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Abstract 

This paper considers the problem of estimation and forecasting in a panel data model 

with random individual effects and AR(p) remainder disturbances. It utilizes a simple exact 

transformation for the AR(p) time series process derived by Baltagi and Li (1994) and obtains 

the generalized least squares estimator for this panel model as a least squares regression. This 

exact transformation is also used in conjunction with Goldberger’s (1962) result to derive an 

analytic expression for the best linear unbiased predictor. The performance of this predictor is 

investigated using Monte Carlo experiments and illustrated using an empirical example. 
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Estimation and Prediction in the Random E¤ects Model with
AR(p) Remainder Disturbances

Badi H. Baltagi�, Long Liuy

July 20, 2012

Abstract

This paper considers the problem of estimation and forecasting in a panel data model with random
individual e¤ects and AR(p) remainder disturbances. It utilizes a simple exact transformation for the
AR(p) time series process derived by Baltagi and Li (1994) and obtains the generalized least squares
estimator for this panel model as a least squares regression. This exact transformation is also used in
conjunction with Goldberger�s (1962) result to derive an analytic expression for the best linear unbi-
ased predictor. The performance of this predictor is investigated using Monte Carlo experiments and
illustrated using an empirical example.

Key Words: Prediction; Panel Data; Random E¤ects; Serial Correlation; AR( p).

1 Introduction

Forecasting with panel data has become an integral part of empirical work in economics and related �elds.

Some important applications include Schmalensee, Stoker and Judson (1998) who forecast world carbon

dioxide emissions using national-level panel data; and Frees and Miller (2004) who forecast the sale of state

lottery tickets using panel data on postal (ZIP) codes, to mention a few, see Baltagi (2008) for a recent survey.

This paper deals with forecasting with panel data controlling for heterogeneity of individuals, countries or

�rms through the use of random e¤ects, as well as dealing with serial correlation in the error term to allow for

macro shocks in the economy, see Baltagi and Li (1991) and Frees and Miller (2004) for earlier work on this

subject. In fact, Baltagi and Li (1991) suggested a simple transformation to estimate a panel data regression

model with random individual e¤ects, and AR(1), AR(2) or a specialized AR(4) process in the remainder

disturbances. In a follow up paper, Baltagi and Li (1992) derived the corresponding best linear unbiased

predictor (BLUP) for the ith individual in the panel, s periods ahead, extending results of Goldberger (1962)

�Address correspondence to: Badi H. Baltagi, Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse,
NY 13244-1020; e-mail: bbaltagi@maxwell.syr.edu.

yLong Liu: Department of Economics, College of Business, University of Texas at San Antonio, One UTSA Circle, TX
78249-0633; e-mail: long.liu@utsa.edu.
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from the time series to the panel data case. This paper extends the estimation and forecasting in Baltagi

and Li (1991, 1992) to the general AR(p) case. Although the exact transformation for AR(p) has been

known for a long time, see Fuller (1976) for example, its explicit form for p > 2 is cumbersome and may be

the reason why it is not popular among practitioners. In practice, empirical researchers used the Cochrane-

Orcutt transformation despite the well known result that it can lead to a substantial loss in e¢ ciency in

�nite samples. For the importance of the initial observations especially for trended economic data, and the

ine¢ ciency of the Cochrane-Orcutt estimator, see Maeshiro (1976, 1979) and Park and Mitchell (1980), to

mention a few. Baltagi and Li (1994) derived a simple exact transformation for the AR(p) model which

utilizes the auto-covariance structure of the autoregressive process. Based on this transformation, they

proposed a GLS estimator for the time series case, requiring only least squares regressions and recursive

computations. This paper utilizes the Baltagi and Li (1994) exact transformation for the AR(p) model in the

time series context and apply it to a random e¤ects panel data model with AR(p) remainder disturbances.

With this simple transformation, one can generalize Baltagi and Li�s (1991) result to the higher order AR(p)

case, and provide an accompanying simple estimation method. This is of utmost importance in panel data

regressions where the order of matrix inversion can be considerably reduced using this transformation. In

addition, this simple transformation allows us to derive an explicit expression for the BLUP, thus extending

the Baltagi and Li (1992) result to the AR(p) case. The next section gives the panel data model with AR(p)

remainder disturbances and proposes a simple feasible GLS estimation method that can be computed using

least squares, while section 3 provides a derivation of the Goldberger (1962) BLUP for this model. Section 4

provides some Monte Carlo results on the performance of these predictors, while Section 5 illustrates these

predictors using the Wisconsin lottery sales example of Frees and Miller (2004).

2 Model and Estimation

Consider the following panel data regression model:

yit = x
0
it� + uit; i = 1; : : : ; N ; t = 1 : : : ; T (1)

where yit is the observation on the ith individual for the tth time period. xit denotes the k � 1 vector of

observations on the nonstochastic regressors which are uncorrelated with the regression disturbances uit.

The disturbances follow a one-way error component model

uit = �i + vit; (2)
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with random individual e¤ects �i � i:i:d:
�
0; �2�

�
: The remainder disturbances vit follow an AR(p) process

given by vit = �1vi;t�1 + �2vi;t�2 + � � � + �pvi;t�p + �it, where �it � i:i:d:
�
0; �2�

�
. �1; �2; ::; �p are unknown

parameters satisfying the stationarity condition that the roots of 1 � �1z � �2z2 � � � � � �pzp = 0 all lie

outside the complex unit circle, see Judge et. al. (1985). As shown in Brockwell and Davis (1991), this

AR(p) process is a special case of the stationary p-dependent process de�ned as E (vitvi;t�s) = s with

�s = s.

The model in (1) can be rewritten in matrix notation as

y = X� + u (3)

where y is of dimension NT � 1, X is NT � k, � is k � 1 and u is NT � 1. The disturbance term can be

written in vector form as

u = (IN 
 �T )�+ �; (4)

where � = (�1; : : : ; �N ) and v
0 = (v11; : : : ; v1T ; : : : ; vN1; : : : ; vNT ). �T is a vector of ones of dimension T . IT

is an identity matrix of dimension T and 
 denotes the Kronecker product. The variance�covariance matrix

of u can be written as


 = IN 
 �; (5)

where � = �2�JT +�
2V , JT is a matrix of ones of dimension T , and E (viv0i) = �

2V is the variance�covariance

matrix of the remainder error term vi = (vi1; : : : ; viT ) which is assumed to be the same for each individual.

V is assumed to be a real symmetric positive-de�nite matrix and �2 � 0. Hence, there exists a T�T matrix

C, such that CV C 0 = IT . To get rid of the serial correlation in the remainder disturbances, we premultiply

the model in (3) by (IN 
 C). The transformed error becomes

u� = (IN 
 C)u = (IN 
 ��T )�+ (IN 
 C) �; (6)

where ��T = C�T = (�1; : : : ; �T )
0 is a T � 1 vector whose elements depend on the speci�c serial correlation

process imposed on v. The variance-covariance matrix for the transformed disturbance u� becomes


� = IN 
 ��; (7)

where

�� = C�C 0 = �2�J
�
T + �

2IT ; (8)

and J�T = �
�
T �
�0
T . This can be rewritten as

�� = �2�d
2 �J�T + �

2IT ; (9)
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where d2 = ��0T �
�
T =

PT
t=1 �

2
t and �J�T = J�T =d

2. Following a trick by Wansbeek and Kapteyn (1983), we

replace IT by E�T + �J�T , where E
�
T = IT � �J�T . Collecting like terms, one gets the spectral decomposition of

��:

�� = �2� �J
�
T + �

2E�T ; (10)

where �2� = �
2
�d

2 + �2. Because �J�T and E
�
T are idempotent matrices that are orthogonal to each other, we

have

��p =
�
�2�
�p �J�T + ��2�pE�T ; (11)

where p is an arbitrary scalar. In particular, p = �1 obtains the inverse and p = �1=2 gives ���1=2 and

hence 
��1=2. Therefore,

�
��1=2 =
�

��

�
IN 
 �J�T

�
+ (IN 
 E�T ) = (IN 
 I�T )� �

�
IN 
 �J�T

�
; (12)

where � = 1� �
��
. Thus we can premultiply the C-transformed model by �
��1=2 to make the error spherical.

y�� = �
��1=2y�, and X�� and u�� are similarly de�ned. The typical elements of are given by

y��it = y
�
it � ��t

PT
s=1 �sy

�
isPT

s=1 �
2
s

: (13)

This is a generalized version of the the Fuller and Battese (1974) transformation for the error component

model with an arbitrary variance-covariance matrix, E (viv0i) = �2V , on the remainder disturbances. The

OLS regression on the (**) transformed equation is equivalent to the GLS regression on the original equation

(4). Equation (11) also suggests natural estimators of the variance components. Baltagi and Li (1991)

proposed estimating �2 and �2� by

�̂2� = u
�0 �IN 
 �J�T

�
u�=N and �̂2 = u�0 (IN 
 E�T )u�=N (T � 1) : (14)

These are best quadratic unbiased estimators of �2 and �2� if the true disturbances u
� are known. The true

residuals are generally not known. In this case, one can replace u� by ~u�OLS , the OLS residuals on the (*)

transformed equation.

Baltagi and Li (1991) applied this simple transformation to the panel data model with random individual

e¤ects and AR(1), AR(2) or a specialized AR(4) process in the remainder disturbances. The general AR(p)

process was not considered by Baltagi and Li (1991) because a simple transformation for AR(p) for p > 2 was

not available. Utilizing the Baltagi and Li (1994) exact transformation for the AR(p) model in the time series

context, we give a simple recursive transformation for the panel data model with remainder disturbances

4



following an AR(p) process. Recall that s = E (vitvi;t�s) ; and let rs = s=0. Following Baltagi and Li

(1994), the (*) transformation de�ned in (6), is obtained recursively as follows:

y�i1 = yi1

y�it =
�
yit � bt;t�1y�i;t�1 � � � � � bt;1y�i;1

�
=
p
at for t = 2; : : : ; p

y�it =
�
yit � �1yi;t�1 � � � � � �pyi;t�p

�
=
p
a for t = p+ 1; : : : ; T;

(15)

where a = �2�=0 and at and bt;s are determined recursively as

at = 1� b2t;t�1 � � � � � b2t;2 � b2t;1 for t = 2; : : : ; p (16)

and
bt;1 = rt�1

bt;s = (rt�s � bs;s�1bt;s�1 � � � � � bs;1bt;1) =
p
as for s = 2; : : : ; t� 1

(17)

for t = 2 : : : ; p.

By replacing y�it by �t and replacing yit by 1 in equation (15), we can get �
�
T = C�T = (�1; : : : ; �T )

0 as

follows:
�1 = 1

�t = (1� bt;t�1�t�1 � � � � � bt;1�1) =
p
at for t = 2; : : : ; p

�t = (1�
Pp

s=1 �s) =
p
a for t = p+ 1; : : : ; T:

(18)

The above transformation depends upon the auto-covariance function of vit, that is, s for t = 1 : : : ; p.

In order to make this operational, we must get estimates of s. Consistent estimates of s can be obtained

from

̂s =

NX
i=1

TX
t=s+1

~vit~vi;t�s
N (T � s) (19)

for s = 0; : : : ; p, where ~vit denotes the within residuals obtained by regressing eyit on exit, where exit = xit�xi�,
and xi� = 1

T

PT
t=1 xit: After getting ̂s, one can compute r̂s = ̂s=̂0 for s = 1 : : : ; p. Next we get estimates

for the �� s which are needed for the y�it for t = p + 1; : : : ; T . We can estimate the ��s by running the

regression of ~vit on ~vi;t�1, ~vi;t�2; : : : ; ~vi;t�p (t > p). Finally we turn to the problem of getting an estimate

for a = �2�=0. It is easy to check that

0 = E
�
v2it
�
= E

�
vit
�
�1vi;t�1 + �2vi;t�2 + � � �+ �pvi;t�p + �it

��
= �11 + �22 + � � �+ �pp + �2� : (20)

Dividing both sides by 0; one obtains

a = �2�=0 = 1� �1r1 � �2r2 � � � � � �prp (21)
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Therefore, GLS on (3) can be obtained by premultiplying this model by ���1=2 and running OLS. We

summarize our estimation procedure as follows:

Step (i): Use the within residuals to compute ̂s as given in (19). From ̂s (s = 1::::; p); we can get at,

bt;t�s and �t from (16), (17) and (18).

Step (ii): Get �1; �2; � � � ; �p from the OLS regression of ~vit on ~vi;t�1,~vi;t�2,� � � ,~vi;t�p (t > p). Obtain an

estimate of a from (21). We now have all the ingredients to compute y�it and x
�
it for t = 1; : : : ; T from (15).

Step (iii): Compute �̂2� and �̂
2 in (14) using OLS residuals of y�it on x

�
it. Then compute y

��
it and x

��
it

for t = 1; : : : ; T from (13). Run the OLS regression of y��it on x
��
it . This is equivalent to running the GLS

regression on (1).

3 Prediction

Goldberger (1962) showed that, for the regression model given in (3) with a general variance-covariance

matrix 
, the best linear unbiased predictor (BLUP) for yi;T+1 is given by

ŷi;T+1 = x
0
i;T+1�̂GLS + w

0
�1ûGLS ; (22)

where w = E (uui;T+1) is the covariance between the future disturbance ui;T+1 and the sample disturbances

u. �̂GLS is the GLS estimator of � from equation (3) based on 
 and ûGLS = y � x0�̂GLS denotes the

corresponding GLS residual vector. As shown in Baltagi and Li (1992), the last term in Equation (22) is

given by:

w0
�1ûGLS = E [ui;T+1 (u
0
1; : : : ; u

0
N )]

0BBBBBB@
��1 0 � � � 0

0 ��1 � � � 0
...

...
. . .

...

0 0 � � � ��1

1CCCCCCA

0BBBBBB@
û1

û2
...

ûN

1CCCCCCA
=

NX
j=1

�
E
�
ui;T+1u

0
j

�
��1ûj

�
= E (ui;T+1u

0
i) �

�1ûi; (23)

where u0i = (ui1; : : : ; uiT ) and ûi denote the GLS residuals. The last equality uses the fact that errors of

di¤erent individuals are independent of each other. Using the fact that ui;T+1 = �i + vi;T+1, equation (23)

can be written as the sum of two terms:

E (ui;T+1u
0
i) �

�1ûi = E (�iu
0
i) �

�1ûi + E (vi;T+1u
0
i) �

�1ûi: (24)
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Recall that �� = C�C 0, hence

��1 = C 0���1C = C 0
�
1

�2�
�J�T +

1

�2
E�T

�
C: (25)

Note that E (�iu
0
i) = E (�i�i�

0
T ) = �

2
��
0
T because of the independence of �i and vi: Hence, the �rst term in

equation (24) can be written as:

E (�iu
0
i) �

�1ûi = �
2
��
0
TC

0
�
1

�2�
�J�T +

1

�2
E�T

�
Cûi =

�2�
�2�
��T û

�
i =

�2�
�2�

TX
t=1

�tû
�
it; (26)

where Cûi = û�i , using the fact C�T = �
�
T , �

�0
T
�J�T = �

�0
T and ��0T E

�
T = 0: In this case,

E (vi;T+1u
0
i) = E (vi;T+1v

0
i) = E

��
�1vi;T + �2vi;T�1 + � � �+ �pvi;T+1�p + �i;T+1

�
v0i
�

= �1E (vi;T v
0
i) + �2E (vi;T�1v

0
i) + � � �+ �pE (vi;T�1�pv0i) + E (�i;T+1v0i) ; (27)

where E (vi;T v0i) ; E (vi;T�1v
0
i) ; � � � ; E (vi;T�1�pv0i) are the last p columns of the covariance matrix E (viv0i) =

�2V: Also, E (�i;T+1v0i) = 0: Hence, we have

E (vi;T+1u
0
i) =

�
0; � � � ; 0; �p; � � � ; �2; �1

�
�2V:

Further, notice that ��1 in Equation (25) can also be written as

��1 = C 0
�
1

�2
IT +

�
1

�2�
� 1

�2

�
�J�T

�
C

= C 0

"
1

�2
IT �

�2�d
2

�2��
2

��T �
�0
T

d2

#
C

=
C 0C

�2

"
IT �

�2�
�2�
�T �

�0
T C

#
(28)

using the fact that E�T = IT � �J�T , �
2
� = �

2
�d

2 + �2 and ��T = C�T . Hence the second term in equation (24)

becomes:

E (vi;T+1u
0
i) �

�1ûi =
�
0; � � � ; 0; �p; � � � ; �2; �1

�
�2V

C 0C

�2

"
IT �

�2�
�2�
�T �

�0
T C

#
ûi

=
�
0; � � � ; 0; �p; � � � ; �2; �1

� "
ûi �

�2�
�2�
�T �

�0
T û

�
i

#

=

pX
s=1

�sûi;T+1�s �
�2�
�2�

pX
s=1

�s

TX
t=1

�tû
�
it (29)

using the fact that V = (C 0C)�1 since CV C 0 = IT . Combining equations (26) and (29), one gets

w0
�1ûGLS =

pX
s=1

�sûi;T+1�s +

 
1�

pX
s=1

�s

!
�2�
�2�

TX
t=1

�tû
�
it: (30)
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Special case 1: No random e¤ects. In this case �2� = 0, and equation (30) reduces to

w0
�1ûGLS =

pX
s=1

�sûi;T+1�s (31)

This is Goldberger�s BLUP extra term for the panel data model with AR(p) remainder disturbances but no

random individual e¤ects. Goldberger (1962) actually considered the case of an AR(1) process.

Special case 2: No serial correlation. In this case �1 = �2 = � � � = �p = 0, so there is no AR(p) process in

the remainder disturbances. It is easy to verify that at = 1, bt;� = 0, �t = 1, d2 = T , �2 = �2� , �
2
� = T�

2
�+�

2
�

and û�it = ûit. In this case, equation (30) reduces to

w0
�1ûGLS =
�2�
�21

TX
t=1

ûit =
�2�
�21
(�T 
 li)0 ûGLS = (T�2�=�21)bui:;GLS ; (32)

where �21 = T�
2
�+�

2
� , bui:;GLS =PT

t=1 buit;GLS=T; and li is the ith column of IN . This is Goldberger�s BLUP
extra term derived by Taub (1979) for the random e¤ects error component model with no serial correlation

in the remainder disturbances.

Special case 3: AR(1) process. Here we show that equation (30) reduces to the results in Baltagi and

Li (1992) for the random e¤ects panel data model with AR(1) serially correlated remainder disturbances.

Multiply and divide the second term of equation (30) by a (1�
Pp

s=1 �s), where a = �
2
�=0; we get

w0
�1ûGLS =

pX
s=1

�sûi;T+1�s +

 
1�

pX
s=1

�s

!2
�2�
a�2�

TX
t=1

�� p
a

1�
Pp

s=1 �s
�t

��p
aû�it

��
:

In order to get to the Baltagi and Li (1992) notation, we de�ne ~u�it =
p
aû�it, ~�t =

p
a

1�
Pp

s=1 �s
�t and ~�2� = a�

2
�.

This equation becomes:

w0
�1ûGLS =

pX
s=1

�sûi;T+1�s +

 
1�

pX
s=1

�s

!2
�2�

~�2�

TX
t=1

~�t~u
�
it

=

pX
s=1

�sûi;T+1�s +

 
1�

pX
s=1

�s

!2
�2�

~�2�

 
pX
t=1

~�t~u
�
it +

TX
t=p+1

~u�it

!
(33)

since ~�t = 1 for t = p+ 1; : : : ; T , see (18).

If p = 1, Equation (33) reduces to

w0
�1ûGLS = �1ûi;T + (1� �1)
2 �

2
�

~�2�

 
~�1~u

�
i1 +

TX
t=2

~u�it

!
: (34)

Note that a = �2�=0 = 1 � �21; ~�1 =
p
a

1��1
�1 =

p
1��21
1��1

=
q

1+�1
1��1

, since �1 = 1 from (18). ~�2� =

a�2� = (1 � �21)
�
�2�d

2 + �2
�
: De�ne ~d2 = 1+�1

1��1
d2 = 1+�1

1��1

�
1 +

PT
t=2

1��1
1+�1

�
= 1+�1

1��1
+ T � 1. Then
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~�2� = (1� �1)
2
�2�
~d2 + �2� . The recursive transformation for the AR(1) remainder disturbances reduces

to the Prais-Winsten transformation given by: ~u�i1 =
p
1� �21ui1 and ~u�it = uit � �1ui;t�1 for t = 2; : : : ; T .

This reproduces Goldberger�s extra term derived in equation (13) by Baltagi and Li (1992, p.564) for the

random e¤ects panel data model with AR(1) serial correlated remainder disturbances.

Special case 4: AR(2) process. If p = 2, Equation (33) reduces to

w0
�1ûGLS = �1ûi;T + �2ûi;T�1 + (1� �1 � �2)
2 �

2
�

~�2�

 
~�1~u

�
i1 + ~�2~u

�
i2 +

TX
t=3

~u�it

!
: (35)

Note that 1 = E (vitvi;t�1) = E [(�1vi;t�1 + �2vi;t�2 + �it) vi;t�1] = �10 + �21: Solving for 1,we get

1 =
�1
1��2

0. Hence b2;1 = r1 =
1
0
= �1

1��2
and a2 = 1 � b22;1 = 1 �

�
�1
1��2

�2
=

(1��2)2��21
(1��2)2

, �2 =

(1� b2;1�1) =
p
a2 =

1� �1
1��2r

1�
�

�1
1��2

�2 =
r

1� �1
1��2

1+
�1

1��2
=
q

1��1��2
1+�1��2

. Also, a = �2�=0 = �
2
�=�

2
v, ~�1 =

p
a

1��1��2
�1 =

��
�v(1��1��2)

, ~�2 =
p
a

1��1��2
�2 =

��
�v(1��1��2)

q
1��1��2
1+�1��2

=
q

1+�2
1��2

using the fact �2v =
(1��2)�2�

(1+�2)[(1��2)2��21]
,

which is shown in Baltagi and Li (1991). ~�2� = a�2� = a
�
�2�d

2 + �2
�
= (1� �1 � �2)

2
�2�
~d2 + �2� , where

~d2 =
�2�

�2v(1��1��2)2
d2 = ~�21 + ~�22 + T � 2. The recursive transformation for the AR(2) remainder dis-

turbances reduces to û�i1 = ûi1, û�i2 = (ûi2 � b2;1û�i1) =
p
a2 =

p
(1��2)2��21
1��2

ûi2 �
�1

p
(1��2)2��21
(1��2)2

ûi1, û�it =

�v
��
(ûit � �1ûi;t�1 � �2ûi;t�2) for t = 3; : : : ; T . Hence ~u�i1 = ��

�v
ui1, ~u�i2 =

��
�v

�p
(1��2)2��21
1��2

ûi2 �
�1

p
(1��2)2��21
(1��2)2

ûi1

�
=p

1� �22
�
ûi2 � �1

1��2
ûi1

�
, and ~u�it = ûit � �1ûi;t�1 � �2ûi;t�2 for t = 3; : : : ; T . This reproduces Goldberger�s

extra term derived in equation (14) by Baltagi and Li (1992, p.565) for the random e¤ects panel data model

with AR(2) serially correlated remainder disturbances.

Special case 5: The specialized AR(4) process for quarterly data: vit = �4vi;t�4 + �it, with �1 = �2 =

�3 = 0. In this case, equation (33) reduces to

w0
�1ûGLS = �4ûi;T�3 + (1� �4)
2 �

2
�

~�2�

 
4X
t=1

~�t~u
�
it +

TX
t=5

~u�it

!
: (36)

It is easy to verify that a = �2�=0 = 1 � �24, a1 = a2 = a3 = a4 = 1, b2;1 = b3;1 = b3;2 = b4;1 =

b4;2 = b4;3 = 0 and �1 = �2 = �3 = �4 = 1. Hence ~�1 = ~�2 = ~�3 = ~�4 =
q

1+�4
1��4

, ~�2� = a�2� =

a
�
�2�d

2 + �2
�
= (1� �4)

2
�2�
~d2 + �2� , where ~d

2 = 1+�4
1��4

d2 = 1+�4
1��4

�
4 +

PT
t=5

1��4
1+�4

�
= 1+�4

1��4
+ T � 4. The

recursive transformation for the specialized AR(4) remainder disturbances reduces to ~u�it =
p
1� �21uit for

t = 1; 2; 3; 4 and ~u�it = uit � �4ui;t�4 for t = 5; : : : ; T . This reproduces Goldberger�s extra term derived

in equation (15) by Baltagi and Li (1992, p.565) for the random e¤ects panel data model with specialized

AR(4) remainder disturbances. Hence the results derived in this paper encompass the earlier results and

generalize them to remainder disturbances of an arbitrary AR(p) order.
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4 Monte Carlo Simulation

This section performs some limited Monte Carlo experiments to evaluate the performance of our proposed

predictors for the random e¤ects model with AR(p) disturbances. It is important to note that Kouassi et

al. (2011) performed extensive Monte Carlo experiments to evaluate the performance of predictors for the

random e¤ects model with AR(1) disturbances. Following Baillie and Baltagi (1999) and Kouassi et al.

(2011) the data generating process starts with a simple panel data regression with random one-way error

components disturbances

yit = 5 + 0:5xit + �i + �it; i = 1; : : : ; N; t = 1; : : : ; T + 1 (37)

The variable xit was generated as in Nerlove (1971) with xit = 0:1t+ 0:5xi;t�1 + !it, where !it is a random

variable uniformly distributed on the interval [�0:5; 0:5] and xi0 = 5 + 10!i0. The individual speci�c e¤ect

�i
iid� N

�
0; �2�

�
with �2� = 15. The remainder disturbances �it were generated as an AR(p) process with the

following three designs:

1. Model 1: �it = �0:8�i;t�1 + "it,

2. Model 2: �it = 0:2�i;t�1 + 0:63�i;t�2 + "it,

3. Model 3: �it = �0:7�i;t�1 � 0:53�i;t�2 + 0:315�i;t�3 + "it,

In all models, the variance of �it was �xed at �2� = 15. The �rst 20 period observations were discarded

to minimize the e¤ect of initial values. Predictions were made for only one period ahead. In order to depict

the typical labor or consumer panel where N is large and T is small, the sample sizes (N;T ) in the di¤erent

experiments were chosen as (100; 10) and (200; 20). For each experiment, we perform 1; 000 replications. For

each replication we estimate the model using the pooled ordinary least square (OLS), panel random e¤ect

(RE) and random e¤ect model with AR(1), AR(2) and AR(3) terms respectively, (RE-AR1, RE-AR2 and

RE-AR3). Following Kouassi et al. (2011), the sampling mean square error (MSE) of each of the predictors

considered above is computed as

MSE =
1

nR

RX
r=1

nX
i=1

(ŷi;T+1 � yi;T+1)2 ; (38)

where R = 1; 000 replications. Following Frees and Miller (2004), we also summarize the accuracy of the

forecasts using two other statistics, the mean absolute error (MAE)

MAE =
1

nR

RX
r=1

nX
i=1

jŷi;T+1 � yi;T+1j (39)
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and the mean absolute percentage error (MAPE)

MAPE =
100

nR

RX
r=1

nX
i=1

���� ŷi;T+1 � yi;T+1yi;T+1

���� : (40)

Tables 1 and 2 report the results for sample sizes (N = 100; T = 10) and (N = 200; T = 20), respectively. For

model 1 where the true DGP is RE-AR1, the MSE, MAE and MAPE of RE-AR1 is the smallest. Similarly,

for model 2 where the true DGP is RE-AR2, the MSE, MAE and MAPE of RE-AR2 is the smallest, while

for model 3 where the true DGP is RE-AR3, the MSE, MAE and MAPE of RE-AR3 is the smallest.

5 Application

In this section we revisit the forecast application considered by Frees and Miller (2004). This is a panel of 50

postal (ZIP) codes in Wisconsin observed over 40 weeks. Frees and Miller regressed the logarithm of online

lottery sales (LNZOLSALES) on persons per household times 10 (PERPERHH), median years of schooling

times 10 (MEDSCHYR), median home value in $100s for owner-occupied homes (OOMEDHVL), percent of

housing that is renter occupied (PRCRENT), percent of population that is 55 or older (PRC55P), household

median age (HHMEDAGE), estimated median household income in $100s (CEMI) and population (POP).

Besides the pooled ordinary least square (OLS), panel random e¤ect (RE) and random e¤ect model with

AR(1) term (RE-AR1) that are reported in Frees and Miller (2004), we also report the random e¤ect model

with AR(2) and AR(3) term, (RE-AR2 and RE-AR3) respectively. As in Frees and Miller (2004), we use

the �rst 35 weeks of data to estimate the model. The results are shown in Table 3. The �rst three collumns,

pooled cross-sectional model, error component model and error component model with AR(1) term, replicate

the results in Table 3 of Frees and Miller (2004). We focus on forecasting one period ahead to illustrate

our theoretical results. For each estimator, we compute the forecasts of lottery sales for week 36, by ZIP

code level, based on the �rst 35 weeks. Following Frees and Miller (2004), we summarize the accuracy of

the forecasts of LNZOLSALESi;36 using MSE, MAE and MAPE, which are de�ned in Equation (38)-(40)

by replacing R = 1. Table 3 con�rms that the random e¤ects model with an AR(1) term has the smallest

MSE, MAE or MAPE for logarithmic sales.1

1Frees and Miller (2004) compared the forecasts for 5 weeks ahead using MAE and MAPE. They used nine alternative

forecasts. They do �nd that the random e¤ects with AR(1) performs the best. Our results using their data forecast one week

ahead and include higher order AR models in a random e¤ects model including AR(2) and AR(3) to illustrate our theoretical

derivations.
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6 Conclusion

This paper derives the best linear unbiased predictor for a panel data model with random individual e¤ects

and AR(p) remainder disturbances. The performance of this predictor is investigated using Monte Carlo

experiments and illustrated using the Wisconsin lottery sales example of Frees and Miller (2004).
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Table 1: Comparison of Estimators (n = 100; T = 10)

True Model OLS RE RE-AR1 RE-AR2 RE-AR3

MSE Model 1 30.866 17.418 6.372 6.413 6.458

Model 2 31.646 11.217 11.820 8.817 9.184

Model 3 34.930 22.782 15.753 5.143 4.672

MAE Model 1 4.439 3.337 2.017 2.023 2.030

Model 2 4.488 2.670 2.741 2.368 2.417

Model 3 4.713 3.807 3.171 1.811 1.727

MAPE Model 1 463.755 307.451 177.090 177.270 178.516

Model 2 1843.802 611.083 555.646 484.035 512.590

Model 3 473.531 315.954 265.836 157.374 136.386

Note: MSE, MAE and MAPE are out-of-sample forecast comparison for one period ahead.
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Table 2: Comparison of Estimators (n = 200; T = 20)

True Model OLS RE RE-AR1 RE-AR2 RE-AR3

MSE Model 1 30.720 16.443 5.965 5.978 5.992

Model 2 31.200 13.440 11.934 7.575 7.652

Model 3 33.850 19.836 14.672 4.481 4.053

MAE Model 1 4.422 3.232 1.949 1.951 1.954

Model 2 4.457 2.925 2.755 2.197 2.209

Model 3 4.641 3.551 3.056 1.689 1.607

MAPE Model 1 382.275 214.087 106.091 106.540 107.314

Model 2 433.756 185.505 177.250 127.944 129.112

Model 3 390.932 239.863 188.046 93.128 87.780

Note: MSE, MAE and MAPE are out-of-sample forecast comparison for one period ahead.
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Table 3: Lottery model coe¢ cient estimates

OLS RE RE-AR1 RE-AR2 RE-AR3

Intercept 13.821 17.811 15.180 16.044 15.991

(1.340) (6.935) (6.246) (6.325) (6.325)

PERPERHH -0.108 -0.127 -0.115 -0.119 -0.119

(0.016) (0.084) (0.075) (0.076) (0.076)

MEDSCHYR -0.082 -0.106 -0.091 -0.096 -0.095

(0.007) (0.036) (0.032) (0.033) (0.033)

MEDHVL 0.001 0.001 0.001 0.001 0.001

(0.000) (0.001) (0.001) (0.001) (0.001)

PRCRENT 0.032 0.027 0.030 0.029 0.029

(0.004) (0.020) (0.018) (0.018) (0.018)

PRC55P -0.070 -0.072 -0.071 -0.071 -0.071

(0.013) (0.070) (0.063) (0.064) (0.064)

HHMEDAGE 0.118 0.119 0.120 0.119 0.119

(0.021) (0.110) (0.098) (0.100) (0.100)

MEDINC 0.004 0.005 0.004 0.004 0.004

(0.001) (0.003) (0.002) (0.003) (0.003)

POP=1000 0.057 0.118 0.079 0.091 0.090

(0.006) (0.026) (0.026) (0.026) (0.026)

NRETAIL 0.021 -0.024 0.005 -0.004 -0.004

(0.004) (0.017) (0.017) (0.017) (0.017)

�1 0.513 0.624 0.628

�2 -0.229 -0.257

�3 0.034

MSE 0.528 0.112 0.057 0.077 0.076

MAE 0.585 0.285 0.190 0.228 0.225

MAPE 8.684 4.059 2.777 3.307 3.257

Note: In-sample model coe¢ cient estimates are based on n=50 ZIP codes and T=35 weeks. The response is logarithmic

sales. MSE, MAE and MAPE are out-of-sample forecast comparison for week 36.
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