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The three-dimensional random field Ising magnet: interfaces, scaling, and the nature

of states

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

Daniel S. Fisher
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Dated: February 1, 2008)

The nature of the zero temperature ordering transition in the three dimensional Gaussian random
field Ising magnet is studied numerically, aided by scaling analyses. Various numerical calculations
are used to consistently infer the location of the transition to a high precision. A variety of bound-
ary conditions are imposed on large samples to study the order of the transition and the number of
states in the large volume limit. In the ferromagnetic phase, where the domain walls have fractal
dimension ds = 2, the scaling of the roughness of the domain walls, w ∼ Lζ , is consistent with the
theoretical prediction ζ = 2/3. As the randomness is increased through the transition, the probabil-
ity distribution of the interfacial tension of domain walls scales in a manner that is clearly consistent
with a single second order transition. At the critical point, the fractal dimensions of domain walls
and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two
distinct physically important fractal dimensions that describe domain walls. These dimensions are
argued to be related by scaling to combinations of the energy scaling exponent, θ, which determines
the violation of hyperscaling, the correlation length exponent ν, and the magnetization exponent β.
The value β = 0.017 ± 0.005 computed from finite size scaling of the magnetization is very nearly
zero: this estimate is supported by the study of the spin cluster size distribution at criticality. The
variation of configurations in the interior of a sample with boundary conditions is consistent with
the hypothesis that there is a single transition separating the disordered phase with one ground
state from the ordered phase with two ground states. The array of results, including values for
several exponents, are shown to be consistent with a scaling picture and a geometric description
of the influence of boundary conditions on the spins. The details of the algorithm used and its
implementation are also described.

I. INTRODUCTION

In spite of many years of study, the behavior of phases
and phase transitions that are dominated by quenched
randomness is still controversial. One such lively contro-
versy has concerned the existence or lack thereof of an
ordered phase in the random field Ising model (RFIM) in
three dimensions. Although this was eventually resolved
in the affirmative by rigorous work,1 the nature of the
phase transition and the possibility of a phase intermedi-
ate between the paramagnet and the ferromagnet is still
controversial.

Numerical simulations of the random field Ising model
— and experiments — are impeded by the dramatic
slowing down that occurs as the phase transition is ap-
proached due to the existence of free energy barriers
which are broadly distributed but typically grow as a
power of the correlation length. Such barriers are gen-
eral characteristics of phases controlled, in a renormaliza-
tion group (RG) sense, by stable zero temperature fixed
points. For the random field Ising model, not only is the
low temperature phase controlled by a zero-temperature
fixed point (as is the case for conventional pure systems),
but the phase transition itself is also controlled by such a
fixed point.2,3 Indeed, the ground state properties of the
random field Ising model undergo a phase transition as
the strength of the randomness is increased and it is this

zero-temperature transition that governs the behavior of
the transition at positive temperatures. Fortunately, this
means that much can be learned by studying the ground
state properties.

It has been known for some time that combinatorial al-
gorithms can be used effectively to find the ground states
of various classes of random systems and the RFIM was
one of the first to be studied in this way.4 With cur-
rent computers, the algorithm is very fast and large sys-
tem sizes can be studied in enough detail to obtain good
statistics enabling the tools of finite size scaling to be
used to analyze the zero-temperature phase transition.

Various significant open questions exist about the
phase transition in the RFIM. Although a self-consistent
scaling picture of a zero-temperature critical fixed point
was proposed early on, it has not been adequately tested
and other scenarios have been suggested, including a
first order phase transition5,6 and an intermediate phase
with “replica-symmetry breaking”7,8 presumably mean-
ing many coexisting equilibrium states.

In this paper we study the RFIM with Gaussian dis-
tributed random fields, focusing on the nature of the
phase transition and the sensitivity of the ground states
to varying boundary conditions (BCs) as a probe of the
number and nature of the infinite system states. As will
be explained in some detail, our results strongly support
the scaling picture of the transition. In this picture, there
is a single second order critical point characterized by

http://arXiv.org/abs/cond-mat/0107489v1
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three scaling exponents: ν for deviations from the criti-
cal point, θ for the energy at the critical point, and β/ν
for the magnetization at the critical point. We clarify
some of the substantial confusion about the order of the
transition by showing that both θ and ν as well as the
distributions of the “stiffness” and spin clusters are very
different from what they would be at a first order tran-
sition. Nevertheless, as observed previously, the magne-
tization exponent β is extremely small so that even with
the very large sizes we study, the magnetization appears
almost discontinuous.

II. MODEL AND NUMERICAL METHOD

The random field Ising model9 has Hamiltonian, de-
fined over spin configurations {si = ±1},

H = −J
∑

〈ij〉

sisj −
∑

i

hisi, (1)

with the random fields hi chosen independently from a
distribution which we take to be Gaussian with mean zero
and variance h2. The ferromagnetic exchange coupling,
J , is fixed at unity in the simulations and the sites i lie on
a cubic lattice with interactions between nearest neigh-
bor pairs {〈ij〉}. The basic nature of the phase diagram
of the 3-D RFIM is well-known: As the temperature is
lowered for small h, there will be a critical temperature,
Tc(h), below which the RFIM becomes ferromagnetically
ordered with a non-zero spontaneous magnetization. As
the strength of the random field increases, the critical
temperature decreases until at a critical field, hc, it goes
to zero.

Both the paramagnetic and the ferromagnetic phases
have been proven to exist at both zero and positive
temperatures1 and the transition between them can thus
be studied by varying h at T = 0. The simplest sce-
nario at zero-temperature is a single critical field strength
hc above which the spins are disordered with a unique
infinite-system ground state and exponential decay of
correlations, and below which there are two infinite-
system ground states, one with predominantly up spins
and the other with predominantly down spins.

The nature of the phases and the phase transition(s)
between them can be probed by studying the effects of
various boundary conditions on larger and larger systems
— most simply cubes of size V = L×L×L. In the disor-
dered phase the orientation of a spin far from the bound-
aries is typically determined by the collection of random
fields within a correlation length ξ(h) of the spin and
is insensitive to boundary conditions imposed far away.
In contrast, in the ferromagnetic phase some spins will
still be controlled by the random fields in their vicinity,
but a finite fraction of the spins will be controlled by the
boundary conditions — no matter how far away they are
imposed. The simplest scenario is a single transition be-
tween these two phases. The primary goal of this paper is

to examine in detail the nature of this zero-temperature
phase transition.

Many previous studies of the ground states of the
RFIM (as well as finite temperature studies) have focused
on the magnetization per spin, m = V−1

∑

i si, and the
results have been somewhat ambiguous. Some have in-
terpreted the numerical results as indicating a second or-
der transition,4,10,11 while others have concluded that the
transition is first order.6 Some Monte Carlo results12 sug-
gest that the finite-temperature transition is second or-
der, but with the magnetization exponent β nearly zero.
Others,13 using a varying external field, have found a co-
existence of states suggestive of a first order transition. It
is clear from these studies that if the transition is second
order, the order parameter exponent β, |m| ∼ (hc − h)β

must be very small, making definitive conclusions based
on magnetization alone difficult. We have thus focused
much of our attention — particularly for locating the
transition and finding the exponents — on other proper-
ties which naturally distinguish the phases.

A. Algorithm

The (almost surely) unique ground state of a fi-
nite sample can be determined in time polynomial in
the number of spins.14 The method is based on a re-
duction of the problem of determining RFIM ground
states to a maximum-flow problem on an augmented
graph. One can then use combinatorial optimization
algorithms15,16,17,18 to solve the maximum-flow problem.
We describe the special features of the algorithm imple-
mentation, its verification, sample timings, and the use
of integer valued hi in the Appendix.

B. Statistics and analysis

We have studied system sizes up to 2563, which contain
over 1.6×107 spins. Independent samples were simulated
for each value of h. Separate realizations were also gen-
erated for boundary induced domain walls, spin cluster
properties, magnetization, and the thermodynamic limit
studies. The same samples and domain walls were used
in the stiffness and domain wall property studies. For
smaller systems (83 through 323), 105 samples were op-
timized, typically. (For the domain roughness measure-
ments in the ordered phase, 102 or 103 samples provided
sufficient data, as fluctuations in the interface width are
not large.) Of order 103 to 104 samples were studied for
each quantity for the 643 and 1283 samples. For L = 256,
4× 102 to 103 samples were studied at each h, as part of
the magnetization and cluster studies.

Error bars for exponent values throughout this paper
include both estimated systematic errors due to appar-
ent finite size effects and errors due to statistical uncer-
tainties; the error bars represent an estimated range of
values in which the value lies, with high confidence. In
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contrast, error bars in the figures reflect 1σ statistical un-
certainties, which we find to be generally consistent with
confidence intervals found by resampling.

Generally (except for the stiffness, the roughness in
the ferromagnetic phase, fitting a power law to the bond
energy density, and the PD/O,± plots), we have used esti-
mates of effective exponents as a function of system size
to estimate exponents, rather than scaling plots. This is
done to more clearly see trends in the data that reflect
finite size corrections. Finite size corrections tend to be
monotonic and introduce a drift with L in the effective
exponents. Given the good statistics of the data sets that
can be generated with optimization algorithms, collaps-
ing data can obscure these corrections, as the drift can
be corrected with a slightly erroneous exponent. Where
we have used scaling plots, we do not try to collapse all
of the data onto a single curve, but keep in mind that
the finite size corrections give a consistent drift with sys-
tem size and we therefore tried to optimize the fit to the
largest systems and near hc.

III. SUMMARY OF RESULTS

As we are interested in the behavior of the RFIM in the
thermodynamic limit, we have studied the approach to
the infinite-volume limit using finite-size scaling analysis
techniques similar to those applied to spin glasses and
other random systems.19,20,21,22,23,24 However, in con-
trast with ground state studies of spin glasses and other
random models for which only a single thermodynamic
phase exists, the results presented here give insight into
the transition between two phases.25

A. Stiffness

The fundamental difference between an ordered phase
and a disordered one is the stiffness (or rigidity) of the
former: the free energy cost of changing one part of a sys-
tem with respect to another part far away. At a macro-
scopic level, this free energy cost must be at least of order
kBT and is usually much larger, diverging as a power of
the system size. For an Ising ferromagnet, this stiffness is
provided by the free energy cost of a domain wall which
scales as its surface area. Thus a natural quantity to
study for the ground states of the RFIM is the domain
wall energy. This can be obtained from the difference in
energy between antiparallel and parallel boundary con-
ditions imposed on opposite sides of a system of cross
sectional area L2. A particular combination of these we
call the stiffness, which we denote by Σ. Because of the
randomness, this energy will be sample dependent and
there is information to be gleaned from its distribution
as well as its mean.

The scaling theory of the putative critical point of the
random field Ising model predicts that the distribution
of the stiffness will have a scaling form near the critical

point:

Prob[dΣ] ≈ dΣ

CLθ
P

(

Σ

CLθ
, K(h − hc)L

1/ν

)

(2)

with θ and ν universal exponents, P a universal scaling
function (which does, however, depend on the shape of
the sample), and C and K non-universal coefficients. In
the ferromagnetic phase, the distribution of the stiffness
will be sharply peaked at long length scales about a mean
value which grows as σ(h)L2 with σ(h) the interfacial ten-
sion. This interfacial tension vanishes as h ր hc. In the
disordered phase, Σ will typically fall off exponentially
for system thicknesses, L, much larger than the correla-
tion length ξ(h) ∼ (h − hc)

−ν . This exponential decay
of the stiffness with L is confirmed for all values h > hc

examined in our numerical results.
At the critical point, the distribution of Σ will be broad

with both mean and width of order Lθ. The exponent θ
thus characterizes the scaling of the stiffness at the criti-
cal point. As long as θ is positive, the basic features of the
zero-temperature critical point will be stable to thermal
fluctuations and the finite-temperature transition will be
in the same universality class.2

Our studies of the stiffness are based on computing
energies for samples periodic in two directions and having
fixed uniform boundary spins on the other two faces. Our
results are very consistent with the scaling predictions for
the larger system sizes, up to 1283, close to the critical
point, which occurs at

hc ≃ 2.270± 0.004. (3)

This location for the critical point is consistent with those
obtained from scaling analyses of the domain wall dimen-
sion and the magnetization. It is somewhat lower than
some previously reported estimates such as hc ≈ 2.33,4,10

but it is consistent with the values hc = 2.29 ± 0.04 re-
ported by Hartmann and Nowak11, hc = 2.26 ± 0.01 re-
ported by d’Auriac and Sourlas,5 and hc = 2.28 ± 0.01
reported by Hartmann and Young.26 Taking hc = 2.270,
the exponents that give a good scaling fit for the stiffness
are found to be

θ ≃ 1.49 ± 0.03 (4)

and

ν ≃ 1.37 ± 0.09. (5)

The value for θ is consistent with exact bounds as well
as with values derived from finite temperature simula-
tions by applying exponent relations to measured critical
behavior.12 Note that if the transition had been first or-
der, one would have expected to find θ = d − 1 = 2,
with a double peaked distribution of Σ corresponding
to “ordered” and “disordered” samples, and an effective
ν = 2/d = 2/3; the results we find are far from these.

From the modified hyperscaling law appropriate to
transitions governed by zero temperature fixed points,2,3

(d − θ)ν = 2 − α (6)
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with d the dimension, here equal to three, we predict
that the specific heat exponent for the finite-temperature
transition (and for the second derivative of the energy
with respect to h at zero-temperature near the transition)
is

α = 2 − (3 − θ)ν ≃ −0.07 ± 0.17. (7)

We also fit the sample averaged bond part of the en-
ergy, EJ , at hc to the form EJ ∼ c1 − c2L

(α−1)/ν to
more directly obtain α, inspired by the recent approach
of Hartmann and Young,26 who examined the scaling of
the derivative dEJ/dh. We find a consistent value for α
using similar methods, although our value disagrees sub-
stantially with that of Hartmann and Young. We also
use an extrapolation of EJ , based on the dimension of
the domain wall surfaces, which define EJ , to find

α = −0.01 ± 0.09. (8)

Both values are consistent with experiments,27 which
yield a small value of α.

B. Domain walls

In addition to the stiffness measurements, we have in-
vestigated the properties of the domain walls that are
forced by appropriate changes of the boundary condi-
tions. In the ferromagnetic phase, we expect that these
will be flat on large length scales and have area propor-
tional to L2. These walls will be rough with a transverse
width W on a scale ℓ described by the roughness expo-
nent ζ, W ∼ ℓζ . But at the critical point, we expect
the walls will become fractal. The definition of a domain
wall in the RFIM has ambiguities because some isolated
clusters of spins — in particular those with anomalously
strong random fields — are frozen, i.e., unaffected by
changes in boundary conditions. The identification of
the bonds that define the domain wall is therefore un-
certain up to these fixed spins. We use three methods
for calculating the fractal dimension of the domain walls
introduced by changes in the boundary conditions; each
definition has a distinct physical import in a scaling pic-
ture of the RFIM.

One method is to determine the surface area of the
set of spins connected to one face of the sample that
are unchanged when the spins on the opposite face are
reversed. This yields a spanning surface of a dimension
that we denote ds. The second method is based on a
box counting approach that counts which volumes in a
system with antiparallel boundary conditions differ from
both the “up” and the “down” configurations obtained
from parallel spin boundary conditions; this we denote
dI , to indicate its role as a measure of the volume locally
incongruent with these two configurations.

A third method does not measure a dimension directly
but rather an energy: the contribution of the exchange
interactions to the stiffness at the critical point. As will

be explained later, this fractal dimension, dJ , is not ex-
pected to be an independent exponent. Rather, it is re-
lated to the others by

dJ = θ + 1/ν, (9)

a relation obtained by considering the derivative of the
stiffness with respect to h. It can be seen that our results
for the exponents are entirely consistent with this scaling
law.

The three exponents associated with the fractal dimen-
sion of the critical domain walls are similar, but perhaps
not all mutually consistent, given the estimated error
bars:

ds = 2.30 ± 0.04 (10)

dI = 2.24 ± 0.03 (11)

dJ = 2.18 ± 0.03 (12)

As we will discuss, we believe that at least two of these di-
mensions indeed measure slightly distinct quantities, due
to frozen spin clusters that are relatively independent of
boundary conditions. The simplest plausible conjecture
is that dJ = dI < ds, though it may be that dJ and dI

are distinct.

C. Magnetization

As mentioned above, some previous studies have found
that the magnetization appears to be discontinuous at
the transition. Indeed, our data for the magnetization
as a function of size for various types of boundary con-
ditions that were chosen so that some favor a ferromag-
netic state while others favor a disordered state, appear

to be consistent with the coexistence of three states at
the critical point as was found in other recent work.13

But, as discussed below, we believe that this conclusion
is influenced by the nearness of β/ν to zero. Based upon
the scaling picture and numerical evidence, we will ar-
gue that, at the critical point there is only a single state
and the apparent “up” and “down” configurations do not

correspond to distinct states in the infinite volume limit.
Using the magnetization data and the best fit critical

point found from our studies of the stiffness, we can at-
tempt to extract an estimate for the scaling of the mag-
netization with system size at the critical point. This
yields

β

ν
= 0.012 ± 0.004 [magnetization], (13)

which is inconsistent with zero at the level of three stan-
dard deviations. The primary uncertainty in our esti-
mate of β/ν arises from the uncertainty in the value of

hc, as the statistical errors in the sample average |m| are
relatively small at fixed h. This exponent describes the
magnetization very well for systems of size 32 ≤ L ≤ 256,
for a range of hc, 2.265 < hc < 2.275.



5

D. Spin clusters and walls

In spite of the smallness of β, useful information on the
decay of spin correlations at the critical point can be ob-
tained indirectly by studying the statistical properties of
the domain walls separating connected clusters of paral-
lel spins. In the ferromagnetic phase, we expect that the
probability of finding a region of diameter ℓ that is not
affected by the boundary conditions decays exponentially
for ℓ ≫ ξ as exp(−C(ℓ/ξ)d−2).

Since the system appears to be ferromagnetic at the
critical point, due to |m| being nearly unity for the sys-
tem sizes studied, we also study clusters of the minority
spins at h ≈ hc. The clusters are defined hierarchically
starting from the largest connected cluster of connected
spins, with the surface of each cluster given by its outer-

most surface, that is, the set of bonds connecting it to the
surrounding cluster. The volume of each cluster includes

that of the fully enclosed subclusters of the opposite sign
(and their subclusters, if any, etc). But the outer surface
of a cluster does not include the surfaces of its fully en-
closed subclusters, whose number scales with the volume
of the cluster.

The outer cluster surfaces are found to be fractal with
mean area a (averaged over clusters and samples) scaling
with enclosed volume v as

a(v) ∼ vdc
s/d (14)

with the exponent

dc
s

d
≃ 0.755 ± 0.008, (15)

suggesting a surface fractal dimension dc
s ≃ 2.26 ± 0.02,

a value consistent with the domain wall dimension ds.
Perhaps more interesting is the distribution of the

number density of spin clusters as a function of their size,
in particular the probability ρ(v) that a given site is in a
minority spin cluster of size of order v — more precisely,

ρ(v) ≡ v

δv
Prob[site ∈ cluster of size in (v, v+δv)]. (16)

We find that over the range of sizes studied ρ(v) ap-
pears to converge to a small constant value, ρ∞, for
1 ≪ v ≪ L3, with periodic boundary conditions. This
implies that in the limit of an extremely large system,
any given spin will definitely be in such a “minority spin”
cluster; indeed, it will typically be within one such large
cluster which itself will be within a cluster of typical size
∼ ρ−1

∞ larger which itself will be in an even larger cluster,
etc. This is exactly the type of behavior that gives rise to
power law decay of spin correlations at a critical point on
sufficiently long scales, as is explained in Section IX. It
is consistent with expectations from other observations
we have made, in particular that the probability that the
stiffness of a finite sample is exactly zero tends to a non-
zero constant for large system sizes at the critical point.

The value of

ρ∞ ≃ 0.0019± 0.0004 (17)

that we find28 yields an estimate for

β/ν = 2dρ∞ ≃ 0.011 ± 0.003 [cluster] (18)

consistent with Eq. (13). This exponent controls the de-
cay of the typical magnetization with system size at the
critical point:

m(hc) ∼ L−β/ν . (19)

For L = 128, this only gives a reduction factor of 0.94
from the magnetization of a small system and is consis-
tent with our magnetization data. Note that with this
estimate, one would need to go to system sizes of order

1021 <∼ L
<∼ 1038 to see a factor of two reduction in the

magnetization at the critical point!
For the magnetization in the ferromagnetic phase, us-

ing this calculation of β/ν and consistent with the finite
size scaling of the magnetization, we expect conventional
behavior with

m ∼ (hc − h)β (20)

but with

β ≃ 0.017 ± 0.005 (21)

— far smaller than for any other known system with
the exception of the one-dimensional Ising model with
long-range 1/r2 interactions which has a critical transi-
tion with a discontinuous magnetization, i.e. β = 0.29

This small value is near the value β = 0.02 suggested
from numerical renormalization group calculations on a
hierarchical lattice.30 The numerical value we find is con-
sistent with several previous studies: for example, Hart-
mann and Nowak determine β = 0.02± 0.01, using exact
ground states11, Swift, et al,10 find β = 0.025±0.015, and
Rieger12 found β ≈ 0 at positive temperature, but with-
out any latent heat or multipeak structure in the mag-
netization distribution, suggesting a second order transi-
tion. However, we can more clearly exclude β/ν = 0 as
a possibility by making use of connections between the
value of β/ν and the statistics of spin clusters.

One question that naturally arises concerns the struc-
ture of spin clusters for small |m| near the critical point,
where the sample no longer appears ferromagnetic. Is
there a possibility of percolation of both up and down

spins, when |h − hc| <∼ 10−(22±8) in large enough sam-
ples? For fixed + or − boundaries, as h → hc, |m| be-
comes small, but the minority and majority spins are not
independent. Hence, even though the density of + and −
spins becomes almost equal, the minority spins are large
clusters embedded within the matrix of majority spins,
so that only one sign of spin percolates in the disordered

phase even close enough to the critical point that the
magnetization is very small and the density of minority
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spins almost one half. Exactly at the critical point in an
infinite sample, or where ξ > L in a large finite sample,
the long length scale characterization of the spin con-
figuration will be rather different than in either phase;
these differences motivated some aspects of the present
numerical study.

E. Number of states

To study the RFIM phases and transition in more de-
tail, we have analyzed the influence of boundary condi-
tions on a window of size w in the center of a sample as
the sample size L diverges. As made clear by Newman
and Stein31, the character of the thermodynamic limit of
the ground states can be investigated by studying such
windows. Our numerical computations strongly support
the picture of a small number of ground states — two
in the ordered phase and one in the disordered phase —
consistent with the simple scaling scenario.21,32

Nevertheless, because β/ν is so small, at the critical
point it it is difficult to use numerics to directly distin-
guish between two scenarios: (A) two coexisting states,
as in the ferromagnetic phase; or (B) a single state,
with interior spins unaffected by boundary conditions as
L → ∞. If β were exactly zero, as in (A), then the proba-
bility q that boundary conditions could affect spins in the
center in ways other than the apparent “up” and “down”
phases would decay as a power of the system size,22,23

q ∼ Lds−d, where ds is the fractal dimension of domain
walls. In scenario (B), a similar power law scaling is ex-
pected, with q ∼ Lds−β/ν−d, where the change in expo-
nent reflects the freezing of spins or, equivalently, decay of
magnetization, as L → ∞. As will be argued below, the
simplest expectation is that the exponent dI = ds −β/ν,
so that q ∼ LdI−d. This is consistent with the assump-
tion of only one state at criticality.

IV. OUTLINE

The remainder of the paper gives the details of the nu-
merical results and related scaling arguments. Table I
is a summary of the numerical values of the exponents.
In Sec. V, we describe how the stiffness is computed and
demonstrate that its scaling is quite consistent with a
“conventional” second order phase transition. To aid in
developing understanding, we study how the probability
that the stiffness is exactly zero depends on the sample
shape. Sec. VI presents the three methods that we em-
ploy to compute the dimension of the domain walls gen-
erated by comparing different boundary conditions (the
same comparison used when calculating the stiffness.)
The methods differ somewhat in how they count regions
of “frozen” spins that are not affected by boundary con-
ditions. In the subsequent section (Sec. VII), we report
results on the magnetization m near hc. Though the dis-
tribution of m depends strongly on boundary conditions,

the scaling of these distributions are quite consistent with
a single value of hc (and also consistent with the methods
of finding hc in other sections.) Our study of the scaling
of the surfaces of spin clusters with their volumes is sum-
marized in Sec. VIII. Besides giving a fractal dimension
dc

s consistent with the domain wall dimension ds, these
computations can be used to separately infer β/ν, given
an understanding of magnetization and correlation func-
tions based upon a domain wall picture. Our estimates
for the singular behavior of the specific heat are included
in this section. The general scaling picture that connects
these results is reviewed in more detail in Sec. IX. In Sec.
X, we report results of how the spin configurations de-
pend on sample size and boundary conditions for a fixed
disorder realization. These results are consistent with a
single transition separating a (large h, disordered) phase
with a single thermodynamic limit from a (small h, or-
dered) phase with two distinct thermodynamic limits. In
the Summary (Sec. XI), we review the scenario for the
transition that is consistent with the numerical results
and contrast this scenario with alternate pictures.

V. STIFFNESS AND SCALING

To establish the location and nature of the transition,
we first focus on the stiffness of the system. In an or-
dered Ising phase, the (free) energy of a domain wall
across a system of size Ld will be Σ ≈ σLd−1 with σ the
interfacial tension. At an ordinary first order transition,
the interfacial tension is discontinuous at the transition,
while near a second order transition, it goes smoothly to
zero. For a zero-temperature transition, the interfacial
tension vanishes with a variant of Widom scaling2

σ ∼ (hc − h)(d−1−θ)ν. (22)

To probe the stiffness of a random system takes some
care. For a random field system, there is no exact sym-
metry between the up and the down spins but only a
statistical symmetry of the distribution of the random
fields. Thus, for example, for a given sample in the or-
dered phase, the energy of the up state — obtained with
up boundary conditions (BCs) — will differ from that of
the down state (obtained from down BCs), by a random

amount of order
√
V arising from the differing effects of

the random fields on the two states. In order to compute
the interfacial energy it is useful to subtract as much as
possible of this random “bulk” energy so as to be left with
a quantity that is as-close-as-possible to an “interfacial”
energy.

A. Definition of the stiffness

To obtain the stiffness of a sample, we compute the
symmetrized energy difference between antiparallel and
parallel boundary conditions. This is computed from the
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TABLE I: Table of numerical estimates. The exponent or constant name, computed value, primary method for inferring the
value, section discussed, and most relevant figure are listed.

Symbol Value Definition and data used

θ 1.49 ± 0.03 Scaling of stiffness at hc, violation of hyperscaling.

Found from scaling of stiffness with L and h − hc, see Sec. V and Fig. 2.

hc 2.270 ± 0.004 Critical value of the random field.

Determined from constancy in P0, probability of zero stiffness (see Fig. 4 and Sec. V),

and consistent with estimates from convergence of effective dimension estimates d̃s,I,J ,

scaling of ∆m2 peak locations with L, scaling of |m| with L (Fig. 19),

and window change probabilities (Fig. 29).

ν 1.37 ± 0.09 Correlation length exponent.

Found from scaling of the stiffness with L Sec. V and Fig. 2, with hc fixed by P0 measurements.

Consistent with scaling of ∆m2 peak locations with L.

ζ 0.66 ± 0.03 Roughness of domain walls in the ferromagnetic phase.

Found using anisotropic scaling (Fig. 13) and effective exponent in L2/3 × L2 samples.

See Sec. VIC.

ds 2.30 ± 0.04 Fractal dimension of connected domain wall at h = hc.

Found from surface of U++,+−, as shown in Fig. 11.

See Fig. 12 and Sec. VIB.

dI 2.24 ± 0.03 “Incongruent” fractal dimension of domain wall at criticality.

Box counting of incongruent volumes (disconnected wall). See Fig. 15 and Sec. VID.

Consistent with scaling of state overlap probabilities shown in Fig. 29.

dJ 2.18 ± 0.03 Energy “fractal dimension” at h = hc.

Found from the exchange part, ΣJ , of the stiffness.

See Fig. 16 and Sec. VIE.

dc
s 2.27 ± 0.02 Fractal dimension of the surface of spin clusters.

See Fig. 22 and Sec. VIIIA.

ρ∞ 0.0019 ± 0.0004 Probability per scale e of crossing a spin cluster surface at h = hc.

See Sec. VIIIB and Figs. 23, 23, and 25.

β/ν 0.011 ± 0.003 Ratio of magnetization exponent to ν.

Determined from ρ∞ and consistent with scaling of |m| vs. L at criticality.

See Fig. 19 and Sec. IXA.

β 0.017 ± 0.005 Magnetization exponent, found from β/ν and ν.

(α − 1)/ν −0.74 ± 0.02 Combination of heat capacity exponent α and ν

Found using value for dc
s and Eq. (56).

α −0.01 ± 0.09 Heat capacity exponent, found using Eq. (56) and ν.

Consistent with modified hyperscaling Eq. (6) and the value α = −0.12 ± 0.12 found

from a fit to the bond energy density EJ (L) at hc and ν.

ground state energies for four different boundary con-
ditions on a given sample, denoted ++, +−, −+ and
−−. These correspond to fixing the spins to have values
s = +1 or s = −1 on the left or right sides while imposing
periodic boundary conditions in the other two directions.
For example, +− has spins fixed to +1 on the left and
to −1 on the right. The interface energy is then defined
as32

Σ ≡ (E+− + E−+ − E++ − E−−)/2. (23)

Note that the average over samples of Σ will be the same
as that of E+W ≡ E+−−E++. Studying Σ, however, re-
duces the effects of energy changes near the boundaries

that are caused by the differing boundary conditions: in
Σ, each boundary condition on each side appears twice
but with opposite signs so that these effects cancel. This
cancellation will be most pronounced well into the disor-
dered phase.

In the disordered phase, the boundary conditions typ-
ically only affect layers near the boundaries with thick-
ness of order the correlation length ξ; deep in the inte-
rior (for system sizes L ≫ ξ) the spins will be frozen,
completely unaffected by the boundary conditions. The
average energy of the boundary layers will, because of
the statistical symmetry, be independent of whether the
boundary conditions are plus or minus. But there will
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be a random part of the boundary energy, with magni-

tude of order
√

Ld−1, that is sensitive to the boundary
condition. Thus in three dimensions, E+W will typically
be of order L even in the disordered phase. In contrast,
the stiffness Σ will typically be exactly zero because of
the cancellation of the boundary energies and the con-
comitant frozen interior which blocks any knowledge of
the spins near one face about the boundary conditions
on the opposite face. In general, the distribution for Σ
contains a δ-function contribution with some weight

P0 ≡ Prob[Σ = 0]. (24)

Sample configurations from simulations are illustrated
in Fig. 1 with two-dimensional slices shown. Part (a)
of the figure illustrates a situation somewhat into the
disordered phase in which the left and right boundaries
are effectively decoupled as discussed above. The frozen

spins, those that are the same with all four boundary
conditions, are indicated by dark or white squares in part
(c) of the figure, while those that are affected by the BCs,
the controllable spins, are indicated by gray squares.

The behavior in the ordered phase is quite different as
can be seen in the parts (b) and (d) of Fig. 1. In this
case, the difference between the −−, the +− and the
++ boundary conditions can be well characterized by a
+|− domain wall that has a minimum energy position
somewhat to the left of the center. Similarly the differ-
ence between the −−, the −+ and the ++ boundary
conditions is characterized by a −|+ domain wall whose
minimum energy position is somewhat to the right of the
center. The stiffness of this sample will thus be half the
sum of energies of the two types of walls plus the energy
of the random fields (here predominantly negative) in the
region between the two favored positions of the walls; the
contribution of the random fields in this region will not

cancel.
This picture yields a stiffness in the ordered phase with

a mean of order Ld−1 = L2 and variations around this
mean of order Ld/2 = L

3

2 , the variations being dominated
by the random fields in between the positions of the two
types of walls. In the ordered phase for h < hc, P0 → 0 —
apparently exponentially fast or faster in L — as L → ∞.

At the critical point, the behavior is qualitatively like
that in the ordered phase. But here the energy cost of
the interface is much lower, the interface itself is fractal,
and, in the regions of controllable spins that are otherwise
flipped by the changing boundary conditions, there are
large frozen unflipped “holes”.

B. Statistics of the stiffness

The stiffness Σ was determined by finding the ground
states for a single sample subject to each of the four
boundary conditions ++, −−, −+ and +−. By study-
ing many samples, we computed the distribution of Σ for
various system sizes and random field strengths. In par-
ticular, we computed both the probability P0 that Σ = 0

L = 40, h = 2.800

(a)

- - - +

+ - + +

L = 40, h = 2.200

(b)

- - - +

+ - + +

(c)

L = 40, h = 2.800

(d)

L = 40, h = 2.200

FIG. 1: Pictures of planar slices (z = 0 ) of configurations,
for fields (a) h = 2.8 and (b) h = 2.2, in samples of size
403. The slices shown at each h are the four combinations
of boundary conditions −− (top left), −+ (top right), +−
(bottom left), and ++ (bottom right), where the left and
right faces (in the x direction) are fixed + or − and periodic
boundary conditions are in effect for the y (up/down) and
z (out of the page) directions. The dark squares indicate
an up spin at that location in the slice. The −− and ++
visualizations for h = 2.2 show the presence of minority spin
“bubbles” embedded in the bulk. A summary of the effect of
the boundary conditions for h = 2.8 and h = 2.2 are shown
in parts (c) and (d), respectively. Dark and light squares
correspond to up and down spins, respectively, that are frozen,
i.e., invariant under this set of boundary conditions. The
gray controllable spins can be modified by choosing among
the four boundary conditions. For h = 2.8, the gray volume
is composed of two unconnected regions anchored on the two
controlled boundaries, so that the stiffness Σ = 0. In contrast,
at h = 2.2, in the sample shown, the gray region connects the
two sides and Σ 6= 0.
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as well as the mean stiffness Σ, denoting, as usual, av-
erages over the randomness by overlines. For the bulk
of the computations, ground states were found for cubic
samples of size L3 and anisotropic samples of size 2L×L2

with the length along a (100) axis of the lattice perpen-
dicular to the controlled faces, the x-direction, being 2L.
To check that the results were not artificially influenced
by lattice orientation effects, we also computed values of
Σ for two types of samples whose controlled faces are
L × L rhombi, with L and 4L layers, respectively, sepa-
rating the two faces along the (111) direction. Note that

such (111) layers are separated by a distance of 1/
√

3,
rather than the distance of 1 that separates the (100)
layers. As the lattice in both of these geometries is cu-
bic and the ferromagnetic couplings are the same, the hc

found should be the same in the two orientations.

If the transition is second order, the mean interface
energy should scale as

Σ ≈ CLθS[L1/ν(h − hc)K], (25)

where the exponent θ sets the scaling of the energy at
the critical point, ν is the correlation length exponent, S
a universal scaling function that depends on the shape of
the sample, and K and C are non-universal coefficients.
Using this scaling form and varying θ, ν and hc yields a
good collapse of the data, as shown in Fig. 2 for the (100)
samples. By varying the exponents in the scaling plot, we
estimate the values hc = 2.27± 0.01, θ = 1.50± 0.08 and
ν = 1.35±0.20. Using the data for P0 to fix hc = 2.270 as
discussed below, gives θ = 1.49±0.02 and ν = 1.37±0.09.
The excellent collapse of the data strongly support the
conclusion that the phase transition is second order.

The value of θ is in quantitative agreement with results
from Monte Carlo simulations at finite temperature,12

which found θ = 1.53±0.10. It is also within the bounds
determined from various arguments:

d

2
− β

ν
≤ θ ≤ d

2
; (26)

the lower bound arising from scaling laws and a rigor-
ous inequality2,33. The upper bound follows from the
observation that any larger value of θ would imply that
the system would be stable — by the argument of Imry
and Ma34 — to an increase of the random field and thus
should not be at the critical point. Since β/ν is extremely
small, we expect that the true value of θ should be just
slightly below 3/2. This is to be contrasted with the
“dimensional reduction” result predicted to obtain to all
orders in a d = 6 − ǫ expansion of θ = 2 (but see recent
claims in Ref. 35).

The correlation exponent ν must be no smaller than
2/d in random systems.36 Our result easily satisfies this
bound. Indeed, it is substantially larger than this lower
bound and even more so than the mean-field value of one
half; this is presumably associated with proximity to the
lower critical dimension of dℓ = 2.

-3 -2 -1 0 1 2 3 4
(h-h

c
) L

1/ν

0

1

2

3

4

  Σ 
L

-θ

L = 16
L = 32
L = 64
L = 128

L x L
2
, h

c
 = 2.270, θ = 1.49, ν = 1.37

-3 -2 -1 0 1 2 3 4
(h-h

c
) L

1/ν

0

0.5

1

  Σ 
L

-θ

L = 16
L = 32
L = 64

2L x L
2
, h

c
 = 2.270, θ = 1.49, ν = 1.37

FIG. 2: Scaling plot for the sample averaged stiffness Σ for
(a) isotropic samples of volume L3 and (b) anisotropic samples
of volume 2L×L2, with the longest axis being the direction in
which the boundary conditions are varied. Note that the ver-
tical scales differ. The stiffness is calculated by the symmetric
comparison of four ground state energies: the energies for the
four choices of spin up and spin down boundary conditions
on the left and right sides and with periodic boundary condi-
tions in the other two directions. The fit shown is for energy
exponent θ = 1.49, correlation length exponent ν = 1.37 and
critical value hc = 2.270. This scaling is consistent within
errors, except for the L = 16 isotropic samples. Statistical
(1σ) error bars are shown.

1. Stiffness in the disordered phase

Fig. 3 shows the dependence of the mean stiffness on
the linear dimension L for the L × L2 samples. The de-
cay of the stiffness is well fit by a decaying exponential
Σ ∼ exp(−L/ξΣ), for h > hc and L >> ξΣ (roughly
when Σ < 0.2.) The correlation length can be inferred
from the fits. The values for ξΣ obtained from the 2L×L2

samples, using a similar plot, are in agreement with those
from the cubic sample to within 10% for each h. The val-
ues of the correlation lengths ξΣ found are consistent with
a divergence of ξΣ ∼ (h − hc)

−1.3±0.1, taking hc = 2.27,
consistent with our other determinations of ν, though the
data is not very near hc. It may be possible to make a
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h = 2.60
h = 2.80
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2

FIG. 3: Plot of the decay of the mean stiffness Σ with L,
in the disordered phase. The lines are fits to the data for
Σ < 0.2 of the form Σ ∼ exp(−L/ξΣ). In conjunction with
similar fits for 2L × L samples, which allow us to estimate
errors from finite size fitting, we find the values ξΣ = 26 ± 4,
7 ± 1 and 4.0 ± 0.4 for h = 2.4, 2.6, and 2.8, respectively.

more accurate determination of ν by more careful calcu-
lations using h values somewhat nearer to hc.

For the 2L × L2 samples, P0, the probability of the
stiffness being zero, can be appreciable for accessible L
and h near hc. The data for fixed h ≥ hc are consistent
with P0 approaching one exponentially with L, although
other forms cannot be ruled out.

2. Stiffness at criticality

At the critical point, a non-trivial scaling function

Pc(Σ/CLθ) ≡ P (Σ/CLθ, 0) (27)

for the distribution of Σ, would suggest that P0 should
approach a finite fixed point value. In Fig. 4(a) a plot
of P0 is shown as a function of L for various h. Observe
that opposite boundaries are almost always coupled at
hc in the cubic samples:

P cubic
0 (hc) ≃ 0.04 ± 0.01 (28)

This value for P0 is so small that to verify that P0 indeed
approaches a non-zero constant at the transition, we also
performed simulations for anisotropic samples of various
shapes. In general, we expect that the distribution of Σ
at the critical point, Pc, will depend on the shape of the
sample with long thin samples typically yielding lower
stiffness and a higher probability of the stiffness vanishing
than short fat ones of the same cross section.

For rectilinear samples of dimensions 2L×L2, with the
controlled boundaries at opposite ends of the long (100)
axis, we find that P0 approaches a value well away from
zero, P0 = 0.298 ± 0.005, at h = 2.270 (Fig. 4(b)). For
rhomboidal samples with L3 spins consisting of L lay-
ers and a length along the (111) control axis of L/

√
3,

10 20 50 100
L

0.00

0.05

0.10

P
0

h = 2.000
h = 2.240
h = 2.270
h = 2.300
h = 2.400
h = 2.600

(a)  L x L
2

10 20 50 100
L

0.00

0.10

0.20

0.30

0.40

0.50

P
0

h = 1.800
h = 2.000
h = 2.200
h = 2.240
h = 2.255
h = 2.270
h = 2.285
h = 2.300
h = 2.400

(b) 2L x L
2

10 20 50 100
L

0.00

0.10

0.20

0.30

0.40

0.50

P
0

h = 2.240
h = 2.270
h = 2.300

(c) (111) , 4L/3
1/2

 x 3
1/2

L
2

FIG. 4: Plot of the probability P0(h, L) that the stiff-
ness Σ is zero, for (a) isotropic samples of volume L3 and
(b) anisotropic samples of volume 2L × L2, with the longest
axis being the direction in which the boundary conditions are
varied, and (c) anisotropic samples of volume 4L3, with the
boundary faces in the (111) plane. For all sample shapes, the
convergence to a fixed value of P0 as L → ∞ for h = 2.270
suggests the location of the critical point. The solid lines con-
nect the points for h = 2.270 to demonstrate convergence of
P0 to a constant, within statistical errors. As P0 is very nearly
zero for isotropic samples (P0(2.27,∞) ≈ 0.04, if the appar-
ent convergence holds at large L), the errors in determining hc

are larger. From the 2L × L2 anisotropic samples, where the
apparent extrapolation is P0(2.27,∞) = 0.298 ± 0.05, hc =
2.270 ± 0.004. For the (111) oriented samples, with volume
of 4L/

√
3×

√
3L2 (layer separation × layer area), the data is

also consistent with hc = 2.270, with P0 = 0.23 ± 0.01. Sep-
arate results, not shown, for (100) samples of shape 4L × L2

give a value of P0(2.27, 16 ≤ L ≤ 64) = 0.79 ± 0.02.
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FIG. 5: Probability density ρ̂(σ) of the values of the inter-
facial energy density σ = L−2Σ in the ordered phase with
h = 1.60 < hc. As the sample size grows larger, the relative
sample-to-sample variations of σ decrease, consistent with an
approach to a δ-function at the mean value σ(h = 1.6) ≈ 0.69,
for both the L3 and 2L × L2 samples,

P0 is not distinguishable from zero. However, for longer
rhomboidal samples with 4L3 spins consisting of 4L lay-
ers and a length 4L/

√
3 along the control axis, we find

P0 = 0.21±0.01 at h = 2.270 for 16 ≤ L ≤ 64 (Fig. 4(c)).
Imposing convergence of P0 to a fixed (non-trivial) value
as L → ∞ gives a critical value of hc = 2.270. These
anisotropic rectilinear and long rhomboidal samples yield
our most precise estimate for hc, Eq.(3).

We should expect P0 to be a smooth function of the
shape; the fact that it is far from zero in samples with
aspect ratio of order two lends strong support to the con-
jecture that it will be non-zero for any shape. The ob-
servation that it is small for cubical samples is related,
as will be explained below, to the smallness of β.

3. Comparison of distributions for Σ

The complete probability distributions for Σ at vari-
ous values of h are plotted in Figs. 5 through Fig. 8 for
both the cubical and the elongated (100) samples. For
h = 1.6, the distribution of Σ appears to approach a nar-
row distribution about Σ ≈ (1.39)L2, regardless of the
sample shape; this is as expected for the ordered phase.
For h = 2.27, the critical point, the distribution obeys the
simple scaling form of Eq.(2) for both the isotropic and
anisotropic samples but with a different scaling functions
for each of the two shapes. Fig. 8 shows the integrated
probability distributions for h = 2.40. As L increases,
the mean interfacial energy decreases approximately ex-
ponentially, and P0 approaches 1.

0 1 2 3 4

ΣL
-1.49

0

0.2

0.4

ρ(
ΣL

-1
.4

9 )

16 x 16
2

32 x 32
2

64 x 64
2

128 x 128
2

16 x 8
2

32 x 16
2

64 x 32
2

128 x 64
2

h = 2.270

FIG. 6: Probability density ρ(Σ) of the scaled non-zero val-
ues of ΣL−θ with θ = 1.49, for h = 2.270 ≈ hc. A δ-function
at Σ = 0 with weight P0 ≈ 0.04 (≈ 0.298) for the L3 (2L×L2)
samples is not shown. The distributions for samples with lin-
ear dimensions L greater than 16 are statistically consistent
with a fixed point distribution for Σ, with a characteristic
scale Σ0 ∼ L1.49 and a form dependent on the shape of the
samples.

0 1 2 3 4

ΣL
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0.4

0.6
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1
I(
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.4
9 )

h = 2.270

2L x L
2
, L = 8 to 64

L x L
2
, L = 16 to 128

FIG. 7: Scaling plot for the cumulative distribution I(Σ) =
∫ Σ

0
dΣ′ρ(Σ′) of the stiffness, for h = 2.270 ≈ hc. The stiffness

Σ has been scaled by the energy scale Lθ, with θ = 1.49. The
labels indicate the sample shapes (2L × L2 and L × L2) for
each set of curves. For each sample shape, four sample sizes
are plotted (16 × 82 → 128 × 642 and 163 → 1283.) At the
resolution shown, the scaled curves are nearly independent of
L. The intercept at Σ = 0 corresponds to I(0) = P0, the
probability of a sample having zero stiffness. As in Fig. 6, the
curves converge to a fixed point distribution.

VI. GEOMETRY OF DOMAIN WALLS

In addition to the scaling properties of the energies of
domain walls, we are also interested in their geometrical
properties. These properties are expected to be related to
the properties of the surfaces of spin clusters that are ei-
ther frozen or induced by bulk perturbations (as opposed
to boundary perturbations), to the effects of boundary
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FIG. 8: Cumulative distribution Î(σ) =
∫ σ

0
dσ′ρ̂(σ′) for h =

2.400 > hc. As the sample size increases, P0, given by the
intercept of the curves at Σ = 0, increases, and the typical
non-zero values of σ ≡ ΣL−2 rapidly decrease. From Fig. 3,
the length scale for the decay of the stiffness is ξΣ = 26 ± 4.
This length is comparable to the mid-range system sizes here.
Note that P0 rises more quickly and the typical non-zero σ
decays more rapidly with L in the anisotropic samples.

conditions on the deep interior of a sample, and to the
general scaling picture for the transition.

In the ferromagnetic phase, the interfacial tension σ is
positive. The domain walls will appear flatter and flat-
ter on large length scales with surface area proportional
to L2 but nevertheless divergent roughness characterized
by a roughness exponent ζ = 2/3 and random energy
variations that scale as LθI , with θI = 4/3.37,38,39,40

At the critical point, the interfacial tension of the walls
vanishes. Thus we should not except them to be flat even
on large scales; the natural expectation is that they will
be fractal with surface area scaling as

A ∼ Lds (29)

with ds a fractal dimension. One might expect, a priori,
that the exponent ds would be an independent exponent
as it is not obviously related to θ, β, and ν. For the
simple scaling scenario to obtain, we expect ds to be in
the range:

d − 1 < ds < d. (30)

If the transition were first order, one would expect ds =
d−1 as in the ferromagnetic phase (more precisely, some
fraction of samples at the transition would show such
interfaces). If, at the other extreme, it were found that
ds = d, this would mean that the “walls” would be space-
filling (up to possible logarithmic factors); this would cast
doubt on the overall scaling scenario for excitations, etc,
near the phase transition.2

A. Frozen spin regions

To study interfaces we would like to compare the spin
configurations found using the boundary conditions ++,
+−, −+, and −− as discussed in the previous section.
But in random field systems, there is an intrinsic dif-
ficulty associated with defining an interface: this arises
from the presence of frozen regions which are not affected
by changing from ++ boundary conditions to −− bound-
ary conditions and thus are unaffected by any changes
in the boundary conditions on the controlled surfaces.41

With mixed boundary conditions, say +−, the interface
between the region that is like the “up” (++) state and
the region that is like the “down” (−−) state can pass
along the boundary of the frozen regions. Are we to count
such sections as truly part of the interface? Or should we
exclude the frozen regions from the system and think of
the interface as bisecting only the remaining controllable
regions?

We are thus led to consider several methods for mea-
suring the surface area of “interfaces” anticipating that
we might obtain results which depend on the definition.
For these considerations, it is useful to refer to Fig. 9,
which is a sketch of what might happen when Σ = 0, and
Fig. 10, which is a representation of what might happen
for Σ 6= 0.

Configurations are shown for each of the four bound-
ary combinations: the circles enclose regions of “frozen
spins” — those that are constant under all four BCs
— with solid lines indicating broken (unsatisfied) bonds.
The dashed lines indicate the location of a frozen clus-
ter embedded in a set of like spins. The interior of the
configurations in Fig. 10 are also frozen. Note that the
frozen spin regions can contain nested subclusters of al-
ternating spins. In Fig. 9, spins outside of the frozen
spin regions can be either + or −, depending on the BC
combination. These two figures are caricatures of config-
urations such as those shown in Fig. 1. Note that Fig. 9
does not show all of the possibilities. Also, these pictures
are two-dimensional slices, which hides the possibilities
of regions having three dimensional “handles” and mini-
mizes the potential role of simultaneous percolation of +
and − spins in some regions.

B. Surface exponent ds

The first method of defining an interface uses just two
different boundary conditions, for example, the +− to
++ comparison. This change in boundary conditions
causes a connected set of spins anchored to the right face
to flip from up to down along with the forced right bound-
ary spins when the ++ boundaries are replaced with +−.
This set of changing sites, which we denote C+−,++, has
a bounding surface — indicated by the heavy and light
lines in Fig. 11, for the spin configurations of Fig. 9. But
some of this boundary will surround islands of fixed up
spins (some of which themselves have down spin inclu-
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FIG. 9: Schematics of the spin configurations for four differ-
ent boundary condition combinations, for a case with Σ 6= 0.
Here, there is a set of controllable spins, connected across the
sample, that can be either + or −, depending on the boundary
conditions. These are the majority of the spins in the figure
shown. The frozen spins are those that are constant under
the four boundary conditions −−, −+, +−, and ++; these
are indicated here by the circular regions. Solid lines separate
spins of opposite sign, while the dashed lines indicate frozen
islands that are of the same sign as the surrounding spins.
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FIG. 10: Schematics of the spin configurations for four differ-
ent boundary condition combinations, for a case with Σ = 0.
In addition to the frozen islands, shown as circles as in Fig. 9,
there is a set of frozen interior spins that spans the sample in
the directions perpendicular to the horizontal (control) axis.
Conventions for solid and dashed lines are as in Fig. 9. The
surfaces used to measure ds are the two surfaces of the frozen
interior, but the measure used to compute dI is zero, as long
as the boxes have side B smaller than the size of the frozen
interior. Also zero is the exchange stiffness ΣJ , as each bond
that is broken in both the +− and −+ configurations is also
broken in both the −− and ++ configurations, while bonds
that are broken exactly once under one of the two antiparal-
lel BCs is likewise broken exactly once under parallel BCs, so
that all broken bonds cancel in the signed sum that defines
ΣJ .

sions) that are disconnected from both controlled faces.
The number of such islands (light circles in Fig. 11) will
scale with the volume of the C+−,++ region and their
boundaries will contribute an amount of order this vol-
ume to the surface area of C+−,++. This internal contri-
bution to the surface area will, on average, be dominant
in large systems when h < hc, but it is clearly not prop-
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FIG. 11: Schematics of the definitions of domain wall mea-
sures, based on the configurations of Fig. 9. (a) The heavy
solid lines indicate the boundaries used to define the domain
walls for the calculation of the fractal dimension ds of the
spanning wall obtained by comparing the +− and ++ config-
urations. The region of changed spins connected to the right
face is C+−,++, which has both the heavy and light lines as
boundary, while the unchanged connected region anchored on
the left face, with the single solid line as boundary, is U+−,++.
(b) Boxes used for determining dI , the dimension of the lo-
cally incongruent regions. The number of boxes of side B
in which the +− configuration differs from both the ++ and
−− configurations scales as LdI . The broken bonds around
the frozen islands in the ++ or −− configurations are not
counted. (c) The signed sum of broken bonds that defines
ΣJ , the exchange contribution to the stiffness Σ. Solid lines
indicate positive contributions and the long dashed lines in-
dicate negative contributions.

erly part of the domain wall.

What we are interested in is the part of the bound-
ary of C+−,++ which interfaces with the other “half” of
the system. One way to define a domain wall is thus
to start at the unmodified left face and find the set of
spins connected to this face that do not change when the
boundary conditions on the right face are changed; this
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set, which we denote U+−,++, is simply connected, i.e.
it has no interior holes, although it could have handles.
The surface of the set U+−,++ is just its interface with the
set C+−,++ that flips. This U − C interface, which spans
the whole cross-section with no holes and thus includes
some boundary of frozen regions, is our first definition of
a domain wall of interest.

Averaging over samples at fixed h gives a mean surface
area of this U − C domain wall, A(h, L). (For these and
related studies, we used 5 × 103 to 20 × 103 samples for
smaller sample sizes, 83 through 643, and 300 to 5 × 103

samples for the largest sample size, 1283.) Estimates of
the dimension of these surfaces, ds, can be obtained from
the discrete logarithmic derivative,

d̃s(h, L) = ln[A(h,
√

2L)/A(h, L/
√

2)]/ ln(2). (31)

A plot of these estimates, with statistical errors, are
shown in Fig. 12. The estimates for the case of h =
2.27 ≃ hc appear to approach a fixed value, ds, as
L → ∞, while d̃s → 2 for h < hc, as expected. For
h > hc, the apparent exponent either starts at d̃s > ds

and falls, or first rises before dropping with L. This be-
havior presumably arises for L ≪ ξ, where the growing
volume allows for larger surface area, while for L ≫ ξ,
the domain walls become confined to a distance less than
ξ from the right and left faces of the sample and thus
effectively become two dimensional. From this plot and
the results for the (111) orientation (Fig. 17), we estimate

ds = 2.30 ± 0.04, (32)

where systematic errors due to finite size effects and un-
certainty in hc dominate the statistical uncertainties.

C. Roughness in the ferromagnetic phase

We have verified that the surface roughness of the
non-fractal domain walls in the ferromagnetic phase are
consistent with theoretical expectations.37,38,39,40 Specif-
ically, we calculated the “height” of the surfaces — devi-
ation from flat — in anisotropic samples of shape X×L2,
with the outer two layers in the x-direction fixed to be
+ or − and, as before, the sample periodic in the y and
z directions. Again, to reduce lattice artifacts, we use
samples whose “x” faces are oriented in either the (100)
or (111) directions.

As overhangs are possible in these interfaces, it is nec-
essary to define carefully the “height” function, u(y, z),:
for a given y and z coordinates, we use twice the average
of the x-coordinates of the set of spins in U+−,−− ; in
the absence of overhangs, this gives the desired surface
height. The sample averaged rms width W is defined by
W 2 = [u2] − [u]2, where the square brackets indicate the
average of u(y, z) over the y−z coordinates of the sample.
Simple scaling in the ordered phase suggests that

W = LζT (h, X/Lζ), (33)
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FIG. 12: Effective dimensions d̃s(h, L) obtained from a loga-
rithmic derivative of the surface area with respect to L. These
are used to estimate the fractal dimension ds ≡ d̃s(hc,∞).

The values d̃s(h, L) are calculated from the surface of the con-
nected set of spins rooted at one face that is unchanged when
the spins on the opposite face of the sample are flipped. The
scaling of the area of this surface with L yields the estimates
shown, via Eq. (31). The error bars represent 1σ statistical
uncertainties. The values converge to ds = 2.30 ± 0.04 for h
near 2.27 ≈ hc, with the error reflecting the uncertainty in hc

and the estimated magnitude of finite size corrections. The
lines connect data points with the same h.
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FIG. 13: Scaling plot for the roughness of a forced interface
in the ferromagnetically ordered phase as a function of the
aspect ratio of an X × L × L sample. For the values of h
shown here with h < hc, the width of the interface scales as
W ∼ Lζ with the best fit ζ = 0.64(3), comparable to the
expected exact result ζ = 2/3. The statistical 1σ error bars
are 1/5 of the symbol sizes or less.

for large values of X and L, with T a geometry dependent
function. We find that using ζ = 0.64 ± 0.03, consistent
with the expected value37 ζ = 2/3, describes the data
fairly well, as seen in Fig. 13.

The convergence of the roughness of the interface to
its asymptotic form is made more apparent by defining
an effective scale dependent roughness exponent

ζ̃(h, (L1L2)
1/2) = ln(W2/W1)/ ln(L2/L1) (34)
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FIG. 14: Plot of the effective roughness exponent ζ̃(h, L) in
the ordered phase, for h = 2.0 with (100) oriented faces, and
h = 1.0, 2.0, 2.1, 2.4, with (111) oriented faces. The samples

have X = rL2/3 layers (of area L2 for (100) and area
√

3L2

for (111).) For all samples in the ordered phase, the exponent
approaches ζ = 0.66 ± 0.03 as L → ∞, consistent with the
expected ζ = 2/3. For comparison, data for the disordered
phase is included; the apparent exponent decreases for large
systems when h > hc.

where the X1,2 are chosen to have the values rL
2/3
1,2 ,with

r fixed at close to unity. Assuming that ζ is indeed
near 2/3, this choice ensures that a typical wall is found,
rather than the best of a set of ∼ L1−ζ possibilities that
would result from using a sample that was much longer
than Lζ in the x direction. Such a sample shape would
result in the same asymptotic value for ζ, but would have
(probably logarithmic) corrections to scaling. As can be
seen in Fig. 14, the effective exponent appears to con-
verge to ζ = 0.66 ± 0.03 in both geometries. Note that
even with the appropriate anisotropic scaling, the correc-
tions to scaling are large for samples up to L = 100 with
the corresponding X ∼ 20.

D. Incongruence box-counting interface exponent

dI

For an alternative measurement of the dimension of the
domain walls at criticality, we have used a box counting

method. In this method, we compare the configuration
given +− (or −+) boundary conditions with both ++
and −− configurations. This is done at various scales w,
by partitioning the sample into (L/B)3 cubes of volume
B3. If the configuration with twisted boundary condi-
tions differs from both ++ and −− in a given volume
B3, that cube must intersect the domain wall. But this
wall will not include any boundary of frozen regions that
is isolated from other broken bonds by a distance of at
least B. In particular, when Σ = 0, the number of such
intersecting boxes N(B, L, h) will be zero for B smaller
than the size of the frozen interior region. For exam-
ple, the +− and −+ configurations in Fig. 10 are locally
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FIG. 15: Estimates d̃I(h, L) of the box-counting fractal di-

mension dI = d̃I(hc,∞), for the (100) orientation of con-
trolled faces. Comparisons of the +− configuration are made
with the −− and ++ configurations in boxes of volume B3.
If the +− configuration differs from both of the others, that
box is considered part of the domain wall. The finite loga-
rithmic derivative of the scaling of the number of such boxes
with sample size L yields the estimates shown with the lines
connecting data points with the same h. The error bars repre-
sent 1σ statistical uncertainties. For h = 2.27, the dimension
estimate converges to dI = 2.24±0.03, the error being a com-
bination of statistical error and systematic errors (≈ 0.02)
caused by finite size effects and uncertainties in hc.

congruent everywhere with either the −− or the ++ con-
figuration. Thus only for boxes larger than the width of
the interior region will a domain wall be apparent.

The scaling of the number of intersecting boxes
N(B, L, h) with L gives an alternate estimate of an ef-
fective fractal dimension which we call dI(h, L), antici-
pating that N ∼ (L/B)dI at the critical point (see Fig.
11(b).) Using the same form of the discrete logarithmic
derivative between scales L and 2L as in Eq. (31) gives

the effective exponent d̃I(h, L), as summarized in Figs.
15 and 17. This estimate yields a constant at large L,
within statistical errors, for h = 2.27 ≃ hc and gives a
value dI = 2.24 ± 0.03.

We note that a useful compatible definition for dI can
be based on bonds rather than spin blocks: count the
number of bonds that are broken with the +− or −+
BCs that are satisfied with both the ++ and −− BCs.
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The number of such bonds N ′ should have the same scal-
ing form as N does for fixed B. We have used this bond
definition in a smaller number of samples and find results
for d̃I(h, L) at large L consistent with the spin block def-
inition of dI defined above.

E. Exchange stiffness exponent dJ

A third measure that we have used to study domain
wall geometry is the contribution of the exchange energy

to the stiffness Σ. This we denote ΣJ . It is the signed

sum of the broken bond weights, counted as negative for
the −− and ++ configurations and positive for the −+
and +− configurations.

As in computing Σ, using the symmetrized energy dif-
ferences reduces boundary effects. If Σ = 0, then ΣJ = 0,
for example, though comparing the configurations with
++ and +− boundary conditions in such a sample will
reveal a domain wall while comparing those with ++
and −+ boundary conditions will reveal a second en-
tirely distinct domain wall. Either of these domain walls,
along with a portion of the frozen spins that make up the
boundary, would be counted in the method which yielded
ds. But in this symmetrized measure from ΣJ , the signed
sums would cancel, so that neither domain wall would be
counted. Similarly, when the box size B is smaller than
the size of the frozen interior, the measure used to find dI

would also be zero. Note, however, that ΣJ does include
some of the boundaries of the frozen regions but it does
so with signs that can be either positive or negative. In
the ordered phase, then, the exchange stiffness ΣJ will
include contributions from the region between the two do-
main walls that occur, contributions that would not have
been included in the other methods. The three proposed
measures are thus potentially all different, especially off-
critical, but perhaps also at criticality.

At the critical point the exchange energy part of the
symmetrized stiffness will have contributions from the
domain walls with holes, ∼ Lds−β/ν , equivalent to the
box counting measure of the domain wall, as well as con-
tributions from parts of the boundaries of the frozen re-
gions. The simplest expectation is that the the contribu-
tions from the frozen region boundaries will be random
in sign and thus less important in toto.

The mean of ΣJ(h, L) can be used to compute a fractal-
dimension-like quantity, dJ , for the interface via the as-
sumption that ΣJ ∼ LdJ at hc. The scale dependent
effective exponents from our data at h = 2.27, shown in
Fig. 16, yield an estimate of dJ = 2.18±0.02 that appears
to be slightly smaller than the other two dimensions ds

and dI .
One advantage of the exchange energy is that we can

relate this measure of the fractal dimension of the domain
walls at the critical point to the other exponents. If a
small additional exchange δJ is added to the Hamiltonian
(or equivalently if all the random fields were decreased in
magnitude by a uniform small amount) then the change
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FIG. 16: Estimates d̃J (h, L) of the scaling of the exchange
contribution to the stiffness defined as the total signed surface
area of the changes between ++, −−, −+ and +− boundary
conditions. The logarithmic derivative of ΣJ (L) gives the
values shown with the lines connecting data points with the
same h. The error bars represent 1σ statistical uncertainties.
For h = 2.27, the dimension estimate converges to dJ = 2.18±
0.03.
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FIG. 17: Estimates d̃s(h = 2.27, L), d̃I(h = 2.27, L), and

d̃J(h = 2.27, L) of the fractal dimensions using controlled
boundary surfaces in the (111) plane of the cubic lattice which
are rhombi with sides of L spins. The number of layers in the
sample, including the boundary planes, is L or 4L, as shown in
the key. The error bars represent 1σ statistical uncertainties
with the lines connecting data points with the same h. The
dimension estimates converge to ds = 2.30±0.02, dI = 2.25±
0.05, dJ = 2.18± 0.03; these are consistent within errors with
those from Figs. 12, 15, and 16.

in the stiffness would be simply

δΣ ≈ δJ

J
ΣJ . (35)

Since Σ ∼ Lθ while ΣJ ∼ LdJ with dJ > θ, the
change in the stiffness will become of order the stiff-
ness itself and thus strongly modify the system when
L ∼ (δJ)−1/(dJ−θ). This crossover length is thus a mea-
sure of the correlation length, ξ, and we thus expect the
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exponent equality

1

ν
= dJ − θ. (36)

This can be derived directly from the scaling form Eq.
(25) by differentiating with respect to J (equivalently
with respect to −h) and noting the thermodynamic iden-
tity between derivatives with respect to coefficients of
terms in the Hamiltonian and expectations of the corre-
sponding term. (Note that this is closely analogous to
the relation between ν and the energetic part of the in-
terfacial free energy at conventional finite temperature
critical points.) Assuming the scaling relation Eq. (36)
would give ν = 1.45 ± 0.10, a slightly different, but con-
sistent, value of ν than that from the scaling of the total
symmetrized stiffness Σ.

F. Comparison of domain wall exponents

Due to the subtleties introduced by frozen islands and
the representation of the Hamiltonian as the sum of do-
main wall and random field components, there are three
natural measurements of the domain wall surface and the
domain wall contributions to the stiffness. Each measure
has its own physical meaning. We will argue in Sec. IX B
that the difference between ds and dI is due to frozen
islands, and hence ds − dI should be related to β/ν.

VII. MAGNETIZATION

Having established the location and order of the tran-
sition, we now focus on an apparently problematic quan-
tity: the magnetization. Given sets of ground state spin
configurations {si}, the distribution of magnetizations
can be studied as a function of L and h. In order to bet-
ter understand the large volume limit, we have computed
the magnetization distributions for five different bound-

ary conditions: all boundary spins fixed to a single value,
either all positive or all negative (F ); boundary spins
fixed at independent random values (R); open boundary
conditions (O); periodic boundary conditions (P ); and
a combination (Q) with conditions P , O, and R along
each of the three axes . The fixed spin boundary condi-
tions will tend to favor ferromagnetism, the random will
tend to favor a disordered phase and the combination Q
appears to significantly reduce some finite size effects.

We first describe our results for the mean of the abso-
lute value of the magnetization density

|m| = |
∑

i

si|L−d (37)

for cubic samples with periodic boundary conditions (P).
Fig. 18 is a plot of our data as a function of h, for vari-
ous L; the magnetization drops off quite steeply near hc.
Fig. 19 shows the magnetization as a function of system
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FIG. 18: Mean absolute magnetization per spin, |m|, plotted
vs. h for various L, for periodic boundary conditions.

size, along with its discrete logarithmic derivative, which
yields an effective scale dependent exponent. To within
errors, the magnetization is consistent with power law
scaling,

m ∼ L−β/ν, (38)

with β/ν = 0.012 ± 0.004. For h < hc, the magnetiza-
tion appears to approach a constant (e.g., m(2.255, L →
∞) ≈ 0.952). For h > hc, the effective exponent de-
creases significantly as L increases.

For further analysis, we characterize the distributions
of m by the average over samples of the square of the
magnetization per spin, m2, and the root-mean-square
sample-to-sample variations of the square of the magne-
tization

∆m2 ≡
√

m4 − (m2)2. (39)

Our results for ∆m2 are shown in Fig. 20. As L is in-
creased, the peak magnitude of ∆m2 is seen to decrease
for some boundary conditions F , O and P , while it in-
creases for others R and Q. For boundary conditions R,
O, P , and Q, the peak heights appear to be converging
to a similar fixed value, bracketed from above and below
by the different sets of data. In general, we would expect
that the height of these peaks would scale for asymptot-
ically large sizes as L−2β/ν ; the data are thus consistent
with either β = 0 or with a very small β.

One can estimate the location of the transition by fit-
ting the data for ∆m2 near the peaks at five or more
values of h to a Gaussian form. (The Gaussian gives a
better fit than a parabolic form over a larger range of
h, though either form should give the same limit for h
near enough to the peak and L large enough.) The fit-
ted location of the peaks is extrapolated for all boundary
conditions as a function of L. We obtain agreement of
the extrapolations for 1.3 < ν < 1.45 with a value of
hc = 2.272 ± 0.004, consistent with the value from P0

and other estimates. We believe that this independent
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FIG. 19: (a) Mean absolute magnetization per spin, |m|,
plotted vs. L for various h (with periodic boundary con-
ditions.) The solid line is |m| = (1.0009)L−0.012 . (b)
The discrete logarithmic derivative ∆ ln(|m(L)|)/∆ ln(L) ≡
ln(|m(L′)|/|m(L))/ln(L′/L), vs.

√
LL′, with L′ ≈ 2L. This

is used to directly estimate β/ν, yielding β/ν = 0.012±0.004,
where the error bars are dominated by the range of values for
hc obtained by fitting over sizes up to L = 256.

estimate is relatively precise and robust, due to the va-
riety of boundary conditions used, with the variation in
the results giving an estimate of systematic uncertainties.

For the fixed spin boundary conditions, F , the peak
magnitude of m2 is apparently converging to a different

value (note that the magnetization near the surfaces will
vary less than with the other boundary conditions.) If
either these data, F , or the periodic boundary condition
data, P , at the critical point are used (rather than the
data near the peak) then a smaller value of ∆m2 is found,
roughly the same although apparently still distinct for
these two cases.

Collectively, our magnetization data would appear to
suggest a picture of the transition that is consistent with
that of reference Ref.13: three possible “states” at the
critical point, “up”, “down”, and “disordered” as would
occur at a first order para- to ferro- magnetic transition.
As we shall see, however, our other data and further
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FIG. 20: Magnitude of sample-to-sample fluctuations ∆m2

in the mean square magnetization per spin, as a function of
random field strength h, for various system sizes, L, (a) for
fixed si = +1 boundary conditions (F ), (b) for open (free)
boundary conditions (O), (c) for random fixed spin bound-
ary conditions (R), (d) for periodic boundary conditions (P ),
and (e) for mixed periodic, random fixed, and fixed boundary
conditions, one along each axis (Q). The curves are fit lo-
cally with Gaussians in the regime where ∆m2 is greater than
approximately 3/4 of its peak value. Extrapolating the peak
locations to L = ∞ gives a best fit value of ν = 1.38±0.08 and
hc = 2.272 ± 0.004, with the dominant errors being system-
atic errors arising from variations in the extrapolated values,
presumably due to corrections to scaling. The lines shown are
spline fits to visually organize the data.
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thought suggest that this picture, while a very good ap-
proximation, is not correct. We will argue that in fact
β is small but non-zero and thus in astronomically large
samples the magnetization will decay slowly to zero at
the critical point but with the scaling functions for the
distribution of the magnetization (and their moments)
depending on the type of boundary conditions as is the
case for pure systems at conventional critical points.42

Data suggesting this is presented in the next section.

VIII. SPIN CLUSTERS AT CRITICALITY

The distribution of the magnetization studied above
gives some information about the ground state correla-
tions of the RFIM. But because ground state correla-
tions between Ising spins are controlled by the proba-
bility that a pair of spins of interest are in opposite di-
rections, the observation that the magnetization at the
critical point tends to be rather close to saturation sug-
gests that the loss of correlations as the random field is
increased through the critical point may be associated
with rather rare events. In this section, we investigate
the nature of the effect that we believe gives the domi-
nant contribution: the occurrence of connected clusters
of spins of the one sign completely surrounded by spins of
the opposite sign. Because all of the exchanges are ferro-
magnetic, such isolated inverted clusters will, a fortiori,
not change when the boundary conditions are inverted:
either the spins surrounding them will flip in which case
they will be content the way they were, or the surround-
ing spins will not flip and the spins in the cluster will
be isolated from the boundary condition change. Thus
these isolated spin clusters are frozen.

We have computed the statistics of the domain walls
that enclose isolated spin clusters in 5000 or more sam-
ples of system sizes up to 1283 and 1000 samples of size
2563 at h = 2.27 ≈ hc. A slice of a configuration is
shown in Fig. 21. Statistical errors in the dimension
estimates and number distribution were computed by
a bootstrap method (resampling the statistics over the
computed configurations);43 the error bars indicate the
estimated rms fluctuations in the statistics at each clus-
ter size.

We note that previous work by Esser, Nowak and
Usadel44 studied the domain structure for a single sam-
ple size. They address questions of percolation in the
3D Gaussian RFIM, but they claim that the cluster dis-
tribution is not broad. We find, in contrast, that there
is a broad tail, which, though weak for smaller systems,
becomes more important as L increases at the critical
point. To directly contrast with the results of Ref.44, we
find that the sum of the volume fraction of the two largest
clusters, though near 1, slowly decreases as L increases,
at h = 2.27 ≈ hc. The transition separates a state with
one infinite connected set of spins of the same sign from
a disordered state with two antiparallel incipient infinite
clusters.

FIG. 21: A slice of a spin configuration in a 2563 sample at
h = 2.27. The dark squares indicate an up spin. The nesting
of spin clusters can be seen here — the number of levels of
nesting, the “depth”, of the full configuration is k = 3. The
domain walls are determined by working recursively inwards
from the majority (down) spin cluster. The surface of each
cluster is taken to be the outer surface and does not include
the surface of subclusters.

A. Cluster surface

For each cluster, the total volume, v, — which includes
the volume of “holes” of opposite spin — was computed,
as was the surface area, a, of the cluster: the number
of unsatisfied nearest neighbor bonds that separate the
cluster from its surrounding region of opposite spin. The
domain walls are found recursively, taking as the initial
surrounding region the majority spin cluster, which typ-
ically occupies > 97% of the volume at hc for L < 256.45

Binning the clusters by volume v, logarithmically spaced
by powers of 2, averaging the surface area in each bin,
and taking the discrete logarithmic derivative gives an
estimate of the fractal dimension of the cluster surfaces,
dimension d̃c

s(h, L, v). As indicated in Fig. 22, at the crit-
ical point the surface area appears to scale as v0.755±0.07

for intermediate size clusters with 1 ≪ v ≪ L3. The
error in this exponent includes both statistical error and
the apparent uncertainty of corrections to scaling that
are affecting the convergence to a constant value. This
value is little affected by the estimate of the location of
hc (varying h changes the number of clusters, but, within
the uncertainty of hc, does not affect the geometry of the
domain walls.) We have verified that the volume enclosed
by the domain walls separating opposite spins scales in
a manner numerically consistent with this volume being
nonfractal:

v ∼ ℓd, (40)
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FIG. 22: Dependence of the surface area (number of broken
bonds) of cluster boundaries on the enclosed volume, v, ex-

pressed as an effective exponent d̃c
s(h, L, v), at h = 2.270 ≈ hc,

for L = 32, 64, 128, 256. The cluster surface area scales as
v0.755±0.007 for the largest clusters that are not affected by
finite size effects, yielding a fractal dimension dc

s = 2.27(2)
for the cluster surfaces.

with ℓ being either the geometric mean or the maximum
of the lengths of the sides of the minimal rectilinear box
that encloses the cluster. The extrapolation of dc

s(h, L, v)
to large L and ℓ is therefore consistent with clusters hav-
ing typical diameter ℓ ∼ v1/d and typical surface area

a ∼ ℓdc
s (41)

with

dc
s ≃ 2.27 ± 0.02 (42)

a fractal surface dimension consistent within the statisti-
cal uncertainties with our estimates of the fractal dimen-
sions ds and dI of the domain walls induced by changing
boundary conditions at the critical point. In particular,
this surface dimension bears a close resemblance to the
dimension of the spanning surface which we denoted ds;
thus we conjecture that

dc
s = ds. (43)

B. Cluster density

New information is given by the densities of the clus-
ters as a function of their size, in particular their dimen-
sionless volume fraction

ρ(v) ≡ v

δv
Prob[site ∈ cluster of size in (v, v+δv)]. (44)

From the data in Fig. 23 (and for the slightly different
measure of Fig. 24, where v is the volume of the smallest
parallelpiped of fixed orientation enclosing the cluster)
we see that clusters that are neither too small nor lim-
ited by finite size effects — roughly a decade in length
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FIG. 23: Fraction of the volume ρ(v) occupied by clusters
of volume between v and ev, at h = 2.270 ≈ hc, found by
normalizing the data binned according to powers of 2 (i.e.,
dividing the volume fractions in the [v, 2v] bins by ln 2.) The
solid line is ρ(v) = 0.0019 + (0.0017)v−0.33 , one of the trial
fits used to extrapolate to large v.
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FIG. 24: Fraction of the volume ρ(v) occupied by clusters
that are contained in rectilinear volumes (“boxes”) between
v and ev, at h = 2.270 ≈ hc, found by normalizing the data
binned according to powers of 2 (i.e., dividing the volume
fractions in the [v, 2v] bins by ln 2.) For large v, ρ(v) →
0.0019 ± 0.0002, if hc = 2.270.

scale for L = 256 — occupy an approximately scale in-
dependent volume fraction. A comparison of the cluster
distributions for nominally off-critical values of h, as seen
in Fig. 25, shows how ρ(v) depends on h. From these
plots we infer a large-v limit of

ρ(v) → ρ∞ ≃ 0.0019± 0.0004. (45)

We cannot, of course, rule out a slow decrease of ρ(v) to
zero for large volumes, especially as our effective range of
length scales here is less than for other quantities because
of the restrictions due to finite size effects. But we can

understand on the basis of our other observations why
one should expect a small but non-zero value for ρ∞.
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FIG. 25: Fraction of the volume ρ(v) occupied by clusters of
volume between v and ev, found by normalizing as in Fig.
23. Here, the volume fractions are plotted for L = 32, 64, 128,
with h = 2.255, and L = 256, with h = 2.255, 2.270 and
2.285, to indicate some of the effect of changing L or h on ρ(v).
The data for h = 2.255 apparently converges at large L to a
well defined distribution that has a finite-v cutoff, consistent
with a finite correlation length in the ordered phase. This is
in contrast with the data for h = 2.27, the putative critical
point, for L ≤ 256, as seen in Fig. 23. For h = 2.285, in
the disordered phase, large volume clusters start to occupy a
larger fraction of the volume than smaller clusters, for L =
256.

IX. SCALING

In this section we pull together our various results
about domain walls, stiffness, magnetization, and in-
verted spin clusters and show how they are all consis-
tent with a simple picture of scaling behavior at a zero
temperature phase transition.

A. Critical correlations

At the critical point, the energy cost of domain walls is
typically sufficiently large that almost all cubical samples
— about 96% of them — would rather have no spanning
(or other large scale) domain walls unless forced to by
boundary conditions. But in a small fraction of the cu-
bical samples the random fields in the central region are
sufficiently strong that they force the system to have two

domain walls for one of the two “ferromagnetic” (++ or
−−) choices of boundary conditions. In samples that
are twice as long, this occurs much more frequently as
evidenced by the increase, on going from cubical to elon-
gated samples, in the probability, P0, that the stiffness
vanishes. Although whether such a pair of walls is fa-
vorable generally depends on both the random fields in
the whole system and the local behavior near the walls, a
crude picture of what is going on can be drawn by assum-
ing that the wall energies are relatively local and weakly
dependent on each other. We restrict consideration for

now to the critical point.

First consider a system of dimensions 1
2L×L×L with

the boundary conditions imposed on the faces perpendic-
ular to the short axis. Assume that the probability that
the single wall energy, Eℓ

+W ≡ E+−−E++, in such a sys-
tem is negative is q ≪ 1. Crudely, for two walls to be fa-
vorable in a cubic system with ++ boundary conditions,
as is needed to make Σ = 0 , one must have both Eℓ

W < 0
for the left half of the system and Er

W ≡ E−+−E++ < 0
for the right half of the system. Naively, this occurs with
probability of order q2. (More precisely, one of the EW ’s
could be positive but not by enough to dominate the
other one; this will not change things much as long as
the bulk of the distribution of the EW ’s is skewed sub-
stantially to the positive side of zero.) But in a system of
length 2L rather than L, there are many more possibili-
ties: if we divide the system into four sections of length
L/2, one could have, for example, the second from the left
having Eℓ

W < 0 and the rightmost having Er
W < 0 with

the wall energies of the other sections being positive. As
there are six such choices among the four sections of the
elongated system, we expect that the chances of having
Σ = 0 will be about six times as large as in the cubical
system — obviously a very crude approximation, but one
that yields roughly the measured magnitude of the ratio
P0(2L×L×L)/P0(L×L×L). Note that this picture im-
plies that for systems that are much longer than they are
wide, the typical number of domain walls in the ground
state will grow linearly with the length. The roughly
random spacing between them will lead to exponential
decay of the end-to-end correlations in such a system,
with a characteristic length proportional to the linear di-
mension of the cross-section as should be expected on
general finite size scaling grounds.

At conventional critical points in two dimensions, con-
formal invariance relates the exponential decay of correla-
tions in long tubes to the power law decay of correlations
in the bulk in infinite systems: the exponent η is simply
proportional to the ratio of the width-dependent correla-
tion length to the width.46 In our case, there is no such
exact relation, but one can make a qualitative argument
that suggests a similar result. Consider a region of diam-
eter of order ℓ centered on some chosen spin in the bulk
of the sample and assume that outside of this region, the
spins in the vicinity are +1. The only way that the spins
inside the region of interest can be −1 is if there is a do-
main wall relative to the pure “up” configuration which
surrounds this region and has negative energy. Roughly
speaking, such a closed domain wall must be made up
of four or more sections which are joined together with
each having negative (or close to zero) energy. Since the
amount of freedom perpendicular to the area of each of
these will be somewhat less than their linear dimensions,
a crude approximation is that the probability of finding
each such section is of order q and the probability of find-
ing the total domain wall energy negative is of order q4.
With P0[cube] ≃ 0.04 ∼ q2, this suggests that the prob-
ability for finding such a spin flipped region will be of



22

order ρ∞ ∼ q4 ∼ 0.002, in the same range as that found.
Although the above argument is very crude — factors of
two’s or pi’s could easily have been fudged in! — it nev-
ertheless provides a suggestive connection between the
smallness of various quantities. Indeed, it actually pro-
vides more: a precise method for estimating β/ν.

Consider a single spin in the center of a large system
at the critical point with, for simplicity, + boundary con-
ditions . For each factor of e1/d in length scale, ℓ, there
is a probability ρ∞ that the spin is an element of a clus-
ter, flipped with respect to its surroundings, with vol-
ume in the associated range ℓd ≤ v < eℓd. There will,
of course, be correlations between the probabilities of oc-
currences of such inverted regions that are similar in size
and nearby to one another. But, because inverted re-
gions are so rare, the effects of these correlations will be
negligible and we can assume that each range of ℓ around
the chosen spin is independent. A simple picture of the
behavior then emerges: the spin of interest will be in
a cluster of one orientation of diameter ℓ1, which itself
will be in a much larger cluster of the opposite orien-
tation of size ℓ2, etc. with the successive sizes growing
approximately geometrically — more precisely as a Pois-
son process in ln(ℓ) with density dρ∞ (with d = 3). The
probability, p‖, that the spin has the same orientation as
the largest cluster — the system size L — can readily
be computed from the properties of the Poisson process;
this result yields the mean value of the spin given fixed
(+) boundary conditions

s(+) = 2p‖ − 1 ∼ 1

Lβ/ν
(46)

with the exponent

β

ν
≈ 2dρ∞ ≃ 0.011± 0.003 (47)

A similar argument for two spins a distance |x− y| apart
in an infinite system gives

sxsy ∼ 1

|x − y|d−2+η̃
(48)

with the modified “anomalous dimension” exponent for
these untruncated zero-temperature correlations given by

d − 2 + η̃ = 2β/ν ≈ 4dρ∞. (49)

This picture of droplets within droplets strongly sug-
gests that neither spin species will percolate at the critical
point. This is, a priori, rather surprising as the percola-
tion concentration for a three dimensional cubic lattice
is substantially less than half and so one might have ex-
pected both spin species to percolate even somewhat into
the ordered phase. The fact that they do not in this sys-
tem is associated with the smallness of β and the nature
of the critical point.

In practice, unfortunately, the value of β/ν is so small
for the 3D RFIM that the effects discussed above will

be all-but unobservable even if experiments could reach
equilibrium. But in higher dimensions, four or five, they
might be observable numerically as relatively large sys-
tems sizes (e.g., more than 324) can be explored.

B. Fractal dimensions of domain walls

The picture developed above suggests that the vari-
ous fractal dimensions of interfaces or domain walls at
the critical point will not be the same but might, nev-
ertheless, be related to the other exponents. The fractal
dimension of the spanning interface ds (and the dimen-
sion of the surfaces of clusters) is the dimension of a true
surface, one with no holes in it. Such a surface cuts across
the whole system but the sets of sites it is separating can-
not really be thought of as belonging to different states
— the “up” and “down” states — since, in an asymp-
totically large system, most of the sites will be frozen
and unaffected by the boundary conditions. In contrast,
the incongruence box counting dimension, dI , is sensi-
tive only to those parts of the system that are affected
by boundary conditions: a fraction of order 1/Lβ/ν. A
natural conjecture is that the box counting dimension is
the same as that of the intersection of a typical fractal
spanning surface with a fractal set of dimension d− β/ν
yielding:

dI = ds − β/ν. (50)

This picture is somewhat analogous to what would occur
right at percolation in a diluted ferromagnetic Ising sys-
tem at zero temperature: in a finite fraction of the sam-
ples, forcing a domain wall by changing the spin bound-
ary conditions would cost no energy, while in the rest it
would cost an energy proportional to the area of an in-
terface that only cuts across the fractal incipient infinite
cluster; this interface would have dimension analogous to
our dI .

The exchange energy dimension, dJ is sensitive to both
the frozen and the unfrozen regions. But a reasonable
guess is that this is dominated by the unfrozen regions as
the frozen regions contribute random signs. This suggests
that

dJ = dI = θ + 1/ν (51)

which, if correct, implies that a relation obtains between
ds and the other exponents :

ds = θ +
1 + β

ν
. (52)

We should note, however, that these conjectures are
difficult to test in three dimensions, due to the smallness
of β. Our estimated exponents are in slight disagreement
with these conjectures, but corrections to scaling that are
not apparent can be important at this level of accuracy.
Nevertheless, our apparent values for ds and dc

s do appear
to be larger than dI and dJ .
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In higher dimensions, testing the conjectured scaling
relations between these dimensions and the other expo-
nents might be feasible. It is of course possible, however,
that further analytic understanding would imply that at
least some of the fractal dimensions could be independent
exponents.

C. Specific heat

The specific heat of the RFIM can be experimentally
measured27 and is of theoretical importance. Monte
Carlo methods at finite temperature have been used to
estimate its value.12,47 In addition, Hartmann and Young
(HY) have recently26 computed the exponent α describ-
ing the divergence of the specific heat, using ground state
configurations. They find a value of α = −0.63 ± 0.07.
Using the same thermodynamic assumptions, but differ-
ent analysis methods, we find α = −0.01 ± 0.09.

One expects26 that the finite temperature definition
of the specific heat can be extended to zero tempera-
ture, with the second derivative of 〈E〉 with respect to
temperature being replaced by the second derivative of
the ground state energy density Egs with respect to h,
or equivalently up to constants, J . The first derivative
∂Egs/∂J is just the average number of unsatisfied bonds
per spin, EJ = L−d

∑

<ij> sisj . Hartmann and Young

(HY) calculate the needed second derivative by finite dif-
ferences of EJ (h) for values of h near hc. (EJ is not ex-
plicitly dependent on J , but changes discontinuously in
a finite sample when the spin configuration {si} changes;
the second derivative is thus a set of δ-functions which
are smoothed by the finite differencing.) The finite-size
scaling form assumed is that the singular part of the spe-
cific heat Cs behaves as

Cs ∼ Lα/νC̃[(h − hc)L
1/ν ]. (53)

HY determine α by fitting to the maximum of the peaks
in Cs, which occur at hpeak(L) − hc ∼ L1/ν .

Here, we estimate α using the results for the stiffness
from Sec. V and also by studying the behavior of EJ at

hc. The first estimate found by applying Eq. (6) with
our values of θ and ν, is α(1) = −0.07 ± 0.17. The com-

putation from the behavior of EJ is based on integrating
Eq. (53) up to hc, which gives the dependence

EJ,s(L, h = hc) = c1 + c2L
(α−1)/ν , (54)

with c1 and c2 constants. We have computed EJ for a
large number of samples of various sizes and estimated
the singular part of the sample average. We directly fit
our data for EJ(L), at fixed h, to the form Eq. (54). The
fit for the nominal hc, h = 2.27, is shown in Fig. 26.
The fitted values are (α − 1)/ν = −0.82 ± 0.02, where

the quoted error is purely statistical. The fit is good for
16 ≤ L ≤ 256, with χ2 = 0.65 for a three parameter fit
to five data points. This fit is also consistent with that
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FIG. 26: A plot of EJ , the bond part of the energy density,
for h = 2.27, as a function of L. The fit shown is of the form
EJ = c1 − c2L

(α−1)/ν , with c1 = 0.14632, c2 = 0.29098, and
(α− 1)/ν = −0.82. The residuals (inset) give χ2 = 0.65. The
statistical error in (α − 1)/ν for fixed h near hc is 0.02, but
the uncertainty in this ratio is 0.10 due to the uncertainty in
hc.
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FIG. 27: Plots of the discrete derivative with respect to
ln(L) of EJ , for h = 2.255, 2.270, and 2.285. The solid lines
show power law fits for L ≥ 30, with slopes 1.21, 0.84, and
0.60, respectively. Using the error estimate for hc, this gives
(α − 1)/ν = −0.84 ± 0.10, consistent with the results from
plots as in Fig. 26.

found from taking the derivative of EJ with respect to
ln(L),

dEJ

d(ln L)
∼ L(α−1)/ν , (55)

at h = 2.27, which removes the need to fit to c1, but
introduces larger uncertainties, due to the derivatives.
This data for h near hc is displayed in Fig. 27. By varying
h (h = 2.255, 2.280), we estimate the systematic errors,
given our uncertainty in hc, arriving at the value (α −
1)/ν = −0.82 ± 0.10, which, using ν = 1.37 ± 0.09, gives
a second estimate α(2) = −0.12 ± 0.16.

Besides the uncertainties in hc, this result for α is af-
fected by finite size corrections. We now argue that these
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corrections can be reduced by extrapolation and that a
connection exists between α, dc

s and β/ν: EJ , being the
bond part of the energy density, is simply given by the
density of domain walls, whose scaling can be found from
the results in Sec. VIII. Namely, taking the surface area
of clusters to scale with linear size ℓ as A ∼ ℓdc

s ∼ vdc
s/d

and using the constant limit for the distribution of vol-
umes ρ(v)d[ln(v)] at large v, the domain wall density in
a finite sample is found by integrating the wall density,
taking into account intersections between the scales, over
L up to the system size, giving

EJ,s ∼ Ldc
s−d−β/ν. (56)

This exponent can be justified by considering the change
in EJ,s upon doubling the system size. With finite prob-
ability (ρ∞ ln 2), an extra domain wall of scale L will be
introduced. The connected surface of the domain wall
will have area Ldc

s , but the increase in domain wall area

will be smaller, as the domain wall will intersect frozen re-
gions. The fraction of the sample that is not frozen scales
as L−β/ν at criticality; the intersection of the new wall
and the unfrozen region therefore scales as ∼ Ldc

s−β/ν , so
that the expected fraction of newly broken bonds (com-
pared with the smaller sample) is ∼ Ldc

s−d−β/ν. (The
domain wall intersects frozen regions that did not have
surfaces, as they were embedded in like spins, adding to-
tal area, and also intersects frozen clusters that had sur-
face area, removing total area, but these contributions
average to zero.) This argument implies the scaling rela-
tion

α − 1

ν
= dc

s − d − β/ν. (57)

Note that this relation is consistent with modified hyper-
scaling, Eq. (6), and the conjectured relationships among
the domain wall dimensions, Eqs. (43) and (52). Apply-
ing this result to our data, we find

(α − 1)/ν = −0.74± 0.02, (58)

giving our best estimate

α = −0.01 ± 0.09. (59)

Note that the magnitude of the β/ν contribution is small
compared with the error.

Our result for α is in marked disagreement with the
value from HY. The scaling assumptions for our and HY’s
analysis are identical. It may be that one set of results is
more strongly affected by finite size errors, though we do
fit larger values of L. We note that the value of α that
we find using EJ is extremely sensitive to the assumed
value of hc and that the uncertainty in hc dominates the
error estimate. A change of hc by δhc = 0.01 gives a
change δ[(α − 1)/ν] ≈ 0.2 or δα ≈ 0.3. We are fitting
for values near hc, whereas the peaks in C found by nu-
merical differentiation are somewhat above hc. In Sec.
X, it is found that the convergence to a scaling function

for h− hc more than a couple of times L−1/ν , where the
peaks in C are, is slow compared with the convergence
at h = hc.

We use here two independent data sets to arrive at
our estimates for α: (a) total stiffness measurements on
isotropic and anisotropic samples, with fixed BC’s on two
walls, applying finite size scaling, and (b) the measure-
ments of the bond part of the total energy, EJ , using
periodic isotropic samples, and fitting using a finite size
scaling form. For (b), we analyze the samples in two
ways: directly extracting EJ data and also estimating the
asymptotic scaling using the dc

s and β/ν measurements.
This latter method is least sensitive to uncertainties in
hc.

D. Deviations from criticality

As the system is taken away from the critical point,
the nature of the spin clusters and correlations changes
in a straightforward way. If the exchange is increased,
driving the system into the ordered phase, then the large
inverted droplets, which typically have gained energy of
order ℓθ at the critical point, will usually have this en-
ergy gain overcome by the extra exchange energy cost of
order δJℓd

J when ℓ is greater than the correlation length,
ξ. Large inverted regions will be exponentially rare on
length scales longer than ξ.

If the random field is increased or the exchange de-
creased to drive the system into the disordered phase,
we can no longer simply focus on the inverted regions
that already exist at the critical point but must also con-
sider putative inverted regions that could exist. In any
region with diameter of order ℓ, there will be, at the crit-
ical point, an excitation that flips of order ℓd spins for
a typical energy cost of order ℓθ (more precisely it will
only flip of order ℓd−β/ν because of the frozen regions
within it which are not sensitive to the boundary of the
region). Since decreasing J will decrease the energy cost
of this excitation by an amount of order δJLdJ , a good
fraction of these “excitations” will have negative energy
and thus occur spontaneously at scales of order ξ. On
this and larger scales, the orientation of the spins will be
determined primarily by the local random fields within a
distance of order ξ of the spins of interest.

E. Thermal fluctuations and excitations

The effects of thermal fluctuations have been dis-
cussed elsewhere2,48 in the general framework of a zero-
temperature random field critical fixed point. We will
thus restrict ourselves here to a few comments in light of
the present more detailed picture.

At the critical point, as has been outlined above, there
should be potential excitations with energy of order ℓθ

around each point, an independent one for roughly each
factor of two in length scale, ℓ. Since the energies of
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these are random there is a finite probability density that
the energy of any given one of them is near zero — in-
deed there would have been ones with negative energy
but these give rise instead to the inverted clusters in the
ground state. The thermal fluctuations are dominated
by the rare active excitations whose energy is within of
order T of zero. Because θ is positive, the active excita-
tions with diameters of order ℓ ≫ 1 occupy only a small
fraction – of order T/ℓθ – of the volume. But this small
active fraction dominates the correlations, in particular
causing the thermal fluctuations of the spin-spin correla-
tions, the truncated correlations, to decay as

〈(sx − 〈sx〉)(sy − 〈sy〉)〉 ∼
T

|x − y|d−2+η
(60)

where the exponent η is related to that of the zero-
temperature correlations Eq. (48) by

η = η̃ + θ (61)

the extra factor of T/|x−y|θ coming from the probability
that both spins are in the same active excitation.2

In general, except for fluctuation quantities such as
the truncated correlations, the statements that we have
made about zero temperature will hold with minor (if
sometimes subtle) modifications provided one considers
always free energies instead of energies.

One effect which must be mentioned, however, is the
“hypersensitivity” to changes along the critical line —
sometimes, rather misleadingly, referred to as “chaos”.
As long as θ < d/2, which we believe it probably is,
although only barely so, which spins have which orien-
tation at the critical point will depend, on sufficiently
large scales, extremely sensitively on where one is on the
critical line.21,49 Unfortunately, due to the smallness of
d/2 − θ, this effect is unlikely to be observable in three
dimensions but may be in higher dimensions for which θ
is expected to deviate more significantly from d/2. (In
six dimensions and above, θ = 2.)

X. GROUND STATES AND SENSITIVITY TO

BOUNDARY CONDITIONS

The simple picture of the random field Ising system ex-
hibits two phases with a single transition between them:
an ordered phase in which a typical spin is aligned with
others far away; and a disordered phase in which the mag-
netization is zero and the orientation of each spin is deter-
mined locally by the random fields in its vicinity. In the
ordered phase, h < hc, spins have long range correlations
and there are both “up” and “down” states, although do-
main walls can be introduced that divide the system into
up and down regions. In contrast, when h > hc, the spin
correlation function is short ranged, with characteristic
scale ξ ∼ (h− hc)

−ν and there is only one state; because
of the locality, large scale domain walls do not exist in
this phase.

But it is interesting to ask, by analogy with spin glasses
and other systems with quenched randomness, whether
the random field Ising system could be more complicated,
especially near to the critical point. In order to address
this, we must characterize the macroscopically distinct
states in an infinite system: is there, as the simple picture
would suggest, simply one state in the disordered phase
and two in the ordered phase? Or is the behavior more
subtle?

It has been claimed in the literature that “replica sym-
metry breaking” calculations show the existence of an in-
termediate glassy phase, where many solutions with dis-
tinct local magnetizations coexist for a finite range of
parameter, between the paramagnetic and ferromagnetic
phases.7,8 But what does this mean? Indeed, what does
one mean by “ground states” in an infinite system with
random couplings? Furthermore, if one answers these
questions, what is the connection between multiplicity of
infinite system ground states and the notion of “replica
symmetry breaking”?

To consider these questions, it is simplest to restrict
consideration to systems, such as the RFIM with Gaus-
sian random fields, in which the finite system ground
states for given boundary conditions are non-degenerate
with probability one. (Otherwise one gets into the com-
plications of ground state entropy as in diluted antiferro-
magnets in a field and the bimodal RFIM;50,51 but these
issues are distinct from the basic questions of “states” on
which we focus.)

A. Infinite system ground states

A ground state of an infinite system with finite range
interactions is a configuration whose energy cannot be de-
creased by changing any finite collection of spins. Equiv-
alently, a ground state can be thought of as the limit of
a sequence of finite system ground states of larger and
larger subsystems, generally with appropriately chosen
boundary conditions on each size. Thus the set of all
ground states for a specific infinite system, is the set of
all distinct limits of sequences of boundary conditions.31

For two ground states to be distinct, they must be distin-
guishable within some finite distance of the origin: if the
finite system ground states differ only in regions whose
distance from the origin grows without bound as the sys-
tem size increases, then the infinite system ground states
are the same.52 All infinite system ground states have the
same energy density but comparing the energy of a pair
of ground states is not generally well-defined.

Many of the subtleties involved in considering infinite
system ground states come to the fore in the ordered
phase of the random field Ising model. If we take the limit
of larger and larger systems with open (i.e. free) bound-
ary conditions centered, for example, on the origin, then
the finite system ground states will not approach a limit!
This can be readily understood in terms of the “up” and
“down” states which we know exist in the infinite system
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– albeit with some finite density of misaligned spins.1 A
given finite sample of volume V will typically have ran-
dom fields whose net effects are to cause an energy dif-
ference between the up and the down states which is of
order h

√
V. Thus the ground states with open bound-

ary conditions will alternate randomly from mostly up
to mostly down as a function of (the logarithm of the)
system size. Of course, the up and down states can be
found by either taking the appropriate subsequences with
open boundary conditions, or by taking + or − boundary
conditions on all sizes. The problem of energy compari-
son is now clear: which of these two states has the lower
energy in a specific infinite system? This is manifestly
ill-defined, indeed, because of the effects of the bound-
ary conditions, it is not possible to uniquely define the
energy of an infinite system ground state to higher accu-
racy than of order the surface area of the region under
consideration.

We can, however, compare the energies of some pairs
of infinite system ground states even in random systems.
In high dimensions, greater than three, one can make
ground states in the ordered phase of the RFIM with a
domain wall that passes near the origin with a chosen ori-
entation by putting + boundary conditions on half of the
boundary and − on the other half. If the random fields
are weak enough (in four and five dimensions, or with
arbitrary randomness in the ordered phase in six or more
dimensions), the domain wall will be flat on large scales
with only finite typical deviations from planarity and its
position and orientation can then be fixed by its inter-
section with the boundary which is forced by a “seam”
between + and − areas of the boundary conditions. The
infinite system domain wall state so constructed will be
stable to changing any finite collection of spins, but, in
a well-defined sense, it has higher energy than either the
up or the down states. As the domain wall costs energy
per unit area, if one looks at a sufficiently large region
that overlaps the domain wall — say cubical with v = ℓd

— the difference in energy between the domain wall state
and the up state will be of order Jℓd−1 ± hℓd/2 which is
positive almost surely in the limit of large ℓ.

In contrast to the higher dimensional case, in the three
dimensional RFIM of primary interest, one cannot make
infinite system domain wall states straightforwardly even
in the ordered phase. If one tries to set up a domain wall
that is, say, horizontal in a system of size L×L×L, one
will find that the wall wanders in the vertical direction
away from the plane determined by the boundary joint by
a random, sample and subsystem size dependent amount
of order Lζ with ζ = 2/3.37,38,39 No matter how one
adjusts the boundary seam, one is unlikely, in the large
system limit, to be able to force the wall to be both near
the origin and nearly horizontal. Thus the sequence of
domain wall forcing boundary conditions will, in the or-
dered phase, contain one subsequence which converges to
the up state, another which converges to the down state,
and, almost surely, no other convergent subsequences.
(There are subtleties, which we will not go into here, if

one allows a wall in the ordered phase to have any con-
figuration dependent orientation; these will be addressed
in Ref. 41.)

The crucial question that we would like to address here
is whether there exists more than one infinite system
ground state either at the critical point or slightly into
the disordered phase. In principle, to investigate this one
would need to study all possible sequences of boundary
conditions, obviously an impractical task. In practice,
one must restrict consideration to some small subset of
boundary conditions and try to extract useful informa-
tion about the infinite system limit by carefully studying
the size dependence of various boundary conditions on
regions near the origin.

B. Numerical studies

We have studied how the ground state configurations
change in response both to varying the boundary condi-
tion at fixed size and to changing the system size. We
compare configurations for which the boundary spins are
“open” (O), fixed positive (+), fixed negative (−), and
random fixed spins (R). For fixed size calculations, for
each realization of the random fields we compare all possi-
ble pairs of boundary conditions in the set {O, R, +,−}.
We also compare ground state configurations for open
boundary conditions on a sample of size 2L− 1 (denoted
D) that contains a subsample of size L, with the states
for boundary conditions O, + or − imposed on the sub-
sample. (The values of L were taken to be odd for these
comparisons, so that the origin coincides with a spin.)
The results of all of the comparisons are characterized
by counting how many spins differ for the two boundary
conditions in a volume w3 centered at the origin.

The primary emphasis of these calculations is to deter-
mine whether changes in boundary conditions can create
configurations that differ from those with uniform + or
uniform − boundary conditions, i.e., those that produce
the up and the down states in the ordered phase. If
the + and the − boundary conditions produce identi-
cal configurations in the deep interior, this suggests that
there is only one state. If the probability that some other
boundary condition produces a configuration in the in-
terior that differs from those of both the the + and −
boundary conditions, vanishes as L → ∞, this suggests
that there are at most two states.

We report here a selection of results for (a) the proba-
bilities PO±(h, w, L) (PR±(h, w, L)) that the boundary
condition O (respectively, R) gives a central volume
w3 that differs from that for both + and − boundary
conditions at fixed sample size L; (b) the probability
PDO(h, w, L) that the number of differing spins within
the window is non-zero when one compares open bound-
ary conditions for samples of size 2L−1 and a subsample
of size L; and (c) the probability PD±(h, w, L) that open
boundary conditions on the larger sample gives a cen-
tral volume w3 that differs from that for both + and −
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boundary conditions on the smaller sample.
The calculation of the probabilities PO± and PR±

(comparisons (a)) allows us to study ground states near
hc. The events of interest are those where a given bound-
ary condition B, either B = R or B = O, gives a con-
figuration distinct from both the + and the − boundary
conditions. For h > hc as L → ∞, PB± is expected to
go to zero, since the effects of the boundary penetrate
only a distance O(ξ) into the sample. For h < hc, in
contrast, most of the interior configuration is either + or
− and the chances that random or open boundaries yield
some other possibility should again decay exponentially.
At h = hc, the correlation length diverges and at this
critical point, we expect that the probability of a domain
wall passing near the center decays only as a power of
the system size. Using simple arguments based on the
fractal nature of domain walls,22,23 the probability that
a window of size w will intersect an object of fractal di-
mension df scales as (w/L)d−df . This is analogous to
the probability of a domain wall in the ordered phase
passing near the origin as discussed above. The appro-
priate fractal dimension to use here at the critical point
is the dimension from box-counting, dI , that we studied
above. Basically, there is a substantial probability that
open or random boundary conditions will, at the criti-
cal point, induce a system spanning domain wall relative
to the + and − boundary conditions. Near the critical
point, scaling suggests the form

PB±(h, w, L) = Ldf−dPB[w, (h − hc)L
−1/ν ] (62)

for B = R or O. We plot our data for PO±, w = 3, in
Fig. 28 and Fig. 29(a), assuming this scaling form, taking
hc = 2.270, df = 2.25 and the best fit value ν = 1.37.
The results for PR±, while not shown here, are nearly
identical, apparently converging for large L near the crit-
ical point to an extremely similar, if not the same, scaling
function, though the smaller L curves have slightly dif-
ferent finite size corrections. We expect that df is equal
to the incongruent domain wall dimension dI , as this is
the domain wall dimension that describes changes in the
bonds, and this expectation is consistent with our results.

We note that taking the value df = 2.20 appears to
give a better fit for the peak heights away from hc, but
as convergence in several quantities is poorer away from
hc, the value df = 2.25 is acceptable. Directly fitting the

peaks for df gives a value df = 2.22 ± 0.03.
The data for comparisons (a) should also scale with

w for large w: P [w, (h − hc)L
−1/ν ] = wd−dfP ′[(h −

hc)L
−1/ν ]. However, we do not have enough range in

w for w >> 1 to confirm this; for w small, discreteness
effects will prevent a collapse. For L = 129, the data do
collapse well for w = 65, 33, 15, assuming the above scal-
ing form and the best fit values of hc, dI , and ν. Note
that similar finite w effects were also seen in the data of
Ref. 22, where large w was needed to see convergence to
power law behavior in w, though scaling worked well for
fixed w with L ≫ 1.

Comparison (b) compares open boundary conditions

1.75 2.25 2.75 3.25
h

0

0.2

0.4

0.6

P
O

±(
L,

w
=

3)

  L = 9
  L = 17
  L = 33
  L = 65
  L = 129

FIG. 28: Plot of the unscaled probability PO± that the
central window of size w = 3 of a ground state configuration
with open BCs on a given sample of size L, differs from the
configuration in the window with both uniform + and − fixed
boundary conditions. The lines are intended to organize the
data visually.
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FIG. 29: Scaling plot for the probability that the central
window of size w = 3 of a ground state configuration differs
from that of uniform + or − fixed boundary conditions for
(a) open boundary conditions on the same sample of size L
and (b) open boundary conditions on a sample of size 2L− 1.
The values used for scaling are hc = 2.270, ν = 1.37, and
df = 2.25. The probabilities scale very well near h = hc, but
the peak heights, at h > hc, converge slowly.

on two samples of different sizes, the smaller being a
subsample of the larger centered at the origin. In the
disordered phase, with the local spin configuration de-
termined by the random fields nearby, doubling the size
of the system is not expected to change the configu-
ration in small windows near the origin, for w ≪ L
and L ≫ ξ ∼ (h − hc)

−ν . But for h < hc and
L ≫ ξ ∼ (hc − h)−ν , the spin orientation is determined
by the sign of the total (effective) random field which will
depend stochastically on the system size as discussed in
the previous subsection. For a fully magnetized system,
(|m| = 1), these simple expectations yield PDO → 0 for
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L → ∞ with w fixed for h > hc, and

PDO → (7π2)−1/2

∫ ∞

0

dx

∫ ∞

0

dy e(−y2/2−(y+x)2/14)

(63)
for h < hc as L → ∞. The integral in Eq. (63) is the
probability that the total random field in the volume
(2L)3 exceeds in magnitude and is opposite in sign to the
total random field in a subvolume L3, assuming Gaussian
distribution of the field on length scale L with variance
L3. This integral gives a value PDO = 0.384973 . . . for
h < hc. The results of our ground state studies, dis-
played in Fig. 30, appear to be consistent with this limit,
for h < hc. This confirms the expectation that as the infi-
nite volume limit is taken in the ordered phase, the spins
in a fixed volume flip between two distinct configurations
infinitely often — typically every factor of three or so in
length scale. Near the critical point, the probability of
differences in the window between the full and the sub-
sample will be modified since with |m| < 1, there is a
non-zero probability that the window will be contained
in a frozen spin clusters that is unaffected by the overall
majority random field. But this w-dependent difference
only becomes important near hc, as β is so small.

Right at the critical point the effects of frozen clusters
on all scales should in principle suppress PDO to zero in
the large L limit for all w; but as it will decay only as
1/Lβ/ν, this effect is hard to see. In the disordered phase,
our data is consistent with PDO vanishing exponentially
for L ≫ ξ.

Comparison (c) allows us to address nearly the same
question as (a), but more directly checks that increas-
ing the volume of the system has the effect of setting an
effective boundary condition of + or − on the central
region. The scaling collapse, shown in Fig. 29(b) is ac-
ceptable, as it is in (a), with a scaling function similar
to, but distinct from that for comparison (a). The re-
sults for PD± show that, except for a region near hc that
shrinks and decreases in probability with increasing L,
the configuration given by the larger system with open
boundary conditions does not produce a distinct interior
volume from that found by imposing + or − boundary
conditions on the smaller system of size L.

Taken together, these results are consistent with the
expectations from the simple scenario for the structure
of the states given above; there do not seem to be any
indications of stranger behavior. Thus, in the absence
of concrete testable predictions from those who believe
there should be more than just the simple set of states,
we can do no more than conclude that if they can indeed
occur, it must be only under very subtle conditions.

XI. SUMMARY

In this paper, we have presented numerical results for
the ground states of 3D random field Ising magnets fo-
cusing on the transition between the ordered and disor-
dered phases. Our results allow us to conclude that the
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FIG. 30: Probability PDO that the central window of size
(a) w = 1 and (b) w = 3 of a ground state configuration in a
subsample of size L differs from that in a sample of size 2L−1,
with open boundary conditions on the subsample and sam-
ple. Note that the sample sizes are approximately separated
by a factor of 2, except for the largest two sizes. For small
h, the probability PDO ≈ 0.38, quantitatively consistent with
a simple model with two states. For large h, PDO → 0 as
L → ∞, consistent with a single state. The solid line shows
the step function that would obtain for PDO in the ∞-volume
(and large w) limit, if it were the case that |m| ≡ 1 in the
ferromagnetic phase, taking hc = 2.270. The data is con-
sistent with the calculated PDO values approaching this step
function at larger sizes L, for h 6= hc. Note that at h = hc,
PDO ≈ 0.368 ± 0.006 < 0.379 . . . for L = 97 and L = 129,
w = 3, consistent with a constant or slowly decaying value of
PDO at the critical point. The dashed curves are spline fits
to organize the data visually.

transition is second order, though the magnitude of the
magnetization vanishes very slowly as the critical random
field strength, hc, is approached from below. In addition
to the magnetization, we have studied the stiffness of the
system and some of the geometrical aspects, in particu-
lar the fractal properties of domain walls at the critical
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point. In general, the results agree very well with a scal-
ing picture of the transition introduced some time ago2

and extensions of it to the properties studied here.

Some earlier authors have suggested that the behavior
of the RFIM near to the ordering transition will be more
complicated than this scenario, arguing for some kind of
“replica symmetry breaking”. Although, as is so often
the case, the meaning of this term in this context has
not been made clear, if we take it to imply the existence
of many infinite volume ground states, this would have
testable consequences. Although a full test of the de-
pendence of the ground states on sequences of boundary
conditions that this would imply is beyond the scope of
today’s computers and algorithms, we have made some
preliminary tests on the dependence on boundary con-
ditions. In particular, we have studied the probability
that the configuration in a fixed volume at the center of
a sample can be induced to differ from both the fixed
s = +1 and fixed s = −1 boundary conditions by various
other boundary conditions. With the range of bound-
ary conditions we have tested, this probability vanishes
in the expected manner as L → ∞. Indeed, the power
law dependence of this probability on L and the scaling
with h − hc are consistent with the domain wall fractal
dimension and correlation length exponents determined
by other methods. Our results are thus consistent with
a single disordered to ordered transition at hc, with a
unique state in the disordered phases and a pair of states
(“up” and “down”) in the ordered phase. Recent simula-
tions at finite temperature in smaller systems by Sinova
and Canright,53 who used the spectrum of the spin-spin
correlation matrix and P (q) distributions, also suggest a
single transition.

At non-zero temperature, the thermodynamic proper-
ties of the phase transition are believed to be similar to
those at zero temperature: the transition is governed by
a zero temperature fixed point. But at positive tempera-
ture, one can also consider dynamic effects; indeed, as has
been known for a long time, these dominate both Monte
Carlo simulations and experiments. As first pointed out
by Griffiths,54 random systems can have singularities —
albeit very weak ones — in thermodynamic properties
well before the transition is reached and this will be the
case for the RFIM. These rare region effects are unobserv-
able as far as equilibrium properties in classical systems,
but do have dynamic consequences.55,56,57 In the Grif-
fiths region above the transition, the average dynamic
autocorrelations will decay more slowly than exponen-
tially because of the effects of anomalously ordered lo-
cal regions. Perhaps this kind of rare-region effect, and
the more interesting but related effects that occur as the
transition is approached, are all that is meant by “replica
symmetry breaking”. If this is the case, then it would
be nice if the proponents of these ideas would say so.
If not, then it is incumbent upon them to come up with
some testable predictions. If these can be tested by static
ground state properties, the RFIM is as good as system
as any on which to perform such tests as the system sizes

that can be studied are quite impressive: comparable to
the largest that can be studied by Monte Carlo simula-
tions in pure systems.
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APPENDIX A: ALGORITHM

IMPLEMENTATION

We briefly describe here the algorithm and code used,
including modifications to the conventional RFIM max-
flow problem; outline the verification procedure for the
code; and briefly outline the statistics and error bar pro-
cedure.

1. Base code and modifications

There is a now well-known mapping of the RFIM
ground state problem to a min-cut/max-flow problem.14

This correspondence and the push-relabel algorithm for
the max-flow problem, including terms used here (such
as layers and excesses), is well described in reviews and
texts, such as Refs. 18, 58, and 16. The implementa-
tion of the Goldberg-Tarjan59 max-flow algorithm that
we started with was the h prf code in C written by
Cherkassky and Goldberg,15 which in general performs
quite well for a number of graph topologies.

We modified the code to be more compatible with the
C++ language and developed objects (including sam-
ples, configuration subsets as windows, and random num-
ber generators) to conveniently implement a variety of
boundary conditions and analyses. One very simple ben-
efit of an integrated code is that the graph input, which
is quite costly when read as a text file, is greatly sped
up. More importantly, the short main routine was easily
modified to compute answers to a wide number of ques-
tions.

The most significant change to the core push-relabel
code was a modification that allowed for positive and
negative excesses. This modification was developed in
collaboration with D. McNamara.60 The central idea is
the elimination of the source and sink nodes, which con-
ventionally have links to the nodes of the graph repre-
senting the spins si, in favor of introducing nodes with
a negative excess. The first step in the conventional al-
gorithm pushes as much flow as possible from the source



30

onto the lattice nodes. This step is replaced in our code
with an initialization where a positive excess hi is placed
on each node for which hi > 0. The connections to the
sink are substituted for by placing a negative excess on
the nodes with hi < 0. The push-relabel algorithm then
proceeds with the usual steps, with the nodes with pos-
itive excess having their excess pushed and their heights
relabeled, as appropriate. The negative excess nodes act
as sinks for the positive excess, until such a nodes total
excess becomes positive. Besides removing the links to
the source and sink, the global relabeling step must be
modified. Instead of carrying out a breadth first search
from the sink node, the breadth first search instead starts
from the nodes with negative excess. (If no negative ex-
cess nodes remain, the algorithm terminates with flow
equal to the sum of the positive hi.) The initial totals of
the positive and the negative excesses are compared with
the final totals: the decrease in the total positive flow,
for example, gives the maximum flow through the graph.
The spin configuration and magnetization is determined
by counting the number of nodes that are in the maximal
layer.

The removal of the source and sink nodes reduces the
amount of memory used by an amount 1/(d +1) relative
to the conventional memory requirements and results in
a slight speedup. For the largest lattice sizes studied
(2563), memory requirements were reduced at the cost
of speed. If pointers and integers each require 4 bytes,
the Cherkassky and Goldberg implementation requires 16
bytes for each arc and 32 bytes for each node (counting
the layers as part of the per-node requirements.) The use
of pointers was retained for system sizes up to 1283. For
a regular lattice, however, the nodes at the end of each
arc, sister arcs, and the list of arcs at each node can be
recomputed whenever needed. For a cubic lattice, then,
the number of bytes per node is reduced from (6 × 16 +
32) = 128 bytes to (6×4+32) = 56 bytes. For L3 = 1283

samples, the running time increased by a factor of ≈ 2.5,
primarily due to the recomputation of the tail nodes of
the arcs and the sister arcs.

One modification for the 2563 samples was made that
is not strictly sound, in that the algorithm could con-
ceivably fail. In order to save memory, a limit to the
maximum number of layers was implemented. In the
Cherkassky and Goldberg code, the number of layers al-
located is given by the number of nodes in the graph.
In practice, however, far fewer are needed. A check over
1000 samples for 8 < L < 128 was carried out, for several
values of h. The number of layers needed, K, appears to
be largest for h ≈ hc. At this value, the sample mean of
the maximum layer needed is about K ≈ 2L. The dis-
tribution over samples of the number of layers needed
roughly scales with L, though the dependence of the
width of the distribution could be Lx, with x near 1. In
any case, the distribution drops off very quickly with K.
The maximum number of layers needed over 1000 sam-
ples scales roughly linearly with L, Kmax ≈ 7L, where
the maximum is for periodic boundary conditions and

over a range of h, 2.0 < h < 2.5, with a peak in Kmax(h)
near hc ≈ 2.27 (though the peak is slightly above hc for
smaller samples.) The mean number of layers fits rela-
tively well to a scaling collapse, with a maximum value
scaling consistent with L1.08 (or even L

√
lnL), scaling

about hc ≈ 2.27 with ν ≈ 1.35. We set 5 × 104 as the
maximum number of layers for all sample sizes, which is
nearly 200×L for the largest samples studied. This num-
ber of layers was easily sufficient for all samples studied.
The amount of memory needed for cubic lattices is then
48 + O(L−2) bytes per node.

2. Verification

The modifications made to the base code, while the-
oretically sound (except for the limit on the number of
layers), could inadvertently introduce errors, due to er-
rors in coding. We therefore verified the code against the
Cherkassky and Goldberg codes h prf and hi pr (version
3.3) codes15,61 and a selection of other codes that were
not based on a push-relabel algorithm. This was done by
having the production code write out the list of the hi.
A small program then converted these hi into arcs and
nodes into a graph description DIMACS format, using
the conventional representation with a source and a sink.

These graph descriptions were then used as input to
h prf, hi pr, and other codes, such as those devel-
oped in the First DIMACS Challenge.62 The flows and
the magnetization from these available algorithms were
then compared, sample by sample, with the produc-
tion code. The precise comparison was done for a few
tens of samples with ferromagnetic coupling strength
J = 10, 102, . . . , 107, relative disorder strength h/J =
1, 2.3, 3, 10 and system sizes L = 4, 8, ..., 128. The pro-
duction code and the other algorithms agreed in all cases,
except when the flow exceeded 231, which was generally
the maximum possible flow in the available algorithms.
The production code used here does not have that restric-
tion, as flow computation is done at the end by comparing
the initial and final positive and negative excesses, which
were summed up as double precision quantities. The code
was able to handle larger flows consistently, as could be
verified by scaling h and J to large values (multiplying
J and the hi by a factor of, say, 105, and checking that
the maximum flow increases proportionately and that the
configuration is unchanged.)

For efficiency, we have used an integer algorithm, with
a resolution of 104 by replacing the hi by random integers
found by rounding zi×104 towards zero, with zi Gaussian
random variables with zero mean and unit variance and
the exchange by J/h×104. We checked that reducing this
resolution by a factor of 10 for selected measurements did
not affect the computed averages, such as the stiffness in
the isotropic and anisotropic samples for systems up to
1283. For a resolution of 102, there were discrepancies
outside of statistical errors, but these discrepancies could
be consistently explained by the effects of rounding to an
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FIG. 31: Elapsed time for computing ground states in the
RFIM, plotted vs. h, for linear sizes L = 8, 16, . . . , 128. The
“fast” algorithm is applied, with the larger memory require-
ments, on a 766 MHz Pentium III processor. The peak times
per spin scales nearly linearly with L.

integer, which shifts the width of the distribution of hi

by a small, predictable amount.
We also tested the assumption that the cut found was

unique (that is, that the ground state was unique, for a
given sample.) Some accidental degeneracies were found,
at the level of a fraction of spins ≈ 0.9× 10−6, for h near
2, including hc. This would result in the magnetizations
being in error at the level of < 10−6, well within the
statistical errors. Increasing the resolution by a factor of
10 increases the running time by about 7% and reduces
the fraction of degenerate spins to ≈ 2 × 10−7. As the
degeneracies were for the most part attributable to single
spins, were rare, and did not affect any of the sample
averaged results in the cases we tested, the integer scale
of 104 was more than sufficient for this study.

We have verified that our choice of random number
generator does not affect the results. Specifically, we used
two generators for the computations of the magnetization
and domains (defined in Sec. VIII) in 2563 samples at
h = 2.27 ≈ hc and found the results to agree within
statistical errors (the results reported pool the results
from these generators.) We also checked the results from
the two generators against each other for a larger number
of smaller systems.

Though quantities computed and the details of our
interpretation differ from previous work, the numerical
values for the same sample sizes and measurements (for
example, magnetization and the largest cluster sizes) are
consistent with published data.11,44

3. Timing

Consistent with similar optimization problems related
to physical problems, the typical CPU time needed to

find the ground state scales roughly as N1.3 near hc.
Roughly, it takes about 16-20 times longer to find the
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FIG. 32: Statistics for the “operations”, pushes (a) and
relabels (b), performed in computing ground states in the
RFIM, plotted vs. h, for linear sizes L = 8, 16, . . . , 128. The
peak number of operations per spin scales nearly linearly with
L (near hc). At both high and low h, the number of these
rearrangements scales nearly as L0.3.

ground state each time the sample size is doubled, for
h ≈ hc. Using CC on a 400 MHz Sun UltraSparc II (the
San Diego Supercomputing Center Sun HDSC10000), a
2563 lattice required 913 MB of memory total for the
graph data, the instructions, and the data structures re-
quired for analysis. Running time for this size and this
architecture averaged 1.8 hours per sample, for h = 2.27.
Run times, normalized to the elapsed time per spin, for
the larger memory algorithm, with the full data struc-
ture, are plotted in Fig. 31. Clearly, the shape of the
elapsed time vs. h sharpens some as L increases. The
peak running time scales as ∼ L4.0 over the scales L = 8
to L = 128. Further details of the scaling of the run-
ning time and connections between the algorithm and the
physical concepts of ground state degeneracy and corre-
lation length are described in Ref.63.
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