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Abstract 

It is well known that the standard Breusch and Pagan (1980) LM test for cross-equation 

correlation in a SUR model is not appropriate for testing cross-sectional dependence in panel 

data models when the number of cross-sectional units (n) is large and the number of time periods 

(T) is small. In fact, a scaled version of this LM test was proposed by Pesaran (2004) and its 

finite sample bias was corrected by Pesaran, Ullah and Yamagata (2008). This was done in the 

context of a heterogeneous panel data model. This paper derives the asymptotic bias of this 

scaled version of the LM test in the context of a fixed effects homogeneous panel data model. 

This asymptotic bias is found to be a constant related to n and T, which suggests a simple bias 

corrected LM test for the null hypothesis. Additionally, the paper carries out some Monte Carlo 

experiments to compare the finite sample properties of this proposed test with existing tests for 

cross-sectional dependence. 
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1 Introduction

Cross-sectional dependence, described as the interaction between cross-sectional units (e.g., house-

holds, �rms and states etc.), has been well discussed in the spatial literature. Intuitively, dependence

across �space�, can be regarded as the counterpart of serial correlation in time series. It could arise

from the behavioral interaction between individuals, e.g., imitation and learning among consumers

in a community, or �rms in the same industry. This has been widely studied in game theory and

industrial organization. It could also be due to unobservable common factors or common shocks

popular in macroeconomics.

As is the case under serial correlation in time series, cross-sectional dependence leads to e¢ -

ciency loss for least squares and invalidates conventional t-tests and F -tests which use standard

variance-covariance estimators. In some cases, it could potentially result in inconsistent estimators

(Lee, 2002; Andrews, 2005). Several estimators have been proposed to deal with cross-sectional

dependence, including the popular spatial methods (Anselin, 1988; Anselin and Bera, 1998; Kele-

jian and Prucha, 1999; Kapoor, Kelejian and Prucha, 2007; Lee, 2007; Lee and Yu, 2010), and

factor models in panel data (Pesaran, 2006, Kapetanios, Pesaran and Yamagata, 2011; Bai, 2009).

However, before imposing any structure on the disturbances of our model, it may be wise to test

the existence of cross-sectional dependence.

There has been a lot of work on testing for cross-sectional dependence in the spatial econometrics

literature, see Anselin and Bera (1998) for cross-sectional data and Baltagi, Song and Koh (2003)

for panel data, to mention a few. The latter derives a joint Lagrange Multiplier (LM) test for the

existence of spatial error correlation as well as random region e¤ects in a panel data regression

model. Panel data provide richer information on the covariance matrix of the errors than cross-

sectional data. This is especially relevant for the o¤-diagonal elements which are of particular

importance in determining cross-sectional dependence. With panel data one can test for cross-

sectional dependence without imposing ad hoc speci�cations on the error structure generating the

covariance matrix, e.g., the spatial autoregressive model in the spatial literature, or the single or

multiple factor structures imposed on the errors in the macro literature. Ng (2006) and Pesaran

(2004) propose two test procedures based on the sample covariance matrix in panel data. Ng (2006)

develops a test tool using spacing method in a panel model. Pesaran (2004) proposes a cross-

sectional dependence (CD) test using the pairwise average of the o¤-diagonal sample correlation

coe¢ cients in a seemingly unrelated regressions model. The CD test is closely related to the RAV E

1



test statistic advanced by Frees (1995). Unlike the traditional Breusch-Pagan (1980) LM test,

the CD test is applicable for a large number of cross-sectional units (n) observed over T time

periods. Recently, Sara�dis, Yamagata and Robertson (2009) develop a test for cross-sectional

dependence based on Sargan�s di¤erence test in a linear dynamic panel data model, in which

the error cross-sectional dependence is modelled by a multifactor structure. Hsiao, Pesaran and

Pick (2009) propose a LM type test for nonlinear panel data models. Baltagi, Feng and Kao

(2011) propose a test for sphericity following John (1972) and Ledoit and Wolf (2002) in the

statistics literature. Sphericity means that the variance-covariance matrix is proportional to the

identity matrix. However, rejection of the null could be due to cross-sectional dependence or

heteroskedasticity or both. For a recent survey of some cross-sectional dependence tests in panels,

see Moscone and Tosetti (2009).

In the �xed n case and as T ! 1, the Breusch and Pagan�s (1980) LM test can be applied

to test for the cross-sectional dependence in panels. Under the null hypothesis, the test statistic

is asymptotically Chi-square distributed with n(n� 1)=2 degrees of freedom. However, this test is

not applicable when n!1. Therefore, Pesaran (2004) proposed a scaled version of this LM test,

denoted by CDlm which has a N(0; 1) distribution as T !1 �rst, followed by n!1. As pointed

out by Pesaran (2004), the CDlm test is not correctly centered at zero for �nite T and is likely

to exhibit large size distortions as n increases. To solve this problem, Pesaran (2004) proposes

a diagnostic test based on the average of the sample correlations, which he denotes by the CD

test, and this is valid for large n. Additionally, Pesaran, Ullah and Yamagata (2008) develop a

bias-adjusted LM test using �nite sample approximations in the context of a heterogeneous panel

model.

This paper derives the asymptotic bias of this scaled version of the LM test in the context of

a �xed e¤ects homogeneous panel data model. Because it is based on the �xed e¤ects residuals,

we denote it by LMP to distinguish it from CDlm. The asymptotic bias of LMP is found to

be a constant related to n and T which suggests a simple bias corrected LM test for the null

hypothesis. This paper di¤ers from the bias-adjusted LM test of Pesaran, Ullah and Yamagata

(2008) in that the latter assumes a heterogeneous panel data model, whereas this paper assumes

a �xed e¤ects homogeneous panel data model. Also, the bias correction derived in this paper

is based on asymptotic results as (n; T ) ! 1; while the bias adjustment in Pesaran, Ullah and

Yamagata (2008) is obtained using �nite sample approximation. Phillips and Moon (1999) provide

regression limit theory for panels with (n; T ) ! 1. Here, we adopt the asymptotics used in the
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statistics literature for high dimensional inference, see Ledoit and Wolf (2002) and Schott (2005), to

mention a few. This literature usually deals with multivariate normal distributed variables where

the number of variables (in our case n) is comparably as large as the sample size (T ). Our paper

�nds that under this joint asymptotics framework with (n; T ) ! 1 simultaneously, the limiting

distribution of the LMP statistic is not standard normal under the assumption of a �xed e¤ects

model. Consequently, it can su¤er from large size distortions.

The organization of the paper is as follows. The next section discusses the LM tests for cross-

sectional dependence in the context of a �xed e¤ects panel data model. Section 3 derives the

limiting distribution of the LMP test in the raw data case. Section 4 derives the corresponding

limiting distribution of the LMP test in the context of a �xed e¤ects model. Section 5 compares

the size and power of the proposed test as well as other tests for cross-sectional dependence using

Monte Carlo experiments. In section 6, we show that the proposed bias-corrected LM test can be

extended to the dynamic panel data model. Section 7 concludes. The appendix contains all the

proofs and the technical details.

2 LM Tests for Cross-sectional Dependence

Consider the heterogeneous panel data model:

yit = x
0
it�i + uit; for i = 1; :::; n; t = 1; :::; T; (1)

where i indexes the cross-sectional units and t the time series observations. yit is the dependent

variable and xit denotes the exogenous regressors of dimension k� 1 with slope parameters �i that

are allowed to vary across i. uit is allowed to be cross-sectionally dependent but is uncorrelated

with xit. Let Ut = (u1t; � � � ; unt)0. The n� 1 vectors U1; U2; � � � ; UT are assumed iid N(0;�u) over

time. Let �ij be the (i; j)th element of the n�n matrix �u. The errors uit (i = 1; :::; n; t = 1; :::; T )

are cross-sectionally dependent if �u is non-diagonal, i.e., �ij 6= 0 for i 6= j. The null hypothesis of

cross-sectional independence can be written as:

H0 : �ij = 0 for i 6= j,

or equivalently as

H0 : �ij = 0 for i 6= j, (2)

where �ij is the correlation coe¢ cient of the errors with �ij =
�ijq
�2i �

2
j

: Under the alternative hy-

pothesis, there is at least one non-zero correlation coe¢ cient �ij , i.e., Ha : �ij 6= 0 for some i 6= j:

3



The OLS estimator of yit on xit for each i, denoted by �̂i, is consistent. The corresponding

OLS residuals ûit de�ned by ûit = yit � x0it�̂i are used to compute the sample correlation ��ij as

follows:

��ij =

�
TP
t=1
û2it

��1=2� TP
t=1
û2jt

��1=2 TP
t=1
ûitûjt: (3)

In the �xed n case and as T !1, the Breusch and Pagan�s (1980) LM test can be applied to test

for the cross-sectional dependence in heterogeneous panels. In this case it is given by:

LMBP = T
n�1P
i=1

nP
j=i+1

��2ij :

This is asymptotically distributed under the null as a �2 with n(n � 1)=2 degrees of freedom.

However, this Breusch-Pagan LM test statistic is not applicable when n ! 1. In this case,

Pesaran (2004) proposes a scaled version of the LMBP test given by:

CDlm =

s
1

n(n� 1)
n�1P
i=1

nP
j=i+1

�
T��2ij � 1

�
: (4)

Pesaran (2004) shows that CDlm is asymptotically distributed as N(0; 1); under the null, with

T !1 �rst, and then n!1. However, as pointed out by Pesaran (2004), for �nite T , E[T��2ij�1]

is not correctly centered at zero, and with large n, the incorrect centering of the CDlm statistic

is likely to be accentuated. Thus, the standard normal distribution may be a bad approximation

of the null distribution of the CDlm statistic in �nite samples, and using the critical values of a

standard normal may lead to big size distortion. Using �nite sample approximations, Pesaran, Ullah

and Yamagata (2008) rescale and recenter the CDlm test. The new LM test, denoted as PUY�s

LM test, is given by

PUY�s LM =

s
2

n(n� 1)
n�1P
i=1

nP
j=i+1

(T � k)��2ij � �Tij
�Tij

; (5)

where

�Tij =
1

T � k tr[E(MiMj)]

is the exact mean of (T � k)��2ij and

�2Tij = ftr[E(MiMj)]g2a1T + 2trfE[(MiMj)
2]ga2T

is its exact variance. Here

a1T = a2T �
1

(T � k)2 ;

a2T = 3

�
(T � k � 8)(T � k + 2) + 24

(T � k + 2)(T � k � 2)(T � k � 4)

�2
;
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Mi = I � Xi(X 0
iXi)

�1X 0
i, where Xi = (xi1; � � � ; xiT )0 contains T observations on the k regressors

for the i-th individual regression. PUY�s LM is asymptotically distributed as N(0; 1); under the

null, with T !1 �rst, and then n!1.

This paper considers the �xed e¤ects homogeneous panel data model

yit = �+ x
0
it� + �i + vit; for i = 1; :::; n; t = 1; :::; T (6)

where �i denotes the time-invariant individual e¤ect. The k � 1 regressors xit could be correlated

with �i, but are uncorrelated with the idiosyncratic error vit. This is a standard model in the

applied panel data literature and di¤ers from (1) in that the �0is are the same, and heterogeneity

is introduced through the �0is. The intercept � appears explicitly so that the regressor vector xit

includes only time-variant variables. Throughout our derivations for the �xed e¤ects model, we

require the following assumptions:

Assumption 1 n
T ! c 2 (0;1 ) as (n; T )!1:

c is a non-zero bounded constant. This assumption approximates the case where the dimension

n is comparably as large as T .

For a static panel data model, we assume:

Assumption 2 i) The n�1 vectors of idiosyncratic disturbances Vt = (v1t; � � � ; vnT )0; t = 1; :::; T;

are iid N(0;��) over time1; ii) E[vitjxi1; :::; xiT ] = 0 and E[vitjxj1; :::; xjT ] = 0, i = 1; � � � ; n,

t = 1; � � � ; T ; iii) For the demeaned regressors ~xit = xit � 1
T

PT
s=1 xis,

1
T

PT
t=1 ~xit,

1
T

PT
t=1 ~xit~x

0
jt

are stochastic bounded for all i = 1; � � � ; n and j = 1; � � � ; n, and lim(n;T )!1 1
nT

Pn
i=1

PT
t=1 ~xit~x

0
it

exists and is nonsingular.

The normality assumption 2.i) above may be strict but it is a standard assumption in the

statistical literature and is also assumed by Pesaran, Ullah and Yamagata (2008). Other distri-

butions will be examined for robustness checks in the Monte Carlo experiments. Assumptions

2.ii) is standard. Assumption 2.iii) excludes nonstationary or trending regressors. Under these

assumptions, the within estimator ~� is
p
nT -consistent. This estimator is obtained by regressing

~yit = yit� 1
T

PT
s=1 yis on ~xit. The corresponding within residuals given by bvit = ~yit� ~x0it~� are used

1Vt and �v form triangular arrays as both n and T increase. Strictly speaking, Vt (�v) should be written as Vt;n
(�v;n). To avoid index cluttering, we suppress the subscript n.

5



to compute the sample correlation �̂ij as follows:

�̂ij =

�
TP
t=1
bv2it��1=2� TP

t=1
v̂2jt

��1=2 TP
t=1
v̂itv̂jt: (7)

For a dynamic panel data model with the lagged dependent variable as a regressor, more as-

sumptions are needed. We will discuss this case in Section 6.

The scaled version of the LMBP test suggested by Pesaran (2004) but now applied to the �xed

e¤ects model is given by:

LMP =

s
1

n(n� 1)
n�1P
i=1

nP
j=i+1

�
T �̂2ij � 1

�
: (8)

This replaces ��ij with �̂ij and it now tests the null given in (2) only applied to the remainder

disturbance vit: In order to see this, let uit = �i + vit denote the disturbances in (6). The �xed

e¤ects estimator wipes out the individual e¤ects, and that is why it does not matter whether the

�0is are correlated with the regressors or not. The test for no cross-sectional dependence of the

disturbances given in (2) becomes a test for no cross-sectional dependence of the vit: This LMP

test, for the �xed e¤ects model (8), su¤ers from the same problems discussed by Pesaran (2004)

for the corresponding CDlm statistic (4) for the heterogeneous panel model. We show that it will

exhibit substantial size distortions due to incorrect centering when n is large. Unlike the �nite

sample adjustment in Pesaran, Ullah and Yamagata (2008), this paper derives the asymptotic

distribution of the LMP statistic under the null as (n; T )!1; and proposes a bias corrected LM

test. The asymptotics are done using the high dimensional inference in the statistics literature, see

Ledoit and Wolf (2002) and Schott (2005), to mention a few. Our derivation begins with the raw

data case and then extends it to a �xed e¤ects regression model. We �nd that in a �xed e¤ects

panel data model, after subtracting a constant that is a function of n and T , the LMP test is

asymptotically distributed, under the null, as a standard normal. Therefore, a bias-corrected LM

test is proposed.

3 LMP Test in the Raw Data Case

In the raw data case, the n� 1 vectors Z1; Z2; � � � ; ZT are a random sample drawn from N(0;�z):

The tth observation Zt has n components, Zt = (z1t; � � � ; znt)0. The null hypothesis of independence

among these n components is the same as (2) but now pertaining to �z rather than �u: For �xed n,

and as T ! 1, the traditional LM test statistic is T
n�1P
i=1

nP
j=i+1

r2ij , which converges in distribution

6



to �2n(n�1)=2 under the null of independence. The sample correlation rij is de�ned as

rij =
�PT

t=1 z
2
it

��1=2 �PT
t=1 z

2
jt

��1=2PT
t=1 zitzjt: (9)

However, as the dimension n becomes as comparably large as T , this traditional LM test becomes

invalid. A scaled LM test statistic

LMz =

s
1

n(n� 1)
n�1P
i=1

nP
j=i+1

�
Tr2ij � 1

�
(10)

is thus considered. This LMz statistic (10) is closely related to the test statistic proposed by Schott

(2005)
n�1P
i=1

nP
j=i+1

r2ij �
n(n� 1)
2T

:

For high-dimensional data, as n=T ! c 2 (0;1 ), Schott (Theorem 1, 2005) shows that under the

null of independence,

n�1P
i=1

nP
j=i+1

r2ij �
n(n� 1)
2T

d! N

�
0; lim
(n;T )!1

n(n� 1)(T � 1)
T 2(T + 2)

�
or, equivalently, thats

T 2(T + 2)

n(n� 1)(T � 1)

"
n�1P
i=1

nP
j=i+1

r2ij �
n(n� 1)
2T

#
d! N (0; 1) :

Using Schott�s (2005) result and the fact thats
T 2(T + 2)

n(n� 1)(T � 1)

"
n�1P
i=1

nP
j=i+1

r2ij �
n(n� 1)
2T

#
=

r
T + 2

T � 1LMz;

it is straightforward to infer that the limiting distribution of LMz is N (0; 1) under the null.2

4 LMP Test in a Fixed E¤ects Panel Data Model

This section derives the limiting distribution of the LMP test de�ned in (8). This tests the null of

no cross-sectional dependence in the �xed e¤ects regression model given in (6). The null hypothesis

of no cross-sectional dependence is the same as (2) but now pertaining to �� rather than �u.

Theorem 1 Under Assumptions 1, 2 and the null hypothesis of no cross-section dependence

LMP �
n

2(T � 1)
d! N(0; 1):

2Srivastava (2005, Theorem 5.1) also derives the null limiting distribution of the LMz statistic given in (10) using
T !1 and focusing on the case where T = O(n�) where 0 < � � 1.
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The proof of the theorem is provided in the Appendix. The asymptotics are derived under the

joint asymptotics of (n; T )!1 with n=T ! c 2 (0;1).

Based on this result, this paper proposes a bias-corrected LM test statistic given by:

LMBC = LMP �
n

2(T � 1) =
s

1

n(n� 1)
n�1P
i=1

nP
j=i+1

�
T �̂2ij � 1

�
� n

2(T � 1) : (11)

Theorem 1 shows that, under the null, the limiting distribution of the bias-corrected LM test is

standard normal.

Comparing LMP in the �xed e¤ects model versus the corresponding LMz in the raw data case,

it is clear that LMP exhibits an asymptotic bias, while LMz does not. This result is similar to the

analysis in Baltagi, Feng and Kao (2011) for the John test for sphericity under the panel regression

model with and without �xed e¤ects. The asymptotic bias in the �xed e¤ects model results from the

incidental parameter problem. Due to the presence of unobserved heterogeneity �i, the idiosyncratic

error vit can not be estimated accurately by the within residuals bvit = ~yit�~x0it~� = vit� 1
T

PT
s=1 vis�

~x0it(
~� � �). The second term 1

T

PT
s=1 vis, created by the within transformation to wipe out the

unobserved heterogeneity �i, is Op(
1
T ). Hence, the accuracy of the within residuals depends on T .

For small T , the within residuals are inaccurate, and so are the sample correlations �̂ij�s computed

using the within residuals. For large T , the terms involved with odd power of 1T
PT
s=1 vis vanish due

to the law of large numbers. However, the sum of a large number of squared terms of 1T
PT
s=1 vis

can not be ignored. The inaccuracy due to the within transformation accumulates in the sum

of squared terms of the statistic with comparably large n and n=T ! c 2 (0;1), consequently,

resulting in asymptotic bias.

5 Monte Carlo Simulations

This section employs Monte Carlo simulations to examine the empirical size and power of our bias-

corrected LM test de�ned in (11) in a static panel data model. We compare its performance with

that of Pesaran�s (2004) CD test given by

Pesaran�s CD =

s
2T

n(n� 1)
n�1P
i=1

nP
j=i+1

��ij ;

and PUY�s LM test given in (5). The sample correlations ��ij are computed using OLS residuals,

see (3). We also include the John test for the null of sphericity discussed by Baltagi, Feng and Kao

(2011). Sphericity means that �� is proportional to the identity matrix. The John test statistic is
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given by

J =
T ( 1n trŜ)

�2 1
n tr(Ŝ

2)� T � n
2

� 1
2
� n

2(T � 1)

where Ŝ = 1
T

PT
t=1 V̂tV̂

0
t is the n�n sample covariance matrix computed using the within residuals

V̂t = (v̂1t; :::; v̂nt)
0. trŜ is the trace of the matrix Ŝ. Under normality and homoskedasticity, the

John test can be used to test for cross-sectional dependence. However, John�s test is not robust

to heteroskedasticity, and rejection of the null hypothesis using the John test could be due to

heteroskedasticity or cross-sectional dependence. For this reason we include the John test in our

experiments only under the homoskedastic case. The John test is not recommended for testing

cross-section dependence when heteroskedasticity is present.3

5.1 Experiment Design

The experiments use the following data generating process:

yit = �+ �xit + �i + vit; i = 1; � � � ; n; t = 1; � � � ; T; (12)

xit = �xi;t�1 + �i + �it: (13)

Following Im, Ahn, Schmidt and Wooldridge (1999) xit in (13) is correlated with the �i, but not

with vit.

To calculate the power of the tests considered, two di¤erent models of the cross-sectional de-

pendence are used: a factor model and a spatial model. In the former, it is assumed that

vit = ift + "it; (14)

where ft (t = 1; � � � ; T ) are the factors and i (i = 1; � � � ; n) are the loadings. In a spatial model,

we consider a �rst-order spatial autocorrelation (SAR(1) in (15)) and a spatial moving average

(SMA(1) in (16)) model as follows:

vit = �(0:5vi�1;t + 0:5vi+1;t) + "it; (15)

vit = �(0:5"i�1;t + 0:5"i+1;t) + "it: (16)

3 It is also important to note that for the raw data case, Kapetanios (2004) suggests transforming the data by
dividing by the estimated standard deviations for each individual before applying the John test. In this case, the
sample correlation matrix will be the same as the sample covariance matrix after transforming the data. One can
show the asymptotic equivalence between the Kapetanios (2004) two-step John test and the LMz test given in (10).
Both test statistics are based on the sum of the squared o¤-diagonal sample correlations, but with di¤erent scale
parameters.

9



Cross-sectional dependence can also be modelled by including a spatially lagged dependent variable,

denoted as the mixed regressive, spatial autoregressive (MRSAR) model:

yit = �+ �(0:5yi�1;t + 0:5yi+1;t) + �xit + �i + vit; (17)

where, similar to the SAR(1) model in (15), the term �(0:5yi�1;t + 0:5yi+1;t) represents the spatial

interaction in the dependent variable. The null can be regarded as a special case of i = 0 in the

factor model (14) and � = 0 in the spatial models (15), (16) and (17).

vit (under the null) and "it (under the alternative) are from iidN(0; �2i ). To model the het-

eroskedasticity, we follow Baltagi, Song and Kwon (2009) and Roy (2002) and assume that

�2i = �
2(1 + ��xi)

2; (18)

where �xi is the individual mean of xit. Here � is assigned values 0, 0:5 with � = 0 denoting

the homoskedastic case. For non-zero �, we �x the average value of �2i across i as 0:5 in our

experiments. We obtain the value of �2 = 0:5=
�
1
n

Pn
i=1(1 + ��xi)

2
�
using (18) and subsequently the

value of �2i . For the case of � = 0, �
2
i = �

2 is �xed at 0:5.

The parameters � and � are set arbitrarily to 1 and 2 respectively. �i is drawn from iidN(��; �
2
�)

with �� = 0 and �
2
� = 0:25 for i = 1; � � � ; n. For the regressor in (13), � = 0:7 and �it � iidN(��; �2�)

with �� = 0 and �
2
� = 1. For the factor model in (14) ft � iidN(0; 1) and two sets of experiments

are conducted for i � iidU(�0:5; 0:55) and i � iidU(0:1; 0:3). For the spatial model � = 0:4 in

(15), (16) and (17).

The Monte Carlo experiments are conducted for n = 5; 10; 20; 30; 50; 100; 200 and T = 10; 20; 30; 50.

For each replication, we compute the bias-corrected LM test, Pesaran�s CD, the John test and

PUY�s LM test. 2,000 replications are performed. To obtain the empirical size, the proposed

bias-corrected LM test, PUY�s LM and the John tests are conducted at the positive one-sided 5%

nominal signi�cance level, while Pesaran�s CD test is implemented at the two-sided 5% nominal

signi�cance level.

5.2 Results

Tables 1 and 2 present the empirical size of these tests under the null of cross-sectional independence

with homoskedasticity (� = 0) and heteroskedasticity (� = 0:5), respectively. The size of the bias-

corrected LM test is close to 5%, even for micro panels with small T and large n. For example, the

size of the bias-corrected LM test is 4:1% and 5:1% for n = 200 and T = 10, under homoskedasticity
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and heteroskedasticity, respectively. The simulation results are consistent with the asymptotic

theory given in Theorem 1 in Section 4. As discussed in Pesaran, Ullah and Yamagata (2008),

for large T there is no bias issue, so PUY�s LM test has the correct size for large T . For large n

and small T , it is slightly oversized. For example, the size of PUY�s LM test is 7:9% and 9:2% for

T = 10; n = 200 under homoskedasticity and heteroskedasticity, respectively. Pesaran�s CD test

has the correct size for all combinations of n and T .4 The size of the John test is also reported in

Table 1 for comparison purposes. It performs well except for micro panels, in which case the John

test is oversized under homoskedasticity.

Table 3 shows the size adjusted power of these tests under the alternative speci�ed by a factor

model. The bias-corrected LM test has bigger size adjusted power than PUY�s LM test for small T .

However, both tests have size adjusted power that is almost 1 when n and T are larger than 20. By

contrast, the power of Pesaran�s CD test is much smaller than those of the two LM tests. While the

power of the LM tests becomes one for large n and T; the power of the CD test reaches a maximum

of 36:5% for n = 200 and T = 50 when i is drawn from U(�0:5; 0:55). This is expected under

the current design. As pointed out by Pesaran, Ullah and Yamagata (2008), in the factor model

above in (14), Cov(vit; vjt) = E[i]E[j ], implying that the value of Pesaran�s CD test statistic is

close to zero if the mean of i is zero. This explains the low power of Pesaran�s CD test when i is

drawn from U(�0:5; 0:55). However, this is not the case for the proposed LM and PUY�s LM tests

which involve the squared terms of sample correlation coe¢ cients. For the case of i drawn from

U(0:1; 0:3), the power of Pesaran�s CD test increases to 1 with n or T .

Tables 4; 5 and 6 give the size adjusted power of these tests under the alternative speci�cations

of SAR(1), SMA(1) and MRSAR, respectively. In these cases, the size adjusted power of Pesaran�s

CD test performs much better than in the case of a factor model, increasing to 1 with T .5

4Pesaran�s CD test is designed for hetergeneous panels and is based on the sample correlation of the residuals of
individual heterogeneous OLS regressions. We performed the experiments again using the CD test but computed
with �xed e¤ects residuals. Pesaran�s CD test always has correct size for all combinations of n and T under the
homoskedastic case. However, it is a little oversized under heteroskedasticity for large n and small T .

5Tables 4 and 5 show that in the SAR(1) and SMA(1) models, the size-adjusted power of tests is low when n is
relatively large and T is small. For example, in the SAR (1) model, when T = 10; n = 200, the size-adjusted power
is 73:6%; 45:6% and 52:9% for the proposed bias-corrected LM, PUY�s LM and Pesaran�s CD tests, respectively.
However, when T gets large, the size-adjusted power of these tests increases to 1. By contrast, Table 6 shows that
in the MRSAR model, the size-adjusted power of these two LM tests is large and increases to 1 with n no matter
whether T is small or large.
The power of the tests under the spatial model depends upon the spatial autocorrelation parameter �. For example,

for � = 0:8, in the SAR (1) model, when T = 10, n = 100, the size-adjusted power is 100%, 100% and 93:9% for
the proposed bias-corrected LM, PUY�s LM and Pesaran�s CD tests, respectively. Pesaran (2004) discusses the local
power of the CD test in factor model and SAR(1) model. Similarly, one can investigate the asymptotic power of
the proposed bias-corrected LM under di¤erent alternatives. Since our proposed test statistic is based on the sum of
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Table 7 provides the results of robustness check on the size of the tests with some non-normal

or asymmetric distributions on the errors. We ran experiments with uniform distribution U [1; 2],

Chi-square distribution with 1 degree of freedom, �21, and t-distribution with 5 degrees of freedom,

t(5), and we compare these results with those of Gaussian case N(0; 0:5). By and large, these

experiments show that the size of the bias-corrected LM, PUY�s LM and Pesaran�s CD tests are

not that sensitive to the normality assumption on the errors. The same results obtain although

the magnitude are di¤erent. PUY�s LM test is still oversized around 8% for large n = 100, small

T = 10 no matter what distribution is used. The bias-corrected LM test has size close to 5% for

the uniform and t distributions and is a little oversized for T � 10 when using the �21 distribution.6

6 Dynamic Panel Data Models

In a dynamic panel data model

yit = �+ �yi;t�1 + x
0
it� + �i + vit; for i = 1; :::; n; t = 1; :::; T (19)

yi;t�1 is the lagged dependent variable. As documented by Nickell (1981), the within estimator

is inconsistent for �nite T as N ! 1. Various consistent estimators have been proposed in the

literature, including Anderson and Hsiao (1981), Arellano and Bond (1991), Kiviet (1995), Bun and

Carree (2005), Phillips and Sul (2007) etc., to name a few. For a detailed discussion, see Baltagi

(2008). Recently, Hahn and Kuersteiner (2002) studied the asymptotic properties of the within

estimator in a dynamic panel model with �xed e¤ects when n and T grow at the same rate. They

show, after a bias-correction, the within estimator is
p
nT -consistent.

For the dynamic panel data model in (19), let us denote � = (�; �0)0. Based on the bias-corrected

estimator bb� proposed by Hahn and Kuersteiner (2002), we can compute the within residuals bvit =
~yit�(~yi;t�1; ~x0it)

bb� with ~yi;t�1 = yi;t�1� 1
T

PT
s=1 yi;s�1, and the corresponding sample correlations �̂ij

and the bias-corrected LM test statistic (LMBC).7 We show that as long as
bb� is pnT -consistent,

squared sample correlations constructed from within residuals, these derivations will be quite involved and are not
pursued in this paper.

6We performed Monte Carlo simulations where the true DGP is a heterogeneous panel. When T is large (T = 50)
and n is small (n = 10), the size of the proposed bias-corrected LM , PUY�s LM and Pesaran�s CD test is 5:6; 5:4
and 5:5 respectively. When n is relatively larger than T , our simulations show that the proposed bias-corrected LM
test is not robust to slope heterogeneity. For example, the size of our proposed bias-corrected LM test is 13:4% for
T = 30 and n = 50: The proposed test used in the heterogeneous panels is actually CDlm minus n

2(T�1) . When T is
much larger than n, the CDlm test has size close to the nominal level. Since the term n

2(T�1) is small in this case,
the estimated size of the proposed test is also close to the nominal level.

7Theorem 1 of Hahn and Kuersteiner (2002) shows that the limiting distribution of
p
nT (~�� �), where ~� denotes

the within estimator, is not centered at zero when both n and T are large. Due to this noncentrality, we �nd in Monte
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the proposed LMBC test in the dynamic panel data model still has standard normal limiting

distribution under the null. However, stronger assumptions are needed than the static panel data

model. In particular,

Assumption 3 i)
p
nT (

bb� � �) = Op(1); ii) j�j < 1; iii) 1
n

Pn
i=1 y

2
i;0 = Op(1) and 1

n

Pn
i=1 �

2
i

= Op(1); iv) 1
T

PT
s=1

Ps�1
�=1 �

��1xi;s�� = Op(1) and 1
T

PT
s=1

Ps�1
�=1 �

��1vi;s�� = Op(T�1=2):

Assumption 3.iii) is the same as condition 4.iv) in Hahn and Kuersteiner (2002). It implies

yi;0 = Op(1) and �i = Op(1). Under Assumptions 3.iii), iv) the dependent variable yit and its time

average 1
T

PT
t=1 yi;t are stochastically bounded.

Theorem 2 Under Assumptions 1, 2, 3 and the null hypothesis of no cross-section dependence

LMBC
d! N(0; 1):

Under Assumption 3.iii), the proof follows along the same lines as that of Theorem 1. See the

Appendix.

To examine the �nite sample properties of the proposed bias-corrected LM test in a dynamic

panel data model, we follow the same design as that of Hahn and Kuersteiner (2002):

yit = �+ �yi;t�1 + �i + vit; i = 1; :::; n; t = �50;�49; :::; 0; 1; :::; T;

where vit is assumed N(0; 1) independent across i and t; �i � N(0; 1), yi0j�i � N
�
�i
1�� ;

V ar(vit)

1��2
�

and � = f0:3; 0:6; 0:9g. For this model, Hahn and Kuersteiner (2002) propose a bias-corrected

estimator bb� = T+1
T
b� + 1

T , where
b� is the within estimator of �. Hahn and Kuersteiner (2002) show

that
p
nT (

bb� � �) d! N(0; 1 � �2). In our Monte Carlo experiments, heteroskedasticity of vit is

allowed. In fact, vit � N(0; �2i ) where �2i � �2(2)=2 as in the dynamic setup of Pesaran, Ullah and

Yamagata (2008). The �rst 50 observations are discarded to lessen the e¤ects of the initial values

of yi0 on the results.

Table 8 reports the size of the tests for the dynamic panel data model. It shows that the

proposed bias-corrected LM test has the correct size, close to the 5% nominal signi�cance level,

e.g., 5:1% and 5:4% for n = 100; T = 10 and n = 200; T = 10 in the case of � = 0:3. For the cases

of � = 0:3; 0:6, it is slightly oversized for n = 200; T = 10. The PUY�s LM test tends to over-reject

Carlo experiments that the proposed bias-corrected LM test using the within estimator is oversized in micro panels

when n is much larger than T: This is why we use the bias-corrected estimator bb� proposed by Hahn and Kuersteiner
(2002).
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in micro panels with large n and small T , and this fact is also observed in Table 6 of Pesaran, Ullah

and Yamagata (2008). Pesaran�s CD has correct size as in Pesaran (2004) and Pesaran, Ullah and

Yamagata (2008).8

7 Conclusion

This paper derives the limiting distribution of the scaled version of LM test proposed by Pesaran

(2004) but applied to a �xed e¤ects model. We �nd that this LM test exhibits an asymptotic

bias which is related to the number of cross-sectional units n and the number of time periods T .

Therefore, a bias-corrected LM test is proposed and its �nite sample properties are examined using

Monte Carlo experiments. The simulation results show that the bias-corrected LM test successfully

controls for size distortions as n gets large relative to T . It also maintains reasonable power under

the alternative of a factor model or a spatial SAR, SMA, or MRSAR models. However, our proposed

LM test is not robust to slope heterogeneity. More importantly, the simulation results show that

the bias-corrected LM test can be applied in typical micro panel data case with large n and small

T . The asymptotic distribution of our proposed LM test is derived under the normality assumption

and no time series dependence. While these are indeed restrictive assumptions, they are needed

because they are also assumed in the statistics literature of high dimensional inference for the raw

data case. To our knowledge, these asymptotic results have not been extended in the statistics

literature to deal with non-normality.

8We also tried the dynamic setup in Pesaran, Ullah and Yamagata (2008) except that a homogeneous slope is
assumed. We conducted experiments with � = 0:3; 0:6; 0:9. The results are similar to those in Table 8 and are
available as Table 9 upon request from the authors.
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Size T \ n 5 10 20 30 50 100 200
Bias-corrected LM 10 6.0 4.8 4.5 4.8 4.4 5.3 4.1

20 5.3 4.7 5.4 5.2 5.4 4.7 4.9
30 5.3 6.4 5.4 5.8 6.0 4.6 5.2
50 5.8 5.5 5.5 6.1 6.4 5.1 4.8

PUY's LM 10 7.1 6.1 6.0 6.5 6.9 8.4 7.9
20 5.5 5.3 6.4 6.4 6.5 5.4 6.7
30 5.7 7.0 5.3 5.8 6.3 4.4 4.7
50 5.7 5.6 5.5 6.8 6.1 5.5 4.6

Pesaran's CD 10 6.0 5.3 5.0 5.2 4.8 5.5 6.8
20 5.4 5.2 5.5 4.7 5.2 4.8 4.9
30 5.1 4.7 5.7 5.0 4.9 4.7 5.0
50 4.9 5.7 5.5 4.3 5.1 4.4 4.8

John 10 5.8 6.5 7.2 6.5 6.7 9.0 7.0
20 5.4 6.1 6.5 6.0 6.6 6.4 5.8
30 5.1 6.3 6.4 6.6 6.7 5.8 5.9
50 4.9 5.4 5.7 6.1 6.9 6.5 5.5

Note: This table reports the size of the bias-corrected LM test, Pesaran, Ullah and
Yamagata (2008) (PUY) LM test, Pesaran's (2004) CD and the John test, in a fixed effects
panel data model specified in Section 5. The bias-corrected LM, PUY's LM and John 
tests are one-sided, while Pesaran's CD is two-sided. These tests are conducted 
at the 5% nominal significance level. Homoskedasticity and normality of the
 idiosyncratic errors are assumed. 

Table 1: Size of Tests under Homoskedasticity (θ =0)
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Size T \ n 5 10 20 30 50 100 200
Bias-corrected LM 10 5.4 5.5 5.8 5.4 6.2 5.9 5.1

20 5.6 6.3 5.0 4.8 6.2 5.5 5.4
30 6.5 5.5 5.0 6.1 6.0 6.1 5.3
50 5.8 6.0 5.4 5.9 5.1 5.7 4.3

PUY's LM 10 6.7 6.9 5.9 6.1 6.5 7.3 9.2
20 6.4 6.3 5.6 6.0 7.2 5.2 6.7
30 7.0 6.0 4.8 6.0 5.5 5.8 5.7
50 6.7 6.5 5.8 5.5 4.7 5.3 4.5

Pesaran's CD 10 4.9 5.9 5.0 4.9 5.9 5.3 5.4
20 4.9 5.5 5.3 5.8 4.5 4.7 4.9
30 5.5 5.1 5.0 6.2 5.1 5.3 4.8
50 5.0 5.3 5.1 4.8 4.4 4.2 5.4

Note: This table reports the size of the bias-corrected LM test, Pesaran, Ullah and
Yamagata (2008) (PUY) LM test and Pesaran's (2004) CD test, in a fixed effects
panel data model specified in Section 5. The bias-corrected LM and PUY's LM 
tests are one-sided, while Pesaran's CD is two-sided. These tests are conducted at 
the 5% nominal significance level. Heteroskedasticity and normality of the idiosyncratic
 errors are assumed. The form of heteroskedasticity is specified in Section 5.

Table 2: Size of Tests under Heteroskedasticity (θ =0.5)
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Table 3: Size Adjusted Power of Tests: Factor Model 
Size Adjusted Power T \ n 5 10 20 30 50 100 200

γ i ~iid U(-0.5, 0.55) Bias-corrected LM 10 23.8 50.4 82.1 92.9 99.2 99.9 100.0
20 50.4 82.9 98.5 100.0 100.0 100.0 100.0
30 61.9 93.2 99.7 100.0 100.0 100.0 100.0
50 79.1 98.1 100.0 100.0 100.0 100.0 100.0

PUY's LM 10 21.6 44.8 77.9 88.9 98.0 99.7 100.0
20 49.0 81.7 98.2 99.8 100.0 100.0 100.0
30 60.5 93.0 99.7 100.0 100.0 100.0 100.0
50 78.2 97.3 100.0 100.0 100.0 100.0 100.0

Pesaran's CD 10 7.6 7.8 8.0 8.7 9.2 10.6 13.8
20 16.4 14.2 13.7 12.6 13.3 17.7 21.5
30 18.0 17.8 17.9 18.4 18.9 22.1 27.2
50 26.4 25.8 27.1 29.1 29.3 32.8 36.5

γ i ~iid U(0.1, 0.3) Bias-corrected LM 10 15.3 35.5 64.8 83.3 95.0 99.2 100.0
20 33.6 68.8 95.6 98.9 100.0 100.0 100.0
30 46.5 83.4 98.9 100.0 100.0 100.0 100.0
50 66.7 93.2 99.9 100.0 100.0 100.0 100.0

PUY's LM 10 14.7 29.2 59.6 76.2 91.9 98.0 100.0
20 33.5 68.7 94.1 98.8 99.9 100.0 100.0
30 46.3 83.6 98.7 100.0 100.0 100.0 100.0
50 65.3 92.8 99.9 100.0 100.0 100.0 100.0

Pesaran's CD 10 20.8 51.4 86.5 96.6 99.7 100.0 100.0
20 42.6 83.3 99.1 99.9 100.0 100.0 100.0
30 52.8 93.2 100.0 100.0 100.0 100.0 100.0
50 72.3 98.6 100.0 100.0 100.0 100.0 100.0

Note:  This table computes the size adjusted power for a factor structure model that allows for cross-sectional 
dependence in the errors. Heteroskedasticity is assumed, see Section 5.
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Size Adjusted Power T \ n 5 10 20 30 50 100 200
Bias-corrected LM 10 62.4 66.0 65.8 68.3 68.2 69.9 73.6

20 96.0 98.1 99.4 99.9 99.8 99.9 100.0
30 99.5 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PUY's LM 10 57.5 54.9 55.8 53.4 54.3 54.6 45.6
20 95.4 97.5 98.8 99.4 99.1 99.7 100.0
30 99.3 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pesaran's CD 10 70.5 59.4 55.6 53.7 52.6 53.9 52.9
20 94.5 88.6 84.2 83.7 84.2 86.0 83.4
30 98.5 97.0 95.9 94.4 95.6 95.5 96.1
50 100.0 100.0 99.8 99.6 99.8 99.7 99.8

Note:  This table computes the size adjusted power for a SAR(1) structure model that allows 
for cross-sectional dependence in the errors. Heteroskedasticity is assumed, see Section 5.

Table 4: Size Adjusted Power of Tests: SAR (1) Model 
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Size Adjusted Power T \ n 5 10 20 30 50 100 200
Bias-corrected LM 10 50.3 52.3 53.0 53.0 50.8 52.3 57.4

20 92.3 95.2 97.7 97.8 97.7 99.0 99.0
30 99.2 99.9 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PUY's LM 10 45.1 40.1 45.4 41.8 40.9 40.6 33.6
20 90.0 93.2 96.0 95.9 95.8 97.0 95.9
30 98.4 99.8 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pesaran's CD 10 46.8 40.7 38.2 37.3 35.6 36.9 37.3
20 80.5 70.9 66.7 63.1 65.9 69.1 66.4
30 90.8 87.6 84.2 81.8 80.9 78.4 80.2
50 99.5 98.1 97.3 97.0 96.1 97.3 96.8

Note:  This table computes the size adjusted power for a SMA(1) structure model that allows 
for cross-sectional dependence in the errors. Heteroskedasticity is assumed, see Section 5.

Table 5: Size Adjusted Power of Tests: SMA (1) Model 
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Size Adjusted Power T \ n 5 10 20 30 50 100 200
Bias-corrected LM 10 64.5 70.1 86.6 96.3 99.7 100.0 100.0

20 97.6 99.0 100.0 100.0 100.0 100.0 100.0
30 99.9 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PUY's LM 10 47.7 31.5 41.7 49.9 65.0 84.9 96.7
20 94.7 94.5 99.4 99.8 100.0 100.0 100.0
30 99.7 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pesaran's CD 10 78.3 61.3 60.1 54.9 52.6 54.7 53.2
20 98.9 89.9 84.9 80.8 81.5 83.5 82.7
30 100.0 97.1 94.7 93.0 92.5 92.5 92.6
50 100.0 99.7 99.3 99.5 99.3 99.5 99.0

Note:  This table computes the size adjusted power for a mixed regressive, spatial 
autoregressive (MRSAR) structure model that allows for cross-sectional dependence in the errors. 
Heteroskedasticity is assumed, see Section 5.

Table 6: Size Adjusted Power of Tests: MRSAR Model 
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Size T \ n 20 50 100 20 50 100 20 50 100 20 50 100
Bias-corrected LM 10 5.8 6.2 5.9 5.6 6.2 6.0 6.5 7.4 6.8 6.1 5.7 5.8

30 5.0 6.0 6.1 5.3 5.4 5.6 7.8 7.5 8.7 6.1 6.0 5.6
PUY's LM 10 5.9 6.5 7.3 5.9 6.9 8.3 7.1 7.4 7.9 6.4 8.0 7.6

30 4.8 5.5 5.8 6.2 5.6 5.5 8.3 7.1 8.0 5.9 5.9 6.2
Pesaran's CD 10 5.0 5.9 5.3 4.7 5.7 5.5 5.5 5.2 4.8 4.9 4.5 5.7

30 5.0 5.1 5.3 4.8 4.7 4.4 4.7 4.4 4.6 5.3 5.0 4.0
Note: In order to check the sensitivity of the tests to non-normal disturbances, the uniform distribution
 U[1,2], Chi-square distribution with 1 degree of freedom, Chi2(1) and t-distribution with 5 degrees of 
freedom, t(5) are considered.  The normal case is also  presented for comparison. The form of 
heteroskedasticity is specified in Section 5. 

t(5)
Table 7 :Size of Tests: Robustness to Non-normal Errors 

U[1,2] Chi2(1)N(0,0.5)

21



Size T \ n 5 10 20 30 50 100 200
ξ =0.3 Bias-corrected LM 10 5.3 5.8 5.5 4.5 5.6 5.1 5.4

20 6.5 4.9 5.1 5.5 5.5 4.8 5.0
30 6.2 6.2 5.6 4.8 5.7 4.8 4.5
50 6.1 6.1 5.0 5.1 5.1 5.6 5.2

PUY's LM 10 7.2 7.6 9.0 9.9 15.9 29.5 65.5
20 6.4 5.7 7.2 6.9 7.9 11.1 17.8
30 7.5 6.1 5.9 6.2 7.4 7.9 8.8
50 6.0 6.3 6.2 5.4 6.3 6.9 7.0

Pesaran's CD 10 6.5 5.9 5.5 6.2 5.0 6.1 4.5
20 5.1 5.4 4.5 5.1 5.3 5.1 5.7
30 5.1 4.6 5.7 5.6 5.1 5.5 5.7
50 5.2 5.0 4.0 5.0 4.5 4.9 5.4

ξ =0.6 Bias-corrected LM 10 4.1 5.2 5.1 4.4 5.2 5.5 6.3
20 4.9 5.3 4.2 4.7 5.7 5.4 4.9
30 4.9 4.9 4.6 5.1 5.0 5.2 5.1
50 6.4 5.1 5.3 5.7 4.8 5.3 5.9

PUY's LM 10 7.4 9.1 11.5 12.4 22.0 42.8 84.6
20 6.0 6.9 6.0 7.9 9.6 17.9 36.3
30 6.3 5.8 6.7 7.4 8.2 11.0 17.8
50 6.7 6.0 6.5 6.9 5.7 7.4 7.8

Pesaran's CD 10 6.2 6.0 5.5 4.6 5.1 5.2 5.7
20 5.9 5.7 7.1 5.5 6.0 6.4 5.0
30 6.3 5.3 5.2 4.7 4.9 4.5 5.5
50 4.6 5.7 5.5 5.5 4.5 5.1 4.5

ξ =0.9 Bias-corrected LM 10 5.4 5.3 5.1 5.7 5.2 6.4 7.5
20 6.2 6.2 5.2 5.0 5.9 5.9 6.5
30 6.0 5.5 4.6 5.5 5.7 5.8 6.2
50 6.2 5.6 5.5 5.7 5.3 6.1 4.5

PUY's LM 10 6.7 7.3 9.1 12.1 15.9 29.6 57.9
20 8.0 7.7 9.7 10.6 14.6 29.0 63.7
30 7.1 7.0 7.4 8.9 11.9 20.1 47.5
50 6.9 6.7 6.8 6.9 7.8 13.9 22.0

Pesaran's CD 10 5.8 6.3 5.6 6.6 4.6 5.2 4.3
20 5.3 6.4 5.0 5.1 5.7 5.4 6.0
30 5.7 5.1 4.9 5.0 5.1 5.5 5.6
50 5.0 6.0 5.3 5.0 4.5 5.9 5.1

Note: This table reports the size of the bias-corrected LM test, Pesaran, Ullah and Yamagata (PUY) (2008) 
LM test and Pesaran's (2004) CD test, in a dynamic panel data model with fixed effects specified in Section 6. 
This setup follows the Monte Carlo design of Hahn and Kruersteiner (2002), except that heteroskedasticity 
is allowed here.  Hahn and Kuersteiner estimator of the autoregressive parameter is used to compute 
the proposed bias-corrected LM test. The  bias-corrected LM and PUY's LM tests are one-sided N(0,1), 
while Pesaran's CD is two-sided. These tests are conducted at the 5% nominal significance level.

Table 8: Size of Tests: a Dynamic Panel Data Model 
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Appendix

This appendix includes the proofs of the main results in the text.

In the �xed-e¤ects model yit = � + x0it� + �i + vit, ~� is the within estimator and the within

residuals are given by bvit = ~yit� ~x0it~�, where ~yit = yit� �yi� and ~xit = xit� �xi�, with �yi� = 1
T

PT
s=1 yis,

and �xi� similar de�ned. De�ne ~vit = vit � �vi� with �vi� = 1
T

PT
s=1 vis. The within residuals can be

written as v̂it = ~vit � ~x0it(~� � �). Let Vi = (vi1; � � � ; viT )0; V̂i = (v̂i1; � � � ; v̂iT )0; �Vi = (�vi�; � � � ; �vi�)0;
Xi = (xi1; � � � ; xiT )0; ~Xi = (~xi1; � � � ; ~xiT )0; Yi = (yi1; � � � ; yiT )0; ~Yi = (~yi1; � � � ; ~yiT )0 for i = 1; � � � ; n.
In vector form,

V̂i = Vi � �Vi � ~Xi(~� � �): (20)

Using this notation, the sample correlation rij in the raw data case can be written as

rij =
V 0i Vj

(V 0i Vi)
1=2(V 0jVj)

1=2
(21)

and its sample counterpart using within residuals in the �xed e¤ects model is given by

�̂ij =
V̂ 0i V̂j

(V̂ 0i V̂i)
1=2(V̂ 0j V̂j)

1=2
: (22)

Dividing v̂it by �i, we obtain

v̂it
�i
=
vit
�i
� 1

T

TP
s=1

vis
�i
� ( ~xit

�i
)0(~� � �):

As shown below, the terms involving ( ~xit�i )
0(~���) have no e¤ect on the test statistic asymptotically.

Without loss of generality, �i is assumed to be 1 in the derivations below. Under Assumption 2,
1
T
~X 0
i
~Xi = Op(1), 1T

~X 0
i
~Xj = Op(1) and (~� � �) = Op((nT )�1=2). In addition, we need the following

lemma in the proofs below.

Lemma 1 Under Assumptions 1, 2 and the null,

1) 1
T V

0
i Vi = 1 +Op(T

�1=2);

2) 1
T V

0
i Vj = Op(T

�1=2) for i 6= j;

3) 1
T
�V 0i
�Vi =

1
T V

0
i
�Vi = Op(T

�1) ;

4) 1
T �vi��vj� = Op(T

�2);

5) 1
T
~X 0
iVi = Op(T

�1=2) ;

6) 1
T
~X 0
i
�Vi = Op(T

�1=2);

7) 1
T
~X 0
jVi = Op(T

�1=2);
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8) 1
T
~X 0
j
�Vi = Op(T

�1=2).

Proof. To calculate the order of magnitude of a random variable, we can use Lemma 1 in Baltagi,

Feng and Kao (2011). Speci�cally, for a random sequence fZng, if EZ2n = O(n�) and EZn = 0,

where � is a constant, then Zn = Op(n�=2). Using this result, we can prove this lemma by calculating

the order of magnitude of the second moments of random variables.

1)
1

T
V 0i Vi � 1 =

1

T

TP
t=1
(v2it � 1) = Op(T�1=2):

2)
1

T
V 0i Vj =

1

T

TP
t=1
vitvjt = Op(T

�1=2):

3) Since 1
T V

0
i
�Vi =

1
T

TP
t=1
vit�vi� = (�vi�)2 =

1
T �v

0
i�vi, the order of magnitude of

1
T
�V 0i
�Vi can be obtained

as follows:

1

T
�V 0i �Vi = �v

2
i� =

1

T 2

TP
t=1

TP
s=1

vitvis =
1

T 2

TP
t=1
v2it +

1

T 2

TP
t=1

TP
s6=t
vitvis = Op(T

�1): (23)

4) For i 6= j,

�vi��vj� =

�
1

T

TP
t=1
vit

��
1

T

TP
s=1

vjs

�
= Op(T

�1=2)Op(T
�1=2) = Op(T

�1):

5) Suppose k = 1,
1

T
~X 0
iVi =

1

T

TP
t=1

~xitvit = Op(T
�1=2):

6) Under Assumption 2, 1T
TP
t=1

~xit = Op(1);

1

T
~X 0
i
�Vi =

1

T

TP
t=1

~xit�vi� =

�
1

T

TP
t=1

~xit

��
1

T

TP
s=1

vis

�
= Op(1)Op(T

�1=2) = Op(T
�1=2):

7) Similar to 5), since vit is uncorrelated with ~xjt,

1

T
~X 0
jVi =

1

T

TP
t=1

~xjtvit = Op(T
�1=2):

8) Similar to 6),

1

T
~X 0
j
�Vi =

1

T

TP
t=1

~xjt�vi� = (
1

T

TP
t=1

~xjt)(
1

T

TP
s=1

vis) = Op(1)Op(T
�1=2) = Op(T

�1=2):

Lemma 2 Under Assumptions 1, 2 and the null,
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1) V̂ 0i V̂i = V
0
i Vi� �V 0i �Vi+Ei, where Ei = �2(~���)0 ~X 0

iVi+2(
~���)0 ~X 0

i
�Vi+(~���)0 ~X 0

i
~Xi(~���) =

Op(n
�1=2);

2) V̂ 0i V̂j = V
0
i Vj � �V 0i

�Vj + F , where F = �(~� � �)0 ~X 0
jVi + (

~� � �)0 ~X 0
j
�Vi � (~� � �)0 ~X 0

iVj + (
~� �

�)0 ~X 0
i
�Vj + (~� � �)0 ~X 0

i
~Xj(~� � �) = Op(n�1=2).

Proof. 1) Using (20), we have

1

T
V̂ 0i V̂i =

1

T
[Vi � �Vi � ~Xi(~� � �)]0[Vi � �Vi � ~Xi(~� � �)]

=
1

T
[V 0i Vi � 2V 0i �Vi � 2(~� � �)0 ~X 0

iVi + �V 0i �Vi + 2(~� � �)0 ~X 0
i
�Vi + (~� � �)0 ~X 0

i
~Xi(~� � �)]

=
1

T
V 0i Vi �

1

T
�V 0i �Vi � 2(~� � �)0

1

T
~X 0
iVi + 2(

~� � �)0 1
T
~X 0
i
�Vi + (~� � �)0

1

T
~X 0
i
~Xi(~� � �):

By Lemma 1,

(~� � �)0 1
T
~X 0
iVi = Op((nT )

�1=2)Op(T
�1=2) = Op(n

�1=2T�1);

(~� � �)0 1
T
~X 0
i
�Vi = Op((nT )

�1=2)Op(T
�1=2) = Op(n

�1=2T�1);

(~� � �)0 1
T
~X 0
i
~Xi(~� � �) = Op((nT )

�1=2)Op(1)Op((nT )
�1=2) = Op(n

�1T�1):

Thus,

V̂ 0i V̂i = V
0
i Vi � �V 0i �Vi + Ei;

where Ei = �2(~� � �)0 ~X 0
iVi + 2(

~� � �)0 ~X 0
i
�Vi + (~� � �)0 ~X 0

i
~Xi(~� � �) = Op(n�1=2).

2) Similarly, V̂ 0i V̂j can be written as:

V̂ 0i V̂j = [Vi � �Vi � ~Xi(~� � �)]0[Vj � �Vj � ~Xj(~� � �)]
= V 0i Vj � V 0i �Vj � V 0i ~Xj(~� � �)� �V 0i Vj + �V 0i �Vj + �V 0i ~Xj(~� � �)

�(~� � �)0 ~X 0
iVj + (

~� � �)0 ~X 0
i
�Vj + (~� � �)0 ~X 0

i
~Xj(~� � �)

= V 0i Vj � T �vi��vj� � (~� � �)0 ~X 0
jVi + (

~� � �)0 ~X 0
j
�Vi

�(~� � �)0 ~X 0
iVj + (

~� � �)0 ~X 0
i
�Vj + (~� � �)0 ~X 0

i
~Xj(~� � �):

By Lemma 1, T �vi��vj� = Op(1) and

�(~� � �)0 ~X 0
jVi + (

~� � �)0 ~X 0
j
�Vi � (~� � �)0 ~X 0

iVj + (
~� � �)0 ~X 0

i
�Vj + (~� � �)0 ~X 0

i
~Xj(~� � �)

= Op((nT )
�1=2)Op(T

1=2) +Op((nT )
�1=2)Op(T )Op((nT )

�1=2)

= Op(n
�1=2);

thus, we obtain

V̂ 0i V̂j = V
0
i Vj � �V 0i �Vj + F;

where F = �(~� � �)0 ~X 0
jVi + (

~� � �)0 ~X 0
j
�Vi � (~� � �)0 ~X 0

iVj + (
~� � �)0 ~X 0

i
�Vj + (~� � �)0 ~X 0

i
~Xj(~� � �) =

Op(n
�1=2):
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Lemma 3 Under Assumptions 1, 2 and the null,

1) (V̂ 0i V̂j)
2�(V̂ 0i V̂i)(V̂ 0j V̂j)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)] = G+H, where G = (�V 0i �Vj)2�2(V 0i Vj)( �V 0i �Vj)+

( �V 0j
�Vj)(V

0
i Vj)

2=(V 0jVj)+(
�V 0i
�Vi)(V

0
i Vj)

2=(V 0i Vi)�( �V 0i �Vi)( �V 0j �Vj)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)]+2(V 0i Vj)F =

Op(1) +Op(
q

T
n ), and H = F 2 � 2( �V 0i �Vj)F � [(V 0i Vi)Ej � ( �V 0i �Vi)Ej + (V 0jVj)Ei � ( �V 0j �Vj)Ei +

EiEj ](V
0
i Vj)

2=[(V 0i Vi)(V
0
jVj)] = Op(n

�1=2);

2) ( V̂
0
i V̂i
T )(

V̂ 0j V̂j
T ) = (1� 1

T )
2 +Op(T

�1=2):

Proof. 1) Using Lemma 2, we obtain,

(V̂ 0i V̂j)
2 � (V̂ 0i V̂i)(V̂ 0j V̂j)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)] (24)

= (V 0i Vj � �V 0i �Vj + F )
2 � [V 0i Vi � �V 0i �Vi + Ei][V

0
jVj � �V 0j �Vj + Ej ](V

0
i Vj)

2=[(V 0i Vi)(V
0
jVj)]

= (V 0i Vj)
2 + (�V 0i �Vj)

2 + F 2 � 2(V 0i Vj)( �V 0i �Vj) + 2(V 0i Vj)F � 2( �V 0i �Vj)F
�[(V 0i Vi)(V 0jVj)� (V 0i Vi)( �V 0j �Vj) + (V 0i Vi)Ej � ( �V 0i �Vi)(V 0jVj) + ( �V 0i �Vi)( �V 0j �Vj)
�( �V 0i �Vi)Ej + (V 0jVj)Ei � ( �V 0j �Vj)Ei + EiEj ](V 0i Vj)2=[(V 0i Vi)(V 0jVj)]

= ( �V 0i �Vj)
2 � 2(V 0i Vj)( �V 0i �Vj) + ( �V 0j �Vj)(V 0i Vj)2=(V 0jVj) + ( �V 0i �Vi)(V 0i Vj)2=(V 0i Vi) (25)

�( �V 0i �Vi)( �V 0j �Vj)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)] + 2(V 0i Vj)F (26)

+F 2 � 2( �V 0i �Vj)F (27)

�[(V 0i Vi)Ej � ( �V 0i �Vi)Ej + (V 0jVj)Ei � ( �V 0j �Vj)Ei + EiEj ](V 0i Vj)2=[(V 0i Vi)(V 0jVj)]: (28)

By denoting G the sum of expressions (25) and (26), and denoting H the sum of expressions (27)

and (28), we obtain (V̂ 0i V̂j)
2 � (V̂ 0i V̂i)(V̂ 0j V̂j)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)] = G+H.

By Lemma 1,

G = (�V 0i �Vj)
2 � 2(V 0i Vj)( �V 0i �Vj) + ( �V 0j �Vj)(V 0i Vj)2=(V 0jVj) + ( �V 0i �Vi)(V 0i Vj)2=(V 0i Vi)

�( �V 0i �Vi)( �V 0j �Vj)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)] + 2(V 0i Vj)F
= Op(T

�2) +Op(T
1=2)Op(T

�1) +Op(T
�1)Op(T ) +Op(T

�1)Op(T )

+Op(T
�1)Op(T

�1)Op(T ) +Op(T
1=2)Op(n

�1=2)

= Op(1) +Op(

r
T

n
)

and

H = F 2 � 2( �V 0i �Vj)F � [(V 0i Vi)Ej � ( �V 0i �Vi)Ej + (V 0jVj)Ei � ( �V 0j �Vj)Ei + EiEj ](V 0i Vj)2=[(V 0i Vi)(V 0jVj)]
= Op(n

�1) +Op(T
�1)Op(n

�1=2) + [T (1 +Op(T
�1=2))Op(n

�1=2) +Op(1)Op(n
�1=2)

+T (1 +Op(T
�1=2))Op(n

�1=2) +Op(1)Op(n
�1=2) +Op(n

�1)]
Op(T

�1)

1 +Op(T�1=2)

= Op(n
�1=2): (29)
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Note that the term H contains terms involved with F , Ei and Ej . We will show that this term

vanishes asymptotically.

2) As in the proof of Lemma 1,

V 0i Vi
T

�
�V 0i
�Vi
T

=
1

T

TP
t=1
v2it �

1

T 2

TP
t=1
v2it +

1

T 2

TP
t=1

TP
s6=t
vitvis

= (1� 1

T
) +Op(T

�1=2):

By Lemma 2, it follows that

(
V̂ 0i V̂i
T
)(
V̂ 0j V̂j

T
)

= (
V 0i Vi
T

�
�V 0i
�Vi
T

+
Ei
T
)(
V 0jVj

T
�
�V 0j
�Vj

T
+
Ej
T
)

=

�
(1� 1

T
) +Op(T

�1=2) +Op(n
�1=2T�1)

� �
(1� 1

T
) +Op(T

�1=2) +Op(n
�1=2T�1)

�
= (1� 1

T
)2 +Op(T

�1=2): (30)

Lemma 4 Under the Assumptions 1, 2 and the null,

a) 1
T 2

n�1P
i=1

nP
j=i+1

TP
t=1
v2itv

2
jt =

n(n�1)
2T +Op(

n
p
n

T
p
T
);

b) 1
T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
� 6=t
v2itvjtvj� = Op(

n
p
n

T );

c) 1
T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvisv

2
jt = Op(

n
p
n

T );

d) 1
T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvjtvisvjs = Op(

n
T );

e) 1
T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

TP
� 6=t6=s

vitvjtvisvj� = Op(
np
T
):
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Proof. a)

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1
v2itv

2
jt

=
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

�
(v2it � 1)(v2jt � 1) + (v2it � 1) + (v2jt � 1) + 1

�
=

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1
(v2it � 1)(v2jt � 1) +

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1
(v2it � 1)

+
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1
(v2jt � 1) +

n(n� 1)
2T

=
n(n� 1)
2T

+Op(
n

T
p
T
) +Op(

n
p
n

T
p
T
)

=
n(n� 1)
2T

+Op(
n
p
n

T
p
T
):

b) Since

E

24 1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
� 6=t
v2itvjtvj�

!235
=

1

T 4
E

"
n�1P
i=1

nP
j=i+1

TP
t=1

TP
� 6=t

n�1P
i1=1

nP
j1=i1+1

TP
t1=1

TP
�16=t1

v2itvjtvj�v
2
i1t1v1jt1vj1�1

#

=
1

T 4
E

"
n�1P
i=1

nP
j=i+1

TP
t=1

TP
� 6=t

n�1P
i1=1

v2itv
2
jtv

2
j�v

2
i1t1

#

=
1

T 4
O(n3T 2) = O(

n3

T 2
);

we obtain
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
� 6=t
v2itvjtvj� = Op(

n
p
n

T
):

c) Similar to the proof of b),

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvisv

2
jt = Op(

n
p
n

T
):

d) Since

E

24 1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvjtvisvjs

!235
=

1

T 4
E

"
n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

n�1P
i1=1

nP
j1=i1+1

TP
t1=1

TP
s16=t1

vitvjtvisvjsvi1t1vj1t1vi1s1vj1s1

#

=
1

T 4
E

"
n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
v2itv

2
jtv

2
isv

2
js

#

= O(
1

T 4
n2T 2) = O(

n2

T 2
);
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we have
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvjtvisvjs = Op(

n

T
):

e) Similarly, since

E

24 1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

TP
� 6=t6=s

vitvjtvisvj�

!235
=

1

T 4
E

"
n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

TP
� 6=t6=s

n�1P
i1=1

nP
j1=i1+1

TP
t1=1

TP
s16=t1

TP
�16=t16=s1

vitvjtvisvj�vi1t1vj1t1vi1s1vj1�1

#

=
1

T 4
E

"
n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

TP
� 6=t6=s

v2itv
2
jtv

2
isv

2
j�

#

=
1

T 4
O(n2T 3) = O(

n2

T
);

we have
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

TP
� 6=t6=s

vitvjtvisvj� = Op(
np
T
):

Lemma 5 Under Assumptions 1, 2 and the null,

1).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (V

0
i Vj)(

�V 0i
�Vj) =

q
1

n(n�1)

h
n(n�1)
2T +Op(

n
p
n

T ) +Op(
np
T
)
i
;

2).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (
�V 0i
�Vj)

2 =
q

1
n(n�1)

h
n(n�1)
2T +Op(

n
p
n

T )
i
;

3).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (
�V 0j
�Vj)(V

0
i Vj)

2=(V 0jVj) =
q

1
n(n�1)

h
n(n�1)(T+2)

2T 2
+Op(

n
p
n

T )
i
;

4).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (
�V 0i
�Vi)(V

0
i Vj)

2=(V 0i Vi) =
q

1
n(n�1)

h
n(n�1)(T+2)

2T 2
+Op(

n
p
n

T )
i
;

5).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (
�V 0i
�Vi)( �V

0
j
�Vj)(V

0
i Vj)

2=[(V 0i Vi)(V
0
jVj)] =

q
1

n(n�1)

h
n(n�1)(T 2+20T+60)

2T 4
+Op(

n
p
n

T 2
p
T
)
i
;

6).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (V

0
i Vj)F =

q
1

n(n�1)
�
Op(

n
T ) +Op(

p
n
T )
�
:

The proof of part 1) is given below. Part 2) through part 6) can be shown in the same way.

The proofs are included in the Supplementary Appendix which is available upon request from the

authors.
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Proof of 1).

n�1P
i=1

nP
j=i+1

1

T
(V 0i Vj)( �V

0
i
�Vj)

=
n�1P
i=1

nP
j=i+1

�
1

T

TP
t=1
vitvjt

�
T

�
1

T

TP
s=1

vis

��
1

T

TP
�=1

vj�

�
=

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s=1

TP
�=1

vitvjtvisvj� : (31)

There are 5 cases of (t; s; �): (1) t = s = � ; (2) (t = s) 6= � ; (3) (t = �) 6= s; (4) t 6= (s = �); (5)
t 6= s 6= � : We can write

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s=1

TP
�=1

vitvjtvisvj�

=
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1
v2itv

2
jt +

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
� 6=t
v2itvjtvj� +

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvisv

2
jt

+
1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t
vitvjtvisvjs +

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s6=t

TP
� 6=t6=s

vitvjtvisvj� :

Using Lemma 4, we get

1

T 2

n�1P
i=1

nP
j=i+1

TP
t=1

TP
s=1

TP
�=1

vitvjtvisvj�

=
n(n� 1)
2T

+Op(
n

T
p
T
) +Op(

n
p
n

T
) +Op(

n
p
n

T
) +Op(

n

T
) +Op(

np
T
)

=
n(n� 1)
2T

+Op(
n
p
n

T
) +Op(

np
T
):

Now we are in good position to prove Theorem 1.

Proof of Theorem 1. It is equivalent to show that for large n and T ,

LM(�̂it)� LM(rit)�
n

2(T � 1) = op(1):
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By (21), (22) and Lemma 3,

LM(�̂ij)� LM(rit)

=

s
1

n(n� 1)
n�1P
i=1

nP
j=i+1

(T �̂2ij � 1)�
s

1

n(n� 1)
n�1P
i=1

nP
j=i+1

(Tr2ij � 1)

=

s
1

n(n� 1)
n�1P
i=1

nP
j=i+1

T
(V̂ 0i V̂j)

2 � (V̂ 0i V̂i)(V̂ 0j V̂j)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)]
(V̂ 0i V̂i)(V̂

0
j V̂j)

=
1

(1� 1
T )
2

s
1

n(n� 1)
n�1P
i=1

nP
j=i+1

1
T (G+H)

(V̂ 0i V̂i=T )(V̂
0
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T )
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=
1

(1� 1
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2

s
1
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G
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1

(1� 1
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2

s
1
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n�1P
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H

T

+
1

(1� 1
T )
2

s
1
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"
1

(V̂ 0i V̂i=T )(V̂
0
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T )
2
� 1
#
1

T
(G+H):

Using H = Op(n
�1=2) from (29), the second term above can be written as follows:

1

(1� 1
T )
2

s
1

n(n� 1)
n�1P
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nP
j=i+1

H

T
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1

(1� 1
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2

1

T

s
1
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n�1P
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Op(n
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p
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):

By Lemma 3, ( 1T V̂
0
i V̂i)(

1
T V̂

0
j V̂j) = (1� 1

T )
2+Op(T

�1=2), it follows that 1
(V̂ 0i V̂i=T )(V̂

0
j V̂j=T )=(1�

1
T
)2
�1 =

Op(T
�1=2). Thus, it is straightforward to calculate the order of magnitude of the third term,
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"
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2
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=
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T )
2

1

T

s
1
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n�1P
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�1=2)[Op(1) +Op(

r
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n

T
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T
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p
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Now we consider the �rst term,
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T )
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s
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nP
j=i+1

G

T

=
1

(1� 1
T )
2

s
1

n(n� 1)
n�1P
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nP
j=i+1

1

T
[( �V 0i �Vj)

2 � 2(V 0i Vj)( �V 0i �Vj) + ( �V 0j �Vj)(V 0i Vj)2=(V 0jVj)

+( �V 0i �Vi)(V
0
i Vj)

2=(V 0i Vi)� ( �V 0i �Vi)( �V 0j �Vj)(V 0i Vj)2=[(V 0i Vi)(V 0jVj)] + 2(V 0i Vj)F ]:
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By Lemma 5,

1

(1� 1
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s
1
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G

T

=
1

(1� 1
T )
2

s
1

n(n� 1) [�2
n(n� 1)
2T

+Op(
n
p
n

T
) +Op(

np
T
)

+
n(n� 1)
2T

+Op(
n
p
n

T
)

+
n(n� 1)(T + 2)

2T 2
+Op(
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For large n and T , the expression above (32) can be approximated by
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):

Combining these 3 terms, we obtain

LM(�̂it)� LM(rit)

= [
n

2(T � 1) +Op(
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p
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):

Therefore, as (n; T )!1 with n=T ! c 2 (0;1),

LM(�̂ij)� LM(rit)�
n

2(T � 1)
p! 0:
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Proof of Theorem 2

For the dynamic panel data model (19), the sample correlations �̂ij used in the bias-corrected LM

test statistic LMBC are computed using the within residuals bvit = ~yit� (~yi;t�1; ~x0it)bb� where bb� is the
bias-corrected estimator proposed by Hahn and Kuersteiner (2002). Denote the regressors in (19)

by wit = (yi;t�1; x0it)
0 and the demeaned regressors by ~wit = (~yi;t�1; ~x0it)

0. Let ~Wi = ( ~wi1; � � � ; ~wiT )0.
Under Assumption 3.i)

p
nT (

bb� � �) = Op(1). Replacing ~� and ~Xi with
bb� and ~Wi, the proof of

Theorem 2 follows along the same lines as above. We need to verify that Lemmas 1.5, 1.6, 1.7, 1.8

and Lemma 3.6 still hold for the dynamic panel data model.

Lemma 5. Under Assumptions 1, 2, 3 and the null,

1). 1
T
~W 0
iVi = Op(T
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2). 1
T
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i
�Vi = Op(T
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T
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j
�Vi = Op(T

�1=2);

5).
q

1
n(n�1)

n�1P
i=1

nP
j=i+1

1
T (V

0
i Vj)F =

q
1

n(n�1)
�
Op(

n
T ) +Op(

p
n
T )
�
, where F = �(bb���)0 ~W 0

jVi+(
bb��

�)0 ~W 0
j
�Vi � (bb� � �)0 ~W 0

iVj + (
bb� � �)0 ~W 0

i
�Vj + (

bb� � �)0 ~W 0
i
~Wj(
bb� � �).

Proof. In (19), the within residual is given by bvit = ~yit � ~w0it
bb�, ~wit = (~yi;t�1; ~x0it)

0 with ~yi;t�1 =

yi;t�1 � 1
T

PT
s=1 yi;s�1. From (19),
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0
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1� �T�1

1� � :

Under Assumption 3, 1T
PT
s=1 yi;s�1 = Op(1).
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Proof of 1): Without loss of generality, assume k = 1;

1

T
~W 0
iVi =

1

T

PT
t=1(~yi;t�1; ~xit)vit =

�
1

T

PT
t=1 ~yi;t�1vit;

1

T

PT
t=1 ~xitvit

�
:

Under Assumption 2, as in the proof of Lemma 1.5 in the static model above, 1
T

PT
t=1 ~xitvit =

Op(T
�1=2): Consider

1

T

PT
t=1 ~yi;t�1vit =

1

T

PT
t=1(yi;t�1 �

1

T

PT
s=1 yi;s�1)vit

=
1

T

PT
t=1 yi;t�1vit �

1

T

PT
t=1(

1

T

PT
s=1 yi;s�1)vit

Since vit is uncorrelated with yi;s�1 for s < t and vis is uncorrelated with yi;t�1 for s > t;

E

�
(
1

T

PT
t=1 yi;t�1vit)

2

�
=
1

T 2
PT
t=1

PT
s=1E[yi;t�1vityi;s�1vis] =

1

T 2
PT
t=1E[y

2
i;t�1v

2
it] = O(

1

T
);

the �rst term is 1
T

PT
t=1 yi;t�1vit = Op(T

�1=2). Consider the second term, we obtain

1

T

PT
t=1(

1

T

PT
s=1 yi;s�1)vit = (

1

T

PT
s=1 yi;s�1)(

1

T

PT
t=1 vit) = Op(1)Op(T

�1=2) = Op(T
�1=2):

The proof of 2): Since �vi� = ( 1T
TP
s=1

vis) = Op(T
�1=2); 1T

PT
t=1 ~yi;t�1 =

1
T

PT
t=1(yi;t�1� 1

T

PT
s=1 yi;s�1) =

Op(1) and 1
T

PT
t=1 ~xit = Op(1), we obtain

1

T
~W 0
i
�Vi =

1

T

PT
t=1(~yi;t�1; ~xit)�vi� =

�
(�vi�)

1

T

PT
t=1 ~yi;t�1; (�vi�)

1

T

PT
t=1 ~xit

�
= Op(T

�1=2):

The proofs of 3) and 4) are similar. The proof of 5) can be found in the supplementary appendix

which is available upon request from the authors.
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