^24\) and C≡O\(^+\)).
Aldehydes, ketones, and glyoxylates are commonly used in carbonyl-ene reactions and will be the only substrates examined in any detail due to their relevance to the reactions discussed herein. The carbonyl enophiles are more reactive than olefins in the ene reaction, and these types of reactions are effectively promoted by Lewis acids. The advantages to Lewis acid catalyzed processes over thermal are two fold, and the differences associated with these two processes are discussed herein. The use of a metal catalyst provides possible asymmetric control over the reaction, while avoiding undesired byproduct formation often accompanied with high temperatures.

Scheme 3.7

Alcohols 444 are exclusively produced from carbonyl-ene reactions rather than the corresponding ethers based on thermodynamic and stereoelectronic grounds. Ether 445 formation is avoided due to the greater gain in bond energy for the reaction (Scheme 3.8).26 The carbon-oxygen double bond is also naturally polarized such that the carbon is electrophilic and

135
set up to accept a bond from the electron-rich ene. Coordination of Lewis acids to the oxygen portion of the carbonyl further polarizes the carbon-oxygen bond and activates the carbon center for nucleophilic addition, thus avoiding the need for a thermal process.

Scheme 3.8

The large activation energy associated with the ene reaction lends to its facilitation with either thermal or Lewis acid conditions. The two processes differ in mechanism, transition state, and the major diastereomer products formed. As previously mentioned, the mechanism of the ene reaction may differ for thermal based processes versus Lewis acid promoted ones. The thermal reaction typically undergoes a completely concerted mechanism while the Lewis acid-promoted reaction contains a partial cationic intermediate or transition state.

Based upon their mechanistic differences, the thermal ene reactions generally produce products that stem from sterically accessible olefins and allylic hydrogens whereas Lewis acid-promoted processes produce products based on reaction intermediate stability. For example, when diene 446 is added to dimethyl oxomalonate 447 under thermal conditions, product 448 prevails (Scheme 3.9).27 The more sterically accessible terminal olefin preferentially reacts. Alternatively, the same reactants produce primarily product 449 under Lewis acid catalyzed conditions. Here, a partial positive charge develops on the ene reactant. Progression to this intermediate is rate determining and therefore addition occurs from the tri-substituted olefin, preferentially producing product 449 as a result.
Scheme 3.9

\[
\text{Scheme 3.9}
\]

\[
\begin{align*}
\text{\text{446}} & \quad + \quad \text{MeO}_2\text{C\text{CO}_2\text{Me}} \quad \rightarrow \quad \text{448} \quad + \quad \text{449} \\
180^\circ \text{C}, 48 \text{h} & \quad 92 \quad + \quad 8 \\
\text{SnCl}_4 (0.2 \text{ eq}) \quad 0^\circ \text{C}, 5 \text{ min} & \quad 2.5 \quad 97.5
\end{align*}
\]

The thermal ene reaction develops an early envelope-like transition state structure 450 between the ene and enophile substrates (Figure 3.1).28 Although planar in both the reactants and products, in this transition state C\textsubscript{5} distorts slightly from planarity to maximize p orbital overlap between the C\textsubscript{5} carbon and those p or slightly hybridized p orbitals of C\textsubscript{6} and C\textsubscript{4}. Through this orientation, the C\textsubscript{5} carbon is able to maximize its pi overlap with C\textsubscript{6} until the pi bond between C\textsubscript{5} and C\textsubscript{4} has significantly developed. Notably, substitution of formaldehyde for ethylene resulted in little change in this transition state conformation. Alternatively, in the case of carbonyl-ene reactions, Lewis acid promotion results in chair-like late transition states 451, which minimize torsional and steric strain in six-membered processes.29

\[
\text{Figure 3.1}
\]

\[
\begin{align*}
\text{450} & \quad \text{451}
\end{align*}
\]

The difference in transition state between the two ene reactions lends to variations in their diastereoselectivity. The thermal carbonyl-ene reaction of 2-methyl-2-butene 452 with chloral 453
results in production of anti isomer 455 (84%) versus production of primarily the syn isomer 454 (85%) under Lewis acid catalysis (Scheme 3.10). The thermal reaction proceeds through either envelope-like transition state 456 or 457 (Scheme 3.11). Transition state 456

Scheme 3.10

\[
\begin{array}{c}
\text{452} + \text{HCCl}_3 \rightarrow \text{454} + \text{455} \\
130^\circ C & 16 & 84 \\
\text{AlCl}_3 & 85 & 15
\end{array}
\]

predominates due to the steric repulsion experienced between the methyl and trichloro groups within transition state 457, therefore favoring formation of the anti ene diastereomer. The Lewis

Scheme 3.11
acid catalyzed reaction, which undergoes a chair-like transition state, favored syn product formation because 1,3-diaxial steric repulsions are avoided. Thus, thermal and Lewis acid catalyzed processes have been proven to preferentially produce products of opposite stereochemistry based solely upon the transition state geometry.

Furthermore internal asymmetric induction may be observed in ene systems where favorable secondary orbital overlap can occur in the transition state. Berson demonstrated the thermal ene reaction between maleic anhydride and cis-2-butene to proceed preferentially through endo transition state 462 (Scheme 3.12). Like the Diels Alder reaction, the activation energy of the endo transition state is reduced by secondary p-orbital overlap between the ene and enophile. The exo transition state does not experience the same stabilization and leads to a product with the opposite relative stereochemistry. The reaction of malic anhydride with cis-2-butene resulted in production of products 463 and 465 in a 85:15 ratio, in favor of the endo product. Trans-2-butene, on the other hand, resulted in a 43:57 ratio of products. A decrease in selectivity is observed due to competing steric influences associated with the trans methyl group.
Ene reactions of *cis* and *trans* decanes delivered similar results, indicating again that the endo transition state can be sensitive to steric effects.\(^3\)

The carbonyl-ene reactions of ethyl glyoxylate 343 were studied under both thermal and Lewis-acid catalysis to determine endo/exo transition state bias.\(^3\) The reaction of ethyl glyoxylate and *cis*-2-butene at 200ºC resulted in a 88:12 diastereomeric mixture of products favoring anti isomer 466, which resulted from the endo transition state (Scheme 3.13). The reaction of *trans*-2-butene again resulted in lower product selectivity (36:64) due to competing steric interactions, but nonetheless produced endo, syn product 467 as the major isomer. Promotion of the carbonyl-ene reaction of *cis*-2-butene with Fe(III) chloride produced the desired ene adducts, favoring the anti isomer, but with much lower selectivity (58:42) than the thermal reaction.

Scheme 3.13

![Scheme 3.13](image)

Carbonyl-Ene Reactions of Enol Ethers

Ene reactions of enol ethers are limited in the literature to the asymmetric work of Careirra\(^3\)\(^4\) and Jacobsen.\(^3\)\(^5\) Careirra combined aldehydes and 2-methoxypropene 468 along with a chiral titanium(IV) binol complex to provide the β-hydroxyketones 470 in good to excellent yields after aqueous acidic workup (Scheme 3.14). Similarly, Jacobsen demonstrated both 2-methoxypropene and the TMS equivalent to react with aldehydes under chromium(III) complex catalysis (Scheme 3.15). The work of these two authors focuses specifically on enantioselective examples and will be discussed later in this work (Tables 3.6 and 3.7).
Scheme 3.14

\[
\text{RCHO} + \text{MeO} \xrightarrow{\text{titanium(IV) complex}} 0-23^\circ\text{C} \xrightarrow{\text{aqueous workup}} 79-99\%
\]

Scheme 3.15

Carbonyl-ene reactions involving exocyclic enol ethers, the focus of this chapter, are underutilized in the literature. Only one general method has been established,\(^{36}\) and other examples are restricted to one report where product formation is driven by aromatization\(^ {37}\) and an instance of byproduct formation from a Diels-Alder reaction.\(^ {38}\)

In 2005 Miles \textit{et al}.\(^ {39}\) developed a strategy towards the synthesis of \(\beta\)-hydroxy furans via the carbonyl-ene reaction of 2-methylene-2,5-dihydrofuran \(474\) with various enophiles. A selection of their results is included in Table 3.1. The reaction with highly activated enophile

| Table 3.1: Carbonyl Ene Reactions of 2-Methylene-2,5-dihydrofuran |
|---|---|---|---|---|---|
| Entry | Substrate | Temp | Catalyst | Product | Yield (%) |
| 1 | \(\text{HCO}_2\text{Me}343\) | \(0^\circ\text{C}\) | none | \(476\) | 89 |
| 2 | \(\text{477}\) | \(22^\circ\text{C}\) | \(\text{ZnCl}_2\) | \(478\) | 78 |
| 3 | \(\text{479}\) | \(22^\circ\text{C}\) | \(\text{Yb(fod)}_3\) | \(480\) | 93 |
ethyl glyoxylate 343 proceeded in excellent yield without Lewis acid activation (entry 1). Good to excellent yields were obtained for non-activated enophiles 477 and 479 as well through Lewis acid catalysis with both zinc(II) chloride and Yb(fod)₃ (entries 2 and 3). Although this methodology presents an efficient method toward stereoselective β-hydroxy furan synthesis, it varies greatly from the carbonyl-ene methodology of simple exo enol ethers in that aromatization drives the reaction forward.

Rizzacasa has demonstrated the formation of β-hydroxy dihydropyran 484 as a byproduct of the Diels Alder reaction.⁴⁰ Combination of enol ether 481 with enone 482 resulted in formation of hetero-Diels Alder product 483 and ene biproduct 484 (Table 3.2). Under purely thermal conditions only the desired Diels Alder product was detected albeit in low yield (entry 1). A slight improvement in yield was obtained by performing the reaction neat (entry 2). The authors then turned to Lewis acid catalyzation with lanthanide catalyst Eu(fod)₃ to improve the yield of Diels Alder adduct 483, however ene adduct 484 also resulted as a mixture of diastereomers in a 1:1.3 ratio respectively (entry 3). Again performing this reaction neat resulted
in a reasonable yield of Diels Alder adduct 483 such that it could be later transformed into reveromycin A.

Recently, a general method has been developed in the Totah group that demonstrates the ability of exocyclic enol ethers to undergo the carbonyl-ene reaction.41 This research combined exocyclic enol ethers with a variety of enophile substrates to provide β-hydroxy dihydropyrans in excellent yields under zinc(II) chloride catalysis. The reaction benefits from low catalyst loading, use of equimolar quantities of enol ether and enophile, and wide enophile substrate scope as depicted in Table 3.3.

Highly activated aldehyde ethyl glyoxylate 343 reacted quickly in excellent yield with low catalyst loading (entry 1). Likewise, the activated ketone ethyl pyruvate 369 resulted in excellent yields of product 488, although longer reaction time (15 h) was required (entry 2). Aromatic aldehydes bearing both electron withdrawing (383, entry 3) and electron donating (491, entry 5) groups worked well as enophile components, although the non-activated aromatic aldehydes 479 and 491 required longer reaction times and higher catalyst loadings (entries 4 and 5). Only moderate yields were obtained with conjugated aldehyde 493 (entry 6). Excellent yields were obtained for the carbonyl-ene reaction with aliphatic aldehydes octyl aldehyde 496 and cyclohexylaldehyde 497 (entries 7 and 8).

As demonstrated, reactive enophile components range from highly activated (343) to somewhat deactivated aldehydes (491) and include activated ketones (369). Secondarily, other aromatic and C\textsubscript{3}-substituted exocyclic enol ethers were screened for use in the carbonyl-ene reaction and the results are shown in Tables 3.4 and 3.5. Both the dihydrocoumarin derived enol ether 112 and the 6,6-diphenyl exocyclic enol ether 499 reacted quickly to produce ene adducts in excellent yields with the use of highly activated ethyl glyoxylate 343 (entries 1 and 2).
Table 3.3: Carbonyl-Ene Reactions of 2-Methylenetetrahydropyran

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enophile</th>
<th>Time</th>
<th>mole % ZnCl₂</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO₂Et 343</td>
<td>2 hr</td>
<td>5</td>
<td>92%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>2</td>
<td>CO₂Et 369</td>
<td>15 hr</td>
<td>5</td>
<td>90%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>3</td>
<td>NO₂ 383</td>
<td>2 hr</td>
<td>5</td>
<td>90%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>4</td>
<td>R 479</td>
<td>24 hr</td>
<td>20</td>
<td>93%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>5</td>
<td>OMe 491</td>
<td>24 hr</td>
<td>20</td>
<td>99%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>6</td>
<td>Ph 493</td>
<td>24 hr</td>
<td>5</td>
<td>69%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>7</td>
<td>495</td>
<td>12 hr</td>
<td>5</td>
<td>93%</td>
<td>![Product Image]</td>
</tr>
<tr>
<td>8</td>
<td>497</td>
<td>24 hr</td>
<td>5</td>
<td>85%</td>
<td>![Product Image]</td>
</tr>
</tbody>
</table>

Coupling with p-nitrobenzaldehyde, a lesser activated enophile component, resulted in high yield for enol ether 499 (entry 4), however enol ether 112 required a longer reaction time and higher catalyst loading to produce moderate yields of the desired ene adduct (entry 3).

Enol ether 112 suffers from deactivation by the aromatic ring, which pulls electron density from the ene component through resonance (Scheme 3.16). With highly activated enophile substrates, use of deactivated exocyclic enol ether 112 had little effect on yield. The
Table 3.4: Carbonyl-Ene Reactions of Substituted Exocyclic Enol Ethers

![Chemical Reaction Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Enophile</th>
<th>Time</th>
<th>mole % ZnCl₂</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112</td>
<td>343</td>
<td>1 hr</td>
<td>5</td>
<td>91%</td>
</tr>
<tr>
<td>2</td>
<td>499</td>
<td>343</td>
<td>1 hr</td>
<td>5</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>112</td>
<td>383</td>
<td>72 hr</td>
<td>20</td>
<td>48%</td>
</tr>
<tr>
<td>4</td>
<td>499</td>
<td>383</td>
<td>6 hr</td>
<td>5</td>
<td>99%</td>
</tr>
</tbody>
</table>

reaction of enol ether 112 with less reactive enophiles resulted in lower product yields, in the case of p-nitrobenzaldehyde 383 (entry 3), or no product production in the case of non-activated octyl aldehyde 495.

Scheme 3.16

Exo enol ethers bearing C₃ substitution increase the steric bulk at the reaction center. Therefore these enol ethers were studied to determine the effect of C₃ substitution on the carbonyl-ene reaction rate. Reaction of the C₃-substituted enol ethers 503 and 504 resulted in the desired ene adducts in moderate to excellent yields (Table 3.5). Combination with highly activated ethyl glyoxylate 343 resulted in excellent yields (entries 1 and 2). However, the reaction rate of C₃-substituted enol ethers 503 and 504 decreased upon subjection to p-nitrobenz-
Table 3.5: Carbonyl-Ene Reactions of C₃-Substituted 2-Methylenetetrahydropyrans

\[
\text{O} \quad \text{R} \quad + \quad \text{H} \quad \text{O} \quad \text{R'} \quad \frac{\text{ZnCl}_2}{\text{0.5M, THF, rt}} \quad \text{O} \quad \text{R} \quad \text{H} \quad \text{O} \quad \text{R'}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Enophile</th>
<th>Time</th>
<th>mole % ZnCl₂</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>503</td>
<td>343</td>
<td>1 hr</td>
<td>5</td>
<td>97%</td>
</tr>
<tr>
<td>2</td>
<td>504</td>
<td>343</td>
<td>12 hr</td>
<td>5</td>
<td>93%</td>
</tr>
<tr>
<td>3</td>
<td>503</td>
<td>383</td>
<td>24 hr</td>
<td>20</td>
<td>72%</td>
</tr>
<tr>
<td>4</td>
<td>504</td>
<td>383</td>
<td>22 hr</td>
<td>5</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>504</td>
<td>495</td>
<td>24 hr</td>
<td>20</td>
<td>56%</td>
</tr>
</tbody>
</table>

Aldehyde 383. Both enol ethers required longer reaction times (entries 3 and 4) compared to 2-methylenetetrahydropyran 2 (Table 3.3, entry 3) and in the case of enol ether 503, a higher catalyst loading.

The decrease in reaction rate indicates that the carbonyl-ene mechanism is concerted. As previously discussed,²⁷ the rate of the concerted ene reaction is affected by sterics at the reaction center. Therefore the decrease in reaction rate seen going from 2-methylenetetrahydropyran, which is an unhindered substrate, to 3-methyl or 3-allyl-2-methylenetetrahydropyran, sterically hindered substrates, indicates a concerted reaction mechanism. To support this data, exo enol ether 504 was additionally studied with non-activated octyl aldehyde 495 (Table 3.5, entry 5). Again this reaction demonstrates a decrease in the reaction rate using C₃-substituted enol ethers.
Both longer reaction time and a higher catalyst loading were required for modest yields of the ene adduct as compared to the 2-methylenetetrahydropyran example (Table 3.3, entry 7).

This carbonyl-ene reaction of exocyclic enol ethers yields similar products as the three-component coupling methodology outlined in chapter 2. The dihydropyran products of the carbonyl-ene reaction, however, are prone to hydrolysis, and therefore the best reaction yields were obtained when purification via column chromatography immediately followed reaction completion. An aqueous workup was avoided because the addition of water facilitates the production of open-chain hydrolyzed byproduct 505 (Scheme 3.17). Nonetheless the advantages of the carbonyl-ene methodology over the three component coupling reaction include the use of catalytic amounts of a mild Lewis acid (5-20 mol%), a wider substrate scope (use of non-activated aldehydes and ketones), and room temperature reaction conditions.

Scheme 3.17

The carbonyl-ene reaction of enol ethers results in formation of a new stereogenic center at the hydroxy carbon. Control of this newly formed chiral center has importance in the reaction’s application to natural product synthesis. Methods to induce stereocontrol in the ene reaction include enantioselective chiral catalysis and diastereoselective chiral induction derived from chiral reactants. The latter is the focus of this work.

Asymmetric Carbonyl-Ene Reactions of Enol Ethers

Enantioselective carbonyl-ene reactions have been extensively studied through use of chiral catalysis. These asymmetric ene reactions represent a large topic that lies outside of the
scope of the current discussion, therefore this discussion will be restricted to enantioselective carbonyl-ene reactions of enol ethers.

Careirra first demonstrated the use of enol ethers in carbonyl-ene reactions toward the manufacture of β-hydroxy ketones. Catalyzation of this process by titanium(IV) complex 506 (Figure 3.2) led to the desired chiral enol ether intermediates 507, which upon aqueous acidic workup produced the β-hydroxyketone products in good to excellent yields (Table 3.6). The 2-methoxypropene enol ether was used as solvent in these cases as the reaction would not proceed upon dilution. Excellent enantioselectivities were obtained with use of non-hindered enophiles such as acetylenic and aliphatic aldehydes (Table 3.6, entries 1 and 2). Lower selectivities were observed using aromatic aldehydes (entries 3 and 4).

Table 3.6: Carreira Carbonyl-Ene Reactions of Enol Ethers

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde</th>
<th>Temp.</th>
<th>Yield</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph=CHO</td>
<td>0°C</td>
<td>99%</td>
<td>91%</td>
</tr>
<tr>
<td>2</td>
<td>Ph–CHO</td>
<td>0-23°C</td>
<td>98%</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>PhCHO</td>
<td>0-23°C</td>
<td>83%</td>
<td>66%</td>
</tr>
<tr>
<td>4</td>
<td>o-C6H4CHO</td>
<td>0-23°C</td>
<td>79%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Jacobsen later developed an ene methodology utilizing chiral tridentate Schiff base chromium(III) complexes 509 and 510 (Figure 3.3) as catalysts in the ene reaction of both enol ethers and silyl enol ethers.45 Pre-stirring the catalyst with desiccant barium oxide for five hours maximized enantioselectivities for this reaction. The reaction of 2-methoxypropene 468 was successful in producing carbonyl-ene products with aromatic aldehydes as enophile components (Table 3.7, entries 1 and 2) although somewhat long reaction times were required. Slight activation of the aromatic aldehyde with electron withdrawing groups (entry 1) rather than electron donating groups (entry 2) increased product yields.

Ene reactions of 2-trimethylsilyloxypropene provided products in good to excellent yields with excellent enantioselectivity (entries 3-5) without any evidence of silyl transfer to the products. The scope of this reaction was broadened to include not only aromatic aldehydes (entry 3), but also aliphatic aldehydes (entries 4 and 5). Furthermore, Jacobsen demonstrated that this reaction could be carried out without solvent (entries 4 and 5). The use of chiral chromium complexes as catalysts in the carbonyl-ene reaction of enol ethers offers an alternative to Carreira’s method and in contrast can produce excellent enantioselectivities with aromatic aldehydes.
Enantioselective studies of exocyclic enol ethers with chiral catalysts has been restricted to research done by Miles and the Totah research group. Miles demonstrated the

Table 3.7: *Jacobsen Carbonyl-Ene Reactions of Enol Ethers*

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Enophile</th>
<th>Solvent</th>
<th>time</th>
<th>catalyst</th>
<th>Yield (%)</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>acetone</td>
<td>36 h</td>
<td>509</td>
<td>88%</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>ethyl acetate</td>
<td>40 h</td>
<td>509</td>
<td>26%</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>acetone</td>
<td>40 h</td>
<td>509</td>
<td>75%</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>HCO*Pr</td>
<td>neat</td>
<td>72 h</td>
<td>510</td>
<td>83%</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>OCO*BDPS</td>
<td>neat</td>
<td>20 h</td>
<td>510</td>
<td>90%</td>
<td>93</td>
</tr>
</tbody>
</table>

nucleophilic nature of 2-methylenedihydrofuran 474 in ene reactions with aldehydes. By utilizing chiral titanium BINOL catalyst, non-racemic mixtures of ene adducts resulted. Use of decanal 477 produced furan 511 in moderate yield with excellent enantioselectivity (Table 3.8, entry 1). Contrarily, benzaldehyde 479 provided furan 512 in excellent yield with only moderate selectivity (entry 2). Although these systems are driven by aromatization, this study substantiates that exocyclic enol ethers can deliver enantioselective products through chiral catalysis.
Table 3.8: Asymmetric Carbonyl-Ene Reactions of 2-Methylene-2,5-dihydrofuran

\[
\text{O} \quad \text{+} \quad \text{O} \quad \text{20 mol % cat} \quad \text{OH} \quad \text{R} \\
474 \quad 12 \quad 475
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Conditions</th>
<th>Product</th>
<th>Yield (%)</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[\text{477}]</td>
<td>[\text{Et}_2\text{O, Ti(IV)/(S)-BINOL}]</td>
<td>[\text{511}]</td>
<td>65</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>[\text{479}]</td>
<td>[\text{Et}_2\text{O, Ti(IV)/(S)-BINOL}]</td>
<td>[\text{512}]</td>
<td>91</td>
<td>54</td>
</tr>
</tbody>
</table>

The Totah group has demonstrated degrees of stereoselective \(\beta\)-hydroxydihydropyran formation through chiral catalysis of the carbonyl-ene reaction of 2-methylenetetrahydropyrans. Catalyst \(510\), previously discovered by Jacobsen to induce asymmetry in carbonyl-ene products of enol ethers,\(^{35}\) was used to catalyze the reaction between exocyclic enol ether \(2\) and benzaldehyde (Scheme 3.18). This reaction provided \(\beta\)-hydroxydihydropyran \(490\) in near quantitative yield with moderate enantioselectivity. The barium oxide additive acted as a desiccant in the reaction.\(^{35}\) The drawback of this reaction with 2-methylenetetrahydropyrans is that determining the enantiomeric excess of the resultant products proved challenging. Decomposition of ene adducts resulted on HPLC chiral columns, and conversion to the Mosher ester caused elimination of the chiral center. These difficulties in judging stereoselectivity lead to another approach.

Scheme 3.18

Alternatively, \(C_6\)-substituted 2-methylenetetrahydropyran \(513\) was examined in the asymmetric carbonyl-ene reaction. This substrate was chosen so that the stereoselectivity of the
reaction could be judged through 1H NMR integrations of diastereomeric products. The carbonyl-ene reaction of exocyclic enol ether 513 with titanium(IV) BINOL catalyst 514 and p-nitrobenzaldehyde 383 produced the desired dihydropyran 515, but with yields and selectivities based on catalyst preparation (Scheme 3.19). In situ generation of the catalyst led to a moderate yield of product 515 with modest selectivity. Isolation of the catalyst prior to the reaction caused lower yields, but good diastereoselectivity was achieved. Although the C_6-stereocenter could plausibly contribute to the observed selectivity, it is the chiral catalyst that is believed to induce generation of this new chiral center. The study of 2-methylenetetrahydropyrans bearing C_6-stereocenters, which will be discussed later in this work, argues that chiral induction derived from the C_6 site is minimal.

Although the Totah group had moderate success at stereoselectively synthesizing 2-methylenetetrahydropyran ene adducts, that work concentrated on enantioselective processes utilizing chiral catalysis. The aim of this research is to determine the level of diastereoselective induction from substrate to product. Diastereofacial selection involves the preferential creation of a stereogenic center relative to a preexisting chiral center. Previous work in the field has demonstrated chiral induction to occur from both chiral enophiles and chiral enes. Although both types of research will be discussed, the latter is the focus of this paper.
Stere induction from Enophile Components of the Carbonyl-Ene Reaction

Ene reactions that derive diastereoselectivity from chiral aldehydes primarily involve chelation of alpha or beta heteroatom-substituted aldehydes and stereoinduction through glyoxylate chiral auxiliaries. α-Oxygenated chiral aldehydes govern stereoselective product formation in the carbonyl-ene reaction based upon chelation control and Cram chelation models. This trend was first reported by Mikami through use of aldehyde 517 (Scheme 3.20).

Scheme 3.20

The ene reaction of 2-methylpropene 516 with alkoxy-aldehyde 517, in the presence of tin(IV) chloride, resulted solely in the formation of ene adduct 518. The presence of the α-alkoxy substituent on the enophile allows for chelation between it and the carbonyl with the Lewis acid. The preferred approach of the incoming olefin from the less hindered si face of this complex is presumably the basis for the observed stereoselectivity. Syn diol 518 resulted as the sole product.

Within the same work, Mikami also demonstrated diastereoselective preference for product 522 through use of chiral aldehyde 521 (Scheme 3.21). As discussed above, transition
state structure 523 predominated through cram chelation of enophile 521. Nucleophilic attack from the less hindered re face results in production of ene adduct 522 in excellent yield. Thus

Scheme 3.21

the work of Mikami demonstrated that both alpha and beta-alkoxy aldehydes can diastereoselectively control formation of the new stereocenter formed in the carbonyl-ene reaction.

The diastereoselective production of ene adducts stemming from chiral α-amino aldehydes is dependant upon both the type of Lewis acid and choice of amino protecting group. The use of bidentate Lewis acids like Tin(IV) chloride (Table 3.9, entry 1) and titanium(IV) chloride (entry 4) provided the syn products through the cram chelation model as discussed above. Substitution of N-Boc protecting groups for benzyl caused a decrease in yield along with an increase in diastereoselectivity (entry 2). More pertinent to our current study, silyl enol ether 531 also provided reasonable yields of the syn product under Tin(IV) chloride catalysis (entry 3). Thus, in the case of these bidentate Lewis acids, the alteration of either ene or enophile did not change the observed stereoselectivity.

Mikami discovered that use of monodentate Lewis acids like EtAlCl₂ in this reaction provided both syn and anti ene adducts based on the enophile’s protecting group. α-
Dibenzylaminoaldehyde 525 resulted in production of syn product 532 (entry 5), while chiral N-Boc-aminoaldehyde 527 produced the anti ene adduct 533 (entry 6). The stereoselectivity of these reactions is best explained in terms of the Curtain-Hammett principal. The predominantly monodentate Lewis acids like EtAlCl₂ prefer to react through the non-chelation complex 535 (Scheme 3.22). This intermediate is much less reactive towards the ene reaction, however, than chelation complex 534. When benzyl protecting groups are present on the enophile, the reaction proceeds through the chelation complex because the potential energy of

Table 3.9: Carbonyl-Ene Reactions of α-Aminoaldehydes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ene</th>
<th>Enophile</th>
<th>Lewis Acid</th>
<th>Major Product</th>
<th>Ratio (syn:anti)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>SnCl₄</td>
<td></td>
<td>59%</td>
<td>73:27</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>SnCl₄</td>
<td></td>
<td>41%</td>
<td>99:1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>SnCl₄</td>
<td></td>
<td>60%</td>
<td>91:9</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>TiCl₄</td>
<td></td>
<td>25%</td>
<td>62:38</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>EtAlCl₂</td>
<td></td>
<td>71%</td>
<td>99:1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>EtAlCl₂</td>
<td></td>
<td>40%</td>
<td>34:66</td>
</tr>
</tbody>
</table>
the system is too low to react through complex 535. The syn products preferentially form in these cases (entry 5). Substitution of enophile 527 for 525 provides anti products, presumably due to the higher reactivity of N-BOC amino aldehyde 527. The dependence of diastereoselectivity on the protective groups used demonstrates the sensitivity of these systems to changes in substrate.

In a similar study of N-trityl aziridine-2-(S)-carboxaldehyde 537, anti ene adducts predominated with use of Lewis acids capable of bidentate chelation, versus the syn products, which resulted from the use of monodentate Lewis acids. The reaction of olefin 536 with aldehyde 537 produced ene adduct 538 in good yield, favoring the anti diastereomer (Scheme 3.23). Bidentate chelation of the aldehyde to tin(IV) chloride results in complex 540 where

Scheme 3.23
nucleophile addition is favored from the less hindered \textit{re} face (Figure 3.4). The large size of the N-trityl group blocks attack of the nucleophile from the \textit{si} face. Alternatively, use of monodentate Lewis acid boron trifluoride etherate predominately produced the syn product 539. This reaction proceeds through complex 541 according to the Felkin-Ahn model. This research corroborates that research done by Mikami, which demonstrated how diastereoselectivity depended on substrates and Lewis acids used.

The ene reactions of glyoxylates bearing chiral auxiliaries are alternative types of diastereoselective processes that involves chiral aldehydes. These examples benefit in that the auxiliary can be added and removed, making these reactions applicable to many different types of glyoxylate-ene syntheses. Camphorpyrazolidinone49 and 8-phenylmenthol50,51 have both been used as chiral auxiliaries for glyoxylate-ene reactions. Chen et al. discovered that N-glyoxyloyl camphorpyrazolidinone 542 effectively produced glyoxylate-ene adducts with moderate to high yields in the presence of Lewis acid catalyst scantium triflate.49 Olefin 2-phenylpropene was found to achieve the best yield and diastereoselectivity for this reaction because of the pi overlap between the phenyl groups on both the enophile and incoming ene component (Scheme 3.24).

This reaction provided ene adduct 544 as the major isomer. The observed diastereoselectivity arises from preferred transition state 543. The glyoxylate portion of enophile 542 complexes to the bidentate scantium trifoliate Lewis acid. This glyoxylate portion aligns
parallel to the plane of the N-benzyl ring to optimize stabilizing pi orbital overlap between the two groups. The olefin component attacks from the less sterically hindered back face of this complex to provide product 544. Although this reaction provided the best yields and diastereoselectivity, the authors demonstrated a range of 2-substituted propenes to work in this study.

In a similar reaction, glyoxylate 545 produced ene adduct 546 when combined with 1-hexene in the presence of equimolar amounts of tin(IV) chloride (Scheme 3.25). Unlike the camphor derived auxiliary, glyoxylate 545 is not locked into a rigid structure. Nonetheless the chair conformation shown is highly favored from an all-equitorial arrangement of substituents. The glyoxylate portion of the structure aligns with the phenyl pi electron cloud to optimize stabilizing pi orbital overlap. Attack of 1-hexene from the front, si face, which is not blocked by the aromatic ring, then affords alcohol 546 as the predominant isomer.

Examples of chiral induction derived from stereogenic aldehydes and their application to exocyclic enol ethers are scarce. Miles demonstrated that β-hydroxyfuran 548 could be produced in excellent yield with moderate diastereoselectivity from chiral aldehyde 547 (Scheme
The observed diastereoselectivity is derived from Felkin-Ahn model 549 (Scheme 3.27). Conformer 549 is preferred over conformation 550 due to minimization of torsional strain.

Scheme 3.26

Attack of the incoming nucleophile occurs from the most accessible si face, resulting in major diastereomer 548.

Scheme 3.27

The Totah research group also demonstrated chiral aldehyde 548 to induce diastereoselectivity in β-hydroxydihydropyran products (Table 3.10).47 Chiral aldehyde 547 was combined with 2-methylenetetrahydropyran 2 to produce carbonyl-ene adduct 552 as a mixture of diastereomers. The best yields were obtained after 24 hours (entry 2), and the products were obtained as a modest 2.4:1 ratio of diastereomers. The identity of the major diastereomer could not be identified through Mosher ester modification because of the propensity of these systems toward elimination. Both shorter (entry 1) and longer (entry 2) reaction times resulted in decreased
product yields, but had little to no effect on stereoinduction. Increasing catalyst loading caused reduction in yields and little effect on diastereoselectivity (entry 4).

Table 3.10: Carbonyl-Ene Reactions of Exocyclic Enol Ether 2 with Chiral aldehyde 547

<table>
<thead>
<tr>
<th>Entry</th>
<th>Mol % ZnCl₂</th>
<th>Time</th>
<th>Yield</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>59%</td>
<td>2.3:1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>24</td>
<td>98%</td>
<td>2.4:1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>30</td>
<td>64%</td>
<td>2.5:1</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>24</td>
<td>82%</td>
<td>2.3:1</td>
</tr>
</tbody>
</table>

Stereoinduction and Transfer from Ene Components of the Carbonyl-Ene Reaction

The olefin component of the ene reaction has been shown to demonstrate chiral induction in resulting products. Types of influences derived from chiral ene constituents include those from substituted olefins, olefins possessing allyl hydroxyl groups, and ene components that contain large facial preferences. Choice of Lewis acid with enes possessing E or Z olefin geometry will influence the stereochemical outcome of products. Subjection of (E) and (Z)-2-butenes produced both erythro and threo products depending on the type of Lewis acid employed. Use of equimolar quantities of bidentante tin(IV) chloride preferentially produced threo product (Table 3.11, entries 1 and 2). The observed stereochemistry is based from chair transition states (Figure 3.5). Chair transition states 555 and 556 correspond toward the manufacture of threo product 553. The bidentate metal promoter binds to both carbonyls of the glyoxylate enophile. Both models minimize unfavorable steric interactions between the olefin methyl group and the relatively large Lewis acid metal as opposed to transition state 557 which gives rise to erythro isomer 554.
Table 3.11: Carbonyl-Ene Reactions of (E) and (Z)-2-Butenes

![Chemical Structures]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ene Geometry</th>
<th>Lewis Acid</th>
<th>Yield</th>
<th>Major Product</th>
<th>Erythro:Threo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>SnCl₂</td>
<td>100%</td>
<td></td>
<td>18:82</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>SnCl₂</td>
<td>100%</td>
<td></td>
<td>28:72</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>Me₂AlOTf</td>
<td>29%</td>
<td></td>
<td>79:21</td>
</tr>
<tr>
<td>4</td>
<td>Z</td>
<td>Me₂AlOTf</td>
<td>65%</td>
<td></td>
<td>91:9</td>
</tr>
</tbody>
</table>

Figure 3.5

Figure 3.6 alternatively shows the chair transition states associated with manufacture of threo isomer 554 through use of monodentate aluminum Lewis acids. The aluminum Lewis acid complexes anti to the glyoxylate, and as a result transition state 558 predominates for the Z isomer to avoid steric repulsion between the pendant methyl group and bulky Lewis acid. Similarly, (E)-2-butene proceeds through transition state 560 as opposed to model 561, which experiences steric repulsion between these two groups. In conclusion, this research demonstrates...
how bidentate and monodenate Lewis acids demonstrate preference toward erythro and threo isomers respectively with E and Z olefins based on steric repulsions in their respective transition states.

The research of Wovkulich55 demonstrates how chiral, tri-substituted olefins transpose selectivity onto corresponding products through a combination of steric effects. The ene reaction of enol ethers \textbf{562} and \textbf{562b} (Z and E isomers) with formaldehyde resulted in production of alcohol isomers \textbf{563}, \textbf{564}, and \textbf{565} with ratios 86:10:4 and 5:7:88 respectively (Scheme 3.28). While the reaction of Z olefin \textbf{562} occurred regio and stereoselectively, primarily creating isomer \textbf{563}, the reaction of E olefin \textbf{562b} predominantly produced regioisomer \textbf{565}.

\textit{Scheme 3.28}

<table>
<thead>
<tr>
<th>Enol ether</th>
<th>Ratio of \textbf{563}:\textbf{564}:\textbf{565}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (\textbf{562})</td>
<td>86:10:4</td>
</tr>
<tr>
<td>E (\textbf{562b})</td>
<td>5:7:88</td>
</tr>
</tbody>
</table>

The high relative stereoselectivity associated with the E olefin results through the unification of two steric models where effects originate from both the olefinic and cyclic methyl groups. Firstly, the aldehyde-Lewis acid complex is favored to attack from the β face, opposite the cyclic methyl group due to steric interactions, which would preferentially lead to isomer \textbf{563} production. Secondly, the aldehyde complex prefers to attack the β face of the ring based on steric interactions that arise between the olefinic and cyclic methyl groups (Scheme 3.29). As the formaldehyde complex attacks the olefin, the olefinic carbon is bent out of plane with the ring. This forces a steric interaction between the olefinic methyl and the cyclopentyl ring.
Transition state 566 predominates, because methyl-methyl non-bonding interactions are minimized as compared to transition state 567. In effect ene adduct 563 is produced and the cumulative combination of both types of steric influence gives rise to the good selectivity observed for this reaction.

Scheme 3.29

The reaction of E isomer 562b, on the other hand, results in minor selectivity between isomers 563 and 564. In fact, isomer 565 was primarily produced since the C₄ hydrogen is more sterically accessible towards abstraction than the C₇ hydrogens. The only source of stereochemical preference in this reaction is the favored addition of the formaldehyde complex from the face opposite the cyclic methyl group. The E isomer does not experience methyl-methyl interactions as the enophile enters, thus lowering the effective stereoselectivity of this system as compared to the Z isomer. Nonetheless these examples demonstrate the strong directing capabilities of chiral ene substrates toward their products.

The ene reaction of chiral allylic alcohols with singlet oxygen, triazolinediones, and p-nitronitrosobenzene leads predominantly to threo ene adducts due to hydroxyl steering effects. For example, chiral alcohol 568 yielded products 569 and 570 as a 91:9 ratio of diastereomers when subjected to phenyltriazolinedione (Scheme 3.30). The pi facial selectivity of this reaction and that of singlet oxygen is derived from the pendant alcohol, which is shown in
transition state models 571 and 572 (Scheme 3.31). Masking of the hydroxyl or replacement of the alcohol moiety by an alkyl group results in significantly lower stereoselectivity.

Scheme 3.30

1,3-Allylic strain plays a role in the stability of the transition states. The chiral methyl group adopts an orientation that minimizes non-bonding interactions with the syn allylic methyl group. The incoming enophile is then directed through hydrogen bonding with the alcohol. Abstraction of the syn-hydrogen (transition state 571) is slightly favored over the anti-hydrogen (transition state 572), but nonetheless both models result in formation of the threo product. Choice of solvent affects these systems in that nonpolar solvents like dichloromethane and benzene deliver great threo selectivity, while polar solvents like acetone and methanol produce poor diastereoselectivity. The production of erythro products in these cases accompanies the threo product, because directive hydrogen bonding is blocked by solvent interactions.

Scheme 3.31

Olefins which possess a face with considerable steric bulk have demonstrated chiral induction in the carbonyl-ene reaction, affecting the stereochemistry of the alkoxy carbon formed. The ene reaction of ring system 573 with aryl nitroso compounds produced aromatic
ene adducts as single diastereomers (Scheme 3.32). In these examples no Lewis acid catalyzation is required due the aromatization driving force. The steric influence is based entirely on the structure of the nucleophilic ene component, where addition of the enophile

Scheme 3.32

comes from the top face. The three-ringed system of olefin 573 possesses a convex and concave face where the top, convex face has less steric interference with the incoming enophile thus leading to structure 575.

β-Pinene derived enes 576 have produced carbonyl-ene products with considerable selectively about the new hydroxyl center. Use of a ruthenium salen catalyst produced alcohols 577 as a mixture of isomers in a 81:19 ratio (Scheme 3.33). The isomers were not assigned to the ratios obtained, however, approach of the aldehyde theoretically occurs from

Scheme 3.33

opposite the bridged system. A chair transition state results, where the aldehyde approaches such that the aromatic ring is held equatorial to avoid steric strain (Scheme 3.34). From this transition state alcohol 578 is predicted to predominate over isomer 579. This stereochemical model is purely steric based on the ene substrate and not the ruthenium catalyst used. Reactions of olefins
possessing sterically equivalent faces with the same catalyst did not result in selective product formation.

Scheme 3.34

Chirality transfer from ene components has been studied both in thermal and Lewis acid catalyzed systems. Chirality transfer occurs through destruction of the original stereocenter with concomitant creation of a new one. Study of this subject pertaining to the thermal ene reaction demonstrated that stereoselectivity was based entirely on steric considerations. The thermal reaction of (R)-3-phenyl-1-butene 580 with maleic anhydride 581 produced ene adduct 582 as the major isomer (Scheme 3.35).

Either exo or endo transition states (Figure 3.7) lead to production of the R enantiomer. The observed selectivity is based on the steric argument that the larger phenyl group orients away from the maleic anhydride as the two molecules approach.

Chirality transfer in Lewis acid catalyzed systems has produced products with good selectivity. Kuwajima demonstrated that allylic silyl ether 583 formed ene product 587 asymmetrically (Scheme 3.36).

The reaction proceeds through a chair transition state where
the large Lewis acid avoids steric interactions by chelating anti to the aromatic group on the aldehyde. An equatorial orientation of the Lewis acid and phenyl group as the two molecules come into proximity avoids unwanted 1,3-diaxial interactions with the ene substituents. Furthermore the reaction proceeds through transition state 585 opposed to 586 to avoid the steric interactions of the ene methyl substituent.

Scheme 3.36

The intermolecular carbonyl-ene reactions discussed have demonstrated high levels of stereoselectivity through chiral catalysis and stereo induction or transfer from both enophile and ene components. Chirality induction from ene components has shown to be somewhat substrate dependent. Chirality induction studies of exocyclic enol ethers have only been evaluated with
octanolactone-derived enol ether 588 in the Totah research group (Scheme 3.37). The study of enol ether 588 with ethyl glyoxylate 343 resulted in a 1:1 diastereomeric mixture of products at the alcohol center, which indicates little to no chiral induction from the C₆ stereocenter in the starting enol ether. Therefore the objective is to explore the influence of stereocenters at other positions about the tetrahydropyranyl ring of exocyclic enol ethers.

Scheme 3.37

3.3 Results and Discussion

As described, the non-stereoselective carbonyl-ene reaction of 2-methylenetetrahydropyrans has been studied to provide the corresponding ene adducts in good yield with aldehydes that range in reactivity. Addition of functionality to the tetrahydropyran ring is anticipated to impact the stereoselectivity of this reaction through influence of the ring conformation. The presence of ring substituents would also create new steric interactions with the incoming enophile, resulting in proximity effects that influence product stereochemistry.

The goal of this research is to explore how substituted 2-methylenetetrahydropyrans could induce stereoselectivity into the resulting carbonyl-ene products. To reach this end, we sought to study exocyclic enol ethers that contained one or more stereocenters at positions 3, 4, 5, and 6 about the ring (Figure 3.8). Although the implication for this research is the asymmetric

Figure 3.8
preparation of functionalized tetrahydropyrans, the substrates are prepared as racemic mixtures. This allows for measure of the carbonyl-ene reaction’s diastereoselectivity through 1H NMR integration of the resulting products.

Synthesis of 2-Methylenetetrahydropyrans

Initial work was aimed toward the stereoselective synthesis of enol ethers for use in the diastereoselective carbonyl-ene study of 2-methylenetetrahydropyrans. These substrates were generally synthesized through conversion of the corresponding lactone via methylenation (Scheme 3.38).

Scheme 3.38

![Scheme 3.38](image)

Initial studies focused on the preparation of exocyclic enol ethers containing a single substituent about the ring. These enol ethers were synthesized so the extent of chiral induction of one pendant group in relation to its proximity to the site of proton abstraction could be examined. The exocyclic enol ethers prepared contained a benzyl substituent at the C$_6$ (590), C$_5$ (591), or C$_4$ (592) position on the 2-methylenetetrahydropyranyl ring (Figure 3.9).

Figure 3.9

![Figure 3.9](image)

Although chiral induction has been studied from C$_6$ substituents on octanolactone derived enol ethers to the corresponding carbonyl-ene products, enol ether 590 was synthesized to confirm the lack of diastereoselective product formation. This enol ether was prepared in 4 linear steps (48%) from cyclopentane oxide 593 (Scheme 3.39). Copper catalyzed ring opening
of cyclopentane oxide 593 with benzyl Grignard gave alcohol 594 as a single diastereomer. Swern oxidation of the resulting secondary alcohol led to ketone 595, which was readily converted to lactone 596 via Baeyer-Villiger oxidation. Subsequently, lactone 596 yielded desired enol ether 590 in 84% yield upon treatment with Petasis reagent.

Scheme 3.39

Synthesis of enol ethers 591 and 592 was achieved according to the method developed by Gravel. Oxacycloalkane-2-carboxaldehydes were converted to the corresponding lactones by N-heterocyclic carbene catalyzed ring-expansion/lactonization. Enol ether 591 was synthesized from hydrocinnamic acid 597 in 6 linear steps (30% overall yield) via the route outlined by Gravel (Scheme 3.40). In this sequence, direct alkylation of hydrocinnamic acid 597 with allyl bromide afforded carboxylic acid 598. Reduction of the carboxylic acid 598 with LiAlH₄ afforded alcohol 599 in 72% yield as opposed to the 10% reported for this transformation. Tetrahydrofuran 600 was then prepared from alkene 599 upon epoxidation with mCPBA and subsequent epoxide opening under acid catalyzed conditions. A mixture of diastereomers was obtained (1:1.3) from this reaction, however loss of the α-hydroxy chiral center in a subsequent step makes this poor selectivity of little concern.

From here aldehyde 601 was obtained by Swern oxidation of the primary alcohol. Though in the original report this transformation was achieved with IBX oxidation, we found Swern conditions to be superior (100% yield with Swern as compared to the reported 84% yield.

170
Lactone 603 was formed after N-heterocyclic carbine (NHC)-catalyzed ring expansion-lactonization of aldehyde 601. The proposed mechanism of this reaction is outlined in Scheme 3.41.

Scheme 3.40

NHC 604 was produced from DBU deprotonation of heterocycle 602. Combination of the newly formed NHC with 2-carboxaldehyde 601 delivered Breslow intermediate 605, which was prepared for ring opening. Tautomerization of ring opened intermediate 606 led to ketone intermediate 607, which upon intramolecular cyclization provided the desired lactone 603 and the regenerated NHC catalyst. Thereafter, Petasis olefination yielded desired enol ether 591 in 80% yield.

Enol ether 591 was synthesized over 8 linear steps, in 20% overall yield, from benzeneacetaldehyde 608 (Scheme 3.42). Horner-Wadsworth-Emmons reaction of benzeneacetaldehyde 608 gave predominantly trans-alkene 609. Olefination was followed by DIBAL reduction to afford alcohol 610 in quantitative yield. Although this reaction was
performed following the procedure outlined in Gavel’s publication, the obtained yield of alcohol 610 far surpassed the published yield of 76%. Upon heating alcohol 610 in the presence of Scheme 3.41, a Johnson-Claisen rearrangement occurred giving ester 611 in 81% yield as opposed to the 70% published yield. Subsequent lithium aluminum hydride reduction provided alcohol 612 in 98% yield. Again, the obtained yield for this reduction surpasses that reported (54%).

Treatment of the resulting alcohol 612 with mCPBA resulted in formation of tetrahydrofuran 613, as previously discussed (cf. Scheme 3.40). The poor mixture of diastereomers obtained (1:1.4) was of little consequence since one stereocenter is destroyed in a
proceeding step. Oxidation of alcohol 613 provided aldehyde 614. Here too, Swern oxidation was used rather than the reported Dess-Martin Periodinane. Subsequent N-heterocyclic carbene catalyzed ring expansion-lactonization led to lactone 615. Finally, Petasis methylenation gave rise to desired enol ether 592 in 84% yield. In general, the routes described here for the synthesis of enol ethers 591 and 592 proved to be quite efficient, with many of the yields exceeding those reported.

Mono-substituted 2-methylenetetrahydropyrans bearing substitution at the C₃ carbon were not synthesized for this diastereoselective ene study. Application of this enol ether to the carbonyl-ene reaction would not provide diasteromer products, because the C₃ stereocenter is lost in the reaction (Scheme 3.43). This absence of diastereomers causes difficulty in determining the stereoselectivity of the reaction as previously demonstrated by the Totah research group. Analysis of 2-methylenetetrahydropyran ene adducts by HPLC led to their decomposition on the chiral column. Addition of shift reagents in the ¹H NMR spectra produced poor results, such that the ratio of enantiomers could not be evaluated. Lastly, derivativization to
the Mosher ester led to olefin byproducts due to the propensity of ene adducts to undergo elimination. These difficulties directed us toward the study of 2-methylenetetrahydropyrans with two substituents about the ring. The ene reaction of these substrates would provide the desired set of diastereomer products that could be analyzed by 1H NMR analysis (Scheme 3.43). The C$_6$ stereocenter present on these systems was not expected to influence product selectivity as was previously established.68

Not only were di-substituted 2-methylenetetrahydropyrans synthesized for evaluation of chirality transfer due to the C$_3$ center, but also for the study of axial versus equatorial effects of substituents. The substituents on the monosubstituted enol ethers 590, 591, and 592 are expected to adopt an equatorial configuration the majority of the time. By placing two stereogenic centers on the ring, two isomers of the same enol ether can be tested, one which has an all-equitorial conformation (616) and another where one substituent must be axial (619) (Scheme 3.44). Enol ethers 622/623 and 624/625 were manufactured to study these axial/equatorial substitution effects of the tetrahydropyran ring (Figure 3.10). The synthesis of these enol ethers allows for evaluation of C$_6$/C$_5$ and C$_6$/C$_3$-substituted systems. The manufacture of a C$_6$/C$_4$ exocyclic enol ether system was attempted, however these efforts proved unsuccessful.
Initial studies toward the synthesis of di-substituted 2-methylenetetrahydropyrans, containing C₃ chiral centers, began with the synthesis of enol ether 628. This enol ether was chosen, because it could be synthesized from commercially available octanolactone in two short synthetic steps (Scheme 3.45). Lactone 627 was synthesized as a 1:2 mixture of diastereomers through direct alkylation of commercially available octanolactone 626. At this point, separation of the two lactone diastereomers was envisioned by column chromatography such that each could be converted into the corresponding enol ether and then individually studied in the
carbonyl-ene reaction. Separation of the individual diastereomers, however, proved unsuccessful by flash column chromatography.

Since separation of lactone 628 diastereomers could not be achieved by silica gel chromatography, the related benzyl substituted lactone 629 was synthesized to facilitate separation by HPLC equipped with a UV detector. Lactone 629 was again synthesized through alkylation of the commercially available octanolactone 626. Unfortunately, here too, neither flash column chromatography nor HPLC proved successful for separation of the cis and trans diastereomers of compound 629. Therefore other routes toward the synthesis of di-substituted enol ethers were investigated.

Enol ethers 622 and 623 were synthesized so that the effects axial substituents have on chiral induction can be evaluated in a C\textsubscript{6}/C\textsubscript{5} substituted system. Enol ether 623 has two cis-related substituents at C\textsubscript{5} and C\textsubscript{6}. Therefore, one of the substituents must lie in equatorial position while the other is axial (Scheme 3.44). Alternatively, in enol ether 622, both substituents are equatorial.

The synthesis of enol ethers 622 and 623 are similar, but differ in the geometry of the olefin intermediate. Compound 622 is derived from the E-olefin 631, whereas compound 623 is derived from the Z-alkene 634 (Scheme 3.46). Formation of the trans-C\textsubscript{6}/C\textsubscript{5} substituted

Scheme 3.46
exocyclic enol ether 622 was accomplished, beginning with 2-butyne-1,4-diol 637 (Scheme 3.47). Diol 637 was monoprotected with benzyl bromide to form alcohol 71, which was selectively reduced to the trans-alkene 631 using Red-Al. Treatment with mCPBA then afforded epoxide 639 as a single diastereomer. Alcohol 639 was subsequently oxidized to the corresponding aldehyde 640 under Swern conditions. Horner Wadsworth Emmons olefination of aldehyde 640, using freshly prepared carboxethoxymethylene triphenylphosphorane, led solely to the trans-epoxy-alkene 641. Addition of trimethylaluminum and water to epoxide 641 regioselectively produced alcohol 632 as the only isomer. The observed regioselective addition, of the methyl group to the epoxide, which proceeds through a six-membered transition state, is based on the coordination of the Lewis acid (Me₃Al) to the benzyl ether (Figure 3.11).

The next step in this sequence, hydrogenation of the double bond, proved difficult. Nonetheless, reduction of olefin 632 was accomplished, surprisingly, without removal of the
benzyl protecting group. The difficulty with this reaction occurred as the process was scaled up. The reaction only proceeded under vigorous stirring with larger proportions of Pd/C as the amount of substrate increased. In these cases Pd/C was added by increasing the mole percent by 0.2% every 24 h until the reaction was complete. Adding large amounts of Pd/C was avoided to circumvent concomitant benzyl removal. Reduction of the double bond resulted in partial cyclization of the ester to afford mixtures of lactone 633 and the corresponding ester (3:1-1:1 respectively). The mixture of compounds was washed with acid to complete the cyclization, yielding lactone 633. Petasis olefination then provided desired trans-5,6-substituted exocyclic enol ether 622 in 76% yield.

The synthesis of enol ether 623 is outlined in Scheme 3.48. Monoprotection of 2-butene-1,4-diol 642 with benzyl bromide formed alcohol 634.74 Subjection of alcohol 634 to mCPBA resulted in production of epoxide 643 as a single diastereomer with yields exceeding that published.70 The resulting alcohol was then oxidized under Swern conditions to aldehyde 644.75 Olefination and subsequent epoxide-opening with trimethyl aluminum led to alcohol 635.76

Scheme 3.48
Selective hydrogenation of substrate 635 again reduced the olefin without benzyl deprotection to form a mixture of lactone 636 and the ester (2:1-1:1 respectively). Subjected to acidic conditions furnished lactone 636 in 67% yield (over two steps). Petasis olefination of lactone 636 then produced desired 2-methylenetetrahydropyran 623.

The last two substrates prepared were enol ethers 624 and 625. Evaluation of these enol ethers in the ene reaction may help to determine the influence a C₃ substituent has on the selectivity observed in the carbonyl-ene reaction. These enol ethers contain a pendent C₆ iodomethyl substituent that could subsequently be eliminated to form a second enol ether. These enol ethers can not only be used in the chiral transfer study, but also used in bi-directional carbonyl-ene reactions (Scheme 3.49). The iodomethyl group was chosen as the C₆ substituent because diastereomeric mixtures of these lactones are known to be separable⁷⁷ as opposed to those that were previously attempted (Scheme 3.45).

Scheme 3.49

Lactones 655 and 656 were prepared as a mixture of diastereomers and subsequently separated via HPLC. Their synthesis is outlined in Scheme 3.50. Carboxylic acid 651 was synthesized in quantitative yield from 1-hexen-6-ol 650 via known Jones oxidation.⁷⁸

Scheme 3.50
Esterification and subsequent methylation led to ester 653. Direct iodocyclization of this compound failed to produce the desired lactones, in contrast to previously published results of 5-carboxy-1-pentenes. Therefore hydrolysis of ester 653 was done to provide carboxylic acid 654. Iodocyclization of carboxylic acid 654 then gave lactones 655 and 656 as a 1:2 mixture of diastereomers respectively. The cis and trans stereochemistry was deduced through interpretation of the 1H NMR spectra of these compounds. The trans isomer demonstrates large axial-axial coupling for both H_a and H_b (Scheme 3.51). Alternatively, cis isomer 655 only experiences one of these large couplings. This deduction of stereochemistry agreed with that cited in the literature.

Scheme 3.51

Although the mixture of diastereomers could not be separated by flash column chromatography, lactones 655 and 656 were successfully partitioned by semi-preparative HPLC (Scheme 3.52). The subsequent conversion of these lactones to exocyclic enol ethers 624 and 625 was performed via Petasis olefination, albeit in moderate to low yield. It should be noted that the reaction of trans-lactone 656 was performed only once, and optimization of this transformation may lead to higher yields.
Scheme 3.52

Chiral Induction and Transfer Studies

With a variety of 2-methylenetetrahydropyrans in hand, studies were initiated to determine the effect of ring substitution on the diastereoselectivity of the carbonyl-ene reaction. All reactions were performed at room temperature with 5 to 20 mol% zinc(II) chloride according to optimized conditions previously determined for the carbonyl-ene reaction of exocyclic enol ethers. The 2-methylenetetrahydropyran substrates were diluted to 0.5 M in THF, to which aldehydes (1.2 equivalents) were added. After zinc(II) chloride addition, the reaction was stirred from 2-12 hours depending on the reactivity of the aldehyde substrate used. The diastereoselectivity of each reaction was determined through integration analysis of resonances arising from either C₆ or C₂' hydrogen peaks in the respective product 'H NMRs, although the major isomer in each case was not assigned.

The aldehyde components for this study were chosen to reflect anticipated differences in reactivity. These enophiles ranged from highly reactive ethyl glyoxylate 343 to aliphatic octyl aldehyde 495, which has much less inherent reactivity. The high activation of ethyl glyoxylate 343 stems from the adjacent, strong electron-withdrawing group (CO₂Et), which increases the electrophilic nature of the compound by decreasing electron density at the carbonyl. The reduced electron density at this carbon center results in increased activation towards the ene reaction. *p*-Nitrobenzaldehyde 383 represents an enophile of intermediary reactivity. This
aromatic ring also pulls electron density from the carbonyl carbon, due to the presence of an electron withdrawing group on the aromatic ring, but to a much lesser extent than ethyl glyoxylate 343. Octyl aldehyde 495 represents a non-activated aliphatic aldehyde that consequently has the lowest intrinsic reactivity of the group chosen. Due to these differences in reactivity, ene processes with activated aldehydes 343 and 383 were performed with 5 mole % zinc(II) chloride, whereas reactions involving non-activated aldehyde 495 were carried out with 20 mol % of the Lewis acid catalyst.

Initial diastereoselective studies focused on the influence of mono-substituted enol ethers 590-592 (Table 3.12). Enol ether 590 was first examined to evaluate the influence of a C₆ stereocenter on the diastereoselectivity of the carbonyl-ene reaction. The reaction of enol ether 590 with ethyl glyoxylate 343 was highly efficient, providing product 657 as a 1:1.1 mixture of diastereomers in 98% yield within a relatively short period of time (entry 1). The relative stereochemistry of the resulting isomers here, and in all cases, was not determined. The reaction with p-nitrobenzaldehyde 383 also provided the corresponding ene adduct in high yield within two hours, but as a 1:1 mixture of isomers. Lastly, non-activated octyl aldehyde 495 provided ene adduct 659 as a non-selective (1:1) mixture of diastereomers (entry 3). While all these reactions of C₆-benzyl-substituted 2-methylenetetrahydropyran 590 delivered the desired ene adducts in high yield, little to no selectivity was observed in each case. These results are in keeping with earlier studies performed in the Totah group (Scheme 3.37).

Exocyclic enol ether 591 was evaluated in turn to discover if selectivity can be induced from a C₅ stereocenter on the tetrahydropyran ring. The reaction between substrate 591 and all three aldehydes also proceeded well with ene adducts isolated in 80-88% yield (entries 4-6). These reactions showed only modest selectivity, with ratios of about 1:1.3 in each case.
Table 3.12: Carbonyl Ene Reactions of mono-Substituted 2-Methylenetetrahydropyrans

$$\text{Enol Ether} + \text{Aldehyde} \xrightarrow{\text{ZnCl}_2\ (5-20\ \text{mol})} \text{Product}$$

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Aldehyde</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>dr</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>590</td>
<td>343</td>
<td>2</td>
<td>98</td>
<td>1:1:1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>590</td>
<td>383</td>
<td>2</td>
<td>94</td>
<td>1:1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>590</td>
<td>495</td>
<td>12</td>
<td>83</td>
<td>1:1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>591</td>
<td>343</td>
<td>2</td>
<td>80</td>
<td>1.3:1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>591</td>
<td>383</td>
<td>2</td>
<td>88</td>
<td>1.4:1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>591</td>
<td>495</td>
<td>12</td>
<td>80</td>
<td>1.3:1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>592</td>
<td>343</td>
<td>2</td>
<td>88</td>
<td>2.4:1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>592</td>
<td>383</td>
<td>2</td>
<td>92</td>
<td>2.6:1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>592</td>
<td>495</td>
<td>12</td>
<td>76</td>
<td>2.4:1</td>
<td></td>
</tr>
</tbody>
</table>
The C₄-substituted enol ether 592 was finally examined with the same set of aldehydes. The yields ranged from 74-92% (entries 7-8), with the lowest yield obtained for the least activated substrate, octyl aldehyde 495 (entry 9). Note that this reaction (entry 9) was run only once, and the data does not demonstrate optimized yields. In these examples, mixtures of diastereomers were obtained as a ca. 1:2.5 ratio.

Though the observed selectivity was modest in every case, the higher selectivity demonstrated by the C₄-substituted substrate 592 (entry 7) as opposed to enol ethers 590 (entry 1) and 591 (entry 4) indicates that the proximity of a single pre-existing stereocenter to the site of hydrogen abstraction may influence reaction diastereoselectivity. Additionally, stereoselectivity is not dependent of the electronic nature of the aldehyde. For each of the enol ether substrates evaluated, observed diastereoselectivity remained constant regardless of the aldehyde used in the reaction (entries 1-3, 4-6, and 7-9).

As discussed earlier in this chapter, the mechanism for the carbonyl-ene reaction can range from a concerted to stepwise cationic process. Whether the mechanism is concerted, stepwise, or somewhere in-between, ene reactions involving Lewis acids undoubtedly develop a positive charge to some extent on the ene component.82 The concerted mechanism is capable of producing products of good stereoselectivity, since it is a single barrier process. Most carbonyl-ene reactions without large conformational constraints proceed through a mechanism with appreciable concerted character. If the Lewis acid-catalyzed carbonyl-ene reaction was purely a cationic process, many of the diastereoselective ene examples presented herein, most of which involve chair transition states, would not proceed selectively. Therefore the carbonyl-ene
reaction of 2-methylenetetrahydropyrans with aldehydes, catalyzed by zinc(II) chloride, is assumed to proceed in at least a partially concerted manner via chair-like transition states.

The presence of a single stereocenter on the exocyclic enol ether causes the tetrahydropyran ring to preferentially adopt a conformation favoring equatorial placement of the substituent. The aldehyde prefers approach from the tetrahydropyran face which bears the axial hydrogen for abstraction. The axial hydrogen is prone towards this process due to its favorable orbital alignment with the olefin pi electrons. Thus high selectivity was expected for the carbonyl-ene reaction of mono-substituted 2-methylenetetrahydropyrans, dictated by the conformation of the tetrahydropyran ring system. The low ratio of resulting isomers shows, however, that this is not the case.

In light of the poor selectivity observed, the transition state models were more closely examined. It is the face of the aldehyde approach that is believed to influence the stereochemistry of these systems. In these models, the Lewis acid can adopt either endo or exo chelation with the carbonyl oxygen. The endo conformer is predicted to be significantly higher in energy because of the non-bonding interactions between the relatively large metal and tetrahydropyran ring (Scheme 3.53). Therefore the transition state models for the ene reaction between 2-methylenetetrahydropyran and chelated aldehydes is typically expected to occur through endo transition states.

Approach of the aldehyde toward the 2-methylenetetrahydropyran can occur from either the re or si face (Scheme 3.53). Exposure of the re face is demonstrated in exo transition state 666. Here, unfavorable, high energy 1,3 diaxial steric interactions (2.4 Kcal/mol) are avoided that develop between the aldehyde’s R group and the ring oxygen as compared to the 667 endo transition state (Scheme 3.53). If the interaction between the aldehyde R group and the ring
oxygen was the only basis for stereochemical preference, high ratios of diastereomer 668 would prevail in upwards of ca. 98:2 according to equations 3.1-3.2.

\[
K = e^{\frac{\Delta G}{RT}} \quad \text{(Equation 3.1)}
\]

\[
K = \frac{[669]}{[668]} = \frac{[669]}{100-[669]} \quad \text{(Equation 3.2)}
\]

Scheme 3.53

Clearly the discrepancy between calculated ratios and the low ratio of stereoisomers obtained for this reaction (Table 3.12, entries 1-3) indicates other steric influences are at hand, namely non-bonding interactions between the chelated Lewis acid and the pendent aldehyde group. Therefore when the aldehyde approaches from the re face, this Lewis acid-aldehyde R
group interaction is the predominant steric influence (exo, Scheme 3.53). Conversely, the transition state where the aldehyde enters from the si face (exo) experiences the steric repulsion between the aldehyde R group and the ring oxygen. The ratio observed (1:1) indicates that the severity of these steric repulsions is comparable.

Application of these transition state models to the reactions of enol ethers 591 and 592 shows similar analyses (Schemes 3.54 and 3.55 respectively). Ene reactions between 2-methylenetetrahydropyran 591 and aldehydes are expected to proceed through either exo transition state 670 or 671, producing products 672 and 673 respectively. Both transition states contain the same steric interferences that were exhibited by enol ether 590. In turn, analysis of
the transition states associated with enol ether 592 (Scheme 3.55) illustrates that the same stereochemical influences are present in this system.

The transition state structures for enol ethers 590, 591, and 592 all show very similar energies and as such, low diastereoselectivity is observed for these processes. Although it is true that selectivity improves as the chiral center nears the site of hydrogen abstraction, a 2.6:1 ratio (at best) is very modest and only represents a small energy difference between transition state configurations. Prediction of the major isomer is difficult in these cases based on this transition state evaluation.
The low level of stereoisoduction derived from mono-substituted 2-methylene tetrahydropyrans proved disappointing. The diastereoselectivity of the reaction may be improved through use of di-substituted exo enol ethers, especially in those substrates with axial substituents. These groups may have an influence on the enophile approach. Secondly, di-substituted 2-methylene tetrahydropyrans were used to evaluate the extent of chirality transfer resulting from 2-methylenetetrahydropyran C$_3$ stereocenters.

The results of the diastereoselective ene reaction with enol ethers 622-625 are shown in Table 3.13. Reaction of 2-methylenetetrahydropyran 622 with activated aldehydes ethyl glyoxylate 343 and p-nitrobenzaldehyde 383 provided the desired ene adducts in high yield (entries 1 and 2). The diastereomer products produced in these reactions were observed as ca. 1.4:1 ratios, however, as in the mono-substituted 2-methylenetetrahydropyran studies, the identity of the major and minor isomers was not determined. Reaction of the same enol ether with octyl aldehyde 495 resulted in moderate yields of corresponding ene adduct 680 (entry 3). Although it is true that this enophile is less reactive in comparison to ethyl glyoxylate 343 and p-nitrobenzaldehyde 383, this reaction was only performed twice and does not represent optimized yields. Diastereomeric ratios were not obtained for ene product 680, because analysis of the 1H NMR resonances did not reveal the ratio of isomers. The individual peaks of each diastereomer could not be resolved, even after altering NMR sample solvent systems. The solvents tested for peak resolution included CDCl$_3$, C$_6$D$_6$, D-methanol, D-acetonitrile, D-acetone, D-ethanol, and mixtures thereof.

Examination of exocyclic enol ether 623 demonstrated that high yields of ene adducts 681 and 682 could be obtained with aldehydes 343 and 383 respectively (entries 4 and 5). The reaction with ethyl glyoxylate 343 produced ene adducts as a 2.6:1 ratio, whereas the reaction
Table 3.13: Carbonyl Ene Reactions of di-Substituted 2-Methylenetetrahydropyrans

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Aldehyde</th>
<th>Time (h)</th>
<th>Yield</th>
<th>dr</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BnO</td>
<td>H</td>
<td>2</td>
<td>100%</td>
<td>1.3:1</td>
<td>678</td>
</tr>
<tr>
<td>2</td>
<td>622</td>
<td>H</td>
<td>2</td>
<td>94%</td>
<td>1.4:1</td>
<td>679</td>
</tr>
<tr>
<td>3</td>
<td>622</td>
<td>H</td>
<td>11</td>
<td>49%</td>
<td>NA</td>
<td>680</td>
</tr>
<tr>
<td>4</td>
<td>BnO</td>
<td>H</td>
<td>2</td>
<td>97%</td>
<td>2.6:1</td>
<td>681</td>
</tr>
<tr>
<td>5</td>
<td>623</td>
<td>H</td>
<td>2</td>
<td>100%</td>
<td>3.5:1</td>
<td>682</td>
</tr>
<tr>
<td>6</td>
<td>623</td>
<td>H</td>
<td>11</td>
<td>74%</td>
<td>1.7:1</td>
<td>683</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>H</td>
<td>2</td>
<td>60%</td>
<td>2.1:1</td>
<td>684</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>H</td>
<td>2</td>
<td>51%</td>
<td>1:2.3</td>
<td>684</td>
</tr>
</tbody>
</table>

with p-nitrobenzaldehyde 383 yielded products in a 3.5:1 ratio. Alternatively, the reaction with octyl aldehyde 495 produced product 683 in moderate yield with relatively low stereoselectivity (1:1.7 ratio of isomers, entry 6).
Exocyclic enol ethers 624 and 625 were studied last to determine how both axial or equatorial substituents and C₃ chiral centers affect stereoselectivity. Subjection of 2-methylenetetrahydropyrans 625 and 626 to highly activated ethyl glyoxylate 343 resulted in modest yields of the same carbonyl-ene adduct 684 (entries 7 and 8). The low yields observed for this process are in keeping with earlier studies performed in the Totah group that demonstrated how 2-methylenetetrahydropyran C₃ substituents can decrease carbonyl-ene product yields (Table 3.5).⁶⁸ The ratio of products in each case complimented one another. The ¹H NMR product resonances indicated the given diastereomer ratios through evaluation of the C₆ proton integrations. The ¹H NMR spectra of both reactions were the same except the integrations of the resolved C₆ protons were opposite in magnitude. Therefore it is concluded that both reactions result in the same products, but the major diastereomer produced in each case was different.

The ene reactions of enol ether 622 only demonstrated low levels of selectivity (1:1.4-1:1.3 dr, entries 1 and 2, Table 3.13), which was similar to that observed for C₅-substituted enol ether 591 (entries 4-6, Table 3.12). Therefore, the equatorial C₅ methyl substituent on enol ether 622 most likely has a similar effect as the equatorial benzyl group on enol ether 591. Review of exo transition states 685 and 686 (Scheme 3.56) indicate the same steric interactions are at play as were in the transition states associated with enol ether 591 (Scheme 3.54). Transition state 685 suffers from steric repulsion between the chelated Lewis acid and pendant aldehyde group, whereas transition state 686 experiences non-bonding interactions between the aldehyde R group and the ring oxygen. It is not clear from the presented transition states which isomer is preferentially produced or how the C₅ chiral center plays part, but as the low selectivity shows, only a small difference in energy exists between the two transition states.
The ene reactions of enol ether 623, on the other hand, shows higher levels of diastereoselectivity in the resulting products (3.5:1-1.7:1, entries 4-5, Table 3.13). The difference in observed selectivity can be rationalized in terms of steric repulsion between the axial tetrahydropyranyl methyl group and incoming enophile (Scheme 3.57). Thus transition state 689 only possesses one major non-bonding interaction between the aldehyde group and Lewis acid, whereas transition state 690 contains two large steric repulsions between the aldehyde R group and both the axial methyl and ring oxygen. This leads to the prediction of diastereomer 691 as the major product.

While there is no change in the level of stereoselectivity based on aldehyde stereoelectronics, a trend in enophile sterics is demonstrated. As the steric bulk of the aldehyde
substrate increased near to the carbonyl center, the ratio of isomers changed directly. This is shown by octyl aldehyde 495, the smallest of the aldehydes tested, producing the lowest ratio of diastereomers (1.7:1, entry 6, Table 3.13). In turn ethyl glyoxylate 343 delivered less selectivity (2.6:1, entry 4) than the largest aldehyde tested, p-nitrobenzaldehyde 383 (3.5:1, entry 5). This trend illustrates that as the size of enophile increases, a larger effect is experienced by transition state 690 versus transition state 689.

Both enol ethers 624 and 625 produce the same product 684 through the carbonyl-ene reaction with ethyl glyoxylate 343. Similar diastereomer ratios are obtained for both enol ether 624 and 625, however, the major diastereomers formed in each case are different, as was
indicated in the \(^1\)H NMR spectra of each separate reaction. Enol ether 624 is expected to provide isomer 695 as the major product (Scheme 3.58), while enol ether 625 is anticipated to produce larger quantities of isomer 696 (Scheme 3.59).

The transition states associated with enol ethers 624 and 625 are perceived to proceed with the abstractable hydrogen in the axial position due to favorable orbital alignment with the olefin pi bond. In these systems, the factors associated with selectivity include the face of enophile approach and exo versus endo chelation of the Lewis acid. Steric influences of axial versus equatorial substituents on the tetrahydropyran ring are indicated to be of little consequence since the ratio of diastereomers obtained from the two reactions is similar in magnitude.

Substrate 625 is predicted to produce diastereomer 695 through analysis of transition states 693 and 694. Review of transition state 693 indicates that the exo transition state exhibits steric repulsion between the pendant aldehyde group and the chelated Lewis acid. This transition state differs from all those discussed so far, because the Lewis acid also experiences non-bonding interactions with the tetrahydropyranly C\(_3\) equatorial methyl. Evaluation of exo transition state 694, where the aldehyde approaches from the \(re\) face indicates this same steric repulsion between the two groups in addition to that between the pendant aldehyde group and the tetrahydropyran ring oxygen.

The endo transition state 693 alleviates two non-bonding interactions between the Lewis acid and both the aldehyde R group and tetrahydropyran C\(_3\) methyl. However, this endo transition state experiences a large interaction between the Lewis acid and tetrahydropyran ring. Contrarily, endo transition state 694 only alleviates one steric repulsion between the Lewis acid and tetrahydropyran methyl, while developing a new, larger interaction between the Lewis acid
and tetrahydropyran ring. For this reason transition state 694 is believed to proceed through the endo transition state. When comparing endo model 693 and exo model 694, the accumulation of steric effects in the 694 exo transition state most likely outweigh the large interaction present in the 693 endo transition state between the Lewis acid and ring. Therefore exo transition state 693 is favored along with production of diastereomer 695. The similarity in energies between these two states is indicated by the relatively low ratio of resulting diastereomers.

Scheme 3.58

Evaluation of exocyclic enol ether 624 in the carbonyl-ene reaction with ethyl glyoxylate 343 follows that of the similar trans isomer 625 (Scheme 3.59). Alternatively, diastereomer 696 is expected as the major product because hydrogen abstraction occurs from the opposite face of...
the tetrahydropyran ring. Here, the C₆ axial iodomethyl group has little to no effect on the stereoselectivity of the reaction because aldehyde approach is from the face opposite the substituent.

Scheme 3.59

3.4 Conclusions

The carbonyl-ene reaction of 2-methylenetetrahydropyrans, with a variety of substitution patterns about the tetrahydropyran ring, proceeded with good to excellent yields with both activated and non-activated aldehydes. Mono-substitution at the C₆, C₅, and C₄ positions on the tetrahydropyran ring only produced modest selectivity of the products at best. Prediction of the
major isomers in these systems is not straightforward from review of the corresponding transition states, although selectivity seemed to increase as the chiral center increased in proximity to the site of hydrogen abstraction.

The diastereoselectivity exhibited by reactions of di-substituted 2-methylenetetrahydro-pyrans followed the results of mono-substituted examples in that only moderate to low ratios of products resulted. Nonetheless, evaluation of exo enol ethers 622 and 623 demonstrated that the presence of axial substituents on the tetrahydropyran ring can cause higher product discrimination (ratios of 1.4:1 versus upwards of 3.5:1). The product ratios of these axial systems, which ranged from 1.7:1 to 3.5:1, seem to be based on aldehyde steric, where the larger the steric bulk about the carbon alpha to the carbonyl, the larger the ratio of resulting isomers.

Alternatively, examination of enol ethers 624 and 625 demonstrates that axial influences can be negligible, especially when these substituents are opposite the reactive tetrahydropyryanyl face. These conflicting results show the great complexity of these systems, and how selectivity is highly substrate dependent. The assessment of enol ethers 624 and 625 confirmed, however, that C₃ substituents are capable of slight stereoinduction exhibited by the 2.1:1 ratio of products.

The compilation of these results indicates that simple substitution about the ring of 2-methylenetetrahydropyrans is not likely to cause high levels of stereoinduction in the carbonyl-ene reaction. Instead, the use of chiral catalysis may be more effective towards this end.
3.5 Experimental

General Methods:

All air sensitive reactions were performed in oven dried glassware under an atmosphere of argon. Reaction solvents were dried over CaH$_2$ (benzene, dichloromethane), or sodium/benzophenone ketyl (tetrahydrofuran, diethyl ether) and were distilled just prior to use. All other reagents were reagent grade and purified as necessary. Analytical thin layer chromatography was performed on EM silica gel 60 F254 glass plates (0.25 mm). Visualization of analytical thin layer chromatography was achieved using UV absorbance (254 nm), vanillin, and ceric ammonium molybdate stains. Melting points were recorded using an Electrothermal melting point apparatus and are uncorrected. Flash column chromatography was performed using SiliaFlash P60 silica gel (40-60 Å) from SiliCycle, Inc. 1H NMR spectra were recorded on a Bruker Avance DPX-300 (300 MHz) spectrometer. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl$_3$ as the internal standard (δ 7.27 ppm). 13C NMR spectra were recorded on a Bruker Avance DPX-300 (75 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl$_3$ as the internal standard (δ 77.0 ppm). IR spectra were obtained with a Thermo Nicolet IR-100 spectrometer on NaCl plates. Elemental Analyses were performed by Complete Analysis Laboratories, Inc.; Parsippany, NJ. High resolution mass spectra were obtained using the positive ion electrospray mode on a Bruker 12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source at Old Dominion University, Norfolk, VA.
Experimental Procedures:

Alcohol 594. Benzyl magnesium bromide 1.0 M in diethyl ether (25.0 mL, 25.0 mmol) was added to a dried flask and stirred along with copper iodide (0.261 g, 1.37 mmol). Cyclopentene oxide 593 (1.75 g, 20.8 mmol) was dissolved in diethyl ether (3.5 mL) and added via dropwise addition to the reaction flask. The reaction mixture stirred for two hours before being quenched with aqueous ammonium chloride (15 mL). The layers were separated and the aqueous layer was extracted with additional diethyl ether (3 x 30 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated in vacuo. Purification via flash column chromatography (SiO₂; hexanes:EtOAc, 4:1-2:1) yielded desired alcohol 594 as a colorless oil (2.78 g, 76%). TLC: Rf = 0.43 (hexanes:EtOAc, 2:1). ¹H NMR data for this compound agreed with the known literature values.¹¹H NMR (CDCl₃, 300 MHz): δ 7.24 (5H, m), 3.30 (1H, m), 3.18 (1H, dd, J = 4.1, 14.2 Hz), 2.35 (1H, dd, J = 14.1, 7.9 Hz), 1.44 (10H, m).

Ketone 595. Oxalyl chloride (2.00 mL, 23.7 mmol) was dissolved in dichloromethane (77 mL) and cooled to -78°C. DMSO (3.59 mL, 50.5 mmol) was subsequently added via dropwise addition over a period of fifteen minutes. The reaction mixture stirred for an additional fifteen minutes after which alcohol 594 (2.78 g, 15.8 mmol) was added in dichloromethane (13 mL). The reaction mixture stirred for an additional thirty minutes after which triethylamine (11.0 mL, 78.9 mmol) was added by dropwise addition. The reaction was then warmed to room temperature and stirred for an additional hour. Water was added (100 mL). The organic and
aqueous layers were separated and the aqueous layer was extracted with dichloromethane (3 x 70 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated \textit{in vacuo}. Purification via flash column chromatography (SiO₂; hexanes:EtOAc, 5:1) yielded desired ketone 595 as a colorless oil (2.33g, 85%) \(^1\)H NMR data for this compound agreed with the known literature values.\(^{84}\) TLC: \(R_f = 0.76\) (hexanes:EtOAc, 2:1). \(^1\)H NMR data for this compound agreed with the known literature values.\(^{85}\) \(^1\)H NMR (CDCl₃, 300 MHz): \(\delta 7.24\) (5H, m), 3.16 (1H, dd, \(J = 13.8, 4.1\) Hz), 2.55 (1H, dd, \(J = 13.7, 9.5\) Hz), 2.36 (2H, m), 2.11 (2H, m), 1.96 (1H, m), 1.75 (1H, m), 1.58 (1H, m).

\[\text{Lactone 596.} \]
mCPBA (1.03g, 4.16 mmol) and sodium bicarbonate (1.38g, 16.5 mmol) were added to a solution of ketone 595 (0.630g, 3.62 mmol) in dichloromethane (22mL). The reaction was stirred for 60 hours and then washed with saturated sodium bicarbonate (2 x 20 mL). The organic and aqueous layers were separated and the aqueous layer was extracted with dichloromethane (20 mL). The combined organic layers were dried with MgSO₄, filtered, and concentrated \textit{in vacuo}. Purification via flash column chromatography (SiO₂; hexanes:EtOAc 2:1) yielded the desired lactone 596 as a colorless oil (0.617g, 89%). TLC: \(R_f = 0.25\) (hexanes:EtOAc, 2:1). \(^1\)H NMR data for this compound agreed with the known literature values.\(^{86}\) \(^1\)H NMR (CDCl₃, 300 MHz): \(\delta 7.28\) (5H, m), 4.50 (1H, m), 3.10 (1H, dd, \(J = 13.8, 5.8\) Hz), 2.88 (1H, dd, \(J = 13.8, 7.0\) Hz), 2.58 (1H, m), 2.42 (1H, m), 1.86 (3H, m), 1.53 (1H, m).
Enol Ether 590. To a solution of lactone 596 (0.100g, 0.526 mmol) in 3 mL THF was added Cp₂TiMe₂ (2.10 mL of a 0.5M solution in THF, 1.05 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature, concentrated in vacuo, and the resulting residue triturated with hexanes (100 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO₂; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 590 as a yellow oil (0.085 g, 85%). TLC: Rₖ = 0.70 (hexanes: EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.27 (5H, m), 4.34 (1H, d, J = 1.3 Hz), 4.08 (1H, d, J = 1.6 Hz), 3.85 (1H, m), 3.04 (1H, dd, J = 13.6, 6.1 Hz), 2.74 (1H, dd, J = 13.6, 7.1 Hz), 2.23 (2H, m), 1.64 (4H, m). ¹³C NMR (CDCl₃, 75 MHz): δ 159.9 (C), 139.5 (C), 128.9 (CH), 128.4 (CH), 126.1 (CH), 91.1 (CH₂), 73.6 (CH₂), 38.4 (CH₂), 36.6 (CH₂), 29.0 (CH₂), 28.3 (CH₂). IR (film): 3027, 2928, 1654 cm⁻¹.

Aldehyde 601. Oxalyl chloride (0.0950 mL, 1.12 mmol) was dissolved in dichlomethane (3.6 mL) and cooled to -78°C. DMSO (0.170 mL, 2.40 mmol) was added to the reaction via dropwise addition over a period of fifteen minutes. Thereafter the reaction mixture was left to stir an additional fifteen minutes, after which alcohol 600 (0.144g, 0.749 mmol) was slowly added as a solution in dichloromethane (0.60 mL). The reaction mixture stirred for thirty minutes, and then triethylamine (0.530 mL, 3.75 mmol) was added via dropwise addition. The reaction was warmed to room temperature and stirred for an additional hour. Water was added (3 mL) and the organic and aqueous layers were separated. Aqueous layers were extracted with
dichloromethane (3 x 10 mL). Combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. Purification via flash column chromatography (SiO₂; hexanes:EtOAc, 3:1) yielded the desired aldehyde 601 as a colorless oil (0.142g, 100%) ¹H NMR data agreed with the known literature values for this compound.¹⁴ TLC: R₇ = 0.34 (hexanes:EtOAc, 2:1). ¹H NMR (300 MHz, CDCl₃): δ 9.69 (1H, dd, J = 12.5, 1.6 Hz), 7.24 (5H, m), 4.40 (0.6H, m), 4.29 (0.4H, dt, J = 8.1, 1.7 Hz), 4.03 (1H, m), 3.66 (1H, m), 2.53 (1H, m), 2.28 (1H, m), 2.14 (1H, m), 1.92 (1H, m), 1.71 (1H, m).

Enol ether 591. To a solution of lactone 603 (0.095g, 0.499 mmol) in 3 mL THF was added Cp₂TiMe₂ (2.00 mL of a 0.5M solution in THF, 0.999 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature, concentrated in vacuo, and the resulting residue triturated with hexanes. (100 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO₂; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 591 as a yellow oil (0.075 g, 80%). TLC: R₇ = 0.87 (hexanes: EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.24 (5H, m), 4.33 (1H, s), 4.07 (1H, d, J = 1.4 Hz), 4.00 (1H, ddd, J = 10.8, 4.2, 1.8 Hz), 3.43 (1H, t, J = 10.3 Hz), 2.59 (1H, dd, J = 13.5, 7.3 Hz), 2.48 (1H, dd, J = 13.5, 7.3 Hz), 2.33 (1H, dt, J = 14.3, 4.7 Hz), 2.11 (2H,m), 1.84 (1H, m), 1.33 (1H, m). ¹³C NMR (CDCl₃, 75 MHz): δ 159.9 (C), 139.5 (C), 128.9 (CH), 128.4 (CH), 126.1 (CH), 91.1 (CH₂), 73.6 (CH₂), 38.4 (CH₂), 36.6 (CH), 29.0 (CH₂), 28.3 (CH₂). IR (film): 3028, 2929, 1654 cm⁻¹.
Aldehyde 614. Oxalyl chloride (0.132 mL, 1.56 mmol) was dissolved in dichloromethane (5.1 mL) and cooled to -78°C. DMSO (0.24 mL, 3.33 mmol) was added to the reaction via dropwise addition over a period of fifteen minutes. Thereafter the reaction mixture was left to stir an additional fifteen minutes, after which alcohol 613 (0.200 g, 1.04 mmol) was slowly added as a solution in dichloromethane (0.83 mL). The reaction mixture stirred for thirty minutes, and then triethylamine (0.73 mL, 5.20 mmol) was added via dropwise addition. The reaction was warmed to room temperature and stirred for an additional hour. Water was added (3 mL) and the organic and aqueous layers were separated. Aqueous layers were extracted with dichloromethane (3 x 10 mL). Combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. Purification via flash column chromatography (SiO₂; hexanes:EtOAc, 3:1) yielded the desired aldehyde 614 as a colorless oil (0.146 g, 73%). ¹H NMR data agreed with the known literature values for this compound.¹⁴ TLC: Rf = 0.42 (hexanes:EtOAc, 2:1). ¹H NMR (300 MHz, CDCl₃): δ 9.78 (0.8H, d, J = 2.2 Hz), 9.55 (0.2H, d, J = 1.9 Hz), 7.25 (5H, m), 4.33 (1H, dd, J = 7.6, 2.2 Hz), 4.21 (0.8H, dt, J = 8.1, 4.7 Hz), 4.08 (0.2H, m), 3.93 (1H, m), 2.88 (2H, m), 2.46 (1H, m), 1.99 (1H, m), 1.74 (1H, m).

Enol ether 592. To a solution of lactone 615 (0.051 g, 0.269 mmol) in 1.5 mL THF was added Cp₂TiMe₂ (1.07 mL of a 0.5M solution in THF, 0.537 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature,
concentrated in vacuo, and the resulting residue triturated with hexanes (100 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO₂; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 592 as a yellow oil (0.043 g, 85%). TLC: R_f = 0.79 (hexanes: EtOAc, 10:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.24 (5H, m), 4.34 (1H, s), 4.12 (1H, ddd, J=11.1, 4.5, 3.0 Hz), 4.04 (1H, s), 3.61 (1H, m), 2.60 (2H, m), 2.30 (1H, m), 1.92 (1H,m), 1.54 (3H, m). ¹³C NMR (CDCl₃, 75 MHz): δ159.4 (C), 139.6 (C), 129.1 (CH), 128.3 (CH), 126.1 (CH), 91.7 (CH₂), 68.7 (CH₂), 42.8 (CH₂), 35.6 (CH), 31.2 (CH₂). IR (film): 3067 (w), 2932 (m), 1650 (m) cm⁻¹.

Tetrahydro-3-methyl-6-propyl-2H-pyran-2-one 627. Distilled diisopropylamine (0.27 mL, 1.94 mmol), diluted with THF (1.5 mL), was cooled to 0°C, and nBuLi (0.78 mL, 1.94 mmol) was added by dropwise addition. The reaction mixture was cooled to -78°C and stirred for 30 minutes. Octanolactone 626 (0.23 g, 1.62 mmol) was dissolved in THF (1.5 mL) and added dropwise to the solution. The reaction mixture was stirred an additional 30 minutes at which time a mixture of MeI (0.30 g, 2.10 mmol), HMPA (0.39 mL, 2.26 mmol) and THF (1 mL) were added. The reaction was warmed to -40°C for three hours and then stirred at room temperature overnight. The reaction mixture was washed with saturated NH₄Cl and diluted with ether. The organic layer was separated from the aqueous. The aqueous layer was extracted with ethyl acetate (3 x 5 mL). Organic layers were combined, dried over MgSO₄, filtered, and concentrated. Column chromatography (SiO₂; 3:1, hexanes:EtOAc) afforded lactone 627 as a colorless oil (0.170 g, 67%) in a 1:1 mixture of diastereomers. Compound identity was determined by ¹H NMR. TLC: R_f = 0.24 (10:1, hexanes:EtOAc) ¹H NMR (CDCl₃, 300 MHz):
δ 4.30 (1H, m), 2.60 (0.6H, m), 2.45 (0.4H, m), 1.99 (2H, m), 1.55 (6H, m), 1.30 (1.2H, d, J = 7.1 Hz), 1.22 (1.8H, d, J = 6.8 Hz), 0.94 (3H, t, J = 7.1 Hz).

Tetrahydro-3-benzyl-6-propyl-2H-pyran-2-one 629. Distilled diisopropylamine (0.27 mL, 1.94 mmol), diluted with THF (1.5 mL), was cooled to 0°C, and nBuLi (0.78mL, 1.94 mmol) was added by dropwise addition. The reaction mixture was cooled to -78°C and stirred for 30 minutes. Octanolactone 626 (0.23g, 1.62 mmol) was dissolved in THF (1.5 ml) and added dropwise to the solution. The reaction mixture was stirred an additional 30 minutes at which time a mixture BnBr (0.36g, 2.10 mmol), HMPA (0.39 mL, 2.26 mmol) and THF (1 mL) were added. The reaction was warmed to -40°C for three hours and then stirred at room temperature overnight. The reaction mixture is washed with saturated NH₄Cl and diluted with ether. The organic layer is separated from the aqueous. The aqueous layer was extracted with ethyl acetate (3 x 5 mL). Organic layers were combined, dried over MgSO₄, filtered, and concentrated. Column chromatography (SiO₂, 30:1 hexanes/EtOAc) afforded lactone 629 as a colorless oil (0.203g, 54%) in a 2:1 mixture of diastereomers. TLC: Rf = 0.76 (2:1, hexanes:EtoAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.26 (5H, m), 4.25 (1H, m), 3.41 (0.66H, dd, J= 13.6, 4.0 Hz), 3.35 (0.33H, dd, J=13.5, 4.0 Hz), 2.72 (2H, m), 1.86 (2H, m), 1.50 (6H, m), 0.93 (3H, t, J=10.2 Hz). ¹³C NMR (CDCl₃, 300 MHz): δ 175.2, 173.1, 139.0, 138.8, 129.1, 129.0, 128.4, 126.3 (2), 81.3, 77.7, 42.5, 40.0, 38.2, 37.6, 37.2, 36.7, 28.7, 26.3, 24.9, 24.6, 22.5, 18.2, 17.9, 13.7. IR (film): 3063, 3028, 2959, 1735, 1603 cm⁻¹.
Alkene 631. Alkene 631 was made by dissolving Red-Al® (13.21g, 42.5 mmol) in THF (160 mL). The reaction mixture was cooled to -60°C, and a mixture of alkyne 638 in THF (160 mL) was added dropwise via cannula. After stirring for six hours at -60°C, Rochelle’s salt was added and allowed to stir for an additional hour. The organic layer and aqueous layers were separated, and the aqueous layer was extracted with ether (3 x 80 mL). Organic layers were combined and washed with a saturated, aqueous sodium potassium tartrate solution. Drying of the organic layers with MgSO₄ was followed by filtration, concentration, and purification by flash chromatography (SiO₂, 7:1-2:1, hexanes/ethyl acetate) to yield olefin 631 as a colorless oil (5.49g, 94%). ¹H NMR data agrees with that previously published for this compound.³⁸ TLC: Rf = 0.21 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.32 (5H, m), 5.88 (2H, m), 4.53 (2H, s), 4.15 (2H, m), 4.04 (2H, dd, J = 4.3, 1.5 Hz), 2.01 (1H, s).

Epoxide 639. Epoxide 639 was manufactured from alkene 631 (8.13g, 45.62 mmol) and 70% mCPBA (16.87g, 68.42 mmol) by literature procedure to yield a solid white product.⁷⁰ ¹H NMR data for this compound agreed with the known literature values.⁸⁹ TLC: Rf = 0.33 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.35 (5H, m), 4.59 (2H, d, J = 4.4 Hz), 3.96 (1H, dd, J = 12.7, 2.4 Hz), 3.79 (1H, dd, J = 11.5, 3.0 Hz), 3.67 (1H, dd, J = 12.7, 4.1 Hz), 3.55 (1H, dd, J = 11.6, 5.5 Hz), 3.26 (1H, m), 3.12 (1H, m).
Ester 641. Freshly made carboxethoxymethylene triphenylphosphorane (18.18g, 50.2 mmol) and aldehyde 640 (8.86g, 45.6 mmol) were refluxed in benzene (225 mL) over the period of 18 hours. The reaction mixture was cooled to room temperature and concentrated. Purification by flash column chromatography (SiO₂; 8:1, hexanes:ethyl acetate) yielded ester 641 as a single isomer with a yellow oil appearance. The ¹H NMR data of this compound corresponded to that in the literature. TLC: R_f = 0.31 (10:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.33 (5H, m), 6.67 (1H, dd, J = 15.7, 7.2 Hz), 6.16 (1H, dd, J = 15.7, 0.7 Hz), 4.59 (2H, s), 4.21 (2H, q, J = 7.1 Hz), 3.77 (1H, dd, J = 11.6, 3.2 Hz), 3.59 (1H, dd, J = 11.6, 5.0 Hz), 3.44 (1H, dd, J = 11.7, 7.2), 3.16 (1H, m), 1.29 (3H, t, J = 7.1 Hz).

Lactone 622. Alcohol 632 (2.05g, 7.36 mmol) and 10% Pd/C (0.30g, 0.28 mmol) was diluted in methanol (25 mL). The reaction mixture was subjected to hydrogen gas by means of an attached balloon. The reaction was stirred vigorously for 48 h. The reaction mixture was filtered through a pad of celit and washed with a 10% aqueous HCl solution. The organic and aqueous layers were separated. The aqueous layers were subsequently extracted with ethyl acetate (3 x 30 mL). Combined organic layers were dried with MgSO₄, filtered, and concentrated in vacuo. Purification via flash column chromatography (SiO₂, 5:1-2:1, hexanes/ethyl acetate) yielded the desired lactone 622 as a colorless oil (1.10g, 64%). TLC: R_f = 0.29 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.34 (5H, m), 4.59 (2H, dd, J = 29.6, 12.1 Hz), 4.07 (1H, m), 3.68 (2H, m), 2.63 (1H, ddd, J = 17.9, 6.5, 4.2 Hz), 2.49 (1H, ddd, J = 17.7, 10.6, 6.9 Hz), 2.08 (1H,
m), 1.93 (1H, m), 1.56 (1H, m), 1.01 (3H, t, \(J = 6.6 \) Hz). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta \) 137.8, 128.3, 127.6 (2), 85.1, 73.5, 69.8, 29.6, 28.7, 27.4, 17.1. IR (film): 3031, 2935, 1733 cm\(^{-1}\).

Enol ether 622. To a solution of lactone 633 (0.069g, 0.29 mmol) in 6 mL THF was added Cp\(_2\)TiMe\(_2\) (1.17 mL of a 0.5M solution in THF, 0.585 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature, concentrated in vacuo, and the resulting residue triturated with hexanes. (100 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO\(_2\); hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 622 as a yellow oil (0.051 g, 76%). TLC: \(R_f = 0.91 \) (hexanes: EtOAc, 2:1). \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta \) 7.34 (5H, m), 4.62 (2H, dd, \(J = 35.0, 12.2 \) Hz), 4.38 (1H, d, \(J = 1.0 \)), 4.08 (1H, d, \(J = 1.3 \) Hz), 3.67 (1H, dd, \(J = 10.9, 2.7 \) Hz), 3.61 (1H, dd, \(J = 10.9, 4.4 \) Hz), 3.39 (1H, ddd, \(J = 9.6, 4.3, 2.7 \) Hz), 2.25 (2H, m), 1.85 (2H, m), 1.29 (1H, m), 0.87 (3H, d, \(J = 6.5 \) Hz). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta \) 159.3, 138.2, 128.3, 127.6, 127.5, 91.4, 79.7, 73.3, 70.3, 29.4, 29.0, 25.1, 12.7. IR (film): 3010, 3065, 3032, 2956, 2931, 1650 cm\(^{-1}\).

Aldehyde 644. Epoxide 644 (0.50g, 2.57 mmol) was oxidized under Swern conditions using a similar literature procedure.\(^{17}\) Oxalyl chloride (0.49g, 3.90 mmol) was dissolved in CH\(_2\)Cl\(_2\) (13 mL) and cooled to -78°C. DMSO (0.64g, 8.2 mmol) was added dropwise over a period of 15 minutes. The reaction mixture was allowed to stir for an additional 15 minutes until alcohol 643 was added dropwise as a solution in CH\(_2\)Cl\(_2\) (1M, 2.6 mL). After stirring for 30 minutes, Et\(_3\)N (0.64g, 228 mmol) was added dropwise, and the reaction warmed up to room temperature over
the period of an hour. Water was added (100 mL) and the aqueous and organic layers were separated. The aqueous layer was back extracted with CH₂Cl₂ (3 x 80 mL). The organic layers were combined, dried with MgSO₄, filtered, and concentrated to yield product 644 as a yellow oil (0.67g, 100%) which was carried on to the next step without further purification. ¹H NMR data for this compound agreed with the known literature values.¹¹ TLC: Rₚ = 0.39 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): 9.45 (1H, d, J = 4.8 Hz), 7.34 (5H, m), 4.57 (2H, s), 3.81 (2H, dq, J = 11.1, 3.9 Hz), 3.47 (2H, m).

Ester 645. Formation of ester 645 (10.1g, 82%) is achieved by refluxing freshly made carbethoxymethylene triphenylphosphorane (18.7g, 51.5 mmol) in benzene (125 mL) with aldehyde 644 (9.00g, 46.8 mmol) over a period of 18 hours following a similar literature procedure.¹⁷ The reaction mixture is cooled to room temperature and concentrated. The product is purified via flash column chromatography (SiO₂; 8:1, hexanes:ethyl acetate) to yield ester 645 as a yellow oil. ¹H NMR data is consistent with that reported for ester 645.¹⁰ TLC: Rₚ = 0.70 (2:1 hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.33 (5H, m), 6.77 (1H, dd, J = 15.7, 6.6 Hz), 6.15 (1H, dd, J = 15.7, 1.0 Hz), 4.58 (2H, dd, J = 28.4, 11.9 Hz), 4.21 (2H, q, J = 7.1), 3.62 (3H, m), 3.46 (1H, m), 1.31 (3H, t, J = 7.1 Hz).

Lactone 636. Hydrogenation of alcohol 635 (1.78g, 6.4 mmol) was accomplished by dilution in methanol (22 mL), along with the addition of 10 % Pd/C (0.30g, 0.28 mmol). The reaction mixture was subjected to hydrogen gas by means of an attached balloon. The reaction was stirred vigorously for 72 h. Filtration through a pad of celite was followed by washing with a
10% aqueous HCl solution. The organic and aqueous layers were separated. Aqueous layers were extracted with ethyl acetate (3 x 30 mL). Combined organic layers were dried with MgSO$_4$, filtered, and concentrated in vacuo. Purification via flash column chromatography (SiO$_2$, 5:1-2:1, hexanes/ethyl acetate) yielded the desired lactone as a colorless oil (1.00 g, 67%). 1H NMR data corresponds to that of the known lactone. 92 1H NMR (CDCl$_3$, 300 MHz): δ 7.33 (5H, m), 4.55 (3H, m), 3.64 (2H, ddd, $J = 24.6, 10.2, 5.5$ Hz), 2.56 (2H, dt, $J = 7.0, 2.4$ Hz), 2.23 (1H, m), 2.01 (1H, m), 1.77 (1H, m), 0.97 (3H, d, $J = 7.1$ Hz).

Enol ether 623. To a solution of lactone 636 (0.64 g, 2.7 mmol) in 50 mL THF was added Cp$_2$TiMe$_2$ (10.9 mL of a 0.5M solution in THF, 5.5 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature, concentrated in vacuo, and the resulting residue triturated with hexanes (300 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO$_2$; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 623 as a yellow oil (0.44 g, 72%). TLC: $R_f = 0.70$ (hexanes: EtOAc, 10:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.33 (5H, m), 4.59 (2H, dd, $J = 33.2, 12.1$ Hz), 4.37 (1H, d, $J = 1.0$), 4.09 (1H, d, $J = 0.9$ Hz), 4.00 (1H, m), (1H, dd, $J = 10.1, 7.0$ Hz), 3.48 (1H, dd, $J = 10.1, 5.1$ Hz), 2.33 (1H, m), 2.16 (1H, dt, $J = 14.4, 5.4$ Hz), 1.98 (1H, m), 1.79 (1H, m), 1.56 (1H, m), 0.97 (3H, d, $J = 7.0$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 159.3 (C), 138.2 (C), 128.3 (CH), 127.6 (CH), 127.5 (CH), 91.4 (CH$_2$), 79.7 (CH), 73.3 (CH$_2$), 70.3 (CH$_2$), 29.4 (CH$_2$), 29.0 (CH), 25.1 (CH$_2$), 12.7 (CH$_3$). IR (film): 3010, 3065, 3032, 2956, 2931, 1650 cm$^{-1}$.
Ester 652. A 1.0 M solution of NaHMDS in THF (9.86 mL, 9.86 mmol) was diluted with THF (15 mL). The reaction was cooled to -78°C and a solution of ester 651 (1.00 g, 7.04 mmol) in THF (15 mL) was added dropwise. The reaction mixture was stirred for one hour before addition of MeI (2.19 mL, 35.2 mmol). The reaction was allowed to stir for an additional 3 h before quenching at -78°C with glacial acetic acid (4 mL). The reaction mixture was warmed to ambient temperature before adding water (20 mL) and separating the aqueous and organic layers. The aqueous layer was back extracted with EtOAc (3x15 mL). The organic layers were combined, dried with MgSO₄, filtered, and concentrated. Purification via column chromatography (SiO₂; hexanes:EtOAc, 15:1) yielded methylated ester 652 as a yellow oil (0.84 g) in 77% yield. TLC: Rf = 0.81 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): 5.77 (1H, m), 4.99 (2H, m), 4.13 (2H, d, J = 7.2 Hz), 2.44 (1H, m), 2.06 (2H, m), 1.76 (1H, m), 1.48 (1H, m), 1.25 (3H, t, J = 7.1 Hz), 1.14 (3H, d, J = 7.0 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 176.7 (C), 137.9 (CH), 115.0 (CH₂), 60.1 (CH₂), 38.9 (CH), 32.8 (CH₂), 31.3 (CH₂), 17.0 (CH₃), 14.2 (CH₃). IR (film): 3079, 2936, 1713, 1641 cm⁻¹.

Enol ether 624. To a solution of lactone 655 (0.022 g, 0.087 mmol) in 1.3 mL THF was added Cp₂TiMe₂ (0.38 mL of a 0.5M solution in THF, 0.19 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature, concentrated *in vacuo*, and the resulting residue triturated with hexanes (60 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash
chromatography (SiO$_2$; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 624 as a yellow oil (0.012g, 57%). TLC: R$_f$ = 0.90 (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 4.43 (1H, s), 4.17 (1H, d, J = 0.5 Hz), 3.84 (1H, m), 3.29 (2H, ddd, J = 17.6, 10.3, 6.1 Hz), 2.39 (1H, m), 1.83 (3H, m), 1.51 (1H, m), 1.14 (3H, d, J = 6.8 Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 163.3 (C), 91.3 (CH$_2$), 76.7 (CH), 32.0 (CH), 28.0 (CH$_2$), 26.7 (CH$_2$), 18.7 (CH$_3$), 8.4 (CH$_2$). IR (film): 2934, 1647 cm$^{-1}$.

Enol ether 625. To a solution of lactone 656 (0.039 g, 0.153 mmol) in 2.6 mL THF was added Cp$_2$TiMe$_2$ (0.61 mL of a 0.5M solution in THF, 0.31 mmol). The resulting mixture was warmed to reflux and stirred for 20 h in the dark. The solution was then cooled to room temperature, concentrated in vacuo, and the resulting residue triturated with hexanes. (60 mL). The hexanes solution was filtered through celite and concentrated again. The residue was purified via flash chromatography (SiO$_2$; hexanes:triethylamine, 19:1) to afford the exocyclic enol ether 625 as a yellow oil (0.010g, 25%). TLC: R$_f$ = 0.89 (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 4.43 (1H, s), 4.17 (1H, d, J = 0.5 Hz), 3.84 (1H, m), 3.29 (2H, ddd, J = 17.6, 10.3, 6.1 Hz), 2.39 (1H, m), 1.83 (3H, m), 1.51 (1H, m), 1.14 (3H, d, J = 6.8 Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 163.3 (C), 91.3 (CH$_2$), 76.7 (CH), 32.0 (CH), 28.0 (CH$_2$), 26.7 (CH$_2$), 18.7 (CH$_3$), 8.4 (CH$_2$). IR (film): 2934, 1647 cm$^{-1}$.

Alcohol 657. Enol ether 590 (0.043 g, 0.23 mmol) was placed into a flame dried flask along with a stir bar and 0.22 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.028 mL, 0.27
mmol) was added to the reaction mixture while stirring. A 0.15 M solution of ZnCl$_2$ in THF was added (0.08 mL, 0.002 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated *in vacuo*. Purification by column chromatography (SiO$_2$; 10:1-6:1, 95% hexanes, 5% Et$_3$N:EtOAc) yielded ene product 657 (0.065 g, 98%), a colorless oil, as a 1.1:1 mixture of diastereomers. TLC: $R_f = 0.39$ (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 7.28 (5H, m), 4.60 (1H, m), 4.21 (3H, m), 4.01 (1H, m), 2.97 (2H, m), 2.79 (1H, m), 2.46 (2H, m), 2.00 (2H, m), 1.81 (1H, m), 1.50 (1H, m), 1.28 (3H, dt, $J = 7.1$, 2.5 Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 174.1 (C), 149.7 (C), 149.2 (C), 137.8 (C), 129.4 (CH), 129.3 (CH), 128.3 (2) (CH), 126.4 (CH), 126.3 (CH), 98.3 (CH), 98.9 (CH), 98.8 (CH), 76.4 (CH), 76.3 (CH), 69.4 (CH), 68.8 (CH), 61.2 (CH$_2$), 61.1 (CH$_2$), 41.6 (CH$_2$), 41.5 (CH$_2$), 39.2 (CH$_2$), 39.1 (CH$_2$), 26.5 (CH$_2$), 26.2 (CH$_2$), 20.3 (CH$_2$), 20.1 (CH$_2$), 14.2 (2) (CH$_3$). IR (film): 3511, 3064, 3028, 2924, 1735, 1680 cm$^{-1}$.

Alcohol 658. Enol ether 590 (0.030g, 0.170) was placed into a flame dried flask along with a stir bar and 0.35 mL of THF. p-Nitrobenzaldehyde 383 (0.023g, 0.15 mmol) was added to the reaction mixture while stirring. A 0.1 M solution of ZnCl$_2$ in THF was added (0.077 mL, 0.0080 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated *in vacuo*. Purification by column chromatography (SiO$_2$; 10:1-7:1, 95% hexanes, 5% Et$_3$N:EtOAc) yielded ene product 658 (0.049, 94%), a colorless oil, as a 1:1 mixture of diastereomers. TLC: $R_f = 0.62$ (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 8.15 (2H, m), 7.35 (7H, m), 4.89 (1H, dd, $J = 7.8$, 4.4 Hz), 4.55 (0.5H, t, $J = 3.5$ Hz), 4.48 (0.5 Hz, t, $J = 3.4$ Hz), 4.05 (0.5H, m), 3.89 (0.5H, m), 3.03 (1H, s, br), 2.91 (2H, ddd, $J = 26.7$, 13.5, 6.2 Hz), 2.56
(0.5H, m), 2.35 (1.5H, m), 2.00 (2H, m), 1.86 (1H, m), 1.56 (1H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 151.2 (C), 150.3 (C), 150.2 (C), 146.9 (C), 137.9 (C), 137.8 (C), 129.3 (2) (CH), 128.5 (2) (CH), 126.7 (CH), 126.6 (CH), 126.4 (CH), 126.2 (CH), 123.4 (CH), 123.3 (CH), 99.3 (CH), 98.9 (CH), 76.7 (CH), 71.9 (CH), 71.6 (CH), 44.1 (CH$_2$), 43.4 (CH$_2$), 41.7 (CH$_2$), 41.6 (CH$_2$), 26.8 (CH$_2$), 26.7 (CH$_2$), 20.2 (CH$_2$), 20.2 (CH$_2$). IR (film): 3339, 3064, 3029, 2920, 1678, 1603, 1520, 1345 cm$^{-1}$.

Alcohol 659. Enol ether 590 (0.068g, 0.361 mmol) was placed into a flame dried flask along with a stir bar and 0.56 mL of THF. Octyl aldehyde 495 (0.051g, 0.397 mmol) was added to the reaction mixture while stirring. A 0.5 M solution of ZnCl$_2$ in THF was added (0.143 mL, 0.072 mmol), and the reaction mixture was allowed to stir for 11 hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO$_2$; 15:1-7:1, 95% hexanes, 5% Et$_3$N:EtOAc) yielded ene product 659 (0.095g, 83%), a colorless oil, as a 1:1 mixture of diasteromers. TLC: $R_f = 0.82$ (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 7.26 (5H, m), 4.55 (1H, t, $J = 3.6$ Hz), 4.02 (1H, m), 3.76 (1H, m), 2.60 (2H, dd, $J = 7.1$, 4.1 Hz), 2.31 (1H, t, $J = 3.5$ Hz), 2.52 (1H, d, $J = 13.8$ Hz), 2.08 (3H, m), 1.77 (2H, m), 1.36 (12H, m), 0.89 (3H, t, $J = 6.6$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 151.8 (C), 151.7 (C), 139.7 (C), 129.0 (CH), 128.3 (CH), 126.1 (CH), 97.1 (CH), 70.0 (CH), 69.9 (CH), 69.7 (CH), 69.6 (CH) 41.8 (CH$_2$), 41.8 (CH$_2$), 38.2 (2) (CH$_2$), 36.8 (CH$_2$), 33.8 (CH$_2$), 31.8 (CH$_2$), 29.6 (CH$_2$), 29.3 (CH$_2$), 26.6 (CH$_2$), 25.7 (CH$_2$), 22.6 (CH$_2$), 14.1 (CH$_3$). IR(film): 3585, 3030, 2926, 2857, 1605 cm$^{-1}$.

![Chemical Structure](image-url)
Alcohol 660. Enol ether 591 (0.075g, 0.371) was placed into a flame dried flask along with a stir bar and 0.40 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.049 mL, 0.478 mmol) was added to the reaction mixture while stirring. A 0.15 M solution of ZnCl₂ in THF was added (0.136 mL, 0.020 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 10:1-6:1, 95% hexanes, 5% Et₃N:EtOAc) yielded ene product 660 (0.085g, 80%) as a colorless oil with a dr of 1:1.3. TLC: Rₛ = 0.40 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.24 (5H, m), 4.59 (1H, ddd, J = 7.7, 4.0 Hz), 4.32 (1H, t, J = 5.3 Hz), 4.23 (2H, m), 3.96 (1H, m), 3.60 (1H, m), 3.04 (1H, dd, J = 11.9, 7.3 Hz), 2.51 (4H, m), 2.08 (2H, m), 1.76 (1H, m), 1.29 (3H, dt, J = 7.14, 0.4). ¹³C NMR (CDCl₃, 75 MHz): δ 174.2 (C), 174.1 (C), 149.4 (C), 149.1 (C), 139.6 (2) (C), 128.9 (CH), 128.2 (CH), 126.0 (CH), 98.3 (CH), 98.1 (CH), 69.4 (CH₂), 68.9 (CH), 68.6 (CH), 61.3 (2) (CH₂), 39.0 (CH₂), 38.1 (CH₂), 38.0 (CH₂), 33.7 (CH), 33.6 (CH), 26.6 (CH₂), 26.4 (CH₂), 14.1 (CH₃). IR (film): 3324, 3028, 2923, 1735, 1681 cm⁻¹.

Alcohol 661. Enol ether 591 (0.040 g, 0.22 mmol) was placed into a flame dried flask along with a stir bar and 0.40 mL of THF. p-Nitrobenzaldehyde 383 (0.030g, 0.20 mmol) was added to the reaction mixture while stirring. A 0.1 M solution of ZnCl₂ in THF was added (0.10 mL, 0.010 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 10:1-7:1, 95% hexanes, 5% Et₃N:EtOAc) yielded ene adduct 661 (0.059, 88%), a colorless oil, as a 1.4:1 ratio.
of diastereomers. TLC: \(R_f = 0.65 \) (2:1, hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 8.21 \) (2H, m), 7.54 (2H, m), 7.26 (5H, m), 5.00 (1H, m), 4.57 (1H, m), 4.04 (1H, m), 3.66 (1H, ddd, \(J = 13.1, 10.5, 8.3 \) Hz), 3.07 (1H, m), 2.60 (2H, m), 2.49 (1H, m), 2.35 (1H, m), 2.10 (2H, m), 1.76 (1H, m). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta 151.2 \) (C), 150.3 (C), 147.1 (C), 139.4 (C), 128.9 (CH), 128.4 (CH), 128.3 (CH), 126.4 (2) (CH), 126.2 (CH), 123.5 (CH), 98.6 (CH), 71.7 (CH), 71.6 (CH), 69.9 (CH\(_2\)), 69.8 (CH\(_2\)), 44.1 (CH\(_2\)), 44.0 (CH\(_2\)), 38.2 (CH\(_2\)), 33.7 (CH), 26.5 (CH\(_2\)). IR (film): 3547, 3081, 3026, 2918, 1679, 1603, 1519, 1346 cm\(^{-1}\).

Alcohol 662. Enol ether 591 (0.045g, 0.239 mmol) was placed into a flame dried flask along with a stir bar and 0.18 mL of THF. Octyl aldehyde 495 (0.031g, 0.239 mmol) was added to the reaction mixture while stirring. A 0.16 M solution of ZnCl\(_2\) in THF was added (0.30 mL, 0.048 mmol), and the reaction mixture was allowed to stir for 11 hours. The reaction mixture was concentrated *in vacuo*. Purification by column chromatography (SiO\(_2\); 15:1-7:1, 95% hexanes, 5% Et\(_3\)N:EtOAc) yielded ene product 100 (0.060, 80%), a colorless oil, as a 1.3:1 mixture of diastereomers. TLC: \(R_f = 0.87 \) (2:1, hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 7.26 \) (5H, m), 4.55 (1H, t, \(J = 3.6 \) Hz), 4.02 (1H, m), 3.76 (1H, m), 3.64 (1H, m), 2.60 (2H, dd, \(J = 7.1, 4.1 \) Hz), 2.31 (1H, t, \(J = 3.5 \) Hz), 2.52 (1H, d, \(J = 13.8 \) Hz), 2.08 (3H, m), 1.77 (1H, m), 1.36 (12H, m), 0.89 (3H, t, \(J = 6.6 \) Hz). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta 151.8 \) (C), 151.7 (C), 139.7 (C), 129.0 (CH), 128.3 (CH), 126.1 (CH), 97.1 (CH), 70.0 (CH\(_2\)), 69.9 (CH\(_2\)), 69.7 (CH), 69.6 (CH) 41.8 (CH\(_2\)), 41.8 (CH\(_2\)), 38.2 (2) (CH\(_2\)), 36.8 (CH\(_2\)), 33.8 (CH), 31.8 (CH\(_2\)), 29.6 (CH\(_2\)), 29.3 (CH\(_2\)), 26.6 (CH\(_2\)), 25.7 (CH\(_2\)), 22.6 (CH\(_2\)), 14.1 (CH\(_3\)). IR (film): 3501, 3028, 2926, 2855, 1678 cm\(^{-1}\).
Alcohol 663. Enol ether 592 (0.020 g, 0.11 mmol) was placed into a flame dried flask along with a stir bar and 0.21 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.011 mL, 0.12 mmol) was added to the reaction mixture while stirring. A 0.07 M solution of ZnCl₂ in THF was added (0.08 mL, 0.005 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 8:1-5:1, 95% hexanes, 5% Et₃N:EtOAc) yielded ene product 663 (0.030 g, 100%) as a colorless oil with a dr of 2.4:1. TLC: Rₓ = 0.59 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.23 (5H, m), 4.54 (1H, d, J = 2.3 Hz), 4.32 (1H, m), 4.23 (2H, dq, J = 7.1, 1.7 Hz), 4.03 (1H, m), 3.90 (1H, m), 2.97 (1H, dd, J = 7.3, 2.5 Hz), 2.54 (5H, m), 1.79 (1H, m), 1.56 (1H, m), 3H, dt, J = 7.1, 4.6 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 174.1 (C), 149.5 (C), 140.0 (C), 129.0 (CH), 128.3 (CH), 126.0 (CH), 103.8 (CH), 103.7 (CH), 68.9 (CH), 65.0 (CH₂), 64.9 (CH₂), 61.4 (CH₂), 42.8 (CH₂), 39.4 (CH₂), 39.3 (CH₂), 32.8 (CH), 32.7 (CH), 28.3 (CH₂), 28.2 (CH₂), 14.2 (CH₃). IR (film): 3475, 3062, 3027, 2928, 1734, 1674 cm⁻¹.

Alcohol 664. Enol ether 592 (0.010g, 0.053) was placed into a flame dried flask along with a stir bar and 0.65 mL of THF. p-Nitrobenzaldehyde 383 (0.007g, 0.048 mmol) was added to the reaction mixture while stirring. A 0.1 M solution of ZnCl₂ in THF was added (0.071 mL, 0.0020 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 10:1-7:1, 95% hexanes,
5% Et$_3$N:EtOAc) yielded ene product 664 (0.015, 92%), a colorless oil, as a 2.6:1 ratio of diastereomers. TLC: $R_f = 0.62$ (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 8.21 (2H, d, J=8.8 Hz), 7.53 (2H, d, J=8.4 Hz), 7.26 (3H, m), 7.12 (2H, m), 4.98 (1H, m), 4.48 (1H, m), 4.10 (1H, m), 3.95 (1H, m), 3.07 (0.19H, s), 3.00 (0.81H, s), 2.58 (2H, m), 2.47 (2H, m), 2.33 (1H, m), 1.82 (1H, m), 1.56 (1H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 151.2 (C), 150.3 (C), 147.1 (C), 139.7 (C), 139.6 (C), 129.0 (CH), 128.3 (CH), 126.4 (CH), 126.1 (CH), 123.5 (CH), 103.9 (2) (CH), 71.6 (CH), 71.6 (CH), 65.2 (CH$_2$), 65.1 (CH$_2$), 44.4 (CH$_2$), 44.3 (CH$_2$), 42.7 (CH$_2$), 32.6 (CH), 32.5 (CH), 28.3 (CH$_2$), 28.2 (CH$_2$). IR (film): 3498, 3027, 2923, 1673, 1603, 1520, 1346 cm$^{-1}$.

Alcohol 665. Enol ether 592 (0.022g, 0.117) was placed into a flame dried flask along with a stir bar and 0.11 mL of THF. Octyl aldehyde 495 (0.016g, 0.129 mmol) was added to the reaction mixture while stirring. A 0.73 M solution of ZnCl$_2$ in THF was added (0.03 mL, 0.023 mmol), and the reaction mixture was allowed to stir for 11 hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO$_2$; 20:1-10:1, 95% hexanes, 5% Et$_3$N:EtOAc) yielded ene product 665 (0.028, 76%), a colorless oil, as a 2.4:1 ratio of diastereomers. TLC: $R_f = 0.81$ (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 7.24 (5H, m), 4.50 (1H, s), 4.06 (1H, m), 3.94 (1H, m), 3.74 (1H, m), 2.57 (2H, m), 2.30 (2H, m), 2.04 (1H, m), 1.80 (1H, m), 1.37 (13H, m), 0.89 (3H, t, $J = 6.6$ Hz) 13C NMR (CDCl$_3$, 75 MHz): δ 151.8 (C), 140.0 (C), 129.0 (CH), 128.3 (CH), 126.0 (CH), 102.7 (CH), 69.6 (CH), 65.0 (CH$_2$), 64.9 (CH$_2$), 43.0 (CH$_2$), 42.9 (CH$_2$), 42.1 (CH$_2$), 42.0 (CH$_2$), 36.8 (CH$_2$), 32.7 (CH$_2$), 31.8 (CH), 218
29.6 (CH₂), 29.3 (CH₂), 28.4 (CH₂), 25.7 (CH₂), 22.7 (CH₂), 14.1 (CH₃) IR (film): 3028, 2928, 1670, 1603 cm⁻¹.

Alcohol 678. Enol ether 622 (0.023 g, 0.10 mmol) was placed into a flame dried flask along with a stir bar and 0.20 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.012 mL, 0.12 mmol) was added to the reaction mixture while stirring. A 0.15 M solution of ZnCl₂ in THF was added (0.03 mL, 0.004 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 9:1-5:1, 95% hexanes, 5% Et₃N:EtOAc) yielded ene adduct 678 (0.033 g, 100%) as a colorless oil with a dr of 1.3:1. TLC: Rf = 0.54 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.32 (5H, m), 4.61 (3H, m), 4.35 (1H, m), 4.21 (2H, m), 3.65 (3H, m), 3.25 (1H, ddd, J = 11.6, 7.5 Hz), 2.50 (2H, m), 2.05 (1H, dt, J = 16.6, 5.0), 1.91 (1H, m), 1.70 (1H, m), 1.28 (3H, dt, J = 7.1, 1.5 Hz), 0.95 (3H, dd, J = 6.6, 4.4 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 174.1 (C), 149.1 (C), 148.4 (C), 138.1 (C), 128.3 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 98.3 (2) (CH), 79.8 (CH), 79.5 (CH), 73.3 (CH₂), 70.2 (CH₂), 70.1 (CH₂), 69.4 (CH), 69.0 (CH), 61.2 (2) (CH₂), 38.9 (CH₂), 28.4 (CH), 28.0 (CH), 27.6 (CH₂), 27.3 (CH₂), 17.6 (CH₃), 17.4 (CH₃), 14.2 (CH₃). IR (film): 3496, 3065, 3031, 2959, 1736, 1683 cm⁻¹.

Alcohol 679. Enol ether 622 (0.015 g, 0.065 mmol) was placed into a flame dried flask along with a stir bar and 0.21 mL of THF. p-Nitrobenzaldehyde 383 (0.008 g, 0.054 mmol) was added to the reaction mixture while stirring. A 0.18 M solution of ZnCl₂ in THF was added (0.015 mL,
0.003 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 10:1-8:1, 95% hexanes, 5% Et₃N:EtOAc) yielded ene adduct 679 (0.019 g, 94%), a colorless oil, as a 1.4:1 ratio of diastereomers. TLC: Rf = 0.55 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 8.18 (2H, dd, J = 8.9, 2.2 Hz), 7.54 (2H, d, J = 7.8 Hz), 7.34 (5H, m), 5.01 (1H, m), 4.61 (2H, dd, J = 16.4, 12.3 Hz), 4.52 (1H, dd, J = 4.4, 2.9 Hz), 3.66 (3H, m), 3.54 (1H, br s), 2.54 (1H, dd, J = 14.2, 2.9 Hz), 2.37 (1H, m), 2.02 (1H, dt, J = 16.6, 5.1 Hz), 1.89 (1H, m), 1.67 (1H, m), 0.95 (3H, t, J = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 151.4 (C), 149.7 (C), 149.3 (C), 147.0 (C), 137.9 (C), 128.4 (CH), 127.7 (CH), 126.5 (CH), 123.4 (CH), 98.4 (CH), 79.9 (CH), 79.6 (CH), 73.5 (CH₂), 73.4 (CH₂), 72.1 (CH), 71.7 (CH), 70.1 (CH₂), 70.0 (CH₂), 43.6 (CH₂), 43.5 (CH₂), 28.2 (CH₂), 28.0 (CH₂), 27.5 (2) (CH), 17.5 (CH₃), 17.4 (CH₃). IR (film): 3503, 3124, 3066, 2915, 1682, 1603, 1519, 1346 cm⁻¹.

Alcohol 680. Enol ether 622 (0.0230g, 0.09980) was placed into a flame dried flask along with a stir bar and 0.20 mL of THF. Octyl aldehyde 495 (0.0110g, 0.083 mmol) was added to the reaction mixture while stirring. A 0.13 M solution of ZnCl₂ in THF was added (0.126 mL, 0.0166 mmol), and the reaction mixture was allowed to stir for eleven hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 20:1-5:1, 95% hexanes, 5% Et₃N:ethyl acetate) yielded ene product 680 (0.0171g, 57%), a colorless oil as a mixture of diastereomers. TLC: Rf = 0.84 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 7.32 (5H, m), 4.58 (3H, m), 3.63 (2H, d, J = 4.1 Hz), 3.72 (2H, m), 2.67 (1H, dd, J = 35.9, 3.4 Hz), 2.28 (1H, d, J = 14.1 Hz), 2.07 (2H, m), 1.92 (1H, m), 1.70 (1H, m), 1.33 (12H, m), 0.92
(6H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 151.2 (C), 150.9 (C), 128.4 (CH), 127.7 (CH), 127.6 (CH), 97.1 (CH), 97.0 (CH), 79.7 (CH), 79.5 (CH), 73.4 (2) (CH$_2$), 70.3 (CH), 70.3 (CH$_2$), 70.0 (CH), 41.6 (2) (CH$_2$), 36.8 (2) (CH$_2$), 36.6 (CH$_2$), 31.8 (CH$_2$), 29.7 (CH$_2$), 29.3 (CH$_2$), 28.2 (CH$_2$), 28.1 (CH$_2$), 27.6 (CH), 25.8 (CH$_2$), 22.7 (CH$_2$), 17.6 (CH$_3$), 17.5 (CH$_3$), 14.1 (CH$_3$). IR (film): 3528, 3033, 2956, 1681, 1603 cm$^{-1}$.

Alcohol 681. Enol ether 623 (0.0230g, 0.0998) was placed into a flame dried flask along with a stir bar and 0.20 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.0122 mL, 0.120 mmol) was added to the reaction mixture while stirring. A 0.15 M solution of ZnCl$_2$ in THF was added (0.0300 mL, 0.00415 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated *in vacuo*. Purification by column chromatography (SiO$_2$; 10:1-5:1, 95% hexanes, 5% Et$_3$N:ethyl acetate) yielded ene product 681 (0.0320g, 97%) as a colorless oil with a dr of 2.6:1. TLC: R_f = 0.47 (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 7.33 (5H, m), 4.60 (3H, m), 4.36 (1H, m), 4.21 (2H, dq, J = 7.2, 2.3 Hz), 4.12 (1H, m), 3.62 (1H, m), 3.46 (1H, m), 3.39 (1H, d, J = 8.0 Hz), 2.38 (3H, m), 2.05 (1H, m), 1.64 (1H, m), 1.28 (3H, t, J = 7.1 Hz), 0.89 (3H, dd, J = 7.0, 2.1 Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 174.0 (C), 148.0 (C), 138.0 (C), 128.4 (CH), 127.8 (CH), 127.7 (2) (CH), 97.9 (CH), 97.7 (CH), 76.9 (CH), 73.3 (CH$_2$), 73.2 (CH$_2$), 69.8 (CH$_2$) 69.3 (CH) 69.2 (CH), 68.7 (CH$_2$) 61.3 (CH$_2$), 61.2 (CH$_2$), 38.8 (CH$_2$), 28.4 (CH$_2$), 27.9 (CH$_2$), 27.3 (CH), 27.1 (CH$_3$), 14.2 (CH$_3$). IR (film): 3473, 3066, 2924, 1735, 1676 cm$^{-1}$.

![Chemical Structure](image-url)
Alcohol 682. Enol ether 623 (0.0230g, 0.0998) was placed into a flame dried flask along with a stir bar and 0.20 mL of THF. p-Nitrobenzaldehyde 383 (0.0120g, 0.084 mmol) was added to the reaction mixture while stirring. A 0.18 M solution of ZnCl$_2$ in THF was added (0.0233 mL, 0.0040 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO$_2$; 10:1-5:1, 95% hexanes, 5% Et$_3$N:ethyl acetate) yielded ene product 682 (0.0300g, 100%) as a colorless oil with a dr of 3.5:1. TLC: R$_f$ = 0.47 (2:1, hexanes:EtOAc). 1H NMR (CDCl$_3$, 300 MHz): δ 8.19 (2H, d, $J = 8.8$ Hz), 7.54 (2H, d, $J = 8.3$ Hz), 7.24 (5H, m), 5.01 (1H, m), 4.56 (3H, m), 4.14 (1H, m), 3.66 (1H, m), 3.48 (1H, dd, $J = 10.2, 4.0$ Hz), 2.30 (4H, m), 1.66 (1H, m), 0.88 (3H, d, $J = 6.9$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 151.5 (C), 148.9 (C), 147.0 (C), 137.7 (C), 128.5 (CH), 128.3 (CH), 127.8 (2) (CH), 126.4 (CH), 123.5 (CH), 98.2 (CH), 77.2 (CH), 79.9 (CH), 73.3 (CH$_2$), 71.2 (CH), 69.0 (CH$_2$), 43.7 (CH$_2$), 28.0 (CH$_2$), 27.5 (CH), 14.3 (CH$_3$). IR (film): 3421, 3066, 2964, 1603, 1519, 1345 cm$^{-1}$.

Alcohol 683. Enol ether 623 (0.0180g, 0.0770) was placed into a flame dried flask along with a stir bar and 0.15 mL of THF. Octyl aldehyde 495 (0.0090g, 0.0640 mmol) was added to the reaction mixture while stirring. A 0.18 M solution of ZnCl$_2$ in THF was added (0.0184 mL, 0.0030 mmol), and the reaction mixture was allowed to stir for eleven hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO$_2$; 10:1-5:1, 95% hexanes, 5% Et$_3$N:ethyl acetate) yielded ene product 683 (0.017g, 74%) as a colorless oil
with a 1.7:1 mixture of diastereomers. TLC: Rf = 0.69 (2:1, hexanes:EtOAc). 1H NMR (CDCl₃, 300 MHz): δ 7.32 (5H, m), 4.57 (3H, m), 4.13 (1H, m), 3.78 (1H, m), 3.63 (1H, m), 3.48 (1H, m), 2.68 (1H, br s), 2.27 (2H, m), 2.07 (2H, m), 1.68 (1H, m), 1.23 (12H, m), 1.04 (3H, t, J=7.2 Hz), 0.93 (3H, m). 13C NMR (CDCl₃, 75 MHz): δ 150.8 (C), 150.3 (C), 138.0 (C), 137.9 (C), 128.4 (CH), 127.7 (3) (CH), 96.7 (CH), 96.5 (CH), 76.8 (CH), 73.4 (CH₂), 73.3 (CH₂), 70.6 (CH), 69.7 (CH), 69.4 (CH₂), 69.2 (CH₂), 41.6 (2) (CH₂), 36.8 (2) (CH₂), 31.8 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 28.2 (CH₂), 28.1 (CH₂), 27.4 (CH), 27.3 (CH), 25.7 (CH₂), 22.7 (CH₂), 14.2 (CH₂), (CH₃) 14.1 (CH₃), 13.8 (CH₃). IR (film): 3498, 3032, 2927, 2856, 1677 cm⁻¹.

Alcohol 684. Enol ether 624 (0.030g, 0.119 mmol) was placed into a flame dried flask along with a stir bar and 0.238 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.013 mL, 0.131 mmol) was added to the reaction mixture while stirring. A 0.10 M solution of ZnCl₂ in THF was added (0.06 mL, 0.006 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 10:1-5:1, 95% hexanes, 5% Et₃N:ethyl acetate) yielded the colorless oil ene product 684 (0.025g, 60%) as a 1:2 mixture of diastereomers. TLC: Rf = 0.51 (2:1, hexanes:EtOAc). 1H NMR (CDCl₃, 300 MHz): δ 4.39 (1H, m), 4.22 (2H, m), 3.78 (0.33H, m), 3.67 (0.67H, m), 3.25 (2H, m), 3.18 (0.33H, d, J = 7.9 Hz), 3.00 (0.66H, d, J = 7.2 Hz), 2.64 (2H, m), 2.02 (3H, m), 1.71 (1H, m), 1.61 (3H, s), 1.30 (3H, dt, J = 7.1, 1.6 Hz). 13C NMR (CDCl₃, 75 MHz): δ 174.4 (C), 142.8 (C), 105.8 (C), 74.3 (CH), 73.4 (CH), 69.6 (CH), 69.3 (CH), 61.3 (CH₂), 34.7 (2) (CH₂), 27.8 (2) (CH₂), 26.4 (CH₂), 26.2 (CH₂), 17.5 (CH₃), 14.2 (CH₃), 8.7 (CH₂), 8.2 (CH₂). IR (film): 3610, 2981, 2923, 1734, 1689 cm⁻¹.
Alcohol 684. Enol ether 625 (0.007 g, 0.039 mmol) was placed into a flame dried flask along with a stir bar and 0.078 mL of THF. Freshly distilled ethyl glyoxylate 343 (0.004 mL, 0.044 mmol) was added to the reaction mixture while stirring. A 0.065 M solution of ZnCl₂ in THF was added (0.03 mL, 0.002 mmol), and the reaction mixture was allowed to stir for two hours. The reaction mixture was concentrated in vacuo. Purification by column chromatography (SiO₂; 10:1-5:1, 95% hexanes, 5% Et₃N:ethyl acetate) yielded the colorless oil ene product 684 (0.005 g, 51%) as a 2:1 mixture of diastereomers. TLC: Rf = 0.51 (2:1, hexanes:EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ 4.39 (1H, m), 4.22 (2H, m), 3.78 (0.67H, m), 3.67 (0.33H, m), 3.25 (2H, m), 3.18 (0.67H, d, J = 7.9 Hz), 3.00 (0.33H, d, J = 7.2 Hz), 2.64 (2H, m), 2.02 (3H, m), 1.71 (1H, m), 1.61 (3H, s), 1.30 (3H, dt, J = 7.1, 1.6 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 174.4 (C), 142.8 (C), 105.8 (C), 74.3 (CH), 73.4 (CH), 69.6 (CH), 69.3 (CH), 61.3 (CH₂), 34.7 (2) (CH₂), 27.8 (2) (CH₂), 26.4 (CH₂), 26.2 (CH₂), 17.5 (CH₃), 14.2 (CH₃), 8.7 (CH₂), 8.2 (CH₂). IR (film): 3610, 2981, 2923, 1734, 1689 cm⁻¹.

3.6 References

36 (a) Sharum, D.; Liang, G.; Totah, N. Unpublished results, Totah group, Syracuse University; (b) Lam, T. PhD. Dissertation, Syracuse University, 2009.

41 (a) Sharum, D. T.; Liang, G.; Totah, N. I. Unpublished results, Totah group, Syracuse University; (b) Lam, T. PhD. Dissertation, Syracuse University, 2009.

42 Liang, G.; Totah, N. I. Unpublished results, Totah group,

47 Sharum, D.T.; Totah, N. I. Unpublished results, Totah group, Syracuse University.

64 Baeyer, A.; Villiger, V. *Ber.* **1899**, 3, 3625.

68 Lam, T. PhD. Dissertation, Syracuse University, 2009.

75 Yadav, J. S.; Chetia, L. Org. Lett. 2007, 9, 4587.

77 Ha, H.; Lee, S.; Park, Y. Synthetic Communications 2000, 30, 3645.

81 (a) Wu, M.-J.; Yeh, J.-Y. OPPI Briefs 1994, 26, 671; (b) Bartlett, P. A.; Richardson, D. P.; Myerson, J. Tetrahedron 1984, 40, 2317.

Chapter 4: Formation of Pyrans and Trioxadispiroketal via a Bi-Directional Carbonyl-Ene Approach

4.1 Overview

In light of the recent research concerning the formation of dihydropyranyl ketides via carbonyl-ene reactions of 2-methylenetetrahydropyrans, our focus shifted towards determining the efficacy of a bi-directional approach toward pyran and subsequently trioxadispiroketal synthesis. Such 2,6-β-hydroxypyran may be utilized as advanced synthetic intermediates for natural product synthesis, namely complex trioxadispiroketal systems. This chapter will review trioxadispiroketals including those natural products, which contain such moieties, the chemical aspects of spiroketal systems, previous approaches to trioxadispiroketal synthesis, and our route toward their synthesis.

Herein is described a novel route toward the manufacture of 2,6-β-hydroxypyran via two successive carbonyl-ene reactions (Scheme 4.1). 6-Iodomethylene-2-methylenetetrahydropyran 302 is coupled with enophiles to yield β-hydroxydihydropyrans 303. Subsequent dehydrohalogenation and secondary coupling of the newly formed 2-methylenedihydropyran to an activated aldehyde yields substituted bis-β-hydroxypyran 304. The use of these pyranyl intermediates as bis-spiroketal precursors is also discussed.

Scheme 4.1
4.2 Background and Significance

Tetrahydropyran and spiroketal functionalities are prevalent in many biologically active natural products, and for this reason their construction is of particular interest to synthetic organic chemists. This current work focuses on the synthesis of 2,6-substituted pyranyl ketides and trioxadispiroketalts using our recently discovered carbonyl-ene chemistry of 2-methylene-tetrahydropyrans (Scheme 4.2) via a bi-directional approach. The pyranyl ketides produced (Scheme 4.1) have potential as synthetic precursors to tetrahydropyranyl ketides and spiroketalts via reduction or acid-catalyzed ketalization, respectively.

Scheme 4.2

The importance that bis-β-oxygenated tetrahydropyran and trioxadispiroketal moieties have in chemistry is demonstrated by their existence in medically significant, biologically active, natural products. Trioxadispiroketalts are especially interesting to synthetic chemists because of their complexity. Anomeric effects, hydrogen bonding, and chelation can all play a role in their stereochemical outcome. Many organic synthetic groups have devised syntheses towards natural products containing complex trioxadispiroketalts. Interest in spiroketalts and trioxadispiroketal systems has even sparked enough interest to warrant the publication of reviews pertaining to them.¹ This portion of the chapter will examine these topics in detail while also reviewing initial studies toward spiroketal synthesis from exo enol ethers via a carbonyl-ene approach.

Bis-β-Hydroxy-Tetrahydropyran and Trioxadispiroketal-Containing Natural Products

Natural products that contain tetrahydropyranyl ketides, spiroketalts or a combination of the two are popular synthetic targets both due to their structural challenge and interesting
biological activities. Symbiospirol A, cyanolide A, and the spongistatins (Figure 4.1) all contain a bis-β-oxygenated tetrahydropyran which could theoretically be constructed through carbonyl ene chemistry.

Figure 4.1

Symbiospirol A (702) was isolated from cultured symbiotic dinoflagellate *Symbiodinium* sp., a single-celled algae, collected from the marine flatworm *Amphiscolops* sp. off the shore of Okinawa, Japan. Interest in this natural product stems from its demonstrated PKC inhibition, which lends to its potential as an inflammation-suppression drug. The structure of symbiospirol was elucidated, and some of its relative stereochemistry was determined. However, a portion of the relative and absolute stereochemistry has yet to be resolved. Symbiospirol (702) is a 67-linear carbon chain compound that contains a 2,6-β,β'-dihydroxy tetrahydropyran ring.

Cyanolide A (703) was recently isolated from *Lyngbya bouillonii*, a cyanobacterium native to coral off of Papua New Guinea. Cyanolide A (703) is a dimeric, 16-membered
macrocycle that contains two bis-β-oxygenated tetrahydropyrans and two pendant xylose residues. Cyanolide A (703) has proven to be a molluscidal agent against *Biomphalaria glabrata*, a snail that carries the parasites responsible for schistosomiasis infection. Roughly 200 million people are currently infected, making schistosomiasis one of the most prevalent worldwide parasitic infections. By eradicating the parasite at the point of snail infection, the reproductive cycle will halt, effectively eliminating parasitic transmission to humans. The absolute configuration was tentatively assigned based on the natural D-configuration of the xylose residues and was recently confirmed by total synthesis.

The spongistatins (704, 705, 706) were isolated from several marine sponges and identified by the Pettit and Kobayashi groups concurrently. These compounds show potent cytotoxic effects. The highly substituted macrocyclic lactone consists of two β-keto-(6,6)-spiroketals along with a bis-tetrahydropyran unit. Absolute configuration of this complex molecule was finally determined after total synthesis of spongistatin 1 by the Evans group.

Spongistatin 1 has shown the highest toxicity toward cancer cell lines including L1210 murine leukemia cells with IC₅₀ values of 20 pM., kangaroo rat kidney PtK1 cells, possessing IC₅₀ values of 3.6 μM, and has shown inhibition toward the glutamate-induced polymerization of purified tubulin (IC₅₀ values of 3.6 μM). Thus spongistatin 1 shows similar or more potent toxicity than known antimitotic agents such as colchicines, dolastatin 10, vinblastine, and halichondrin B. Use of spongistatin to treat leukemia cell lines has proven to be more effective against long-term survival of cancer cells than 8 out of 10 clinically used cytotoxic drugs due to its XIAP degradation effects. Spongistatin 1 also acts as a mitosis and microtube assembly inhibitor. By binding to tubulin, spongistatin 1 prevents cell growth by blocking tubulin receptor sites toward GTP and vinblastine.
Examples of trioxadispiroketalts are more limited, but many of the natural products containing these functional groups are bioactive and include examples such as salinomycin, spirolide A, pinnatoxin A, spirastrellolide A and their derivatives (Figures 4.2-4.4). The salinomycin family of natural products, salinomycin (707) narasin (708), norboritomycin A and B (709, 710), CP 44,661 (711), and antibiotic X-14766A (712), are all examples of bioactive (6,6,5)-trioxadispiroketal units (Figure 4.2). Isolated from Streptomyces albus, salinomycin (707)

Figure 4.2

contains a (6,6,5)-trioxaspirodiketal at its core and two pendant, functionalized tetrahydropyranyl rings. This natural product acts as a potent anticoccidial, and as such has been
marketed by Procoxacin as an antibacterial and coccidiostat within the poultry industry to improve overall animal health and production.10

Narasin (708) only differs from salinomycin by the presence of a C\textsubscript{4} methyl group. The alteration in structure is slight and as such Narasin effectively has the same properties as Salinomycin. This natural product is marketed by Elanco animal health as Monteban 45® and is likewise used as a coccidiostat in chickens.

Norboritomycins A and B (709, 710), CP 44,161 (711), and antibiotic X-14766A (712) are all similar in core structure to salinomycin (707), but differ in that a salicylic acid chromophore and tetrahydrofuran ring reside off the trioxadispiroketal. The norboritomycins were isolated from \textit{streptomyces noboritoensis} and their absolute configuration was determined by X-ray crystallography.11 The norboritomycins exhibit biological activity against gram-positive bacteria and \textit{Eimeria teriella} (chicken coccidiosis).

CP 44,161 (711) is produced from \textit{Dactylosporangium}, and was isolated in 1978.12 Much like the properties of the other members of the salinomycin family of natural products, CP 44,161 is a polyether antibiotic with coccidiostat properties. Furthermore this compound has demonstrated broad anti-viral activities against the varicella zoster and herpes viruses.13

Antibiotic X-14766A (712) was isolated from a fermented culture of \textit{streptomyces malachitofuscus} subsp. \textit{Downeyi}, which is a soil organism native to North America.14 This natural product demonstrates wide application in agriculture with activities against gram-positive bacteria and protazoa. This compound can be administered in many ways to treat swine dysentery and ketosis or to increase feed utilization in ruminants or swine. Many members within the salinomycin family of natural products are medically significant even with their
diverse sidechains and functionality. This fact lends argument to the importance of the trioxadispiroketal as a key component towards their bioactivity.

The pinnatoxins (713-716), pteriatoxins (717, 718), and spirolides (719, 720) all possess very similar, potent toxicity (Figure 4.3). All three types of natural products were isolated from Okinawain shellfish, *Pinna attenuata*, *Petria penguin*, and *Mytilus edulis* and *Placopecten magellanicus*, respectively. These natural products are Ca\(^{2+}\) channel activators, and are one of the principal causes for food poisoning resulting from shellfish ingestion. The pinnatoxins have additionally demonstrated cytotoxicity against murine leukemia cell lines. Both their high toxicity and interesting structure are cause for organic synthetic interest.

The pinnatoxins and pteriatoxins are very similar structurally, containing a 20-membered macrocyclic core which possesses 14 chiral centers, a (6,5,6)-trioxaspirodiketal, and 5,6 bicyclo-, and 6,7-azaspiro-rings. The pteriatoxins 717 and 718 differ only in that they contain a sulfide side chain. The spirolides also exist as a 20-membered macrocycle, but rather contain a (5,5,6)-bis-spiroketal core.
Of recent interest to many research groups, are efforts toward the synthesis of the spirastrellolides (Figure 4.4). Spirastrellolide A (721) was isolated in 2003 from the Caribbean marine sponge *Spirastrella coccinea*, after which structure revision and comparison to a spirastrellolide B analog led to elucidation of the absolute configuration (376).\(^\text{19}\) Spirastrellolide A is a 38-membered macrolide that possesses 21 stereocenters, a *cis*-fused tetrahydropyran ring (A), a [6,6]-spiroketal (BC rings), a [5,6,6]-bis spiroketal (DEF rings), and a skipped-(E/Z)-diene side chain. Synthetic interest is based not only on spirastrellolide’s complex structure, but also on its interesting biological activity.

Spirastrellolide A (376) has been demonstrated to be a potent and selective inhibitor of Ser/Thr protein phosphatase 2A. This activity causes cells to prematurely enter into mitosis, leading to cell death, and thus spirastrellolide A has potential as an anticancer agent or as a treatment for neurological disorders. Clinical development of spirastrellolide A (376) could therefore act as an alternative to cancer treatments like Taxol\(^\text{©}\), which effect tubulin
polymerization. Full clinical testing of spirastrellolide is currently problematic due to the low yield of isolated material from natural sources.

The structure of spirastrellolide A published initially lacked the F-ring of the trioxadispiroketal moiety, the C_{28} chlorine, and much of the relative stereochemistry found in the compound. Work published in 2004 demonstrated the presence of the trioxadispiroketal moiety in spirastrellolide A, after acetylation of a methyl ester derivative did not result in incorporation at the C_{35} or C_{38} alcohols in proposed structure 721. Much of the relative stereochemistry was also determined at this time, along with the discovery of the C_{28} chloro substituent. Relative configurations were determined within three segments (C_{3}-C_{7}, C_{9}-C_{24}, and C_{27}-C_{38}), however, the stereochemical relationships between segments, the configuration of the C_{46} stereocenter, and the absolute stereochemistry were not discovered until additional analysis of spirastrellolide B furnished further insight.

Spirastrellolide B (722), isolated in 2007, has been instrumental in determining the absolute configuration of the macrolide core. X-ray diffraction analysis of the methyl ester derivative of compound 722 yielded the absolute stereochemistry of this compound. Since the NMR data of spirastrellolide B closely resembled that of A, it was deduced that the absolute stereochemistry was the same for both isomers. Shortly thereafter five other spirastrellolide macrolides (C-G) were isolated and identified from the same sponge. The main structural difference between the spirastrellolide members is the presence or absence of chlorine at C_{4} and C_{28}, and the presence or absence of an olefin within the B ring.

Many of the trioxadispiroketal-containing natural products isolated from nature possess interesting and potent biological activities. The use of these compounds in medicine is well founded, however limited natural supplies often require synthetic methods for their production.
and sale. Routes toward the trioxadispiroketal portions of these natural products is reviewed in
detail later in this introduction, however to fully understand the research the chemistry and
conformational aspects of spiroketals must be examined.

Conformational Aspects of Trioxadispiroketales

In order to develop new methodologies towards trioxadispiroketal synthesis, it is
imperative to understand their chemical nature. Trioxadispiroketal characteristics resemble that
of spiroketals, however, making conformational predictions is difficult due to their added
structural complexity. The conformations of spiroketals are generally governed by the following
factors: anomeric effects, steric influences, and intramolecular hydrogen bonding or chelation. If
these factors combine, conformational predictions can be made with some confidence. When
one of these preferences is compromised, conformational predictions become complicated.

The anomeric effect, first discovered by Lemieux,\(^2\)\(^1\) is a phenomenon whereby
electron-negative groups at C\(_2\) prefer the axial orientation on tetrahydropyran rings. This
preference opposes what is seen in cyclohexane systems where sterically driven equatorial
conformations are favored to avoid 1,3-diaxial interactions and gauche interactions within the
ring. Exactly what influences give rise to the anomeric effect and to what degree each contributes
is under debate. The observed thermodynamic stability derived from the anomeric effect is
currently reasoned in several different ways: minimization of electrostatic repulsions between
electron pairs of the ring oxygen and the exocyclic C-O bond,\(^2\)\(^2\) reduction of the molecule’s
overall dipole moment, and increases in hyperconjugative effects.\(^2\)\(^3\)

The repulsion of *syn*-axial electron pairs is otherwise known as the “rabbit-ear effect.”\(^2\)\(^4\)
This disfavored effect involves unshared electrons on nonadjacent atoms residing parallel to one
another. These high energy conformations are disfavored due to repulsion experienced by the
electric dipoles on the lone pairs. When a lone pair-containing substituent is positioned axially, rabbit ear effects are minimized, as opposed to equatorial positions. Table 4.1 illustrates this point.25

Table 4.1: Rabbit-Ear Effects Associated with Tetrahydropyranyl Ring Conformations

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ring Conformation</th>
<th>Newman Projection</th>
<th>O-C-O Moiety Conformation</th>
<th>Number of Rabbit Ear Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1 (unstable)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

When the oxygen substituent is axial, rabbit-ear effects are minimized, and a maximum of one set of electron pair repulsions results within the system (entries 1-3). Syn axial electron repulsion is further minimized by a within-the-plane arrangement of the pendant ether group to the ring (entry 1). The conformation that brings the pendant ether group towards the inside of the chair is highly unstable due to steric interactions with the ring (entry 3). When the substituent is held equatorially, either one (entries 4 and 5) or two rabbit-ear effects (entry 6) are
experienced. In each of these conformations there is at least one electronic interaction between the tetrahydropyranyl ring oxygen and the oxygen held equatorially on the ring.

The minimization of rabbit-ear effects on tetrahydropyranyl ring systems therefore favors conformations where lone-pair bearing substituents adjacent to the ring oxygen are positioned axially. Furthermore when an electron-withdrawing substituent is held axially, the overall dipole moment of the molecule is reduced, which favors its formation in nonpolar solvents. Although these two factors contribute to the anomeric effect, hyperconjugative effects are thought to have greater influence over the ring conformation.

Hyperconjugative effects, described by Altona, arise from a n-σ* donation of electrons,23 and includes both an exo and endo component. The exo anomeric effect relates to the exocyclic substituent’s ability to donate electrons from its lone pair into the σ* orbital of the ring oxygen. Maximum stabilization occurs when both orbitals are in a synperiplanar arrangement to one another (Figure 4.5). The exo anomeric effect transpires when the substituent is located at either axial (728) or equatorial (729) positions.26

\textit{Figure 4.5}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{anomeric_effect.png}
\caption{Anomeric Effects}
\end{figure}

The endo anomeric effect relates to the donation of the endocyclic oxygen’s lone pair into the σ* orbital of the exocyclic C-O bond (730). This effect can only occur when the substituent is axial. The exo and endo anomeric effects exist in competition with one another, and as the electronegativity of the exo substituent increases, the endo anomeric effect is of greatest influence. Since the endo anomeric effect is greatest in rings with electronegative anomeric
substituents, such as oxygen in the case of spiroketals, this phenomenon helps to govern the conformation of spiroketal rings, with axial heteroatom substitution preferred. The anomeric effect, influenced by rabbit-ear effects, molecular dipoles, and hyperconjugative effects, has a profound influence on the stability of spiroketals and highly influences their favored conformations.

The most stable spiroketal conformation is one that maximizes anomeric effects while also minimizing non-bonding interactions. For the unsymmetrically substituted spiroketal system 731 there are four possible chair conformations where conformation 731a is favored (Scheme 4.3). Both ring oxygens are axially positioned with respect to the other ring in this conformation. This orientation gives rise to two anomeric effects. Steric interactions are

Scheme 4.3
concurrently minimized with both A and B substituents equatorial.28 The relative energies of each conformation are listed for each conformation along with the associated anomeric effects and non-bonding interactions.

By inverting ring A, the oxygen within the B ring is now equatorial to the A ring. Thus only one anomeric effect exists in conformation 721c, found between the endocyclic B oxygen and the oxygen held axially to ring B. This conformation also exhibits non-bonding interactions including one gauche pentane, two gauche butane, and more notably one syn-butyl ether interaction.

Inversion of the B ring in conformer 721a gives rise to conformation 721b, which is energetically equivalent to conformer 721c. Again only one anomeric effect occurs due to one of the oxygens being placed equatorially. Both the reduced anomeric stabilization coupled with the increase in non-bonding interactions makes these conformations considerably less stable (ca. 4.4 Kcal/mol) than conformer 721a. Inversion of both the A and B rings gives rise to conformer 721d, which has no anomeric stabilization effects and two highly unfavorable syn-pentane interactions. This conformer is by far the least stable (ca. 9.8 Kcal/mol) of the four. Therefore a spiroketal of this type will favor conformation 721a due to its high stability. These general principals of increased anomeric stabilization and decreased steric interactions can be extrapolated to similar spiroketal systems which possess substitution at other positions.

Hydrogen-bonding and chelation also contribute to spiroketal stability in specific cases. Hydrogen-bonding is prevalent in tetrahydropyranyl systems containing axial alcohols along with axial C-O spiro bonds. However intramolecular hydrogen-bonding has only been shown to influence spiroketal conformations in aprotic solvents. Ireland demonstrated the formation of spiroketals which possess hydrogen-bonding in work reported toward the synthesis of monesin
Spiroketalization of precursor 722, produced spiroketal 723 as a mixture of four diastereomers. A single spiroisomer could be obtained upon debenzylation and subsequent equilibration of isomers 723 using pyridinium p-toluenesulfonate (ppts). Although ring conformation 724 benefits from stabilizing intramolecular hydrogen-bonding between the axial alcohol and the oxygen of the furan ring, it also possesses anomeric stabilization whereas the other chair isomer would not. Nonetheless the existence of a hydrogen bond was established by a sharp O-H absorption at 3560 cm\(^{-1}\) in the IR spectrum. Similarly, Walba’s synthetic work toward monesin confirmed that hydrogen bonding exists in a similar intermediate, 725, via X-ray crystallography. While these studies show the existence of hydrogen-bonding in spiroketal systems, they do not conclusively demonstrate how this stabilizing force directs conformational preferences.

Intramolecular hydrogen bonding is significantly affected by the solvent used in the equilibration process. These effects were demonstrated in Schreiber’s work toward the synthesis of talaromycins A and B. Deprotection and cyclization of acetal 726 led to a mixture of spiroketal products, the ratio of which is dependent on the spiroketalization conditions, as
demonstrated in Table 4.2. In many cases (entries 2-6), conditions are used that give rise to a thermodynamic ratio of products. The kinetic ratio of products is shown in entries 1a-c, whereby spirokets 729 and 730 are formed in only slight excess. The use of polar solvents, which act as hydrogen bond acceptors, favored formation of spirokets 729 and 730 (entries 4, 5 and 6). Use of non-polar, aprotic solvents produced spirokets 727 and 728 as the major isomers (entries 2 and 3). These results can be explained as follows: In non-polar, aprotic solvents like CH₂Cl₂ (entries 2 and 3), the axial alcohol can readily form an intramolecular hydrogen-bond to the tetrahydropyranyl ring oxygen, and acts to stabilize that conformation, giving rise to 727 and 728 as the major spiroketal isomers. However, when polar solvents like DMSO are used (entries 4-6) that are capable of making intermolecular hydrogen bonds, the alcohol instead readily hydrogen-
bonds with the solvent. The alcohol substituent resides equatorially in these cases to avoid 1,3-diaxial interactions.

Non-intramolecularly hydrogen-bonded spiroketal isomers were favored in the synthesis of 1,7-dioxaspiro[5,5]undecanes (Scheme 4.5) using solvents containing protic species. Acid catalyzed cyclization of dihydropyran 731 in polar protic solvent produced isomers 732 and 733, 19:1 respectively, favoring the equatorial alcohol spiroketal isomer. These results favor those published by Mori, which demonstrate the greater stability of spiroketal 732. When spiroketal 733 was subjected to protic conditions (Scheme 4.6) of acid in methanol, a mixture of spiroketals 732 and 733 resulted as a 88:7 mixture. Although the product ratios differ slightly, in both cases spiroketal 732 is preferred.

Scheme 4.5

Scheme 4.6

Bis-diaxial diol 734 was also isomerized to the all-equatorial isomer 735 using dilute acidic conditions. From these examples we can infer that generally equatorial alcohols are
favored on a steric basis, however, in some cases intramolecular hydrogen bonding can control spiroketal conformation, especially in non-polar, aprotic solvents.

Chelation effects also effect spiroketal conformation. Descotes has shown spiroketal 53 to isomerize to spiroketal 54 under Lewis acidic conditions, by epimerizing the carbon α to the spirocenter (Scheme 4.7). Bidentate chelation of a Lewis acid to the tetrahydropyranyl oxygen

Scheme 4.7

and alcohol substituent favors formation of isomer 738 over 736, where bidentate chelation is not possible. Under similar conditions, tricyclic spiroketal 739 readily isomerizes to the more stable, bidentate-chelated spiroketal 740 (>20:1, 740:739) (Scheme 4.8). Likewise, spiroketal 741 isomerizes to spiroketal 742 (5:1, 742:741).

Scheme 4.8

Chelation controlled spiroketalization has been used to drive kinetic product ratio toward the thermodynamic product. Dithiane 743 was deprotected and partially cyclized to produce both ketone 744 and spiroketal 745 and 746 in a 1:3 ratio respectively (Scheme 4.9). Secondary subjection of ketone 744 to acidic conditions successfully produced spiroketal 745 and 746 as a
1:6 ratio of isomers. The favored spiroketal isomer produced in these cases (745) was not that which was desired (746). Fortunately, subjection of spiroketal isomer 745 to magnesium trifluoroacetate resulted in isomerization to spiroketal 746, due to the favorable, stabilizing bidentate chelation that occurs between the Lewis acid, the tetrahydrofuranyl oxygen, and the pendant tetrahydropyranyl oxygen under these conditions.

Scheme 4.9

Similarly, Williams also demonstrated that the ratio of isomers formed from the spiroketalization of 1-γ-hydroxy-1-methoxy-tetrahydropyrans is highly dependent upon reaction conditions (Scheme 4.10). 37 For example, subjection of tetrahydropyran 747 to both kinetic and thermodynamic conditions resulted in a 3.3:1 ratio of spiroketals, favoring isomer 748. Alternatively, the reaction of the same substrate with Lewis acidic conditions preferentially afforded the opposite isomer 749 in a 5:95 ratio. Not only is the opposite isomer produced, but in much greater selectivity. This is due to the favorable bis-chelation that occurs between the magnesium trifluoroacetate, the tetrahydrofuranyl oxygen, and the axial MEM ether.
Epimerization of stereocenters α to the spirocenter has also been used in natural product synthesis. Evans took advantage of this phenomenon in his syntheses toward calcimycin (Scheme 4.11). Upon functional group deprotection, advanced intermediate 750 was cyclized and equilibrated to afford the most stable conformers 751. Since the α carbon of spiroketal intermediate 750 is epimerizable under acidic conditions, the stereochemistry of the methyl substituent at C15 need not be set prior to spiroketalization. The methyl group epimerizes upon ring-opening of the dihydropyran to the corresponding ketone. Thus the thermodynamic product results from a process of cyclization, ring-opening, and subsequent cyclization. Here the orientation of groups about the spiro framework is controlled rather than the actual conformation

Scheme 4.11
of the spiroketal itself. By recognizing the epimerizability of these centers, both researchers were able to simplify their synthetic approach to calcimycin. In setting fewer stereocenters prior to cyclization, the efficiency of this sequence was increased. Therefore Nakahara adopted a very similar approach to calcimycin that capitalized from this simplification.39

Thermodynamic equilibration to form the most stable spiroketal conformer has been similarly used in the synthesis of invictrolide. Both Hoye40 and Schreiber41 cyclized intermediates 752 and 754 respectively to form advanced synthetic intermediates of this natural product (Scheme 4.12). In both cases a mixture of diastereomers was thermodynamically cyclized under acidic conditions to afford bis-equatorial spiroketsals 753 and 755 as the major isomers. Here, none of the C\textsubscript{5}-C\textsubscript{7} axial-equatorial products were formed due to the high energy syn pentane steric interaction associated with that conformation. The ratio of isomers 755 to 756 is representative of the energetic difference between these two conformations where the C\textsubscript{3} methyl group prefers an equatorial position. Only a trace of the axial-axial isomer 757 was detected.

\textit{Scheme 4.12}

Previous work has shown that anomeric effects, non-bonding interactions, hydrogen-bonding, chelation control, and epimerization of centers adjacent to the spirocenter play an
important role in the stabilization and conformational preferences of spiroketals. While the study of trioxadispiroketal systems has not specifically been reported, the properties of simple spiroketals can be projected onto these double spiroketal systems. The factors that control thermodynamic spiroketalization are important to consider when designing syntheses of spiroketal-containing natural products. Many investigators use these stabilizing traits to their advantage when carrying out natural product synthesis. Application of these principles to trioxadispiroketal synthesis is discussed below.

Trioxadispiroketal Syntheses

The synthesis of trioxadispiroketals is more challenging than the manufacture of simple spiroketals due to increasing steric interactions and the greater difficulty in predicting the thermodynamic preferences of a complex three-ring system. Exactly which stabilizing effects will govern the manufacture of one conformer or diastereomer over another is based on the substituents in the ring system. Therefore the synthesis of trioxadispiroketals must be carefully evaluated on a case by case basis.

When working toward the manufacture of natural product-based bis-spiroketals, the thermodynamic isomer is typically that desired. For this reason, acid catalyzed cyclization of a ketone or similar moieties is a viable route. Other methods used include oxidative cyclization and Norrish type II cleavage. These methods have been used for the synthesis of (5,5,5), (5,6,5), (6,5,6), (6,6,6), and (5,6,6)-trioxadispiroketal systems.

Synthesis of 1,6,8-trioxadispiro[4.1.4.2]tridecanes

The synthesis of a trioxadispiroketal was first reported in 1963 by Ponomarev and Markushina (Scheme 4.13).\(^42\) Their approach to the 1,6,8-trioxadispiro[4.1.4.2]tridecane ring system involved electrolytic alkoxylation of furan 760 using a nickel cathode and carbon anode.
Furan 73 was constructed by acid promoted acrolein addition to furan 758, followed by carbonyl reduction. The (5,5,5)-trans-bis-spiroketal diastereomer 761 was selectively formed, due to the low overall molecular dipole moment experience by this compound compared to all other possible isomers. This example proves interesting as the spiroketal system was directly formed from an aromatically stabilized furan precursor, and this required relatively strong conditions. These conditions, however, may not be accessible for every laboratory.

Scheme 4.13

Cohen designed the synthesis of 5,5,5-bis-spiroketal 764 and 765 through the consecutive addition/cyclization of an organocerium reagent to succinic anhydride 762 (Scheme 4.14). Addition of Cerium 3-ceriopropoxide 766 to succinic anhydride, followed by an acidic workup provided spirolactone 763 in 72% yield. Subsequent addition of a second equivalent of the cerium reagent 766 yielded spiroketal 764 and 765 as a 20:1 mixture of diastereomers. Under thermodynamic conditions a 6:1 ratio of diastereomers was realized. The requisite
organocerium reagent was readily prepared by addition of LDBB to 3,3-dimethyloxetane followed by treatment with CeCl3.44 The use of organocerium reagents is superior to other organometallics in this application. For example, addition of similar organolithium reagents to succinic anhydride gave only a 13% yield of lactone product \textbf{763}. Overall this sequence provides a rapid, highly convergent preparation of the 5,5,5-bis-spiroketal core, though yields are variable in other systems.

\textit{1,6,8-Trioxxadispiro[4.1.4.3]tetradecane Synthesis}

(5,6,5)-Trioxxadispiroketal systems were studied by Descotes, who applied Norrish type II reactions toward their synthesis (Scheme 4.15).45 Dihydropyran \textbf{767} was combined with alcohol \textbf{768} under acid catalysis to form ketal \textbf{769}. Subsequent photolysis of tetrahydropyran \textbf{769} and cyclization of the resulting diradical yielded spiroketal \textbf{770} as a mixture of isomers that were carried forward together. Transketalization of spiroketal \textbf{770} with alcohol \textbf{768} provided spiroketals \textbf{771} and \textbf{772}, which were separated and individually irradiated to form the trioxxadispiroketal products (\textbf{773}-\textbf{778}). Irradiation of spiroketal \textbf{771} yielded products \textbf{773}-\textbf{776}. Likewise treatment of spiroketal \textbf{772} produced products \textbf{776}-\textbf{778}.

Norrish type II conditions provided kinetic cyclization products, and resulted in poor diastereomer product mixtures. Note that bis-spiroketals \textbf{773}, \textbf{775}, and \textbf{777} adopt a twist boat-like conformation for two reasons; this conformation maximizes stabilizing anomeric effects while decreasing unfavorable 1,3-diaxial interactions. This work demonstrated the success in using Norrish type II cyclization strategy toward bis-spiroketal synthesis although poor product mixtures result.
Synthesis of \(1,7,9\)-trioxadispiro[5.1.5.3]hexadecanes

(6,6,6)-Trioxadispiroketal systems have been synthesized using both oxidative cyclization with hypoiodite (Scheme 4.16) and acid catalyzed cyclization. Alcohol 781 was prepared by nucleophilic addition of allyltributyltin reagent 780 to the oxonium ion generated.

Scheme 4.15

\[
\begin{align*}
\text{MeO} & \quad + \quad \text{HO-CO} \\
767 & \quad \text{pTsOH} \
768 & \quad 86\% \quad \rightarrow \quad \text{MeO} \\
769 & \quad \text{hv} \
770 & \quad 77\% \\
\text{HO-CO} & \quad \text{pTsOH} \\
771 & \quad 68\% \\
& \quad \text{hv} \\
772 & \quad 32\% \\
& \quad \text{hv} \\
& \quad \text{benzene}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>771</td>
<td>773 31%</td>
</tr>
<tr>
<td>771</td>
<td>774 5%</td>
</tr>
<tr>
<td>772</td>
<td>775 18%</td>
</tr>
<tr>
<td>772</td>
<td>776 11%</td>
</tr>
<tr>
<td>775 28%</td>
<td>776 16%</td>
</tr>
<tr>
<td>777 15%</td>
<td>778 13%</td>
</tr>
</tbody>
</table>
from the advanced spiroketal intermediate 779. Subsequent deprotection provided alcohol 781 in moderated yield. This alcohol was then oxidatively cyclized by irradiation in an iodobenzene diacetate solution containing iodine to kinetically form trioxadispiroketal 782 and 783 as a 1:1.3 kinetic ratio of products. The poor product ratio, minimally favors formation of anomerically stabilized bis-spiroketal 783.

Scheme 4.16

Brimble employed acid catalyzed cyclization to synthesize phenylsulfonyl bis-spiroketals 787 and 788 from 3,4-dihydropyran 306 (Scheme 4.17). Sulfone 784 was synthesized from

Scheme 4.17
dihydropyran 306 over 2 steps in 28% yield. This intermediate was subsequently deprotonated and added to δ-valerolactone to provide keto alcohol 785 that lies in equilibrium with cyclic hemiacetal 786. Direct cyclization of the mixture under acidic conditions provided bis-spiroketal 787 and 788 as a 1:1 mixture of cis and trans diastereomers in 57% yield over two steps. These isomers were then individually reduced to provide bis-spiroketal 788 and 790. The poor diastereomeric ratio is the result of the two products having similar stabilities. Although in theory the cis isomer is stabilized by four anomic effects, the trans isomer benefits from a more favorable overall dipole moment (Figure 4.6).

Figure 4.6

![cis and trans isomers](#)

McGarvey synthesized unsubstituted (6,6,6)-bis-spiroketal systems by acid catalyzed cyclization in an attempt to both improve yield as compared to the Brimble synthesis while also studying the relative stabilities of the cis and trans isomers.48 McGarvey devised three approaches to this system. The first synthetic approach involved addition of propanedithiol to 3,4-dihydropyran 306 to create dithiane 791 (Scheme 4.18). Addition of two equivalents of the deprotonated dithiane 791 to 1,3-dibromopropane afforded diol 792 after alcohol deprotection. Removal of dithiane protecting groups and Lewis acid catalyzed cyclization yielded cis and trans-bis-spiroketals 789 and 790 (1:1.7-1:2.1) in 32% and 28% yields respectively. The yields for this synthetic pathway are far greater than Brimbles (1.6%). The trans diastereomer was produced in excess of the cis due to the lesser overall dipole moment in that molecule, although cis diastereomer 789 benefits more from anomic effects.
The second approach to this system by the same group involved preparation from substrates where asymmetry could be more easily introduced into the bis-spiroketal (Scheme 4.19). Alkylation of keto ester 793 followed by Krapcho decarboxylation gave ketone 794. Subsequent addition of organolithium 795 to ketone 794 yielded alcohol 796. Elimination was followed by oxidative cleavage and acid catalyzed deprotection-cyclization to afford spiroketal...
Oxime 799. 1,3-dipolar addition of nitrile oxide 799 to olefin 800 yielded isoxazoline 801. Reductive cleavage of the N-O bond was followed by elimination of the mesylated β-hydroxyketone Subsequent hydrogenation of the olefin afforded ketone 802. Acid cyclization with PPTS yielded spiroketalts 789 and 790 (1:2.1) in an overall yield of 32%.

The work of Brimble and McGarvey demonstrates the success of acid catalyzed cyclization toward trioxadispiroketal synthesis, although these (6,6,6)-systems provide little diastereoselective preference. McGarvey studied these trioxadispiroketals further to examine their conformations and determine what relative energy difference exists between the two isomers. Subjection of each bis-spiroketal to thermodynamic conditions resulted in favored production of the trans isomer, where the ratio of isomers was slightly based on solvent effects (Table 4.3). The use of non-polar solvents resulted in spiroketal ratios clearly favoring the trans isomer. Alternatively, use of polar solvents like DMSO provided lower ratios presumably by stabilizing the molecular dipole experienced by the cis-isomer.
Analysis of these ratios indicate that the relative energy difference between the two conformations is between 0.3-0.7 kcal/mol favoring the trans isomer. NMR studies of both isomers indicated that the central ring adopts a twist-boat conformation (Figure 4.7). This conformation allows for maximization of anomeric effects while concurrently alleviating both steric and dipole-dipole interactions. As a result, the trans isomer benefits from 4 anomeric effects, although favorable bond angles are compromised. On the other hand, the cis isomer gives up one of the anomeric stabilizations to alleviate the dipole-dipole interaction it experiences. Overall the trans isomer is slightly preferred. These results indicate that anomeric effects cannot solely be studied for the evaluation of isomeric preference in trioxadispiroketalts.
Unlike simple spiroketals, clearly dipole-dipole interactions play a critical role in the conformation preference of bis-spiroketals.

1,7,9-trioxadispiro[5.1.5.2]pentadecane Synthesis

6,5,6-Trioxadispiroketal systems have been prepared en route to the synthesis of pinnatoxin 713 (Figure 3).\(^{50}\) Double anomic effects and reduction of steric stabilization the bis-spiroketals present in the pinnatoxins, making thermodynamic cyclization a viable ring-closing technique (Figure 4.8).

Figure 4.8

Murai’s group was the first to synthesize the bis-spiroketals portion of the pinnatoxins as outlined in Scheme 4.21.\(^{51}\) The key intermediates, sulfone 804 and aldehyde 806 were each prepared in six steps from the alcohols 803 and 805 respectively. Deprotection of the sulfone 804 and addition to the aldehyde 806 then gave the hydroxyl sulfone derivative 807. Swern oxidation, desulfonation, and oxidation of the alkyne yielded trione 808, which upon acid catalyzed cyclization produced the desired spirocyclic pinnatoxin core 809 in good yield. The major diasteomer formed exhibits anomic stabilization between the tetrahydrofuran ring and both tetrahydropyranyl rings. This coupled with the equatorial arrangement of substituents makes this conformer the most stable and therefore the major isomer isolated. Dipole-dipole interactions are minimized in this system as compared to the [6,6,6]-bis-spiroketal because of the placement of polar substituents, thus increasing the yield of *cis* isomer formed.
Scheme 4.21

Figure 4.9

Minor diastereomers of bis-spiroketal 809 formed from this process could be re-equilibrated such that bis-spiroketal 809 was ultimately obtained in 86% yield. Addition of methyllithium to the remaining ketone moiety installed the needed methyl group stereoselectively from the less hindered, bottom face. The Murai synthesis achieved formation of the pinnatoxin trioxadispiroketal in 12 steps and 16% overall yield. The route benefits from
the convergent approach and used thermodynamic spiroketalization to produce the desired bis-spiroketal core stereoselectively.

The second synthesis of the pinnatoxin trioxadispiroketal was achieved by Hirama (Scheme 4.22).52 Alkylation of the β-keto ester 812 with allyl chloride 811 was followed by saponification and decarboxylation to yield ester 813. Diol deprotection and reduction of the ester led to acetal 814, which was produced in 64\% yield from ketone 813. Acetal 814 was, in turn, converted to spiroketal precursor 815 in 6 steps and 40\% yield. With acetal 815 in hand, cyclization to the desired trioxadispiroketal was possible under aqueous acidic conditions over a 48-hour period. The desired spiroketal 816 was produced as the major product (74\%), with other isomers formed in 12\% yield. These isomers were then re-subjected to the reaction conditions to afford the desired spiroketal. Hirama’s synthesis provided the pinnatoxin bis-spiroketal core in 17\% overall yield in 13 consecutive steps, similar to the results obtained by the Murai.

\textit{Scheme 4.22}

A third approach to the pinnatoxin trioxadispiroketal system was reported by the Kishi group as described in their total synthesis of pinnotoxin A (Scheme 4.23).53 Advanced intermediates 817 and 818 were combined through use of transmetallation to yield alcohol 819 as
Scheme 4.23

A mixture of diastereomers which were carried on together. Sharpless asymmetric dihydroxylation and subsequent Swern oxidation resulted in formation of dione 820, which after acid induced cyclization with camphorsulfonic acid, afforded both the desired bis-spiroketal structure 821 along with the C19 epimer 822. Interestingly, subjection of bis-spiroketal 822 to silylation conditions epimerized the stereocenter back to the desired configuration to provide silyl-protected bis-spiroketsl 823. Alternatively, spiroketal 821 would epimerize to bis-spiroketal 822 in the presence of magnesium bromide. Once the tertiary alcohol was converted to the silyl ether, causing it to be configurationally stable, subsequent chemical transformations were carried out without compromising the stereochemical integrity of the bis-spiroketal. Thus the core of pinnatoxin A was produced in 12% overall yield through 13 reported linear steps, which is a slightly lower yield than the Murai and Hirama syntheses. The trioxadispiroketal core
was then further manipulated and transformed into pinnatoxin A to provide the first reported total synthesis of this natural product.

Synthesis of 1,6,8-Trioxadispiro[4.1.5.3]pentadecanes

Approaches to (5,6,6)-bis-spiroketals include synthetic work towards both salinomycin 707 (Figure 4.2) and spirastrellolide A 376 (Figure 4.4) natural products. Several groups have worked towards synthesizing members of the salinomycin family of antibiotics due to their high molecular complexity and bioactivity. Model studies toward the synthesis of the salinomycins were performed by Perron, Kocienski, and Baker. Perron created the trioxadispiroketal moiety by oxidation and cyclization of functionalized furan 136 (Scheme 4.24). Oxidation and rearrangement of furan 136 using NBS yielded spiroketal 137 as an equilibrium mixture of isomers, which were carried on together. Desilylation and acid-induced kinetic spiroketalization produced bis-spiroketals 827 and 828 in 90% yield, which could then be successfully separated. Subsequent reduction of the individual isomers proceeded in good yield from the more
accessible bottom face. Overall, this synthesis provided the desired bis-spiroketals 829 and 830 in 36% overall yield from furan in 5 steps.

Kocienski developed an alternate approach to this spiroketal system in which methoxyallene 831 was metallated and carboxylated to yield intermediate allene 832 (Scheme 4.25). Sulfuric acid catalyzed cyclization led to butenolide 833. Subjection of the butenolide to hydrofluoric acid effected hydrolysis and secondary cyclization to give spirocyclic butenolide 834, which was added to lithiated dihydrofuran 835 to afford the bis-dihydrofuran intermediate 836. Cyclization with camphor sulfonic acid yielded the desired trioxadispiroketal 827 and 828 in a 1:1 mixture in an overall yield of 15% from methoxyallene 831. Although this synthesis of the (6,6,5)-trioxadispiroketal model system is lower yielding than the route involving furan, it provides as an alternative entry to bis-spiroketal production by utilizing butenolides as intermediary structures.

Scheme 4.25

Baker approached the salinomycin ring system by two routes, which diverged from a common intermediate 839 (Scheme 4.26). The first route employed oxidative cyclization to
manufacture the three-ring system, while the second path utilized acidic conditions. Intermediate \textbf{839} was synthesized by addition of the lithium acetylide \textbf{838} to \(\delta\)-valerolactone \textbf{837} followed by various functional group manipulations, which included non-stereoselective epoxidation. To form the olefin-containing trioxadispiroketal \textbf{841}, alkyne \textbf{839} was partially reduced to the corresponding \textit{cis}-olefin, the epoxide was opened, and acid catalyzed ring closing by irradiation in an iodobenzene diacetate solution containing iodine formed the first spirocenter \textbf{840}. Oxidative cyclization then gave the bis-spiroketal \textbf{841}. The isomer formed was consequently that which is believed to experience the most stabilization due to anomeric effects.

The corresponding saturated trioxadispiroketal \textbf{843} was also prepared from intermediate \textbf{839}. Desilylation, full alkyne reduction, and oxidation yielded spiroketal precursor \textbf{842}, which
was transformed under acid catalyzed conditions into the single trioxadispiroketal product 843, though the stereochemistry about the tetrahydrofuran-tetrahydropyran spirocenter was not assigned. This work demonstrated the creation of bis-spiroketalts from intermediates derived from alkyne addition into lactones. This same methodology was later used by Brimble towards the total synthesis of \textit{epi-17}-deoxy-(O-8)-salinomycin,58 however late stage synthetic challenges caused this route to be abandoned.

Suarez utilized two subsequent hypervalent iodine oxidation-cyclizations toward the synthesis of (5R,7S,13S)-13-methoxy-1,6,8-trioxadispiro[4.1.5.3]pentadecane (Scheme 4.27).59 Diol 845 was prepared from readily available tri-\textit{O}-acetyl-D-glucal 844 in 61% yield over 6 steps.60 Selective tosylation of the primary alcohol followed by displacement with allyl magnesium bromide and methylation of the remaining secondary alcohol led to alkene 846. Hydroboration of the newly formed olefin resulted in tetrahydropyran 847a, which is in equilibrium with conformer 847b. Efforts to cyclize the diol version of this tetrahydropyran to

\textit{Scheme 4.27}
form the bis-spiroketal were unsuccessful. It is proposed that the 5,6-spiroketal forms first, and the steric bulk of this spirocenter hinders hydrogen abstraction and thus formation of the second spirocenter.61 Therefore stepwise cyclization was necessitated. Conformers 847a and 847b both give rise to spiroketal 848 which benefits from maximization of anomeric effects in spite of the axial orientation of the methoxy group. Protecting group modification is followed by a second cyclization using iodobenzene diacetate-iodine to afford trioxadispiroketalts 849 and 850 (58\% and 20\% yields respectively).

Brimble used a similar methodology to form the saturated (5,6,6)-bis-spiroketal systems 854 and 855 (Scheme 4.28).62 An allyl side chain was introduced to spiroketal 851 via stereocontrolled nucleophilic addition of allyltributyltin.63 The allyl-substituted spiroketal was formed by Lewis acid-catalyzed oxonium ion generation, followed by nucleophilic addition of allyltributyltin to the carbonium ion intermediate. Hydroboration of spiroketal 852 was followed by treatment with iodobenzene diacetate and iodine to yield the cis (854) and trans (855) trioxadispiroketalts in a 1.5:1 mixture respectively, favoring the isomer experiencing double anomeric effects. The oxidative cyclization conditions caused both rings to open, resulting in the mixture of isomers observed for this reaction.

\textit{Scheme 4.28}
The first total synthesis of salinomycin was published by Kishi and involved umpolung coupling along with acid catalyzed trioxadispiroketal ring formation (Scheme 4.29). The carbon skeleton was constructed by combining advanced aldehyde intermediate 856 with dithiane 857. Alcohol deprotection and separation of the C20 isomers yielded bis-tetrahydropyran intermediate 858 in 85% yield. Removal of the dithiane and acid catalyzed cyclization of the resulting ketone gave acetal 859. The newly formed tetrahydrofuran ring, containing an alkyne, was reduced to the corresponding cis olefin, and then selectively converted into the trioxadispiroketal 860 isomer. This work was the first to demonstrate the feasibility of alkyne cyclization to form bis-spiroketals.

Scheme 4.29

The bis-spiroketal formed is a C17 epimer of the naturally occurring salinomycin and narisin, however, isomerization to the correct isomer readily occurs in a late stage synthesis. Although it is not precisely known, it is assumed that the free C20 hydroxy substituent is key in creating the correct natural product stereochemistry. In fact there exist so many substituents off
of the trioxadispiroketal ring system of salinomycin that minimization of steric interactions rather than maximization of anomeric effects generally directs formation of the major isomer.

Yonemitsu’s formal synthesis of salinomycin is similar to the Kishi approach. In this case the carbon skeleton is forged by addition of an alkyne nucleophile \(862 \) to aldehyde \(861 \) (Scheme 4.30).\(^6\) Manganese dioxide oxidation was followed by acid catalyzed cyclization to

\[
\text{Scheme 4.30}
\]

form the tetrahydropyran ring of intermediate \(864 \). Protecting group manipulation and alkyne reduction led to the trioxadispiroketal precursor. Like Kishi, Yonemitsu cyclized the bis-tetrahydropyranyl tetrahydrofuran ring system with acetic acid, which produced three trioxadispiroketal isomers (1.8:1.4:1.0) about the \(\text{C}_{13} \) and \(\text{C}_{17} \) stereocenters. Subsequent oxidation of the isomer mixture produced bis-spiroketals \(865 \). Protecting group manipulations and re-subjection of the mixture to acidic conditions led to formation of trioxadispiroketal \(866 \) as a single isomer. This work represented a formal synthesis of salinomycin.

271
Brown’s synthesis of salinomycin was based on the Perron model study,66 whereby the trioxadispiroketal is constructed by oxidation and cyclization of the corresponding furan (Scheme 4.31).67 Furan \textit{869} was synthesized from aldehyde \textit{867} in three steps: addition, partial reduction of alkyne, and acid promoted aromatization. Furan \textit{869} was subsequently metallated and added to lactone \textit{870} to yield ketone \textit{871}. Diol deprotection, oxidative rearrangement, and thermodynamic equilibration of the 2-acyl furan provided trioxadispiroketal \textit{872} as the major isomer along with the C\textsubscript{21} epimer, in a 3:1 ratio respectively. The major trioxadispiroketal formed, \textit{872}, is epimeric to salinomycin at the C\textsubscript{17} and C\textsubscript{21} stereocenters. As in the Kishi66 case, late stage isomerization of the bis-spiroketal under acidic conditions successfully led to the natural product after a number of manipulations.

Spirastrellolide A \textit{376} (Figure 4.4) is a trioxadispiroketal-containing natural product that has sparked more recent interest. A number of groups have worked toward the synthesis of this
natural product including Hsung,68 Debrabander,69 Smith,70 Phillips,71 and Chandrasekhar.72 Few, however, have tackled the trioxadispiroketal-containing northern fragment. The Paterson,73 Forsythe,74 and Fürstner75 groups have all reported efforts towards this end.

Stabilization of the trioxadispiroketal unit of spirastrellolide A is derived from two factors, a double anomeric effect, whereby all the ring oxygens are oriented axially to one another, and minimization of steric interactions, arising from an all equatorial arrangement of substituents. Therefore the conformation of the three-ring system is easy to predict, as Figure 4.10 illustrates, and thermodynamic spiroketalization processes can be expected to produce the desired outcome. Most researchers took advantage of this observation in approaches to the bis-spiroketal unit of spirastrellolide. Though all three research groups set the C\textsubscript{36} stereocenter prior to spiroketalization, in theory the stereochemistry at that position can be set by epimerization under thermodynamic conditions. One problem that these groups faced toward the synthesis of this fragment was the tetrahydrofuran’s propensity toward elimination. In addition, research groups at that time had to design synthetic routes compatible with the unknown relative stereochemistry between the C\textsubscript{3}-C\textsubscript{7}, C\textsubscript{9}-C\textsubscript{24}, and C\textsubscript{27}-C\textsubscript{38} stereoclusters.

Paterson first published work towards the synthesis of the trioxadispiroketal moiety or “northern fragment” of spirastrellolide A in 2005.76 The Paterson synthesis of the fragment developed in three iterations, where each successive approach either improved the overall yield
or the scaleability of the process for application to the total synthesis. The general approach by Paterson is summarized in Scheme 4.32. The trioxadispiroketal is formed from the acid catalyzed cyclization of a multi-oxygenated substrate created from the Sharpless asymmetric dihydroxylation of precursor 875. These three routes differed mainly in the sequence of dihydroxylation with other synthetic steps, the final route employing this oxidation in the last step. The carbon skeleton of the bis-spiroketal precursor was formed from either aldol or Horner-Wadsworth-Emmons addition of substrates with functionalities like chloride 876 and aldehyde 877.

Scheme 4.32

![Scheme 4.32](image)

The original Paterson route is outlined in Scheme 4.33 and features the Horner-Wadsworth-Emmons reaction of a bicyclic aldehyde 884 to prepare the spiroketal backbone. Manufacture of phosphonate 880 began from known aldehyde 878. Oehlschlager-Brown chloroallylation and methylation of the resulting alcohol afforded olefin 879 in > 95% ee. This efficient method for the challenging introduction of chlorine was used in all of Paterson’s syntheses of Spirastrellolide A. Sharpless asymmetric dihydroxylation of olefin 879 was followed by diol protection, silyl ether cleavage, and subsequent Swern oxidation to afford the corresponding aldehyde. Subsequent addition of lithiated methylene phosphonate and oxidation with Dess-Martin periodionane gave the β-ketophosphonate 880 thereafter.

274
The synthesis of intermediate 884 began with a cross-metathesis of olefins 881 and 882 using Grubbs second generation catalyst.\(^79\) The resulting (E)-olefin was subjected to asymmetric dihydroxylation (97:3 dr) with concomitant cyclization to form the corresponding 5-membered lactone selectively. Protection of the secondary alcohol, removal of the benzyl-protecting group, and subsequent oxidation yielded an aldehyde that was transformed stereoselectively into alcohol 173 after Brown crotylation (95:5 dr).\(^80\) Oxidation of the newly formed alcohol, acid catalyzed cyclization, and oxidative cleavage of the terminal olefin yielded desired aldehyde 884.

Phosphonate 880 was deprotonated with barium hydroxide and coupled with aldehyde 884 via a Horner-Wadsworth-Emmons reaction. Reduction of the resulting olefin was problematic. Use of typical reduction conditions on the newly formed olefin, such as
hydrogenation over catalytic palladium on carbon, led to decomposition products. Therefore conjugate reduction conditions with Stryker’s reagent,81 were employed for the formation of cyclization precursor 885. From here, effective spiroketalization of ketone 885 was dependent on the choice of catalyst. Treatment of ketone 885 with Dowex resin yielded the desired trioxadispiroketal 886 in 40\% yield, while use of stronger acids, such as CSA, resulted in formation of furan 887.

Paterson designed a second synthesis toward the northern fragment of spirastellolide A in hopes of alleviating the formation of furan 887 (Scheme 4.34).75b The redesigned synthesis reversed the direction of acetalization from ring F \(\rightarrow \) FED to ED \(\rightarrow \) FED, while also

\textit{Scheme 4.34}
performing a late stage hydroxylation of the C_{26,27} olefin, thus eliminating the need for acetonide deprotection. The synthesis began with the coupling of aldehyde 888 and malonic acid 889 via a deconjugative Knoevenagel condensation to form the \(E-(\beta,\gamma) \)-unsaturated ester 890.82 This method proved to be more efficient for the synthesis of ester 890 than the corresponding cross-metathesis used in the first generation synthesis. Lactone 891 was then prepared from ester 890 through a route similar to that in the first synthesis. Brown crotylation of lactone 891, protection of the newly formed alcohol, and oxidative cleavage of the olefin yielded aldehyde 892.

Phosphonate 183 was prepared in a manner similar to that described in the first Paterson route, except that the dihydroxylation of the terminal olefin was deferred until later in the synthesis. Silyl ether cleavage of olefin 879, an intermediate formed in the first generation synthesis, was followed by oxidation, phosphonate addition, and subsequent oxidation to yield phosphonate 893. Phosphonate 893 and aldehyde 892 were coupled in a Horner-Wadsworth-Emmons reaction and reduced by Stryker’s reagent. Removal of the TES-group was then followed by Dess Martin oxidation to provide the corresponding ketone. Asymmetric dihydroxylation of the terminal double bond was accompanied by cyclization of the D ring to afford tetrahydropyran 894. Subsequent silyl cleavage and concomitant cyclization resulted in the formation of the desired trioxadispiroketal 895 along with a C_{35} epimer 896. Efforts to recycle epimer 896 resulted in elimination. The formation of the undesired epimer along with the inability to scale up this process led Paterson to adopt yet a third approach toward the trioxadispiroketal system (Scheme 4.35-4.36).

The final approach toward the northern fragment features an asymmetric aldol reaction to assemble key fragments as well as late stage bis-hydroxylation. The manufacture of aldehyde 189 began from a previously synthesized intermediate, the ester 180 (Scheme 4.35).
Manipulation of this intermediate to give the corresponding aldehyde was followed by an aldol reaction with ketone 187 to form the anti-aldol adduct 188 stereoselectively. Alcohol protection, reduction, and oxidative cleavage of the resulting diol then afforded aldehyde 189.

Scheme 4.35

Formation of requisite chloroketone was again achieved by Oehlschlager-Brown chloroallylation, followed by subsequent formation of the methyl ether (d.r. > 95:5, 92% ee) (Scheme 4.36). Ketone 191 was converted to the kinetic dicyclohexylboron enolate and added to

Scheme 4.36
aldehyde 189 to form the aldol condensation product 192 upon elimination of the secondary alcohol. Conjugate reduction of the resulting enone using Stryker’s reagent, silyl ether cleavage, and Swern oxidation gave the linear precursor 193 for spiroketalization.

A bis-asymmetric Sharpless epoxidation of 893, the key step of the synthesis, afforded the partially cyclized intermediate 894, which after treatment with PPTS gave the desired trioxadispiroketal 895 along with other isomers. Use of PPTS for this cyclization was essential because stronger acids such as CSA or HCl again resulted in competitive furan formation. Because the spiroketal isomers were unstable to chromatography, they were converted to the corresponding triethylsilyl ethers prior to purification. Separation of the TES-protected bis-spiroketal 196 from other isomers was then successful. These minor isomers were successfully recycled by re-subjection to PPTS and subsequent TES-diol protection to afford bis-spiroketal 896. After one recycle, trioxadispiroketal 896 was formed in 65% from ketone 893.

Paterson’s final synthesis of the northern fragment differed from his first two in several ways. The lactone moiety used to set the stereochemistry at C37 and C38 in the first two syntheses was avoided in the third generation to reduce the incidence of furan formation. The new method also used reactions that were scaleable, a feature essential for the total synthesis of this large and complex molecule. Additionally, the asymmetric dihydroxylation and subsequent cyclization were performed concurrently, and at a late stage in the synthesis. This modification resulted in an efficient and elegant end to the trioxadispiroketal core. Overall the best Paterson synthesis of spirastrellolide A (route 3) was realized over 16 linear steps in a reported 18% yield. Unfortunately this process required that unwanted bis-spiroketal isomers be recycled to maximize the overall yield of the northern spirastrellolide fragment.
Forsyth was one of the first authors to report work toward the DEF ring system of spirastrellolide A. This approach included a chelation-controlled Mukiyama aldol reaction, a Nozaki-Hiyama-Kishi coupling to assemble key fragments, and a thermodynamic bis-intramolecular hetero-Michael addition (Scheme 4.37). Synthesis of the trioxadispiroketal began with a selective Mukiyama aldol coupling between ketone 897 and aldehyde 898 (20:1 dr) (Scheme 4.38). Protecting group manipulations of the aldol adduct 899 then yielded the ketone 900, which was converted to the alkynyl iodide 901. Nozaki-Hiyama-Kishi coupling of this iodide with aldehyde 902 and subsequent oxidation gave ketone 903. Removal of the TES-protecting groups gave the linear backbone 904, which was poised for spirocyclization.

Cyclization of alcohol 904 was initiated under base-catalyzed conditions, followed by treatment with CSA. The resulting ketone 906 was highly unstable, however, and was therefore reduced to the more stable corresponding alcohol 907, which proved to be less labile. The introduction of the C$_{28}$ chlorine substituent, present on spirastrellolide A, was intended through selective α-keto chlorination of the spirocyclic ketone, which was no longer possible. Therefore the sequence was modified so as to introduce the chlorine at an early stage in the synthesis.
It is interesting to note that spirocyclization of alkyne 904 under acidic conditions was problematic, and resulted in elimination of the C_{37} oxygen functionality regardless of the protecting groups utilized. Activation of alkyne 904 using metal salts such as AgOTf led to one of two results; a competing single hetero-Michael addition and β-elimination or no reaction at all (Scheme 4.39). So after base catalyzed spiroketalization to form spiroketal intermediate 905,
CSA was used to induce the second cyclization to form the unstable bis-spiroketal 906 that was then reduced to the alcohol.

Forsyth’s second attempt toward the trioxadispiroketal of spirastrellolide A involved installation of the chlorine substituent at an early stage (Scheme 4.40). Though incorporation of this functionality into the linear precursor 911 was straightforward, the presence of the chlorine substituent during spiroketalization led to either elimination product 912 in the presence of acid or epoxide-containing spiroketal 913 with base. While a successful synthesis of the spirastrellolide A spiroketal was not realized, Forsyth demonstrated that the double intramolecular hetero-Michael addition was an effective method for manufacture of DEF analogs of spirastrellolide A that lack a chlorinated substituent.

Fürstner’s synthesis of C_{27}-C_{38} of spirastrellolide A differed from those of Paterson and Forsyth in that kinetic rather than thermodynamic spiroketalization conditions were used to form
Fürstner anticipated spirocyclization of a ketoisoxazoline 931 to form the bis-spiroketal moiety 932 (Scheme 4.41). The synthesis of the ketoisoxazoline 931 was in turn envisioned through the umpolung coupling of isoxazoline 925 with nitrile 930. Model studies on a simpler substrate suggested that thermo spirocyclization would result in unwanted byproducts. This work demonstrated that thermodynamic spiroketalization of the 2-isoxazoline 914 resuted in aromatization to give furan 915 upon extensive equilibration (Scheme 4.41).

Scheme 4.41

Direct cyclization of isoxazoline 914 provided either furan 915 or spiroketal 916, depending on the availability of the C_{31} alcohol toward immediate cyclization. When the C_{31} alcohol is unprotected, spirocyclization occurs cleanly to give the EF ring system 916. However,
when the C₃₁ alcohol is TES-protected, aromatization is favored resulting in formation of furan 915. Presumably, aromatization occurred to avoid the transannular strain that develops within the tetrahydrofuran system due to the all-cis configuration. Likewise, acid catalyzed cyclization of the extended diketone 917 in which all alcohols that are participating in the spirocyclization are protected, led solely to the bis-furan byproduct 918. These model studies showed that furan byproduct formation occurs when the C₃₁ alcohol is unavailable towards cyclization. To avoid furan formation, the synthesis of spirastrellolide A was carefully planned around proper protecting group cleavage to promote spiroketal formation and avoid production of furan byproducts through equilibration.

Fürstner’s forward synthesis is outlined in Schemes 4.42 and 4.43. Key steps include [1,3]-dipolar cycloaddition, umpolung coupling, and kinetic spiroketalization. The synthesis of isoxozoline 923 was initiated from monoprotected diol 919 (Scheme 4.42). Diol 919 was

Scheme 4.42
converted to oxime 920 by oxidation and reaction with ammonium hydroxide. The corresponding nitrile oxide 921 reacts with enantiopure allylic alcohol 925 to give isoxazoline 922 in 76% yield. The Kanamasa protocol selectively formed the desired stereoisomer exclusively. The preparation of isoxazoline 923 was completed by selective iodination of the primary alcohol and protection of the secondary alcohol as the TES ether. This intermediate was later used for preparation of the linear spirocyclization precursor. The allylic alcohol used in the [3+2] dipolar cycloaddition was prepared by addition of dimethylsulfonium methylide to epoxide 924, which was readily available by hydrolytic kinetic resolution.

The preparation of bis-spiroketal 932 was then completed as shown in Scheme 4.43. Like Paterson, Fürstner began this sequence from chloroether 879, which was synthesized in two steps from aldehyde 878 (Scheme 4.33). Asymmetric dihydroxylation, followed by selective

Scheme 4.43
tosylation of the primary alcohol afforded the terminal epoxide \textbf{926} upon treatment with base. Subsequent homologation with dimethylsulfonium methylide gave the allylic alcohol \textbf{927}. This transformation was not a trivial due to the potential for competing chloride displacement. In the end, the desired allylic alcohol was prepared in four steps and 57\% yield from chloride \textbf{879}. Protecting group manipulations and subsequent oxidation then provided aldehyde \textbf{928}.

At this point an umpolung coupling was envisioned between aldehyde \textbf{928} and iodide \textbf{923}. After conversion of aldehyde \textbf{928} to dithiane \textbf{929}, deprotonation under a number of different conditions proved difficult. Therefore, this substrate was abandoned and aldehyde \textbf{928} was converted instead to cyanohydrin \textbf{930}. This intermediate could be effectively deprotonated with LDA and subsequently alkylated with iodide \textbf{923} to give the linear cyclization precursor. Cleavage of the isoxazoline moiety, global deprotection, and subsequent, kinetic cyclization (in the presence of PPTS) provided the desired trioxadispiroketal \textbf{932} along with two other isomers (4.1:1.7:1 dr respectively). No furan-containing products were isolated.

This sequence effectively produced the DEF-ring system of spirastrellolide A in a highly convergent manner. The desired bis-spiroketal was formed in 15 linear steps and 11\% overall yield from aldehyde \textbf{878}. This approach differed from those previous in both the use of isoxazoline intermediates and a kinetic spiroketalization process. The trioxadispiroketal thus prepared was later used by Fürstner in the synthesis of spirastrellolide G.86

More recently Brimble devised a synthesis for the northern fragment of spirastrellolide B, which differs from spirastrellolide A in that it does not contain a chlorine at C\textsubscript{28}.87 This lack of functionality results in a somewhat simplified synthesis compared to the previous work toward spirastrellolide A. Brimble’s strategy involved formation of the carbon skeleton \textbf{946} through a
series of dithiane couplings (Scheme 4.44). The final spiroketalization was achieved in the presence of HgCl$_2$ under thermodynamic conditions.

Scheme 4.44

Dithiane 937 was prepared in six steps from the known allyl alcohol 933 (Scheme 4.45). Sharpless asymmetric epoxidation, regioselective ring-opening with trimethyl-aluminum, \(^{88}\) and oxidative cleavage of the 1,2-diol produced aldehyde 935. Formation of the dithiane 936 and protecting group manipulations subsequently yielded dithiane 937.

Scheme 4.45

The synthesis of epoxide 939 also began from allyl alcohol 933 (Scheme 4.46). Alkene 933 was transformed into diol 938 by conversion of the alcohol to the corresponding chloride and Sharpless dihydroxylation. Intramolecular epoxidation followed by protection of the
remaining secondary alcohol as the ethoxymethyl (EOM) ether gave the enantiomerically enriched epoxide 939 in 78% overall yield.

Scheme 4.46

The third intermediate, dithiane 943 was prepared in four steps from triol 941, which is readily available from D-(-)-ribonic acid γ-lactone 940 (Scheme 4.47). In this sequence triol 941 was transformed to epoxide 942 by conversion of the primary alcohol to the substituted sulfone, which underwent internal displacement by the adjacent free alcohol, and protection of the remaining hydroxyl group. In turn this compound was transformed to dithiane 943 after addition of lithiated 1,3-dithiane and methyl ether formation.

Scheme 4.47

With the three key intermediates in hand, unit coupling began with deprotonation of dithiane 937 followed by addition of epoxide 939 (Scheme 4.48). Protection of the resulting
secondary alcohol 944, deprotection of the primary silyl ether, and TPAP oxidation then yielded aldehyde 945, which was combined with the deprotonated dithiane 943 to give alcohol 946. Acidic cleavage of the EOM groups gave an intermediate triol which after subsequent dithiane removal and concomitant cyclization yielded the bis-spiroketal 947 as a single diastereomer. Conversion of this compound to the DEF-ring of spirastrellolide B was then achieved through a modified Barton deoxygenation at C₃₂. Overall, the bis-spiroketal portion of spirastrellolide B was prepared in 15 steps from the known allyl alcohol 933 in 5.7% yield. This process benefited from use of the same starting material for two of the three required intermediates and used simple dithiane couplings to construct the carbon skeleton of the bis-spiroketal 948.

Scheme 4.48
In general, the preparation of trioxadispiroketal systems involves acid catalyzed/promoted cyclizations of multioxygenated precursors. Such methods have been used towards the synthesis of trioxadispiroketal portions of the pinnatoxins, salinomycins, and spirastrellolides as well as for the preparation of (5,5,5)- and (6,6,6)-bis-spiroketal systems. Although less popular, Norrish type II cleavage and oxidative cyclization with hypoiodite have also been used successfully in the synthesis of (5,6,5)-trioxadispiroketal systems, and (5,6,6)- and (6,6,6)-bis-spiroketal systems respectively. Use of thermodynamic spiroketalization conditions yields predominantly the most stable isomers, which typically match the stereochemistry found in the natural product targets. Unlike previous groups, we envisioned the synthesis of trioxadispiroketal systems from the acid catalyzed spiroketalization of pyran precursors derived from the two directional carbonyl ene reaction of exocyclic enol ethers.

4.3 Results and Discussion

Carbonyl-Ene Approach to the Synthesis of Trioxadispiroketal Systems

Our approach to bis-β-hydroxypyrans and trioxadispiroketal synthesis builds from our success with the carbonyl-ene reaction of 2-methylenetetrahydropyrans and various enophiles as was discussed in Chapter 3 (Scheme 3.1). The C_{27}-C_{38} bis-spiroketal of the spirastrellolides, for example, was anticipated through the thermodynamic acid catalyzed cyclization of pyran 950 (Scheme 4.49). Pyran 950 could be synthesized by the two-directional carbonyl-ene reaction of aldehydes 343 and 953 with the bis-enol ether equivalent 952. The spiroketal backbone 950 is anticipated through the carbonyl-ene reaction of the less reactive aldehyde 953 followed by elimination of the iodide and ene reaction of the newly generated enol ether with ethyl glyoxylate 343. The reaction with ethyl glyoxylate 343 is predicted to yield stereo-enriched pyran 950 based on the chirality transfer studies outlined in Chapter 3. This step could
also be facilitated with chiral Lewis acid. Cyclization is predicted to yield spiroketal 949 where the C29, C31, C34, and C35 stereocenters are controlled by thermodynamic equilibration.

Scheme 4.49

Previous work in our lab has demonstrated the feasibility of controlling the stereochemistry at C29 by equilibration (Scheme 4.50).91

Scheme 4.50

When a 1:1 mixture of dihydropyrans 954 was subjected to aqueous hydrochloric acid in THF, the (6,6)-spiroketsals 955 and 956 were formed in excellent yield as a 3:2 ratio of stereoisomers (Scheme 4.48). Upon chromatographic separation, the individual isomers were
resubjected to acid in refluxing THF (Scheme 4.51). In both cases, spiroketals 955 and 956 were obtained in a 6:1 ratio. Application of the equilibration conditions to both isomers demonstrated

Scheme 4.51

[Diagram showing equilibration of 955 and 956]

that Spiroketal 955 is lower in energy and thus the thermodynamic product. While both spiroketals 955 and 956 benefit from double anomeric stabilization and equatorial orientation of the propyl side chain, spiroketal 955 is further stabilized by the equatorial orientation of the hydroxy group. As previously discussed, free alcohols on spirocyclic systems typically prefer to be equatorial when cyclized under thermodynamic conditions in polar solvent. In these cases, the alcohol hydrogen-bonds preferentially to solvent rather than to the oxygen in the tetrahydropyran ring, increasing its effective steric bulk and preference for an equatorial orientation (Scheme 4.5 and 4.6). The conditions used for equilibration in this case involved dilute HCl in refluxing aqueous THF, which is unlikely to work for bis-spiroketalization of the labile pyran precursors. Instead equilibration of these systems could be carried out at room temperature over longer reaction times.

A mechanism for the interconversion of spiroketal 956 to 955 is shown in Scheme 4.52. This sequence has been previously proposed independently by both Smith and Mori in their
work toward the taleromycins. Acid catalyzed ring-opening of spiroketal 956 results in formation of the oxonium ion 957, which after double bond isomerization yields the enocyclic enol ether 958. Protonation of the C₄ hydroxyl group and loss of water then provides the conjugated oxonium intermediate 959. A Michael-type addition of water from the opposite face (960) and spiroketalization then provides the thermodynamic spiroketal 954.

A second (6,6)-spiroketal was prepared successfully using the carbonyl-ene /thermodynamic spiroketalization sequence to control the stereochemistry at C₃ (Scheme 4.53).
This system more closely resembles that of the DE portion of the spirastrellolide northern fragment. By this method, 2-methylenetetrahydropyran 2 was combined with chiral aldehyde 259, to provide ene adduct 960, which was not purified, but treated directly with protic acid to give spiroketals 962 and 963. Again, under thermodynamic conditions the equatorial hydroxy isomer 963 predominates.

Successive carbonyl-ene/spirocyclization reactions have also been demonstrated for the synthesis of (6,5)-spiroketal 264, a system similar in structure to the EF spiroketal of spirastrellolide (Scheme 4.54). Dihydropyran 589 was formed as a 1:1 mixture of diastereomers by reaction of the corresponding exocyclic enol ether 588 and ethyl glyoxylate 343 (Scheme 3.37). Upon treatment with acid, dihydropyran 589 cyclized to spiroketals 964 and 965 in a 2:1 ratio after 24 hours. In this case, the isomer most similar to the EF ring system of spirastrellolide A was favored. The bias for this selectivity is not known.

Scheme 4.54

The successful preparation and equilibration of substituted (6,6)- and (6,5)-spiroketals using the carbonyl-ene/spirocyclization pathway described above support the use of this method in the preparation of the DEF-bis-spiroketal present in the northern fragment of the spirastrellolides. In particular, we sought to apply a two-directional carbonyl-ene methodology towards formation of bis-β-hydroxy pyrans, which in turn could be converted to trioxadispiroketals like that found in the spirastrellolides.
Synthesis of Bis-β-Hydroxypyrans

To achieve a synthesis of trioxadispiroketalts, we first sought methods to create bis-β-hydroxypyrans, their envisioned precursors. The preparation of bis-β-hydroxypyrans is anticipated in a three-step sequence from 6-iodomethyane-2-methylenetetrahydropyran 302 (Scheme 4.55). After the carbonyl-ene reaction between enol ether 302 and an aldehyde, base promoted elimination of the iodine results in compound 966, which contains both endo and exo enol ethers. Prior work in the lab suggests the exocyclic enol ethers are more reactive than the endo, so therefore the second carbonyl-ene reaction is anticipated to react exclusively with the exo olefin to give the desired bis-β-hydroxylated pyran 304.

Scheme 4.55

Efforts in this area began with the synthesis of the bis enol ether equivalent 302 from 5-hexen-1-ol as shown in Scheme 4.56. Jones oxidation\(^94\) of the primary alcohol resulted in

Scheme 4.56
quantitative conversion to carboxylic acid 967. Iodo-lactonization under slightly basic conditions afforded lactone 968. Petasis olefination of lactone 968 then yielded enol ether 302 in good yield.

With enol ether 302 in hand, the next step was to explore the feasibility and limitations of the coupling methodology for the synthesis of bis-β-hydroxypropyls. The first step in this sequence involved the carbonyl-ene reaction of exocyclic enol ether 302 with various enophiles. The results of these reactions are summarized in Table 4.4.

As shown, the reactivity of enol ether 302 varied with the structure of the carbonyl coupling partner. The reaction with ethyl glyoxylate 343 (Table 4.4, entry 1) produced the ene adduct 969 in good yield after 2 hours. Due to the inherent reactivity of this aldehyde, only 5 mole % of ZnCl₂ is required to catalyze this reaction in a short period of time. The carbonyl-ene reaction proved slower with non-activated aldehydes 972, 973, and 975 (entries 3, 4, and 5) and thus required higher catalyst loading and longer reaction times compared to the glyoxylate example. Similar results were obtained with the activated ketone 369 (entry 2). Nonetheless these substrates provided the desired ene products in good to excellent yields.

The carbonyl-ene reaction of exocyclic enol ether 302 was also compatible with activated ketone enophiles (Table 4.4, entry 2). Ethyl pyruvate 369 was combined with the enol ether to give ene adduct 970 in 66% yield. Although activated, the increased steric hindrance inherent in the ketone slow the reaction, resulting in the need for longer reaction times and higher catalyst loading than the similar glyoxylate example (entry 1).

As with earlier work,97 the presence of a substituent at C₆ on the enol ether had no influence on the stereoselectivity of the carbonyl-ene reaction. A 1:1 mixture of diastereomeric
products resulted for entries 1-4. Ene adduct 975 was produced as a mixture of 4 diastereomers.

In these circumstances, diastereoselectivity is of little consequence as one of the stereocenters will ultimately be destroyed in the next reaction.

Table 4.4: Carbonyl-Ene Reactions of 6-Iodomethane-2-Methylenetetrahydropyran

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enophile</th>
<th>Mol % ZnCl$_2$</th>
<th>Time (h)</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>393</td>
<td>5</td>
<td>2</td>
<td>969</td>
<td>84%</td>
</tr>
<tr>
<td>2</td>
<td>369</td>
<td>20</td>
<td>24</td>
<td>970</td>
<td>66%</td>
</tr>
<tr>
<td>3</td>
<td>971</td>
<td>20</td>
<td>24</td>
<td>972</td>
<td>99%</td>
</tr>
<tr>
<td>4</td>
<td>495</td>
<td>20</td>
<td>11</td>
<td>973</td>
<td>82%</td>
</tr>
<tr>
<td>5</td>
<td>974</td>
<td>20</td>
<td>24</td>
<td>975</td>
<td>76%</td>
</tr>
</tbody>
</table>

Ethyl glyoxylate 343, octylaldehyde 495, and ethyl pyruvate 369 are available from commercial sources, whereas aldehydes 971 and 97497 were prepared in a few synthetic steps from commercially available materials. Aldehyde 971 was prepared from the corresponding diol in two steps (Scheme 4.57). Mono-protection of diol 976 gave alcohol 977 in quantitative yield by known conditions.95 Swern oxidation of this substrate96 efficiently afforded aldehyde 971 in 86% yield.
Scheme 4.57

Aldehyde 974 was prepared from ester 978 in two steps (Scheme 4.58). Silyl protection of both hydroxyls provided silyl ether 977 in 83% yield. Partial reduction of the ester moiety upon treatment with di-iso-butylaluminum hydride then provided aldehyde 974 in high yield.

Scheme 4.58

After carbonyl-ene reactions were successfully performed on the iodinated substrate 302, elimination to the corresponding exocyclic enol ethers was effected. Two methods for the conversion of the iodomethyl group to an exocyclic enol ether were explored. The first focused on the reaction with silver fluoride in pyridine and provided enol ether 976 in 77% yield (Scheme 4.59). A second method was explored that would be compatible with silyl-protected substrates: DBU facilitated elimination. Not only did these reaction conditions work on silylated substrates (Table 4.5, entries 3 and 5), but also produced enol ether 976 (entry 1) in higher yield (93%). For these reasons, the DBU elimination was the preferred method of

Scheme 4.59
dehydrohalogenation. In all cases, the elimination of iodine proceeded smoothly to provide desired exocyclic enol ethers in good to excellent yields.

Table 4.5: DBU Elimination of Carbonyl-Ene Adducts

![Diagram of DBU elimination process]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Iodide</th>
<th>Enol Ether</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>89%</td>
</tr>
</tbody>
</table>

Upon formation of the second exocyclic enol ether the stage was set to explore the final phase of the synthesis. The newly formed enol ethers were subjected to a second carbonyl-ene reaction to afford the bis-β-hydroxy pyrans (Tables 4.6-4.8). The carbonyl-ene reaction of these 2-methylenedihydropyrans with ethyl glyoxylate was first evaluated (Table 4.6). As before, ethyl glyoxylate proved to be an excellent substrate, and generally provided bis-β-hydroxypyrans in good to excellent yields as 1:1 mixtures of diastereomers. These reactions proceeded in the presence of 5% ZnCl₂ after a relatively short reaction time. The presence of glyoxylate polymer as a byproduct in these reactions made purification of the fairly polar product difficult by chromatography. Therefore two equivalents of the enol ether were used for each equivalent of
ethyl glyoxylate to avoid polymer formation. The excess enol ether was quantitatively recoverable in all cases, without any observed double bond isomerization.

Table 4.6: Ene Reactions of 2-Methylenedihydropyrans with Ethyl Glyoxylate

![Chemical Reaction](attachment:image.png)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether<sup>a</sup></th>
<th>Product</th>
<th>Yield<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td> 976</td>
<td> 981</td>
<td>89%</td>
</tr>
<tr>
<td>2</td>
<td> 977</td>
<td> 982</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td> 978</td>
<td> 983</td>
<td>70%</td>
</tr>
<tr>
<td>4</td>
<td> 979</td>
<td> 984</td>
<td>92%</td>
</tr>
<tr>
<td>5</td>
<td> 985<sup>c</sup></td>
<td> 986</td>
<td>99%</td>
</tr>
</tbody>
</table>

^a 2 equivalents
^bobtained as a 1:1 mixture of diastereomers
^cprepared by DMP oxidation of 287

Enol ether 985 was prepared from enol ether 980 by oxidation with Dess-Martin Periodinane (Scheme 4.60). The purpose of this oxidation was to simplify the product mixture that would result from the second carbonyl-ene reaction. If enol ether 980 were used in the reaction, up to four diastereomers could result.
Reactions of the same 2-methylenedihydropyrans with p-nitrobenzaldehyde, a relatively activated aldehyde, produced only low yields of the desired products when treated with 5 mol% ZnCl$_2$ over 48 hours (Table 4.7, entry 1). Rather, longer reaction times and equimolar amounts

Table 4.7: Ene Reactions of 2-Methylenedihydropyrans with p-Nitrobenzaldehyde

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enol Ether</th>
<th>Product</th>
<th>Mol % ZnCl$_2$</th>
<th>Yielda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>100</td>
<td>77%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>100</td>
<td>54%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>100</td>
<td>51%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>100</td>
<td>53%</td>
</tr>
</tbody>
</table>

acompounds isolated as a 1:1 mixture of diastereomers
bReaction time 36 h, performed by T. Lam
of zinc chloride were required to obtain adequate product yields. It is not entirely unexpected that lower yields are associated with the carbonyl-ene reactions of less activated enophile components because the presence of the endocyclic double bond is expected to reduce reactivity.98

Along these lines, the carbonyl-ene reaction of 2-methylenedihydropyrans with non-activated aldehydes did not provide any of the desired products (Table 4.8). Trials combining enol ether 978 and silyl ether aldehyde 971 with various amounts of ZnCl\textsubscript{2}, ranging from 20 to 100 mol \% (entries 1-3), resulted in consumption of the starting enol ether, without production of the desired pyrans. Likewise, ene reactions using benzaldehyde 479 as the enophile did not yield the desired dihydroxypyrans (entry 4).

\textit{Table 4.8: Carbonyl-Ene reaction of Aliphatic Aldehydes with 2-Methylenedihydropyran}s

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Entry} & \textbf{Enol Ether} & \textbf{Aldehyde} & \textbf{Mol % ZnCl\textsubscript{2}} & \textbf{Yield (\%)} \\
\hline
1 & \includegraphics[width=0.2\textwidth]{enol_ether} & \includegraphics[width=0.1\textwidth]{aldehyde} & 20 & 0\% \\
\hline
2 & \includegraphics[width=0.2\textwidth]{enol_ether} & \includegraphics[width=0.1\textwidth]{aldehyde} & 50 & 0\% \\
\hline
3 & \includegraphics[width=0.2\textwidth]{enol_ether} & \includegraphics[width=0.1\textwidth]{aldehyde} & 100 & 0\% \\
\hline
4 & \includegraphics[width=0.2\textwidth]{enol_ether} & \includegraphics[width=0.1\textwidth]{aldehyde} & 100 & 0\% \\
\hline
\end{tabular}
\end{table}
As these results show, the carbonyl-ene reaction of 2-methylenedihydropyrans generally proceeds in moderate to high yields when activated aldehydes are used. This is not the case with non-activated aldehydes. These substrates give none of the anticipated ene adducts even in the presence of equimolar amounts of ZnCl$_2$. The reactions of 2-methylenedihydropyrans are therefore limited by the type of enophile that can be coupled under these conditions. As noted above the internal double bond present in these enol ethers draws electron density away from the dihydropyran oxygen. Thus these types of enol ethers are not as reactive as their tetrahydropyranyl equivalents because the internal oxygen is less capable of donating electrons to the reactive, exocyclic olefin. In order to overcome the limitations of this reaction, two options were considered: use of a stronger Lewis acid to facilitate aldehyde activation or reduction of the endocyclic enol ether prior to elimination. Because exo enol ether substrates are such labile compounds, the later route was examined.

In an effort to prepare a more reactive substrate for the bi-directional carbonyl-ene reaction with non-activated enophiles, the synthesis of enol ether 995 was attempted (Scheme 4.61). By reducing the dihydropyran double bond, we hoped to avoid the charge delocalization experienced by the ring oxygen in the 2-methylenedihydropyran intermediates, and thus make a more reactive enol ether. Thus, dihydropyran 979 was treated with triethylsilane in the presence of BF$_3$-OEt$_2$ to give the 2,6-disubstituted tetrahydropyran as a 1:1 mixture of diastereomers.
Oxidation of secondary alcohol 991 was then performed using Dess-Martin periodinane in order to simplify the product mixture. A single ketone diastereomer 992 was isolated.

Reduction of dihydropyran 979 is expected to give the cis-2,6-tetrahydropyran on both stereoelectronic9 and steric grounds. The oxonium ion intermediate formed in this reaction is expected to adopt a half-chair conformation. The two possible conformations of this intermediate are either oxonium ion 993 or 994, the latter of which is lower in energy (Scheme 4.62). Axial attack of the nucleophile is favored on stereoelectronic grounds where the reaction proceeds through a chair transition-state. In contrast, equatorial attack proceeds through a higher energy boat transition state and in the absence of competing steric effects, will be disfavored.

Axial addition to intermediate 993 is disfavored due to steric interactions between the approaching nucleophile and the pseudoaxial iodomethyl group at C₆. Therefore, it is expected that the cis stereoisomer predominates based on axial attack of hydride on the low energy conformer 994. The nOe studies on ketone 992 are consistent with this expectation. Irradiation of Ha led to the strong enhancement of the Hb resonance and likewise, irradiation of Hb caused enhancement of Ha (Figure 4.11).
With the desired tetrahydropyran ring in hand, dehydrohalogenation of iodide 992 was subsequently attempted in order to prepare the corresponding exocyclic enol ether 995 (Scheme 4.63). Upon treatment with DBU only recovered iodide 992 was obtained albeit in 23% yield. No other identifiable products were isolated, and TLC of the crude reaction mixture showed only the spot corresponding to the unreacted starting material. When silver fluoride was used to effect elimination, iodide 992 was completely consumed, but none of the desired enol ether 995 was isolated. 1H NMR and TLC of the crude reaction mixture did not show the presence of any discernible compounds. In light of these difficulties, focus shifted to the synthesis of bis-spiroketals from bis-β-hydroxypyrans.

Scheme 4.63

Progress Toward Trioxadispiroketal Synthesis

With the development of an effective route to bis-β-hydroxypyrans the next stage was the application of this chemistry for the synthesis of trioxadispiroketals. The interest in synthesizing bis-β-hydroxypyrans lies partially in the manufacture of bis-spiroketal units like those seen in the northern fragment of the spirastrellolides.
Work toward the synthesis of a (5,6,6)-trioxadispiroketal system akin to the northern fragment of the spirastrellolides, was attempted previously in the lab.97 The spirocyclization of β-hydroxy-β-keto-pyran \textit{986} proved difficult (Scheme 4.64). The two-step desilyation and cyclization of this pyran was attempted for the synthesis of (5, 6, 6)-trioxadispiroketal \textit{996}. Subjection of pyran \textit{986} to TBAF and subsequent treatment of the crude mixture with PPTS did not provide the desired spiroketal product nor was the starting pyran recovered.

\textit{Scheme 4.64}

The inability to cyclize pyran \textit{986} prompted the study of spirocyclization conditions that are conducive to these sensitive bis-β-oxygenated pyran substrates. Spirocyclization studies began with bis-β-hydroxypyran \textit{983} (Scheme 4.65). In theory this pyran should spiroketalize into the same (5,6,6)-trioxadispiroketal ring system as bis-spiroketal \textit{996}, but is made in fewer synthetic steps. Direct treatment with hydrofluoric acid should deprotect and concurrently cyclized the pyran to form trioxadispiroketal \textit{998}. Under these conditions however, no discernable products were obtained, although all starting material was consumed. As both Paterson100 and Forsyth101 had observed decomposition in the presence of strong acid in related systems, we sought milder acidic conditions. Therefore a second, two-step approach was explored for the synthesis of the bis-spiroketal \textit{998}. Silyl deprotection with tetrabutylammonium fluoride yielded the triol \textit{997} in good yield. This triol was carried on crude to the next reaction. Spiroketalization was then attempted under mildly acidic conditions.
Treatment of triol 997 with PPTS showed complete consumption of starting material after eighteen hours at room temperature. The reaction progress was carefully monitored by TLC throughout the experiment, though no distinct product spots emerged. 1H NMR of the crude reaction mixture did not show the presence of any identifiable compounds.

Earlier work in our lab demonstrated the feasibility of using an ester nucleophile directly for the preparation of spiroketals 964 and 965 using HCl (scheme 4.54). The direct, acid catalyzed cyclization of diester pyran 981 was thus attempted in an effort to prepare the (5,6,5) bis-spiroketal 999 (Scheme 4.66). Application of these same acidic conditions to pyran 981 did not have the same result. The TLC of the reaction showed disappearance of the pyran, with no other spot emerging, even with use of polar solvent systems. The 1H NMR of the crude residue did not show any apparent products.
In a second approach to trioxadispiroketal 999, the ester groups were reduced prior to cyclization (Scheme 4.67) Thus, diester 981 was treated with LiAlH₄ to give the presumed tetrahydroxy-intermediate 1000 that was not isolated, but subjected immediately to aqueous acidic workup. Again TLC of the reaction mixture showed disappearance of the starting material, without the emergence of any new spots, even with polar solvents. The tetrahydroxy intermediate, if formed, would be highly polar and would most likely be lost in the aqueous workup. The same could be true of any spiroketal systems formed if they proved to be polar enough, although TLC of the aqueous layers did not show the presence of any organic compounds.

Scheme 4.67

The failure to prepare the bis-spiroketals directly from the bis-β-hydroxypyrans may be due to the inherent sensitivity of these systems. These concerns led us to explore an alternative, stepwise approach for trioxadispiroketal synthesis. It is anticipated that the original sequence for bis-b-hydroxy-dienol ethers 966 (Scheme 4.55) could be intercepted such that formation of the first spiroketal system (BC) (Scheme 4.68) precedes elimination to generate the new exocyclic enol ether. Potential advantage of this approach over direct cyclization is that bis-spiroketals derived from two non-activated aldehydes may now be available because reactivity of exo enol ether 1003 is not attenuated by the presence of an endo enol ether.
Efforts focused on the synthesis of the (6,6,6)-bis-spiroketal 1004 (n = 1) (Scheme 4.69). The carbonyl-ene reaction of enol ether 302 with aldehyde 971 (Scheme 4.69) very efficiently provided ene adduct 972 in the presence of 20 mol% ZnCl₂. Silyl deprotection afforded diol 1005, which was carried on crude to the next reaction. Acid catalyzed cyclization with PPTS yielded spiroketals 1006 and 1007 as a 1:1 mixture of diastereomers. These diastereomers were separated by flash column chromatography and carried on individually as described below.

As the spiroketalization was conducted under thermodynamic conditions, formation of the most stable carbon framework was expected. This framework should contain an equatorial iodomethyl group and would benefit from double anomeric stabilization. For this reason the resulting diastereomers 1006 and 1007 were presumed to differ only in the stereochemistry of the
secondary alcohol. The identity of the individual isomers was confirmed on the basis of 1H NMR coupling constants.

The stereochemistry for each isomer was determined by evaluating the coupling constants for the hydrogen at $C_4 (H_b)$ (Figure 4.12). In each case the angles between the proton.

Figure 4.12

![Diagram of compounds 1006 and 1007 with 1H NMR spectra](image)

at this position and those at adjacent positions are assumed to be similar, thereby simplifying the resonance pattern. Compound 1006 possesses an axial alcohol, and therefore both J_{ba} and J_{bc} are expected to be small. Since the magnitude of these coupling constants should be similar, the H_4 resonance should appear as a narrow triplet in the 1H NMR. An equatorial orientation of H_b is expected to exhibit small-small coupling patterns. Conversely, compound 1007, which has an
equitorial alcohol, it is expected $J_{b'c}$ to be large and $J_{b'a}$ to be small. Therefore the C$_4$ proton peak in the 1H NMR is expected to appear as a doublet of doublets.

Examination of the relevant portions of the 1H NMRs show that the peaks are somewhat in agreement with these expectations. Spiroketal 1006 shows a narrow peak at 4.08 ppm. This peak overlaps slightly with a peak associated with C$_{10}$ at 4.14 ppm. This peak is not the narrow triplet expected, due to non-equivalent coupling constants associated with the adjacent protons. Nonetheless this peak is narrower than that associated with spiroketal 1007. Likewise the peak representing Hb’ in compound 1007 is not the expected doublet of doublets, but does represent the presence of a larger coupling constant.

With spiroketals 1006 and 1007 in hand, attention was turned to the formation of exocyclic enol ether 1003 (Scheme 4.70). Two methods were evaluated: the base-induced elimination of iodine under conditions previously established for the preparation of bis-enol pyrans 976-980 (cf. Table 4.5) and internal elimination of a selenoxide.

Scheme 4.70

Elimination was first attempted on iodide 1006. Treatment with DBU proved unsuccessful and resulted only in 62% recovery of starting material (Table 4.9, entry 1). Elimination was also attempted with silver fluoride both at room temperature (entry 2) and 65°C (entry 3). At room temperature only the starting iodide was isolated in 86%. Since the reactivity
was low, higher temperatures were applied to the same reaction, but only the starting iodide was isolated in 31% or the iodide was replaced by fluorine (26%). The difficulty observed in eliminating the iodide may be due to steric hindrance. The proximal stereocenter may block access of the base to the C\textsubscript{10} hydrogen, thereby impeding the formation of the double bond. The difficulties experienced with these reactions prompted an approach involving internal elimination.

In a second approach, iodide 1007 was converted to the selenoxide 1010 (Scheme 4.71). We anticipated that elimination of the selenoxide might work better for this system since the

Scheme 4.71
reaction is intramolecular. In practice, iodide 1006 was treated with diphenyl selenide and sodium borohydride to give the selenide 1009 in 87% yield. This compound was subsequently oxidized to selenoxide 1010, which upon workup, was directly subjected to elimination conditions without further purification. Several solvents were used to facilitate the elimination including tetrahydrofuran, dihydropyran, and dimethylsulfide (Table 4.10, entries 1-3). None of the desired exocyclic enol ether 1011 was formed in either THF or DHP though a trace amount of this product 1011 was detected by 1H NMR using dimethylsulfide as solvent. The small quantities of material produced precluded further pursuit of this sequence.

Table 4.10

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Time (hr)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>65</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>DHPa</td>
<td>38</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>DMS</td>
<td>86</td>
<td>5</td>
<td>trace</td>
</tr>
</tbody>
</table>

*a*3,4-dihydro-2H-pyran

4.4 Conclusions

We have demonstrated a facile approach to the preparation of bis-β-hydroxypyrans through two-directional carbonyl-ene reactions of exocyclic enol ethers. The use of an iodomethyl derivative as the bis-exo enol ether equivalent facilitates this process and allows for the preparation of non-symmetrical systems. The initial ene reaction in the sequence proceeds cleanly in the presence of 5 mol% ZnCl$_2$. The intermediate 6-methylene-dihydropyran prepared
is more stable than expected, though participates in the carbonyl-ene reactions of activated enophiles in good to excellent yields in the presence of 20 mol% ZnCl₂. The reaction of the bis-enol ether with unactivated aldehydes was more troublesome and was not observed even in the presence of equimolar amounts of ZnCl₂. Use of stronger Lewis acids may overcome this difficulty and allow us to further broaden the substrate scope. Overall, this method represents an efficient method for the formation of bis-b-hydroxypyran, compounds that may prove useful for the preparation of tetrahydropyran-containing natural products.

The current data suggests that the synthesis of trioxadispiroketal from bis-β-hydroxy precursors is non-trivial. The inability to produce these complex systems from these pyran precursors is most likely due to their sensitivity. Further examination of the reaction conditions will be required to effect trioxadispiroketal formation. This truly would be a unique method for bis-spiroketal construction. Advantages of this method include its highly convergent nature and potential ease with which a number of different spiroketals could be formed from a common intermediate. The formation of these bis-spiroketals is of high interest due to their presence in interesting, biologically active metabolites.
4.5 Experimental

General Methods

All air sensitive reactions were performed in oven dried glassware under an atmosphere of argon. Reaction solvents were dried over CaH$_2$ (benzene, dichloromethane), or sodium/benzophenone ketyl (tetrahydrofuran, diethyl ether) and were distilled just prior to use. All other reagents were reagent grade and purified as necessary. Analytical thin layer chromatography was performed on EM silica gel 60 F254 glass plates (0.25 mm). Visualization of analytical thin layer chromatography was achieved using UV absorbance (254 nm) and ceric ammonium molybdate stain. Melting points were recorded using an Electrothermal melting point apparatus and are uncorrected. Flash column chromatography was performed using SiliaFlash P60 silica gel (40-60 Å) from SiliCycle, Inc. 1H NMR spectra were recorded on a Bruker Avance DPX-300 (300 MHz) spectrometer. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl$_3$ as the internal standard (δ 7.27 ppm). 13C NMR spectra were recorded on a Bruker Avance DPX-300 (75 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl$_3$ as the internal standard (δ 77.0 ppm). IR spectra were obtained with a Thermo Nicolet IR-100 spectrometer on NaCl plates. Elemental Analyses were performed by Complete Analysis Laboratories, Inc.; Parsippany, NJ. High resolution mass spectra were obtained using the positive ion electrospray mode on a Bruker 12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source at Old Dominion University, Norfolk, VA.
Experimental Procedures

Lactone 968. To a solution of iodine (26.0 g, 0.315 mol) and NaHCO₃ (16.0 g, 62.9 mmol) in acetonitrile (175 mL) was added carboxylic acid 967 (4.00 g, 31.5 mmol). The reaction was stirred at room temperature for 24 hours. The reaction mixture was then diluted with EtOAc (50 mL) and washed with a saturated sodium thiosulfate solution (40 mL). The organic and aqueous layers were separated, and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic layers were combined and dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash chromatography (SiO₂; hexanes:EtOAc, 5:1-4:1) to afford tetrahydropyran 968 (6.55 g, 82%) as a yellow oil. ¹H NMR data for this compound agreed with the known literature values.¹⁰⁵ TLC: *Rf* = 0.23 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 4.28 (1H, m), 3.33 (2H, m), 2.58 (1H, m), 2.45 (1H, m), 2.16 (1H, m), 1.91 (2H, m), 1.62 (1H, m).

Enol ether 302. To a solution of lactone 968 (0.75 g, 3.13 mmol) in THF (42 mL) was added dimethyl titanocene (12.5 mL of a 0.5M solution in THF, 6.26 mmol) in the dark. The reaction mixture was heated to reflux and stirred in the dark for 24 h. After cooling to room temperature, solvent was removed *in vacuo* to approximately half the volume. The residue was diluted with hexanes (500 mL) and filtered through Celite. The solvent was removed *in vacuo* and the resulting crude residue was purified by flash chromatography using deactivated silica gel (SiO₂;
hexanes:Et$_3$N, 95\%:5\%) to afford enol ether 302 (0.56 mg, 76\%) as a yellow liquid. TLC: $R_f = 0.67$ (hexanes:EtOAc, 10:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.37 (1H, d, $J = 1.2$ Hz), 4.09 (1H, d, $J = 1.5$ Hz), 3.58 (1H, m), 3.24 (2H, dd, $J = 5.7, 1.2$ Hz), 2.15 (2H, m), 1.69 (4H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 159.3 (C), 92.4 (CH$_2$), 77.6 (CH), 30.1 (CH$_2$), 28.5 (CH$_2$), 21.9 (CH$_2$), 9.1 (CH$_2$). IR (film): 2946, 2868, 1652, 1252 cm$^{-1}$. HRMS (ESI) Calcd for C$_7$H$_{11}$IO ($[M+Na]^+$): 498.9601, found 498.9613.

Dihydropyran 969: Ethyl glyoxylate (0.12 mL, 1.19 mmol) was added to a solution of enol ether 302 (235 mg, 0.992 mmol) in dry THF (1.7 mL) followed by 0.30 mL of a freshly prepared solution of ZnCl$_2$ (22.4 mg/mL, 0.049 mmol) in dry THF. The reaction was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 10:1) to afford dihydropyran 969 (281 mg, 84\%) as a yellow oil with a diastereomeric ratio of 1:1. TLC: $R_f = 0.34$ (hexanes:EtOAc, 3:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.61 (1H, q, $J = 3.7$ Hz), 4.35 (1H, m), 4.24 (2H, q, $J = 7.1$ Hz), 3.87 (0.5H, m), 3.77 (0.5H, m), 3.27 (2H, m), 3.09 (0.5H, br s), 2.98 (0.5H, br s), 2.50 (2H, m), 2.04 (3H, m), 1.67 (1H, m), 1.30 (1.5H, t, $J = 7.1$ Hz), 1.30 (1.5H, t, $J = 7.1$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 174.2 (C), 174.0 (C), 149.3 (C), 149.0 (C), 99.0 (2) (CH), 74.8 (CH), 74.0 (CH), 68.9 (CH), 68.6 (CH), 61.4 (CH$_2$), 38.9 (2) (CH$_2$), 27.0 (CH$_2$), 26.9 (CH$_2$), 19.7 (CH$_2$), 19.5 (CH$_2$), 14.3 (CH$_3$), 14.2 (CH$_3$), 8.4 (CH$_2$), 7.8 (CH$_2$). IR (film): 3494, 2926, 1735, 1681 cm$^{-1}$. HRMS (ESI) Calcd for C$_{11}$H$_{17}$IO$_4$ ($[M+Na]^+$): 363.0064, found 363.0066.
Dihydropyran 970: Ethyl pyruvate (77 mg, 0.67 mmol) was added to a solution of enol ether 302 (140 mg, 0.556 mmol) in dry THF (0.1 mL) followed by 1.0 mL of a freshly prepared solution of ZnCl₂ (15 mg/mL, 0.11 mmol) in dry THF. The reaction was stirred at room temperature for 24 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO₂; hexanes:EtOAc, 10:1) to afford dihydropyran 970 (142 mg, 66%) as a yellow oil with a diastereomeric ratio of 1:1. TLC: Rf = 0.65 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 4.59 (1H, m), 4.22 (2H, m), 3.87 (0.5H, m), 3.75 (0.5H, br s), 3.68 (0.5H, m), 3.51 (0.5H, br s), 3.25 (2H, m), 2.57 (1H, m), 2.37 (1H, m), 2.01 (3H, m), 1.64 (1H, m), 1.44 (3H, d, J = 3.1 Hz), 1.31 (3H, m). ¹³C NMR (CDCl₃, 75 MHz): δ 175.8 (C), 175.5 (C), 149.9 (C), 149.5 (C), 99.5 (CH), 99.4 (CH), 75.1 (CH), 74.4 (CH), 73.9 (CH), 73.8 (CH), 61.4 (2) (CH₂), 44.9 (2) (CH₂), 27.0 (2) (CH₂), 25.7 (CH₃), 25.6 (CH₃), 19.9 (CH₂), 19.6 (CH₂), 14.3 (2) (CH₃), 8.7 (CH₂), 7.6 (CH₂). IR (film): 3526, 3066, 2980, 1731, 1679 cm⁻¹. HRMS (ESI) Calcd for C₁₂H₁₉IO₄([M+Na]⁺): 377.0220, found 377.0224.

Dihydropyran 972: Aldehyde 971 (296 mg, 0.95 mmol) was added to a flask containing enol ether 1 (188 mg, 0.79 mmol) followed by 1.58 mL of a freshly prepared solution of ZnCl₂ (13 mg/mL, mmol) in dry THF. The reaction was stirred at room temperature for 24 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO₂; hexanes:EtOAc, 20:1) to afford dihydropyran 972 (428 mg, 99%) as a yellow oil with a diastereomeric ratio of 1:1. TLC: Rf = 0.75 (hexanes:EtOAc, 3:1). ¹H NMR (CDCl₃, 300 MHz):...
\(\delta 7.72 \) (4H, m), 7.42 (6H, m), 4.58 (1H, \(J = 3.6 \) Hz), 4.13 (1H, m), 3.88 (2H, \(J = 5.8 \) Hz), 3.86 (2H, m), 3.28 (2H, dd, \(J = 5.8, 2.5 \) Hz), 3.18 (1H, s), 2.25 (2H, d, \(J = 6.1 \) Hz), 2.03 (2H, m), 1.75 (2H, q, \(J = 5.9 \) Hz), 1.67 (2H, m), 1.07 (9H, s). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta 151.3 \) (C), 135.5 (CH), 134.8 (CH), 133.4 (C), 133.3 (C), 129.7 (CH), 129.6 (CH), 127.7 (CH), 97.7 (C), 97.6 (C), 74.4 (CH), 74.3 (CH), 68.8 (CH), 62.6 (CH\(_2\)), 62.5 (CH\(_2\)), 41.9 (CH\(_2\)), 38.4 (2) (CH\(_2\)), 27.2 (CH\(_2\)), 27.1 (CH\(_2\)), 26.8 (CH\(_3\)), 26.5 (CH\(_3\)), 19.7 (CH\(_2\)), 19.1 (C), 8.5 (CH\(_2\)), 8.4 (CH\(_2\)). IR (film): 3433, 3069, 3047, 2929, 2855, 1676 cm\(^{-1}\). HRMS (ESI) Calcd for \(\text{C}_{26}\text{H}_{35}\text{IO}_3\text{Si} \) ([M+Na\(^+\]): 573.1292, found 573.1282.

Dihydropyran 973: Octyl aldehyde (340 mg, 2.66 mmol) was added to a solution of enol ether 302 (562 mg, 2.21 mmol) in dry THF (1.7 mL) followed by 2.7 mL of a freshly prepared solution of ZnCl\(_2\) (22.4 mg/mL, 0.44 mmol) in dry THF. The reaction was stirred at room temperature for 11 h. The solvent was removed \textit{in vacuo} and the residue was purified by flash chromatography (SiO\(_2\); hexanes:EtOAc, 20:1) to afford dihydropyran 973 (695 mg, 82%) as a yellow oil with a diastereomeric ratio of 1:1. TLC: \(R_f = 0.71 \) (hexanes:EtOAc, 2:1). \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 4.57 \) (1H, m), 3.84 (2H, m), 3.30 (2H, m), 2.47 (1H, dd, \(J = 27.9, 3.6 \) Hz), 2.27 (1H, m), 2.04 (4H, m), 1.66 (2H, m), 1.37 (10H, m), 0.88 (3H, t, \(J = 6.7 \) Hz). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta 151.7 \) (C), 97.9 (CH), 97.7 (CH), 74.5 (CH), 70.2 (CH), 70.1 (CH), 41.7 (CH\(_2\)), 36.8 (2) (CH\(_2\)), 31.8 (CH\(_2\)), 29.6 (CH\(_2\)), 29.3 (CH\(_2\)), 27.3 (CH\(_2\)), 27.2 (CH\(_2\)), 25.7 (CH\(_2\)), 25.6 (CH\(_2\)), 22.6 (CH\(_2\)), 19.8 (CH\(_2\)), 19.7 (CH\(_2\)), 14.1 (CH\(_3\)), 8.5 (CH\(_2\)), 8.4 (CH\(_2\)). IR (film): 3500, 3063, 2927, 2853, 1679 cm\(^{-1}\). HRMS (ESI) Calcd for \(\text{C}_{15}\text{H}_{27}\text{IO}_2 \) ([M+Na\(^+\]): 389.0948, found 389.0954.
Dihydropyran 975: Aldehyde 974 (93.1 mg, 0.160 mmol) was added to a solution of enol ether 302 (45.6 mg, 0.192 mmol) in dry THF (0.13 mL) followed by 0.19 mL of a freshly prepared solution of ZnCl$_2$ (22.4 mg/mL, 0.032 mmol) in dry THF. The reaction was stirred at room temperature for 24 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO$_2$; hexanes, 100%) to afford dihydropyran 975 (100.3 mg, 76%) as a yellow oil with a diastereomeric ratio of 2.7:2.7:1:1. TLC: R_f = 0.54 (hexanes:EtOAc, 5:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.45 (20H, m), 4.50 (0.24H, m), 4.44 (0.76H, m), 4.05 (2H, m), 3.74 (1H, m), 3.59 (2H, m), 3.21 (2H, dd, $J = 5.6$, 2.5 Hz), 2.86 (0.24H, dd, $J = 6.6$, 3.2 Hz), 2.70 (0.74H, dd, $J = 6.0$, 3.9 Hz), 1.86 (8H, m), 1.03 (6.6H, s), 1.02 (2.4H, s), 0.99 (6.6H, s), 0.98 (2.4H, s). 13C NMR (CDCl$_3$, 75 MHz): δ 151.2 (3) (C), 135.9 (CH), 135.7 (CH), 135.5 (3) (CH), 134.0 (C), 133.8 (C), 133.5 (C), 133.3 (C), 129.6 (CH), 129.5 (CH), 129.4 (CH), 127.5 (2) (CH), 127.4 (2) (CH), 97.7 (CH), 97.6 (CH), 77.2 (CH), 74.2 (2) (CH), 72.3 (CH), 67.1 (CH$_2$), 66.9 (CH), 41.8 (CH$_2$), 41.7 (CH$_2$), 40.8 (CH$_2$), 27.0 (CH$_3$), 26.8 (CH$_3$), 19.6 (CH$_2$), 19.5 (CH$_2$), 19.2 (CH$_2$), 19.1 (CH$_2$), 8.4 (CH$_2$), 8.3 (CH$_2$). IR (film): 3369, 3071, 2965, 2861, 1679, 1112 cm$^{-1}$. HRMS (ESI) Calcd for C$_{43}$H$_{55}$IO$_4$Si$_2$ ([M+Na]$^+$): 841.2576, found 841.2565.

Dihydropyran 976: DBU (0.382 mL, 2.56 mmol) was added to a solution of iodide 969 (87 mg, 0.256 mmol) in benzene (4.7 mL). The reaction was heated to 65$^\circ$C for a period of 24 h. Thereafter the reaction was cooled to room temperature, diluted with diethyl ether (50 mL) and filtered through celite. Column chromatography (SiO$_2$; hexanes:EtOAc, 10:1) yielded enol ether.
976 (50 mg, 93%) as a colorless oil. TLC: Rf = 0.42 (hexanes:EtOAc, 2:1). 1H NMR (CDCl3, 300 MHz): δ 4.77 (1H, t, J = 4.0 Hz), 4.39 (1H, s), 4.35 (1H, m), 4.24 (2H, q, J = 7.1 Hz), 4.05 (1H, d, J = 0.8 Hz), 2.92 (1H, d, J = 6.7 Hz), 2.52 (2H, dq, J = 14.5, 4.6 Hz), 2.36 (2H, t, J = 6.6 Hz, 2.09 (2H, q, J = 6.5 Hz), 1.30 (3H, dt, J = 7.1, 0.4 Hz). 13C NMR (CDCl3, 75 MHz): δ 174.2 (C), 156.0 (C), 147.6 (C), 99.8 (CH), 89.9 (CH2), 68.2 (CH), 61.5 (CH2), 38.6 (CH2), 25.6 (CH2), 20.3 (CH2), 14.1 (CH3). IR (film): 3489, 2980, 2931, 1732, 1691, 1652 cm⁻¹. HRMS (ESI) Calcd for C11H16O4 ([M+Na]⁺): 235.0938, found 235.0938.

Dihydropyran 977: DBU (0.55 mL, 3.66 mmol) was added to a solution of iodide 970 (142 mg, 0.366 mmol) in benzene (7 mL). The reaction was heated to 65°C for a period of 24 h. Thereafter the reaction was cooled to room temperature, diluted with diethyl ether (50 mL) and filtered through celite. Column chromatography (SiO2; hexanes:EtOAc, 10:1) yielded enol ether 977 (87 mg, 92%) as a colorless oil. TLC: Rf = 0.64 (hexanes:EtOAc, 2:1). 1H NMR (CDCl3, 300 MHz): δ 4.73 (1H, t, J = 4.2 Hz), 4.33 (1H, s), 4.19 (2H, q, J = 7.1 Hz), 4.02 (1H, d, J = 0.8 Hz), 3.38 (1H, s), 2.60 (1H, d, J = 13.9 Hz), 2.33 (3H, m), 2.06 (2H, m), 1.42 (3H, s), 1.28 (3H, t, J = 7.2 Hz). 13C NMR (CDCl3, 75 MHz): δ 175.8 (C), 155.9 (C), 148.1 (C), 100.3 (CH), 89.9 (CH2), 73.3 (C), 61.5 (CH2), 44.6 (CH2), 25.6 (CH3), 25.5 (CH2), 20.3 (CH2), 14.1 (CH3). IR (film): 3529, 3118, 3067, 2982, 1732, 1686, 1654 cm⁻¹. HRMS (ESI) Calcd for C12H18O4 ([M+Na]⁺): 249.1097, found 249.1095.
Dihydropyran 978: DBU (0.17 mL, 1.12 mmol) was added to a solution of iodide 972 (112 mg, 0.112 mmol) in benzene (2 mL). The reaction was heated to 65°C for a period of 24 h. Thereafter the reaction was cooled to room temperature, diluted with diethyl ether (50 mL) and filtered through celite. Column chromatography (SiO$_2$; hexanes:EtOAc, 20:1) yielded enol ether 978 (48 mg, 100%) as a colorless oil. TLC: $R_f = 0.81$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.70 (4H, m), 7.43 (6H, m), 4.75 (1H, t, $J = 4.1$ Hz), 4.34 (1H, s), 4.16 (1H, m), 4.07 (1H, s), 3.88 (2H, m), 3.12 (1H, br s), 2.39 (2H, t, $J = 6.6$ Hz), 2.29 (2H, m), 2.12 (2H, m), 1.76 (4H, m), 1.08 (9H, s). 13C NMR (CDCl$_3$, 75 MHz): δ 156.4 (C), 149.9 (C), 135.5 (CH), 133.3 (C), 129.7 (CH), 127.7 (CH), 98.6 (CH), 89.8 (CH$_2$), 68.7 (CH), 62.8 (CH$_2$), 41.6 (CH$_2$), 38.2 (CH$_2$), 26.8 (CH$_3$), 25.8 (CH$_2$), 20.4 (CH$_2$), 19.1 (C). IR (film): 3500, 3071, 3050, 2931, 2857, 1687, 1652 cm$^{-1}$. HRMS (ESI) Calcd for C$_{26}$H$_{34}$O$_3$Si ([M+Na]$^+$): 445.2170, found 445.2169.

Dihydropyran 979: DBU (0.44 mL, 2.96 mmol) was added to a solution of iodide 973 (113 mg, 0.296 mmol) in benzene (5.5 mL). The reaction was heated to 65°C for a period of 24 h. Thereafter the reaction was cooled to room temperature, diluted with diethyl ether (50 mL) and filtered through celite. Column chromatography (SiO$_2$; hexanes:EtOAc, 20:1) yielded enol ether 979 (75 mg, 80%) as a colorless oil. TLC: $R_f = 0.73$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.74 (1H, t, $J = 4.2$ Hz), 4.44 (1H, s), 4.09 (1H, d, $J = 0.9$ Hz), 3.82 (1H, m), 2.39 (2H, t, $J = 6.6$ Hz), 2.30 (1H, m), 2.12 (3H, m), 1.43 (2H, m), 1.29 (10H, s), 0.89 (3H, t, $J = 6.8$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 156.2 (C), 150.1 (C), 98.8 (CH), 90.0 (CH$_2$), 69.3 (CH), 41.5 (CH$_2$), 36.7 (CH$_2$), 31.8 (CH$_2$), 29.6 (CH$_2$), 29.2 (CH$_2$), 25.7 (CH$_2$), 25.6 (CH$_2$), 22.6 (CH$_2$).
20.3 (CH$_2$), 14.1 (CH$_3$). IR (film): 3449, 3116, 2955, 2854, 1686, 1654 cm$^{-1}$. HRMS (ESI) Calcd for C$_{15}$H$_{26}$O$_2$ ([M+Na]$^+$): 261.1825, found 261.1825.

Dihydropyran 980: DBU (0.24 mL, 1.59 mmol) was added to a solution of iodide 975 (130 mg, 0.159 mmol) in benzene (3.5 mL). The reaction was heated to 65°C for a period of 24 h. Thereafter the reaction was cooled to room temperature, diluted with diethyl ether (20 mL) and filtered through celite. Column chromatography (SiO$_2$; hexanes:EtOAc, 50:1) yielded enol ether 980 (97 mg, 89%) as a yellow oil. TLC: R$_f$ = 0.58 (hexanes:EtOAc, 5:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.46 (20H, m), 4.64 (1H, m), 4.38 (1H, s), 4.04 (1H, s), 4.02 (2H, m), 3.56 (2H, m), 2.77 (0.14H, d, J = 2.8 Hz), 2.57 (0.86H, d, J = 3.5 Hz), 2.33 (2H, t, J = 6.7 Hz), 2.12 (4H, m), 1.79 (2H, m), 1.02 (7.7H, s), 1.01 (1.3H, s), 0.98 (7.7H, s), 0.96 (1.3H, s). 13C NMR (CDCl$_3$, 75 MHz): δ 156.2, 149.8, 135.9, 135.8, 135.7 (2), 135.5 (2), 135.4 (2), 133.9, 133.6, 133.3 (2), 133.2 (2), 129.7, 129.6, 129.5, 127.6, 127.5 (3), 127.4 (2), 98.6, 98.3, 89.9, 89.7, 77.4, 72.3, 72.0, 67.2, 66.7, 65.8, 42.1, 41.7, 40.8, 40.1, 26.9, 26.8, 25.8, 25.7, 20.3, 19.2, 19.1 (3). IR (film): 3570, 3071, 2930, 2857, 1686, 1651, 1112 cm$^{-1}$. HRMS (ESI) Calcd for C$_{43}$H$_{54}$O$_4$Si$_2$ ([M+Na]$^+$): 713.3453, found 713.3437.

Ketone 985: To a solution of alcohol 980 (10.5 mg, 0.015 mmol) in CH$_2$Cl$_2$ (1.0 mL) was added Dess-Martin periodinane (7.4 mg, 0.017 mmol) at room temperature. The reaction stirred for 30 min and was then diluted with diethyl ether (5 mL), filtered through a pad of celite, and concentrated in vacuo. The crude residue was purified by flash chromatography using
deactivated silica gel (SiO$_2$; hexanes:EtOAc, 100:1) to afford dihydropyran 985 (7.2 mg, 69%) as a yellow oil. TLC: $R_f = 0.66$ (hexanes:EtOAc, 5:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.47 (20H, m), 4.65 (1H, t, $J = 4.2$ Hz), 4.38 (1H, s), 4.33 (2H, m), 4.04 (1H, s), 3.57 (2H, m), 2.93 (2H, s), 2.80 (2H, m), 2.33 (2H, t, $J = 6.5$ Hz), 2.07 (2H, q, $J = 6.1$ Hz), 1.00 (9H, s), 0.99 (9H, s). 13C NMR (CDCl$_3$, 75 MHz): δ 205.1, 155.9, 146.5, 135.9, 135.7, 135.5 (2), 133.9, 133.6, 133.3 (2), 129.6, 129.5 (2), 129.4, 127.5 (2), 127.4, 100.3, 90.3, 70.0, 67.0, 48.6, 45.9, 26.9, 26.8, 25.4, 20.4, 19.2 (2). IR (film): 3072, 2932, 2858, 1721, 1682 cm$^{-1}$. HRMS (ESI) Calcd for C$_{43}$H$_{52}$O$_4$Si$_2$ ([M+Na]$^+$): 711.3296, found 711.3290.

Pyran 981: Ethyl glyoxylate (40 mg, 0.188 mmol) was added to a solution of enol ether 976 (40 mg, 0.188 mmol) in dry THF (0.05 mL) followed by 0.13 mL of a freshly prepared solution of ZnCl$_2$ (15 mg/mL, 0.018 mmol) in dry THF. The reaction was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 981 (25 mg, 89%) as a yellow oil. TLC: $R_f = 0.11$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.61 (2H, m), 4.30 (6H, m), 3.63 (2H, br s), 2.69 (2H, s), 2.46 (4H, m), 1.32 (6H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 174.1 (C), 174.0 (C), 146.9 (C), 146.0 (C), 98.9 (2) (CH), 68.6 (CH), 68.5 (CH), 61.6 (2) (CH$_2$), 38.5 (CH$_2$), 38.3 (CH$_2$), 21.0 (CH$_2$), 20.9 (CH$_2$), 14.2 (2) (CH$_3$). IR (film): 3464, 3067, 2983, 1739, 1674 cm$^{-1}$. HRMS (ESI) Calcd for C$_{15}$H$_{22}$O$_7$ ([M+Na]$^+$): 377.1258, found 377.1266.
Pyran 982: Ethyl glyoxylate (0.0071 mL, 70 mmol) was added to a solution of enol ether 977 (0.020 mg, 77 mmol) in dry THF (0.10 mL) followed by 0.054 mL of a freshly prepared solution of ZnCl$_2$ (20 mg/mL, 0.003 mmol) in dry THF. The reaction was stirred at room temperature for 2 h. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 982 (20 mg, 80 %) as a yellow oil. TLC: $R_f = 0.25$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.59 (2H, m), 4.27 (1H, m), 4.25 (2H, q, $J = 7.1$ Hz), 3.68 (1H, br d, $J = 26.6$ Hz), 2.68 (2H, s), 2.33 (2H, m), 1.44 (3H, d, $J = 2.4$ Hz), 1.30 (6H, tt, $J = 7.1$, 0.8 Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 175.9 (C), 173.9 (C), 147.2 (C), 147.1 (3 (C), 99.5 (CH), 99.3 (CH), 98.6 (CH), 77.2 (C), 74.0 (CH$_2$), 73.7 (CH$_2$), 68.9 (CH), 68.8 (CH), 61.6 (CH$_2$), 44.2 (CH$_2$), 44.1 (CH$_2$), 38.5 (CH$_2$), 38.3 (CH$_2$), 29.7 (CH), 25.9 (CH$_3$), 25.7 (CH$_3$), 21.0 (CH$_2$), 20.9 (CH$_2$), 14.2 (CH$_3$). IR (film): 3258, 2982, 2851, 1734, 1672 cm$^{-1}$. HRMS (ESI) Calcd for C$_{16}$H$_{24}$O$_7$ ([M+Na]$^+$): 351.1414, found 351.1417.

![Chemical structure of Pyran 982 and 983](image)

Pyran 983: Ethyl glyoxylate (68 mg, 0.665 mmol) was added to a solution of enol ether 978 (200 mg, 0.732 mmol) in dry THF (1.0 mL) followed by 0.50 mL of a freshly prepared solution of ZnCl$_2$ (10 mg/mL, 0.033 mmol) in dry THF. The reaction was stirred at room temperature for 2 h. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 983 (230 mg, 70%) as a yellow oil. TLC: $R_f = 0.30$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.69 (4H, m), 7.42 (6H, m), 4.62 (1H, m), 4.58 (1H, m), 4.33 (1H, m), 4.24 (2H, m), 4.10 (1H, m), 3.86 (2H, m), 3.31 (1H, br s), 3.06 (1H, br s), 2.70 (2H, s), 2.55 (1H, dd, $J = 14.5$, 4.5 Hz), 2.41 (1H, dd, $J = 14.5$, 6.9 Hz), 2.20 (2H, d, $J = 6.4$ Hz), 1.74 (2H, q, $J = 5.8$ Hz), 1.29 (3H, dt, $J = 7.1$, 2.6), 1.06 (9H, s). 13C
NMR (CDCl$_3$, 75 MHz): δ 174.1 (C), 148.8 (C), 148.6 (C), 146.8 (C), 135.5 (CH), 133.2 (C), 133.1 (C), 129.7 (CH), 127.7 (CH), 98.9 (2) (CH), 97.9 (CH), 97.7 (CH), 68.8 (CH), 68.5 (CH), 68.4 (CH), 68.3 (CH), 62.7 (CH$_2$), 61.6 (CH$_2$), 41.4 (CH$_2$), 38.5 (CH$_2$), 38.2 (2) (CH$_2$), 26.8 (CH$_3$), 21.0 (CH$_2$), 19.1 (C), 14.2 (CH$_3$). IR (film): 3483, 3071, 2931, 2857, 1736, 1672 cm$^{-1}$. HRMS (ESI) Calcd for C$_{30}$H$_{40}$O$_6$Si ([M+Na]$^+$): 547.2486, found 547.2484.

Pyran 984: Ethyl glyoxylate (7 mg, 0.067 mmol) was added to a solution of enol ether 979 (34 mg, 0.134 mmol) in dry THF (0.11 mL) followed by 0.018 mL of a freshly prepared solution of ZnCl$_2$ (23 mg/mL, 0.003 mmol) in dry THF. The reaction was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 984 (22 mg, 92%) as a yellow oil. TLC: R$_f$ = 0.36 (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.63 (1H, m), 4.58 (1H, m), 4.34 (1H, dd, $J = 6.9, 4.4$ Hz), 4.25 (2H, m), 3.78 (1H, m), 2.70 (2H, s), 2.49 (2H, m), 2.21 (1H, m), 2.03 (1H, m), 1.44 (2H, m), 1.27 (10H, m), 0.88 (3H, $t, J = 6.8$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 174.2 (C), 149.0 (C), 148.8 (C), 146.9 (C), 146.8 (C), 99.0 (CH), 98.0 (CH), 97.8 (CH), 69.5 (CH), 69.3 (CH), 68.5 (CH), 68.4 (CH), 61.7 (CH), 45.1 (CH$_2$), 41.3 (CH$_2$), 38.3 (2) (CH$_2$), 36.9 (CH$_2$), 36.8 (CH$_2$), 31.8 (CH$_2$), 29.6 (CH$_2$), 29.2 (CH$_2$), 25.7 (CH$_2$), 22.6 (CH$_2$), 21.0 (CH$_2$), 14.2 (CH$_3$), 14.1 (CH$_3$), 8.8 (CH$_3$). IR (film): 3499, 2928, 2856, 1737, 1673 cm$^{-1}$. HRMS (ESI) Calcd for C$_{19}$H$_{32}$O$_5$ ([M+Na]$^+$): 363.2142, found 363.2142.
Pyran 986: Ethyl glyoxylate (8 μL, 0.78 mmol) was added to a solution of enol ether 343 (7.0 mg, 0.010 mmol) in dry THF (50 μL) followed by 20 μL of a freshly prepared solution of ZnCl$_2$ (13.8 mg/mL, 0.002 mmol) in dry THF. The reaction was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 986 (8.0 mg, 99%) as a yellow oil. TLC: $R_f = 0.23$ (hexanes:EtOAc, 5:1). 1H NMR (CDCl$_3$, 300 MHz): δ 7.48 (20H, m), 5.02 (1H, t, $J = 4.2$ Hz), 4.63 (1H, m), 4.49 (1H, m), 4.33 (1H, m), 4.24 (2H, m), 4.19 (2H, m), 3.57 (2H, m), 2.69 (5H, m), 2.88 (2H, s), 1.25 (3H, t, $J = 7.1$ Hz), 1.02 (9H, s), 1.02 (9H, s). 13C NMR (CDCl$_3$, 75 MHz): δ 205.0, 198.1, 174.1, 174.0, 146.8 (2), 145.2 (2), 135.9, 136.8, 135.7, 135.6, 135.5 (3), 134.0, 133.9, 133.6 (2), 133.4 (2), 133.3 (3), 129.6, 129.5 (3), 127.6, 127.5 (3), 127.4, 99.7, 98.7, 71.0 (2), 70.2 (2), 67.9 (2), 67.1 (2), 49.4, 48.3, 46.1 (2), 45.9, 38.4, 38.3, 26.9, 26.8, 22.3, 22.2, 21.4, 21.0, 19.2 (3), 17.5, 14.2, 14.1. IR (film): 3514, 3072, 2932, 2858, 1732, 1603, 1112 cm$^{-1}$. HRMS (ESI) Calcd for C$_{47}$H$_{58}$O$_7$Si$_2$ ([M+Na]$^+$): 813.3613, found 813.3617.

Pyran 987: p-Nitrobenzaldehyde (20.6 mg, 0.136 mmol) was added to enol ether 976 (24.0 mg, 0.114 mmol). 0.23 mL of a freshly prepared solution of ZnCl$_2$ (67.8 mg/mL, 0.114 mmol) in dry THF was added to the reaction flask. The reaction was stirred at room temperature for 48 h. The solvent was removed in vacuo and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 987 (31.6 mg, 77%) as a yellow oil. TLC: $R_f = 0.33$ (hexanes:EtOAc, 1:1). 1H NMR (CDCl$_3$, 300 MHz): δ 8.19 (2H, d, $J = 9.2$ Hz), 7.55 (2H, d, $J = 9.2$ Hz), 5.04 (1H, m), 4.63 (1H, m), 4.56 (1H, m), 4.33 (1H, m), 4.26 (2H, q, $J = 7.4$ Hz), 2.67 (2H, m), 2.42 (6H, m), 1.30 (3H, t, $J = 7.0$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 151.2 (C), 148.6
\((C), 147.6 \text{ (C)}, 147.1 \text{ (C)}, 135.5 \text{ (CH)}, 132.9 \text{ (C)}, 129.8 \text{ (CH)}, 127.8 \text{ (CH)}, 126.4 \text{ (2) (CH)}, 123.5 \text{ (CH)}, 99.2 \text{ (CH)}, 99.1 \text{ (CH)}, 98.0 \text{ (CH)}, 97.9 \text{ (CH)}, 70.9 \text{ (CH)}, 70.7 \text{ (CH)}, 69.4 \text{ (CH)}, 69.2 \text{ (CH)}, 63.0 \text{ (CH)}, 45.1 \text{ (CH)}, 43.7 \text{ (CH)}, 43.6 \text{ (CH)}, 41.3 \text{ (CH)}, 38.0 \text{ (CH)}, 26.8 \text{ (CH)}, 20.9 \text{ (CH)}, 19.0 \text{ (C)}. \) IR (film): 3396, 3072, 2931, 2858, 1717, 1603, 1522, 1346 cm\(^{-1}\). HRMS (ESI) Calcd for \(C_{18}H_{21}NO_{7} ([M+Na]^+)\): 386.1210, found 386.1211.

Pyran 988: \(p\)-Nitrobenzaldehyde (23 mg, 0.152 mmol) was added to a solution of enol ether 977 (33 mg, 0.127 mmol) in dry THF (0.08 mL) followed by 0.17 mL of a freshly prepared solution of ZnCl\(_2\) (100 mg/mL, 0.127 mmol) in dry THF. The reaction was stirred at room temperature for 48 h. The solvent was removed \textit{in vacuo} and the residue was purified by flash chromatography (SiO\(_2\); hexanes:EtOAc, 3:1-1:1) to afford pyran 988 (28 mg, 54%) as a yellow oil. TLC: \(R_f = 0.20\) (hexanes:EtOAc, 2:1). \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta \ 8.21 \text{ (2H, d, } J = 8.6 \text{ Hz)}, 7.57 \text{ (2H, dd, } J = 8.8, 1.7 \text{ Hz)}, 5.01 \text{ (1H, m)}, 4.62 \text{ (1H, m)}, 4.56 \text{ (0.5H, m)}, 4.53 \text{ (0.5H, m)}, 4.27 \text{ (2H, m)}, 3.59 \text{ (0.5H, br s)}, 3.47 \text{ (1H, br s)}, 3.36 \text{ (0.5H, d, } J = 3.5 \text{ Hz)}, 2.69 \text{ (2H, s)}, 2.60 \text{ (1H, dd, } J = 14.4, 5.1 \text{ Hz)}, 2.43 \text{ (3H, m)}, 1.47 \text{ (3H, d, } J = 1.8 \text{ Hz)}, 1.34 \text{ (3H, t, } J = 7.2 \text{ Hz)}. \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta 176.3 \text{ (C)}, 176.2 \text{ (C)}, 151.2 \text{ (C)}, 151.1 \text{ (C)}, 147.9 \text{ (C)}, 147.5 \text{ (C)}, 147.0 \text{ (C)}, 126.4 \text{ (CH)}, 129.4 \text{ (CH)}, 123.5 \text{ (2) (CH)}, 99.7 \text{ (2) (CH)}, 99.0 \text{ (CH)}, 98.8 \text{ (CH)}, 73.9 \text{ (C)}, 73.8 \text{ (C)}, 71.3 \text{ (CH)}, 71.1 \text{ (CH)}, 61.9 \text{ (2) (CH)}, 43.8 \text{ (CH)}, 43.7 \text{ (CH)}, 43.5 \text{ (CH)}, 43.4 \text{ (CH)}, 26.1 \text{ (CH)}, 25.9 \text{ (CH)}, 20.9 \text{ (CH)}, 14.2 \text{ (CH)}. \) IR (film): 3466, 3126, 2984, 2838, 1718, 1604, 1520, 1347 cm\(^{-1}\). HRMS (ESI) Calcd for \(C_{19}H_{23}NO_7 ([M+Na]^+)\): 400.1367, found 400.1367.
Pyran 989: p-Nitrobenzaldehyde (25 mg, 0.167 mmol) was added to a solution of enol ether 977 (59 mg, 0.139 mmol) in dry THF (0.178 mL) followed by 0.1 mL of a freshly prepared solution of ZnCl$_2$ (210 mg/mL, 0.139 mmol) in dry THF. The reaction was stirred at room temperature for 48 h. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 989 (40 mg, 51%) as a yellow oil. TLC: R_f = 0.33 (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 8.20 (2H, d, $J = 8.7$), 7.68 (4H, m), 7.55 (2H, d, $J = 8.7$ Hz), 7.41 (6H, m), 5.02 (1H, m), 4.60 (2H, m), 4.17 (1H, m), 3.88 (2H, m), 3.48 (1H, m), 3.29 (1H, m), 2.70 (2H, d, $J = 2.9$ Hz), 2.47 (2H, m), 2.25 (2H, d, $J = 6.1$ Hz), 1.69 (2H, m), 1.06 (9H, s). 13C NMR (CDCl$_3$, 75 MHz): δ 151.2 (C), 148.6 (C), 147.6 (C), 147.1 (C), 135.5 (CH), 132.9 (C), 129.8 (CH), 127.8 (CH), 126.4 (2) (CH), 123.5 (CH), 99.2 (CH), 99.1 (CH), 98.0 (CH), 97.9 (CH), 70.9 (CH), 70.7 (CH), 69.4 (CH), 69.2 (CH), 63.0 (CH$_2$), 45.1 (CH$_2$), 43.7 (CH$_2$), 43.6 (CH$_2$), 41.3 (CH$_2$), 38.0 (CH$_2$), 26.8 (CH$_3$), 20.9 (CH$_2$), 19.0 (C). IR (film): 3396, 3072, 2931, 2858, 1717, 1603, 1522, 1346 cm$^{-1}$. HRMS (ESI) Calcd for C$_{33}$H$_{39}$NO$_6$Si ([M+Na]$^+$): 596.2439, found 596.2437.

Pyran 990: p-Nitrobenzaldehyde (50 mg, 0.33 mmol) was added to a solution of enol ether 979 (70 mg, 0.276 mmol) in dry THF (0.1 mL) followed by 0.39 mL of a freshly prepared solution of ZnCl$_2$ (96 mg/mL, 0.276 mmol) in dry THF. The reaction was stirred at room temperature for 48 h. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (SiO$_2$; hexanes:EtOAc, 3:1-1:1) to afford pyran 990 (59 mg, 53%) as a yellow oil. TLC: $R_f = 0.32$
(hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 8.19 (2H, d, $J = 8.7$ Hz), 7.53 (2H, d, $J = 8.5$ Hz), 4.98 (1H, m), 4.57 (2H, m), 3.75 (1H, m), 2.68 (2H, s), 2.40 (2H, m), 2.24 (1H, d, $J = 14.5$ Hz), 2.08 (1H, m), 1.45 (2H, m), 1.27 (10H, s), 10.77 (3H, t, $J = 7.0$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 151.1 (C), 151.0 (C), 148.7 (C), 147.5 (C), 147.4 (C), 147.1 (C), 126.4 (2) (CH), 123.5 (CH), 99.2 (CH), 98.1 (2) (CH), 71.0 (CH), 70.9 (CH), 69.7 (2) (CH), 43.5 (2) (CH$_2$), 41.1 (CH$_2$), 41.0 (CH$_2$), 37.0 (CH$_2$), 36.9 (CH$_2$), 31.8 (CH$_2$), 29.6 (CH$_2$), 29.2 (CH$_2$), 25.6 (CH$_2$), 22.6 (CH$_2$), 20.9 (CH$_2$), 14.1. IR (film): 3401, 3080, 2928, 2856, 1603, 1521, 1346 cm$^{-1}$. HRMS (ESI) Calcd for C$_{22}$H$_{31}$NO$_5$ ([M+Na]$^+$): 412.2094, found 412.2094.

Tetrahydropyran 991: To a solution of iodide 979 (301mg, 0.79 mmol) in dichloromethane (1.3 mL) was added triethylsilane (0.10 mL, 0.796 mmol). The reaction mixture was cooled to -78°C and BF$_3$-EtO$_2$ (0.405 mL, 2.54 mmol) was added. The reaction was warmed to room temperature overnight and concentrated in vacuo. The resulting liquid was purified by flash column chromatography (SiO$_2$; hexanes:EtOAc, 5:1) to afford pyran 991 (193 mg, 64 %) as a yellow oil. TLC: $R_f = 0.73$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 3.93 (1H, m), 3.71 (1H, m), 3.38 (1H, m), 3.17 (2H, m), 2.88 (1H, br s), 1.53 (20 H, m), 0.88 (3H, t, $J = 6.7$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 77.3 (CH), 76.2 (CH), 68.8 (CH), 41.7 (CH$_2$), 37.1 (CH$_2$), 31.8 (CH$_2$), 31.2 (CH$_2$), 30.7 (CH$_2$), 29.6 (CH$_2$), 29.3 (CH$_2$), 25.9 (CH$_2$), 23.2 (CH$_2$), 22.6 (CH$_2$), 14.1 (CH$_3$), 10.1 (CH$_2$). IR (film): 3512, 2928, 2855 cm$^{-1}$.
Tetrahydropyran 992: To a solution of tetrahydropyran 991 (30 mg, 0.078 mmol) in dichloromethane (0.35 mL) was added Dess-Martin Periodinane (40 mg, 0.090 mmol) and NaHCO$_3$ (10 mg, 0.26 mmol) at room temperature. The reaction stirred for 3 hr and was then diluted with diethyl ether (10 mL), filtered through a pad of celite, and concentrated in vacuo. The crude residue was purified by flash chromatography using deactivated silica gel (SiO$_2$; hexanes:EtOAc, 20:1) to afford tetrahydropyran 992 (19 mg, 66%) as a colorless oil. TLC: $R_f = 0.63$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 3.82 (1H, m), 3.36 (1H, m), 3.13 (2H, m), 2.69 (1H, dd, $J = 15.1, 7.9$ Hz), 2.51 (2H, q, $J = 7.4$ Hz), 2.39 (1H, dd, $J = 15.1, 4.8$ Hz), 1.83 (2H, m), 1.59 (4H, m), 1.26 (10H, m), 0.88 (3H, t, $J = 6.7$ Hz). 1C NMR (CDCl$_3$, 75 MHz): δ 209.9 (C), 77.0 (CH), 75.0 (CH), 49.1 (CH$_2$), 44.2 (CH$_2$), 31.7 (CH$_2$), 31.0 (2) (CH$_2$), 29.1 (2) (CH$_2$), 23.5 (CH$_2$), 23.0 (CH$_2$), 22.6 (CH$_2$), 14.1 (CH$_3$), 9.6 (CH$_2$). IR (film): 2927, 2853, 1709 cm$^{-1}$.

Triol 998: TBAF (0.49 mL of a 1 M solution, 0.048 mmol) was added to a solution of silyl ether 983 (0.025 g, 0.048 mmol) in THF (0.5 mL). The reaction was stirred for two hours at room temperature after which the reaction mixture was concentrated and run through a plug of silica (SiO$_2$; 2:1 (hexanes: EtOAc) – 10% MeOH in EtOAc). The crude residue was isolated as a yellow oil in 71% yield (0.010 g) and quickly subjected to the next reaction. TLC: $R_f = 0.09$ (hexanes:EtOAc, 1:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.62 (2H, m), 4.36 (1H, m), 4.27 (2H, dq, $J = 7.2, 0.9$ Hz), 4.08 (1H, t, $J = 6.9$ Hz), 3.87 (2H, m), 2.70 (2H, s), 2.64-2.38 (2H, m), 2.29 (2H, m), 1.73 (2H, m), 1.41 (3H, t, $J = 7.1$ Hz).
Diol 1006: TBAF (0.184 mL of a 1M solution, 0.184 mmol) was added to a solution of silyl ether 972 (0.100 g, 0.182 mmol) in THF (1.9 mL). The reaction was stirred for two hours at room temperature after which the reaction mixture was concentrated and run through a plug of silica (SiO$_2$; 2:1 (hexanes: EtOAc) – 10% MeOH in EtOAc). The crude residue was isolated as a yellow oil in 72% yield (0.041 g) and quickly subjected to the next reaction. TLC: $R_f = 0.11$ (hexanes: EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.61 (1H, m), 4.10 (1H, m), 3.87 (3H, m), 3.32 (2H, m), 2.97 (1H, d, $J = 3.1$ Hz), 2.90 (1H, d, $J = 3.1$ Hz), 2.66 (1H, m), 2.24 (2H, m), 2.04 (3H, m), 1.72 (2H, m).

Spiroketal 1006 and 1007: TBAF (0.184 mL) was added to a solution of dihydropyran 1005 dissolved in THF (1.9 mL). The reaction was stirred for two hours at room temperature. The solution was concentrated and subjected to the next reaction. PPTS (2 mg, 0.009 mmol) was added to the concentrate, which was diluted with CH$_2$Cl$_2$ (1.0 mL). The reaction was stirred at room temperature overnight and concentrated afterwards. Purification via column chromatography (SiO$_2$; hexanes:EtOAc, 9:1-2:1) afforded spiroketal 1006 (14 mg) and spiroketal 1007 (14 mg), colorless oils, as a 1:1 mixture of separable diastereomers. Spiroketal 1006: TLC: $R_f = 0.22$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.25 (1H, m), 3.87 (1H, ddd, $J = 12.8, 11.4, 2.3$ Hz), 3.68 (2H, m), 3.20 (1H, dd, $J = 10.2, 3.7$ Hz), 3.10 (1H, dd, $J = 10.2, 8.9$ Hz), 2.05 (1H, ddd, $J = 12.4, 4.7, 2.1$ Hz), 1.85 (3H, m), 1.60 (3H, m), 1.45 (1H, dq, $J = 13.2, 4.9$ Hz).
Hz), 1.34 (1H, dd, $J = 12.4, 11.2$), 1.19 (1H, ddq, $J = 12.4, 4.7, 1.5$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 98.4 (C), 69.3 (CH), 64.1 (CH), 59.1 (CH$_2$), 45.0 (CH$_2$), 35.0 (CH$_2$), 34.6 (CH$_2$), 30.8 (CH$_2$), 18.6 (CH$_2$), 9.8 (CH$_2$). IR (film): 3394, 2943, 1090 cm$^{-1}$. Spiroketal 1007: TLC: $R_f = 0.46$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.15 (1H, dt, $J = 12.1, 3.3$ Hz), 4.05 (1H, m), 3.79 (1H, m), 3.64 (1H, m), 3.22 (1H, dd, $J = 10.4, 2.9$ Hz), 3.08 (1H, dd, $J = 10.2, 10.1$ Hz), 1.88 (2H, m), 1.76 (3H, m), 1.67 (1H, dd, $J = 14.3, 2.9$ Hz), 1.56 (2H, m), 1.41 (1H, dt, $J = 13.5, 4.7$ Hz), 1.21 (1H, m). 13C NMR (CDCl$_3$, 75 MHz): δ 98.4 (C), 70.4 (CH), 64.3 (CH), 55.5 (CH$_2$), 40.2 (CH$_2$), 34.7 (CH$_2$), 32.0 (CH$_2$), 30.7 (CH$_2$), 18.2 (CH$_2$), 9.3 (CH$_2$). IR (film): 3524, 2940, 1081 cm$^{-1}$.

Fluoride 1006b: To a solution of spiroketal 1006 (0.072 g, 0.231 mmol) in pyridine (3 mL) was added AgF (0.088 g, 0.692 mmol). The reaction was stirred at 65°C for 24 hours in the dark. The reaction mixture was concentrated in vacuo and purified by column chromatography (SiO$_2$; hexanes:EtOAc, 6:1-2:1), which afforded the fluoride (12 mg, 26%) as a colorless oil. TLC: $R_f = 0.18$ (hexanes:EtOAc, 2:1). 1H NMR (CDCl$_3$, 300 MHz): δ 4.41 (1H, d, $J = 3.5$ Hz), 4.27 (1H, d $J = 3.5$ Hz), 4.16 (1H, m), 3.85 (1H, m), 3.67 (2H, m), 2.06 (1H, m), 1.90 (1H, m), 1.74-1.25 (8H, m).

Spiroketal 1009: Iodide 1007 was dissolved in ethanol and THF (5:3, 2.5 mL) and cooled to 0°C. Diphenylselenide (38 mg, 0.123 mmol) and sodium borohydride (8 mg, 0.224 mmol) were
added to the reaction mixture. The reaction was allowed to warm to room temperature overnight after which it was concentrated in vacuo. Purification via column chromatography (SiO₂; hexanes:EtOAc, 15:1-8:1) afforded spiroketal 1009 (33 mg, 87%) as a colorless oil. TLC: Rf = 0.50 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.50 (2H, m), 7.25 (3H, m), 4.19 (1H, d, J = 10.8 Hz), 4.02 (2H, m), 3.81 (1H, m), 3.81 (1H, m), 3.54 (1H, dd, J = 11.6, 4.9 Hz), 3.08 (1H, dd, J = 12.5, 3.6 Hz), 2.89 (1H, dd, J = 12.5, 9.8 Hz), 1.73 (8H, m), 1.34 (2H, m). ¹³C NMR (CDCl₃, 75 MHz): δ 132.2 (CH), 130.1 (C), 129.1 (CH), 126.8 (CH), 98.1 (C), 68.7 (CH), 64.3 (CH), 55.2 (CH₂), 40.3 (CH₂), 34.7 (CH₂), 33.5 (CH₂), 32.0 (CH₂), 31.0 (CH₂), 18.2 (CH₂). IR (film): 3505, 3056, 2937, 2878, 1655 cm⁻¹.

Spiroketal 1010: Spiroketal 1009 was dissolved in a mixture of methanol and dionized water (6:1, 1.5 mL). To this solution was added NaHCO₃ (9 mg, 0.106 mmol) and NaIO₄ (27 mg, 0.126 mmol). The reaction was stirred at room temperature for four hours after which a white precipitate formed. Methanol was evaporated and the resulting liquid was partitioned between dichloromethane (10 mL) and water (5 mL). The two layers were separated and the water layer was extracted using dichloromethane (3 x 15 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting solid white product (34 mg, 100%) was used without further purification in the reaction sequence. TLC: Rf = 0.26 (hexanes:EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ 7.74 (2H, m), 7.50 (3H, m), 4.29 (2H, m), 4.06 (1H, m), 3.70 (1H, m), 2.92 (2H, m), 2.05-1.29 (10H, m).
4.6 References

19 (a) Williams, D. E.; Roberge, M.; Van Soest, R.; Andersen, R. J. J. Am. Chem. Soc. 2003, 125, 5296; (b)
Williams, D. E.; Lapawa, M.; Feng, X.; Tarling, T.; Roberge, M.; Andersen, J. Org. Lett. 2004, 6, 2607; (c)

Chem. 2007, 72, 9842.

21 R. U. Lemieux and N. J. Chu, Abstracts, 133rd Meeting of the American Chemical Society, San Francisco, April

Pan, Y.; De Brabander, J. K. Synlett 2006, 6, 853.

Lam, T., 2-methylenetetrahydropyrans in the carbonyl-ene reaction: Studies toward the synthesis of spirastrellolide A. Ph.D. Dissertation, Syracuse University, Syracuse, NY, 2009.

Appendix 1

Selected Spectral Data for Chapter 2: Three-Component Coupling Reactions of 2-Methylenetetrahydropyrans
487

OH

CO₂Et
Appendix 2

Selected Spectral Data for Chapter 3: Carbonyl-Ene Reactions of Substituted Exocyclic Enol Ethers
BnO

679

\text{NO}_2
Appendix 3

Selected Spectral Data for Chapter 4: Formation of Pyrans via Bi-Directional Carbonyl-Ene Reactions
Laura J. Bateman

Education

Ph.D., Syracuse University, (Dec. 2012), 3.69 GPA
B.S. Chemistry, State University of New York at Oswego, 2005, 3.94 GPA (Summa cum laude)

Teaching Experience

- General Chemistry Laboratory Instructor, Siena College and Albany College of Pharmacy and Health Sciences (Fall 2012 – Spring 2013)
 - Created lectures, supervised students during experiments, and graded lab reports
- Organic Chemistry Laboratory Instructor, Albany College of Pharmacy and Health Sciences (Summer 2012)
 - Created lectures and supervised students during laboratory experiments
 - Graded laboratory reports and quizzes to assess student success
- Visiting Assistant Professor of Chemistry, Siena College (August 2011-May 2012)
 Organic Chemistry Instructor
 - Performed lectures on organic chemistry topics, encouraging mechanism-based learning
 - Fostered undergraduate understanding by holding weekly review sessions
 - Assessed student grades based on exams, online homework, and laboratory performance
 General Chemistry Instructor
 - Created and taught lectures based on student problem-solving
 - Led recitation sections
 - Evaluated student grades through exams, quizzes, homework, and lab performance
 Organic Chemistry Laboratory Instructor
 - Created laboratory experiments that extend the students’ knowledge from lecture
 - Supervised and assisted students during laboratory experiments, emphasizing proper laboratory techniques and safety while developing their problem-solving skills
 - Oversaw tasks of undergraduate teaching assistants
 - Designed and graded quizzes and lab reports
- Instructor for Organic Chemistry I and II, Syracuse University (May 2011-Aug. 2011)
 - Developed a course of laboratory experiments for summer students
 - Lectured students on subjects of organic chemistry and laboratory techniques
 - Managed graduate teaching assistant duties
 - Assessed student grades based on reports, quizzes, and laboratory performance

- Teaching Assistant, Syracuse University (2005-2011)
Recitation Instructor, Organic and General Chemistry
- Developed question-centered lessons designed to create student involvement
- Aided lecture professors in developing, proctoring, and grading exams
- Graded homework assignments and quizzes

Laboratory Instructor, Organic and General Chemistry
- Created lectures and supervised students during laboratory experiments
- Graded laboratory reports and quizzes to assess student success

- Teaching Assistant for Physical Chemistry Lab I and II, SUNY Oswego, (2004-2005)
 - Assisted Prof. Martha Bruch by providing instruction related to a physical chemistry course, including subjects such as thermodynamics, kinetics, and quantum mechanics
 - Aided students in running NMR experiments, and prepared and restocked chemicals for student use

- Directly supervised 8 undergraduate students with their individual research projects (2006-2012)
 - Guided undergraduate through self-directed bio-diesel synthesis project
 - Demonstrated proper laboratory techniques and encouraged independent problem solving
 - Taught undergraduates to use various instruments

Research Experience

- Research Assistant, Syracuse University (2006-2011)
 - Mentored by Prof. Nancy I. Totah, Organic Chemistry
 - Developed a new carbon-carbon bond forming reaction utilizing a three component coupling methodology
 - Demonstrated selective carbon bond formation in a new carbonyl-ene reaction
 - Designed a bi-directional approach, using subsequent carbonyl-ene reactions, to form bis-β-hydroxy pyrans

- Research Assistant, State University of New York at Oswego (2004-2005)
 - Advised by Prof. Joseph Lefevre, Organic Chemistry
 - Extracted and purified organic compounds found in the bark of native trees
 - Research Assistant, Syracuse University REU program (2004)
 - Mentored by Prof. Michael Sponsler, Organometallic Chemistry
 - Synthesized organic liquid crystals and prepared holographic cells for darkroom use

Presentations

Publications

References

Available upon request