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Percolation of unsatisfiability in finite dimensions

J. M. Schwarz and A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

(Dated: February 2, 2008)

The satisfiability and optimization of finite-dimensional Boolean formulas are studied using per-
colation theory, rare region arguments, and boundary effects. In contrast with mean-field results,
there is no satisfiability transition, though there is a logical connectivity transition. In part of
the disconnected phase, rare regions lead to a divergent running time for optimization algorithms.
The thermodynamic ground state for the NP-hard two-dimensional maximum-satisfiability prob-
lem is typically unique. These results have implications for the computational study of disordered
materials.

Complex problems with many degrees of freedom are
of interest to both physicists and theoretical computer
scientists. The overlap is especially strong between the
physics of disordered materials and optimization prob-
lems in the typical case. For example, there is a close
correspondence between the ground states of Ising spin
glasses, with up and down spins, and optimal assignments
of Boolean variables, which can be true or false, in a logi-
cal formula. This correspondence is more than superficial
as both systems exhibit phase transitions in the struc-
ture of minimal configurations and in the dynamics of
the physical systems or optimization algorithms [1]. Such
connections lead to advances in the two fields. Combina-
torial optimization algorithms from computer science are
often employed to simulate disordered condensed matter
systems [2]. Approaches from statistical physics, includ-
ing techniques such as replica theory and concepts such as
the thermodynamic limit and scaling, have proven useful
in studying the running time algorithms and the struc-
ture of solution space [3].

Motivated by work on mean field Boolean formulas and
progress in understanding models of finite-dimensional
disordered materials, we investigate ensembles of Boolean
formulas whose graphs are two-dimensional. These for-
mulas are composed by conjunctively joining logical
clauses, with each clause formed using nearest neighbor
variables. The optimization problem is to assign truth
values so as to satisfy the maximum number of clauses in
the formula. This is closely analogous to minimizing the
number of broken bonds in an Ising spin glass [4]. Us-
ing ideas from statistical physics, including percolation
and thermodynamic ground states, we find a transition
in the structure of logically connected components and
investigate the uniqueness of optimal assignments.

Decomposing the problem into clusters of strongly
connected components that contain contradictory cycles
greatly reduces the running time of an exact optimiza-
tion algorithm. These contradictory strongly-connected
components (CSC’s) need not percolate even though the
clauses form percolative structures. In addition, the
rapid convergence to a unique ground state as the size
of the problem increases suggests that the problem is
easy in the typical case, though it is classified as difficult

in the worst case sense. Two central categories in this
classification from computational complexity theory are
P and NP decision (yes/no) problems [5]. Problems in
P can be decided in time polynomial in the size of the
problem description, while a proof of the answer for NP
problems can be checked in polynomial time. NP-hard
problems, a solution to which could be used to quickly
solve any problem in NP, are believed to be solvable only
in exponential time for the worst case realizations. It
may well be that many NP-hard problems derived from
physical systems, such as finding the ground state config-
uration for the 2D spin-glass in a magnetic field [6], are
typically solvable in polynomial time. Our results sup-
port this possibility. NP-hard problems with algorithms
that typically take polynomial time on some problem sets
are known [5], but have not been extensively and directly
studied for physical problems in finite dimensions.

We consider finite-dimensional Boolean formulas Z of
the form

Z = ∧M
ℓ=1(∨

K
i=1y

ℓ
i ) (1)

where ∨ is the logical OR operation, ∧ is the logical
AND operation, and {yℓ

i} are literals chosen from a set
Y = {x1, . . . , xN , x̄1, . . . , x̄N} of N Boolean variables and
their negations. The variables are identified with the
vertices of a two-dimensional lattice. We specialize to
clauses with K = 1 and K = 2. We form 2-clauses
by choosing two neighboring variables and negating each
variable with probability 1/2. The 1-clauses are single
literals, with probability 1/2 of negation. A sample for-
mula is depicted in Fig. 1(a). The ensemble is defined by
parameters α and γ, respectively the ratios of the num-
ber of 2-clauses to N and 1-clauses to N . The 2-clauses
do not overlap and no two 1-clauses contain the same
variable. Given a truth assignment xi → {T, F} for all
Boolean variables, a clause is satisfied if one of the literals
in the clause is T . If all clauses are satisfied, the formula
Z is satisfied. Determining the existence of a satisfying
truth assignment is the problem of satisfiability (SAT).

The optimization of the number of satisfied clauses in
Z can be mapped to determining the ground state of a
spin glass in a heterogeneous field. This mapping trans-
lates Boolean assignments xi = {F, T} to spin variables

http://arXiv.org/abs/cond-mat/0309240v1
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Si = {−1, +1}. A bond energy Eℓ can be assigned to a
clause (yℓ

0 ∨ yℓ
1) connecting variables xi and xj via [3]

Eℓ =
J

4
[1 − ∆(yℓ

0)Si − ∆(yℓ
1)Sj + ∆(yℓ

0)∆(yℓ
1)SiSj ], (2)

where ∆(yℓ
0) = 1 if yℓ

0 = xi and ∆(yℓ
0) = −1 if yℓ

0 = x̄i

and similarly for j (nearest neighbor to i) replacing 0
with 1. The total spin glass energy E is given by E =∑M

ℓ=1 Eℓ. Any clause that is not satisfied costs an energy
J ; the existence of an E = 0 ground state is equivalent
to satisfiability of the Boolean formula.

Resolution [5] is a method that can be used to quickly
decide SAT for K ≤ 2. This procedure is equivalent to
mapping each 2-clause to a pair of logical implications
and searching for “contradictory cycles” (CCs). For ex-
ample, the clause x1 ∨ x2 is equivalent to x̄1 → x2 and
x̄2 → x1. Clauses with K = 1 are replaced by a sin-
gle implication, e.g., x̄1 becomes x1 → x̄1. The Boolean
formula can be represented by an implication digraph
(i.e., directed graph) G = (Y, E) with 2N vertices and
(2α+γ)N edges E. For a sample mapping, see Fig. 1(b).
The formula Z can not be satisfied if there is a CC, which
is a path p in G that connects a variable to its negation
and vice versa, i.e., p = (xi → xj . . . → x̄i → . . . → xi).
For the formulas we consider, the existence of contradic-
tory cycles can be decided in time linear in N [7].
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FIG. 1: (a) Example finite-dimensional Boolean formula.
Each 2-clause in the formula is an edge, represented by two
segments. Circles represent 1-clauses. Black segments or cir-
cles indicate negated variables, while the lighter shaded seg-
ments or circles represent variables that are not negated. The
formula depicted is (x1∨x3)∧(x2∨x̄4)∧(x4∨x̄7)∧(x̄2)∧(x6).
(b) A smallest unsatisfiable subgraph for the triangular lat-
tice (left) and its digraph (right). The subgraph’s formula is
(x0∨x1)∧(x̄0∨x̄2)∧(x̄1∨x̄2)∧(x2∨x3)∧(x2∨x4)∧(x̄3∨x̄4). A
contradictory cycle (CC), in this digraph is x2 → x̄0 → x1 →

x̄2 → x3 → x̄4 → x2.

We find that there are CCs for any α > 0 (taking
γ = 0), as N → ∞, in these finite-dimensional formu-
las. Defining α1/2(N) as the value of α for which 1/2 of
the finite-dimensional N -variable formulas are satisfiable,
α1/2(N) → 0 as N → ∞ (see Fig. 2.) This crossover is
coarse, in that the width of the crossover from low to high
probability of satisfiability is proportional to α1/2(N), for
large N . This to be contrasted with random mean-field
K = 2 formulas, where for N → ∞, there is a sharp SAT
to UNSAT phase transition (the probability that a for-
mula is satisfiable is 1 for α < αc = 1 and 0 for larger α.)

These differences result from small CCs, which at small α
are exponentially rare in the mean field case but appear
with Poissonian statistics in the finite-dimensional case,
where loops are more important.
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FIG. 2: (a) Plot of α1/2(N), the clause density at which 1/2
of the graphs are satisfiable, as a function of lattice size N .
Symbols indicate numerical results for 2SAT and 1-in-2-SAT
(Ising spin glass) on triangular and square lattices. Curves are
analytic approximations found in a small subgraph expansion.

The location of the SAT/UNSAT crossover can be
computed by an expansion in α. Some subgraphs are
“forcing”, i.e., in all satisfying assignments one of the
variables has a fixed truth value. The smallest unsatisfi-
able graph is found by joining two contradictory forcing
subgraphs. An example of this graph type is depicted
in Fig. 1(b). On the triangular lattice, these subgraphs

have density ρ△(α) = α6

2734 + O(α7). The density of
the simplest unsatisfiable graphs on the square lattice is

ρ�(α) = α8

216 +O(α9). In general, if the smallest unsatis-
fiable subgraph has r bonds and density crα

r , the proba-
bility of satisfiability is PSAT(N) = (1−crα

r)N , to lowest

order in α, giving α1/2(N) ≈ (c
−1/r
r ln 2)N−1/r. We plot

numerical results and analytic expansions for α1/2(N) in
Fig. 2, which includes the next order analytic corrections

in α (7-edged subgraphs with density 52

2737 α7 + O(α8) on
the triangular lattice and 9-edged subgraphs with density
α9

216 + O(α10) on the square lattice).
We also plot analytic estimates and numerical results

for α1/2(N) for the 1-in-2-SAT problem in Fig. 2. While
a clause in 2SAT (i.e., K = 2) is satisfied if either lit-
eral is true, a clause is satisfied in 1-in-2-SAT when ex-
actly one literal in a clause is true. The 1-in-2-SAT
problem maps both to an Ising spin glass in the ab-
sence of a magnetic field and to the two-color prob-
lem [8]. The smallest unsatisfiable graphs are given
by frustrated cycles, giving α1/2(N) ≈ 3(N/ ln 2)−1/3

and α1/2(N) ≈ 25/4(N/ ln 2)−1/4 for the triangular and
square lattices, respectively.

Given the lack of a sharp SAT/UNSAT transition, due
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to the existence of small unsatisfiable graphs, we have
investigated the percolation of large unsatisfiable graphs
as a phase transition. We study these graphs within the
context of MAXSAT, which is the problem of minimiz-
ing the number of unsatisfied clauses. In two dimensions,
the determination of the ground state for the Ising spin
glass (or MAX-1-in-2-SAT) is in P [6], while determining
the ground state for MAXSAT with K = 2 is NP-hard,
even for planar graphs. We studied the CSCs, sets of
literals for which any two literals are connected by a di-
rected path in the implication digraph and which contain
a CC. We find that the probability of having a spanning
CSC has a transition that becomes sharper with increas-
ing N , with a critical value for α of αS = 1.8245(5) on
the triangular lattice. The cluster size distribution n(s)
at criticality behaves as n(s) ∼ s−τ , with τ = 2.02(5).
The scaling of the probability for a spanning CSC near
αS gives a correlation length exponent of ν = 1.32(3).
These values are consistent with the 2D values for stan-
dard percolation, where τ = 187/91 and ν = 4/3 [9].

Percolation of paths in the implication digraph can be
related to connectivity percolation [10]. This is done by
projecting part of the implication digraph on 2N literals
onto an undirected graph of N variables. This “trimmed”
projection has the same statistics as standard connectiv-
ity percolation with edge probability p̃ = 2p − p2, where
for our finite-dimensional case, p = α/2z, with z = 4
(z = 6) for square (triangular) lattices, if overlapping
clauses are allowed. (On the triangular lattice with over-
lapping clauses, we find αS = 1.887(2).) In mean field,
the percolation of paths containing a contradiction coin-
cides with the SAT/UNSAT transition. This is not the
case in finite dimensions. But given this type of connec-
tion and studies of percolation of directed edges in finite
dimensions [11], it is not surprising that CSC percolation
appears to be in the same universality class as standard
connectivity percolation.

The decomposition of the graphs into CSCs speeds up
exact search algorithms for MAXSAT. Here, we apply
this decomposition to estimate running times of such an
algorithm. We used a MAXSAT code [12] that first finds
a heuristic bound to the solution and then applies an ex-
act Davis-Putnam-Loveland-Logemann (DPLL) search.
The running time measure t is the number of “back-
tracks” that are executed while partially exploring the
tree of all possible assignments. Each CSC cluster can
be loaded into the algorithm individually [13]. The sum
of the unsatisfied clauses from each cluster gives the min-
imal number of unsatisfied clauses for the entire formula.
When α < αS , the distribution of sizes of the CSCs, is ex-
ponentially decaying in the cluster size, n(s) ∼ e−s/sξ(α),
with sξ ∝ ξd ∝ (αS −α)−dν . If we plot the median num-
ber of backtracks for each cluster, we find that the median
running time of the DPLL-type algorithm scales expo-
nentially with the cluster size, t∗(s) ∼ es/sτ (α). When
sξ(α) < sτ (α), the median running time for a sample,

T ∗(L), is bounded by a multiple of the system volume,
T ∗(L) ∼ L2. However, when sξ > sτ , T ∗(L) diverges
more rapidly, with an estimate for the largest cluster
size in a finite sample giving T ∗(L) ∼ L2sτ /sξ . The
mean running time, T (L), diverges exponentially with L.
The transition between the linear and superlinear median
time behaviors defines αG < αS via sξ(αG) = sτ (αG).
Fig. 3 shows convolutions of the cluster size distribution
n(s) and the median time t∗(s, α) as a function of size.
The change from negative to positive slope on the semi-
log plot gives αG ≈ 1.3 for the DPLL code we use. This
slowing down of the algorithmic dynamics is similar to
that for the physical dynamics of random magnets [14]
and is reminiscent of the change from the easy-SAT to
hard-SAT phases in random graphs [1].
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FIG. 3: Convolution of the median number of backtracks t∗(s)
with the CSC cluster size distribution n(s), where s is the
cluster mass. Note that α < αS for these curves.

Despite the divergence of the running times for the ex-
haustive DPLL-type algorithms, we might expect that
the ground states could be found in time proportional to
the system volume in the typical case, even above the
CSC percolation transition. Assuming that the droplet
picture describes these finite-dimensional spin glasses,
the presence of the magnetic field destroys the spin glass
phase [15] and the correlations are finite-ranged (though
in 2SAT there are some correlations in the external
fields.) So while the CSCs percolate, the effects of frus-
tration remain localized beyond some length scale. This
picture also implies one unique thermodynamic state. If
this is the case there may be a way to develop a new
algorithm to deal with the local frustrated bonds, either
by solving subsystems and joining the solutions together
to form the whole system or by a more clever heuristic
algorithm. We leave this as a conjecture and simply test
for uniqueness.

To test whether the ground state is unique, we study
the effect of boundary conditions, similar to studies of the
Ising spin glass [16]. By comparing ground states for a
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system of linear size L and an expanded system of linear
size L′ (each with free boundaries), one can determine if
the ground state is unique or not from the sensitivity to
boundary conditions. If the solutions in the common sub-
system of linear size w become fixed as L and L′ diverge,
a unique ground state exists in the thermodynamic limit.
Note that the ground state must be unique for α < αS ,
as the logical structure of the graph does not percolate.

Since the ±J spin glass with magnetic field (equivalent
to optimal assignments for MAX2SAT) has many degen-
erate ground states, we study the weighted MAX2SAT
(WMAXSAT) question, where the degeneracy is broken,
to be able directly to compare ground state solutions.
Each clause has an associated weight, chosen uniformly
in the interval [0, 1), and the optimization problem is
now to minimize the sum of the weights of the unsatis-
fied clauses. We also introduce 1-clauses, with the same
weight distribution. The addition of 1-clauses lowers αS ,
allowing us to study a larger range system of system sizes,
as the graphs are sparser.
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FIG. 4: Log-linear plot of P (2L, L, w) for α = 1.7 and γ = 0.2
for weighted MAX2SAT. The bound on backtracks is B. The
lines are exponential fits for the w = 2, 4, B = 5 × 106 data.

We estimate the quantity P (2L, L, w), the probability
that there is a change in the central area of area w2 when
the system size expands from L to 2L [16], by sampling
from the WMAXSAT ensemble. To be able to complete
the simulations, we impose an upper limit B on the num-
ber of backtracks in the DPLL and report P for a range
of B. The points in Fig. 4, with w = 2, are well fit by an
exponential in L, in the limit of large B. (A power law
fit gives an exponent less than −2, which is inconsistent
with a fractal domain wall picture for a model with two
states [16].) The w = 4 data is also well described by
an exponential with the same slope. For α = 1.7 and
γ = 0.2, we estimate a correlation length of ξ = 2.5±0.3.
The exponential approach to a unique state holds for all
α and γ that we explored.

Working within the concepts and the algorithms for

spin glasses and other disordered materials, we have stud-
ied the problem of optimal satisfaction of Boolean formu-
las. There is no thermodynamic SAT to UNSAT transi-
tion, due to the finite density of small unsatisfiable for-
mulas. There is a percolation transition, however, in the
logical structure of the formulas as the clause density is
increased, that is apparently in the class of standard con-
nectivity percolation. Below this transition, we use rare
region arguments to predict a transition in the mean run-
ning time of an optimization algorithm. We find that the
ground state is unique even in the high clause density
regime. This uniqueness suggests that the MAX2SAT
problem can be solved “locally” by studying subsamples
larger than the correlation length and patching subsolu-
tions together (though for large correlation lengths, rare
regions might again dominate the running time.) This
general approach in turn has potential applications to
algorithms for studying spin glasses and other random
magnets. This project was supported in part by the Na-
tional Science Foundation through grant DMR-0109164.
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