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Racing downhill: optimization and the random-field Ising model

D. Clay Hambrick
Department of Physics, Harvey Mudd College, Claremont, CA 91711 and
Department of Physics, Syracuse University, Syracuse, NY 13244

Jan H. Meinke and A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, NY 13244
(Dated: January 10, 2005)

The push-relabel algorithm can be used to calculate raghélgxact ground states for a given sample with a
random-field Ising model (RFIM) Hamiltonian. Although thigarithm is guaranteed to terminate after a time
polynomial in the number of spins, implementation detaitsienportant for practical performance. Empirical
results for the timing in dimensions= 1, 2, and3 are used to determine the fastest among several implemen-
tations. Direct visualization of the auxiliary fields usedthe algorithm provides insight into its operation and
suggests how to optimize the algorithm. Recommendationgigen for further study of the RFIM.

. INTRODUCTION in a capacitated graphl[2.]10.]11]. Ogielski's computations
of the RFIM ground state properties [11] utilized the push-

relabel (PR) algorithm for max-flow introduced by Goldberg

In systems with quenched disorder, changes in the ransng Tarjan([2]. The PR algorithm is in practice the most ef-
dom background take place over time scales that are Mudftient algorithm available for many classes of problem§.[13
longer than the time scale for evolution of the primary de-ajhough its generic implementation has a polynomial time
grees of freedom. In magnetic systems, the spin degregg, nqits actual performance depends on the order in which
of freedom interact in an effectively frozen random en-gnerations are performed and which heuristics are used to
vironment determined by substitutional disorder or vacanyaintain auxiliary fields for the algorithm. Even within shi

cies. The random-field Ising model (RFIM), defined as,,ynomial time bound, there is a power-law critical slogin
ferromagnetically-coupled spins subject to a spatiallfyva 4own of the PR algorithm at the zero-temperatufe£ 0)
ing magnetic field, is a prototypical model for magnets with;. cition [l 5.

quenched disorder that has been studied since the 1970s (fortig paper presents results that are useful for minimizing

reviews, see, e.gll[1]). In dimensiods> 2, the RFIM has  cpy time in RFIM ground-state simulations. We begin with a
a transition between ferromagnetic (FM) and paramagnetigief review of the RFIM, including its definition and phases
(PM) states; this transition can be found by varying eithefi, sec ). we then discuss the implementations for the PR
the temperature or the disorder, at sufficiently small v&@lue 54 qrithms that we study. The PR algorithm redistributes th

of the remaining control parameter. Fishman and Aharonyanqom magnetic field among spins by pushing positive field
[2] mapped the RFIM with a field of random sign and fixed «gownhill” with respect to a potential field (the “height”ed

magnitude with disordered bonds to an experimentally réaltineq for each spin. This redistribution and coalescence of
izable system: the diluted antiferromagnet in a field (DAFF),qgjtive field and negative field “sinks” allows for the deter
[E. At low temperatures, the glassy behavior of the DAFF ination of same-spin domains. The data structures used to

seen in both experiment and theory leads to non-equilibriungyanize the pushes and the heuristics used for updating the

effects such as history dependence and a broad range of relgyyengial field are described in SEGI 11l The results fortiime
ation times. These observations are qualitatively coesist ing using various heuristics, summarized in $&d. IV, should

with predictions by both Fisher and Villain of an exponehtia o 'sefyl for designing further extensive studies of theVRFI

slowing down near the critical point and of a low temperatureyis ajizing the auxiliary fields leads to a clearer expléorat
phase described by the zero-temperature critical pdi][4, o ne timing results and was important in guiding our work.

Exponential slowing down also affects optimization meth-In Sec[Y, we use these visualizations to present a quatati
ods such as simulated annealihlg [6], that are modeled on theverview of the operations of the differentimplementasiom
dynamics of the physical system. The large barriers to equithe distinct phases of the RFIM. The primary results of the pa
libration make it very time consuming to sample configura-per, namely the recommended choices for the PR algorithm,
tion space accurately at finite temperatures or to find the exare summarized in SeCVI.
act zero-temperature ground states using such methods. Fin
ing the partition function for the RFIM at finite temperatise

NP-hard [7[B]. However, the zero-temperature FM-PM tran- Il.  RANDOM-FIELD ISING MODEL
sition is expected to be in the same universality class as the
finite temperature transition. So it is fortunate that there The random-field Ising model has a non-trivial ground state

alternate methods for quickly finding the exact RFIM grounddue to the competition between the ferromagnetic intesacti
state. These methods are based on a mapping from the praivat tends to align neighboring spins and the influence of ran
lem of finding the ground state of the RFIM to that of find- dom fields, which tends to force spins to point in random di-
ing the maximum flow—or, equivalently, the minimum cut— rections. Taking the strength of the ferromagnetic intéoas
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between neighboring spins to beand designating the local and computer science texts[21]. In this paper, we limit our-
random fields by, the energy of a spin configurationi$ [1] selves to a description of the algorithm, neglecting proofs
of correctness, but including a “physical” description foe
H=-J) s;s5— Z his;, (1) variantof the PR algorithm we have used.
(i) P Intuitively, the PR algorithm finds the domains of uniform
spin in the ground state by rearranging (“pushing”) the mag-
where the spirs; at a given site on ad-dimensional lattice  netic field. If the bond between two spins is strong enough,
with n = L¢ sites can take on values = +1 and the sites the field on one spin can be removed from one spin and added
i and;j in the sum in the first term are nearest neighbors. Wéo its neighbor, possibly influencing the direction of théghe
study the Gaussian RFIM, where theare independent vari- boring spin. This rearrangement (and change in the bonds, as
ables chosen from a Gaussian distribution with meamd  described below) is the push. Subsequent pushes can then
varianceA2.J2, with periodic boundary conditions. The pa- affect distant spins. As a consequence of pushes, positive
rameterA characterizes the strength of the disorder relative t&nd negative fields originally located on separate spins can
the ferromagnetic interaction. cel. The cancellation leads to domains of uniform sign for
As the disorder dominates over thermal fluctuations at largéhe excess fields. This domain growth by rearrangement of
length scales and low temperature in more than two dimenfield is limited by the strength of the nearest-neighbor tsond
sions, the ground states of this model are of interest. Iredim  Which “carry” the rearrangement. The push operation resluce
sionsd > 2, there is a zero-temperature transition betweerPr removes the interactions between neighboring spins.iwhe
two phases at the critical disord&r= A.. WhenA < A, the field has large variations compared to the bond strengths
the ferromagnetic interaction between nearest neighlmms d  the magnetic field cannot be pushed very far as bonds become
inates and the spins take on a mean vatue n—' 3", s; with saturated and block further rearrangement. Conversetlyein
|m| # 0inthe limitn — co. Inthe casé\ > A, randomness limit of weak fields, large domains form, as the bonds fa-
dominates and the ground state is “paramagnéti¢’= 0,as ~ Vor alignment of nearest neighbor spins: in the language of
n — 00. PR, the large capacity of the bonds relative to the strength
In dimensions! = 1 and2, the ground state is in the para- Of the fields allows for long-range rearrangements of the ran
magnetic phase at an& > 0 in the thermodynamic limit dom field. In the limit of very weak ﬁelds, the field can be
(i.e., A, = 0). But the correlation length, characterizing the Pushed anywhere (no bonds are saturated), so there is only
range of spin-spin correlations or the size of uniform sgin d One domain, whose orientation is simply a result of the sum
mains, diverges a& ~2 whend = 1 (see, e.g.[[16]). For sam- Of the random fields on all the spins. But when the field is very
ples of sizel, < ¢, i.e., forA < A, ~ L~/2 whereA, (L)  Strong @ >> 1), the rearrangement of field is limited, and, in
is the sample-size-dependent crossover disorder, thendrou Most cases, the domains have single spins and the orientatio
state is essentially ferromagnetic. It has been arguediti@gt ~ ©f @ spins is in the same direction as its magnetic field.
scales as an inverse powerdfvhend = 2 [i17,[18)19]. This The other basic operation is the relabel operation. This op-
very rap|d|y growing correlation |ength gives rise to an ap-eration updateS an a.UXi”a.ry fleld, the helght, defined fehea
parent ferromagnetic phase ih= 2 at even rnodera’[éac Spin. F0||0Wing the more detailed constraints described in
in finite samples[[40]. When we take the limkt — 0in  Sec.[A, this height guides the pushes. Most simply put,
d = 1 andd = 2, we will be takingA < A,. Many of the ~ pushes are always in the downhill direction. When a push is
results for the algorithm, such as which algorithm is fastes nNot possible from a given site, the relabel operation irsgea

hold independently of the existence of a true physical phaste magnitude of the height of that site. This relabelling wi
transition. either allow a push to be executed or will identify the spin as

having a particular sign in the ground state.
The basic operations can be carried out using a variety of
. PUSH-RELABEL ALGORITHM: DATA STRUCTURES ordering methods. The choice of method affects the running
AND HEURISTICS time of the algorithm. A specific algorithm is defined by two
sets of choices, which are defined and described in detail in

We now discuss the motivation for using the PR algorithmthe following subsections:

and outline its structure. In particular, we define the auxil
iary fields and basic operations that operate on those fields t
determine the ground state. Picard and Ratliff showed that
any quadratic optimization problem, such as the RFIM, can
be mapped onto a min-cut/max-flow probleh [9]. There are 2. heuristic manipulations of the auxiliary fields, namely,
a number of algorithms for solving max-flow_[21], though global updates and gap relabeling.

Cherkassky and Goldberg’s results show that the PR algorith

[1d] is often the best algorithm for solving large problems o We implemented the PR algorithm in Java and C++. The Java
a variety of graph<.[13]. For detailed explanations of th@ma implementation can visualize the evolution of the auxyliar
ping of the RFIM to a max-flow problem and the proofs of thefields used by PR. The C++ code relied on the original C code
correctness of the PR algorithm, see reviews of application  [25] developed by Cherkassky and Goldbérg [13]. The codes
combinatorial optimization to statistical physiEj[&L 24]  can be downloaded from our web sitel[26].

1. the dynamically-determined order local operations
(pushes and relabels), which is organized by a choice
of data structure, and
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A. Auxiliary fields and push-relabel operations priority queue implemented as a heap (HPQ), a lowest height
priority queue (LPQ) also implemented as a heap, and a dou-

The PR algorithm uses three auxiliary fields to guide theP'® FIFO queue (DFIFO) that treats positive and negative ex-
rearrangement of the magnetic field and to enforce the cor€SS Symmetrically. (We also tried a stack or last-in fitst-o
straints given by the bond strengths. One field is the resid(LIFO) structure, but rejected it due to vastly longer rurgni
ual bond strength (more commonly referred to as the residudiMes at largea.) o o .
capacity in the literaturé [P1]). This residual interaotioe- _ The FIFO structure is a I|sF of active sites in the I_at'uceeTh
tween sites is denoted,. Initially, r,; = r;; = J forall  Site at the fr_ont of _the listi, is remo_ved. Excess is pushed
nearest neighbor paifs, j), but in generat,;; need not equal away fromi if possible. If any inactive neighborsof i are
r;; during the execution of the algorithm. This residual bondmade active through a push operation, they are added to the
strength defines the paths along which excess magnetic fieRd of the list. If there are no accessible neighbois rela-
can be pushed. A sitgis said to be reachable from a siti beled. Ifi is still active after this PR step, it is also appended

there is a directed path froirto j with r; > 0 for all bonds  to the end of the list. . _
(k, 1) along that path. The HPQ structurdﬂ?] is more complex than FIFO. Like

For each sitei, an excess field; and a height field,;  the FIFO structure it contains a list of all active sites. The

(which is often called “distance” or “rank”) are also defined listis not organized by the temporal order in which sitesehav
At the beginning of the algorithm, the excess, which can bd€een treated, as would be the case in a FIFO queue, but by the
positive or negative, is set equal to the random field strengt height of the sites. The first site in the HPQ is always a site
e; = h;, and the height fieldu; is set equal to the dis- With maximal height. When we remove a site from the front
tance to the nearest reachable site with negative excass. Siof the queue, the site with the highest height that is stithi

from which no site with negative excess can be reached hav@ueue moves to the front. If we add a site with a larger height
u; = oo. Sites with negative excess have= 0. than any of the sites already in the queue, the new site moves

The PR algorithm maintains the height fielgin a fashion 0 the front of the queue. If after a PR step a site is stilhagti
designed to move the positive excess “downhill” (to smallerit is re-added to the queue. Since a PR step relabels an active
heights), i.e., towards sites with negative excess, whese p Site by increasing its height by at least one before adding it
sible. If it becomes impossible to rearrange excess towardaack to the queue, such a site is still of maximal height and
a site with negative excess, the site is given a height labdp added at the front. Thus the same site might be acted upon
u; = oo (in practice,co is represented by, the number of by the algorithm many times in a row. In practice, the HPQ
spins). A sitej is said to be accessible fronif the residual IS simply implemented by sorting the sites into bins given by
bond strength;; > 0 andu; = u; + 1. Any site with posi-  their height values.
tive excess and height < oo is active (In the double queue ~ The LPQ structure([28] is exactly the same as the HPQ
method mentioned in SECIl B, negative excess sites can alsstructure, except that the list is reversed, so that sgitegh
be active.) lowest height.; are subject to PR operations.

The push operation moves excess from an active sitan FIFO, HPQ, and LPQ enforce an asymmetry between pos-
accessible neighbgt Lettingd = min(ry;, e;), the excesses  itive and negative excess. Why should one sign (positive ex-
are updated by; — e; — 8, ¢; — e; + &, while the residual ~ cess) be pushed around while the other (negative excess) re-
bond strengths are updated according;to— r;; — 6 and ~ Mmains static (except by rearrangement of positive excetss on
rj; — r;; + 6. If an active site has no accessible neighbor, scd negative excess of lesser magnitude)? Certainly, the-phys
that no pushes are possible, it is relabeled: the heigistset ~ cal problem is unaltered by the replacement— —h;. Our
to one greater than the height of the lowest neighbgre.,  fourth implementation treats positive and negative ex@ess
minimal u; over neighborg) for whichr;; > 0. If no such ~ onan equal footing. Negative excess then moves from lower
neighbor exists, the height afmay immediately be raised heights (herex; < 0 is a possible height label) to higher
to u; = oo. We call the combination of all possible push heights. We implemented this as two FIFO queues (DFIFO),
operations from a single spin possibly followed by a relabel one for positive and one for negative excess sites. Bothegieu
PR step. are updated simultaneously. As noted in the next section, we

The PR algorithm terminates when no active sites remainglso used two height fields, one for each sign of excess, when
The total number of PR steps needed to complete the algémplementing DFIFO.
rithm is denoted byNpgr. The assignment of spin orienta-
tions in the ground state is found by executing a global updat

(SecIIQ) to finalize which sites hawg = oco. Sites with C. Heuristics
u; = oo are assigned; = 1, while the remaining spins have
s; = —1. If these queues are adapted as described so far, the algo-

rithm, though polynomial im, is too slow to be practical for
studying larger systems. Heuristics can be used to manéula
B. Data structures the height field to guide the push-relabel operations. Good
heuristics are crucial to the practicality of the algorithm
We implemented the PR algorithm using four different data All our implementations use the “global update” heuristic
structures: a first-in-first-out queue (FIFO), a highesghei for initialization of thew;. A global updatel[13] is used for
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two purposes. It creates gradients in the height field froen thing of the data structure, nor do they reflect the time needed
sites with positive excess to the nearest site with negative for the heuristics, such as the global update. The CPU time
cess, allowing the excess fields to move efficiently towards is therefore another useful measure of the performance and
annihilation. It addition, it identifies regions that arsacbn-  ultimately what we want to minimize. For the timing mea-
nected from the rest of the spins and do not contain any negurement we used SUN'’s Java Virtual Machine 1.4.2 on Dual
ative excess; such regions are labeled as spin-up regiahs ahGHz PIIl machines with 512MB of RAM running Linux.

are removed from further consideration. Without this idlent  Here we summarize the results of our timing runs. We first
fication it would take of the order ofr operations to mark a describe our results for two-dimensional lattices. In ttdse
region ofr spins as up. The global update is implemented ashere is no phase transition for the RFIM ground states aéfini

a breadth first search starting from the set of negative exceg\. However, as the correlation lengthdiverges very rapidly
sites and takes of the order afoperations on a hypercubic asA decreases, there is a crossover disorder vAlpg.) at
lattice. During this search, the height of each vertex ig@et which ¢ exceeds the linear system size For A < A, (L),

the distance to the nearest reachable site with negatiwssxc the 2D system is effectively ferromagnetic. The dependence
(sink). One important result of global updates is that localof A, on L is very slow [17[18[_19]. In our simulations, we
minima of the height field with positive height, often residu find A, (8) ~ 1.7andA,(4096) = 0.55. In three dimensions,
als of former negative excess sites, are eliminated atwitas  there is a true transition a& = A, ~ 2.27 [i4].

nonnegative excess. Following common practice, we choose In this section, we compare the timings for FIFO and HPQ
the interval between global updates to be fixed, with a globastructures and then present results for DFIFO. (Results for
update executed after evdrypush-relabel (PR) steps. LPQ are included in the discussion of the resultsdoe 3,

The global update needs to be modified for the doublaear the end of this section.) When seeking to minimize the
gueue (DFIFO) approach. In parallel with the height field forrunning time, there is a competition between frequent dloba
positive excess, based on a search from nodes with negatiupdates (small’), which improve the efficiency of the PR
excess, it is natural to construct the height field for negati steps and infrequent updates (laige which save the cost
excess sites using positive excess sites as “sinks”. Te&es of performing a global update. We first determine the global
an ambiguity for sites with zero excess. Should their hdight update interval that minimizes the CPU time over all choices
determined in relation to the positive or negative excess®i of A. Generally, for all data structures, we find a minimum in
We did not directly resolve this ambiguity, but instead uaed ¢ for I',,;, =~ n (Or at least that performance is not improved
scheme with separate height fields for the positive and negder otherI). The FIFO and HPQ structures then give compa-
tive excesses, with separate relabeling and global updates rable results away from the crossover~ A, though FIFO

In addition, when using the HPQ data structure, we use gajs preferable at smalh and HPQ is faster at largk. DFIFO
relabeling [1B]. If there is a height,, such that no site has takes significantly more time than either HPQ or FIFO to find
heightu = u,, but there are active sites with > u,, i.e.,  the ground state faf on the order ofA,. We also find that
there is a gap in the set of heights, all sites witly u, are as-  the discreteness of global updates can lead to plateaus in th
signed the maximum height. This reduces the need for globalumber of global update¥ as a function of’. The 3D re-
updates as active sites with> u, are disconnected from the sults are generally consistent with our results for 2Ddeti
sinks. When using HPQ, regions with larger height tend to\Ve find that LPQ always performs at least as well as HPQ and
have their height raised uniformly, leading to the posiibil is faster forA > A..
of creating a gap quickly. As the gap is a global tally, it i$ no
efficient at detecting regions that have separated theeselv
from their surroundings locally, so gap relabeling is lessful A. Choosing the global update interval in two dimensions
in, e.g., FIFO, where updates are carried out without rdspec

to height. To facilitate gap relabeling, the HPQ algorithsesi We first examine the effect of varying the update interval
an array that contains the number of sites (Whether active qr for two dimensional Samp|es_ Global updates are 0n|y use-
not) at each possible height. A gap is created when the occyy if they reduce the number of PR steps needed to find the
pation number at a non-maximal height is reduced to zero. gplution. As we mentioned in SEE_11 C, global updates are
expensive, taking of the order of operations, and should
therefore not be performed too frequently. To find the optima
IV. COMPARISON OF IMPLEMENTATIONS update interval',,;,,, we variedl” for each data structure over
several orders of magnitude for various values of the random

To find the best available combination of data structure andi€ld strengthA and examined how botVeg, the number
heuristics for solving the Gaussian RFIM, we measured th@f push-relabel cycles used to find the ground state, and the
running time of the algorithm for a variety of combinations. 'unning timet varied.

We measure the running time for the algorithm to find the

ground state using both CPU tintein seconds and the to-

tal number of PR stepdpr. PR steps are the core operations 1. Global updateinterval for FIFO

of the algorithm and give us a machine independent measure

of the improvement due to the heuristics. However, PR steps Immediately after a global update, push operations are
don’t account for the time needed for the internal bookkeepguaranteed to move excess towards the nearest sinks. After



a global update, however, some sinks are soon annihilated by 1&+07% T T T T T
excess pushed into them. If a sink at sitis annihilated, the E eeL=25

height field around no longer indicates the shortest distance r s

to a sink; the height field still slopes towarslalthough there le+06 : 5588 3

is no longer a sink. The extent of this “misleading” height
field depends on the density of sinks and is limited by the
distance between sinks. Whéns small, global updates are z& 1e+05
frequent enough that the height field generally leads pesiti

excess towards a sink. As long as this is the case, increas-

ing the frequency of global updates does little to redNee; . 10004
Therefore, for small’, we expectVpg to be almost indepen-

dent ofT" for FIFO.

Fig. [ displays algorithm costdpg andt¢ for the case 1000k il vl il ol v
A = 2.2, which exceedg\,. The expectation thaWpy is 1 10 100 1000 100001e+05 1e+06 1e+07
independent of* at smalll" is confirmed by the plot of the r
mean ofNpr as a function of displayed in Fig[1L(a). As we
increasd”, a larger and larger fraction of the height field be- 100

RN R
|

T
|

E T il T T E|
comes incorrect between global updates: more minima of the F g E
height field no longer contain sinks. The plot shows tNat; 100 a *-¢1=100 ?
starts to increase significantly abave~ 0.1n. To minimize ‘?q. T . << '[242188 ",,
the running timet, we need to balance the cost of additional T AW " « « pou
global updates with the reduction Npr. A global update o, *ea “'*"*'f;;,fﬁ”
takes of the order aof operations and, in fact, Figl 1(b) shows s 4L *",‘ - **:ﬁ ]
a minimum int vs.T" atT',,;, ~ n. To verify our assumption *~ . * *oereessed® ot
thatI',,;, ~ n, we rescaled the curves in both Hi. 1(a) and ol . - b
(b) by dividingT’, Npgr, andt by n. The collapse of the data P g™
verifies the minimum it vs.I" atT',,,;, ~ n and shows that F :
the running time of the algorithm scales nearly linearlyhwit 0'01§ E
nin 2D (Fig.[3), at fixedA. F ]
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2. Detailed look at the FIFO data

Figure 1. Mean running time for finding the ground state of a 2D
While determining the optimal global update interval for RFIM system vsI" using FIFO and\ = 2.2, where the correlation
the FIFO structure, we noticed two features of interest @ th length is much smaller than the sample sizes ugeeg L. For
data. These features are the tendencyigy, to be an integer clarity in this figure and other figures in this section, stital error
multiple of " and, at smallA, a separation of the mean run ?ars are “‘t’rt] shown, b#] arf‘? CO“Sif‘tem ‘EVit)ht:]he appgrem;tfgf t
; . ; : rom smooth curves. The figure shows (a) the number o steps
tlm: ‘:’:Igitewl(ce)?)rll F;ct)stg:ﬂgtznlfjecgglztggzez]v?sg:EEZZ? g?ﬁgigm used to find the ground state and (b) CPU titjseas a function

inth . . fthe algorith h f the global update interval for L = 25, 50, 100, 200, and 400.
In the average running time of the algorithm, when measure or smalll’, Npr is nearly independent df showing that frequent

by Npr, as displayed in Fidll3. These linear regions are cong|opa| updates are unnecessary. IAsomewhat less thai1n —
sistent withNpr = kT, for integerk, as shown by the dashed (.17.2, Npy starts to increase. The minimum in the CPU titrie

lines in the figure. These linear regions coincide with @ate  atT.;, ~ n, where the change in time needed for the additional PR
in the number of global updates executed during the solutiorsteps balances the change in time needed for the globaleupdat

N¢, when plotted vsI (see the inset in Fifll 3). The plateaus

in Ng vs. T reflect the effect of the global update, which

causes large changes in the height field and can bring the augperations identify the up-spin regions. WHhers finite, but
iliary fields close to a solution. Note that a ground state idarger than the number of PR steps needed to find all of the do-
found by the algorithm when all of the positive excess is conmain boundaries and smaller than the total number of PR steps
fined to regions that are isolated from sinks. This isolation needed to terminate the algorithm, the first global update ef
due to saturated bonds that block the rearrangement of flofectively terminates the running of the algorithm a¥ig = 1.

(and to the cancellation of positive excess with negative exThere is another interval at smaller valuesibfvhere one
cess in regions accessible to the sinks). The algorithm wilglobal update is executed before the domain boundaries are
not terminate until the blocked-off regions have their lésg determined and the second global update terminates the algo
raised tou; = n. Without global updatesl( = o), there  rithm, giving Ng = 2. This pattern continues to higher values

is a separation between the times when the push-relabel opf m. We emphasize that the data presented is averaged over
erations effectively determine the domain boundaries by sa100 samples at each value bf the data therefore indicates
urating the appropriate bonds and the time when the relabéhat the fluctuations in the locations of the linear regiores a
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10 AREAAY A A T Figure 3: Plot showing the piecewise linear behavioM\afz, the

mean number of PR steps needed to find the ground state, witen pl
ted as a function of, the interval between global updates, for FIFO
in d = 2. The parameter values afe = 200 and A = 2.2 and
the data is averaged over 100 sampl&sy increases linearly over
intervals inT", Npr = kT, with the curves fokk = 1,2,3,...in-
dicated by the dashed lines. The large changes caused biotia g
update operation can lead to plateaus in the number of glplatstes
N¢ vs.T, as shown in the inset.

t[s]/n

global update is included, the height label of all sites it@e
its maximum value once no more sites with negative excess
exist. As the global relabeling takes only of the ordemof

Lol | | L

0_61 01 1 10 100  Steps, this makes the running times for up- and down- magne-
I/n tized samples more similar, to within(n) in total magnitude,
forT' = O(n).

Figure 2: Scaling of PR step¥rr and CPU timet with system
sizen for FIFO (A = 2.2). (a) The average number of PR steps
per site,Npr/n, as a function of number of push-relabel steps per
site per global updatéd;/n. The data collapse is consistent with the
number of operations scaling with (the best that can be expected  For A < A,, the behavior of the timing for HPQ v§
for & < L). (b) CPU timet per site {/n) vs.I'/n. The values along  is very similar to the behavior of the timing for FIFO, with
both axes have been d|V|deq byhe n.umber of sites. Afalrcollapse Tope ~ n. In contrast, in the paramagnetic regime, gap re-
g?‘s’ilsct’gﬁquifelz#ﬁg'nlzﬁnnax'?;i?;ﬁc?va’“ﬁg\{v Z\;r’lgggiﬁigﬁjﬁé‘; labeling detects enclosed domains efficiently and quicdy r
T'min by a factor of ten increases the running time only by a factor o duces the number of actlye sites. _For Iaﬁgethen,_ frequent
about two. global updatesI{ < n) quickly dominate the running time
ForI’ > n, t becomes independentBf(Fig.[4), as global up-
dates are not executed before the solution is found. Cemsist
quite small. with the optimal behavior for smalA and the independence

: . of t from I" at largeA, we will usel',,; ~ n for the HPQ
We also noted a strong up-down asymmetry in the runnin - opt 7
gup y y tructure. A" = oo is a reasonable choice for largar we

time at smallA. ForA <« A, andI’ = n, it takes about il " include this choice f .
50% longer to find the solution if the ground state is spin-upWI Sometimes Include this choice for comparison.

than if it is spin-down. Fof® — oo the ratio of mean run-

ning times becomes very large. At smal| the ground state . . .

is determined by the sum over all random fields. If the sum B. FIFOvs. HPQin two dimensions

is negative, the algorithm is done as soon as all the positive

excess fields have been annihilated, but if the sum is pesitiv Now that we have found an optimal value fBrfor each

all the sites with remaining excess fields must be moved up tdata structure, we can directly compare the performance of
heightn before they are labeled inaccessible. This local reFIFO and HPQ for varioug\. We compare timings using
labeling can take of the order af steps, as essentially each I' = n for FIFO and bothl' = n andT’ = oo for HPQ.

site must be moved stepwise to the maximal height. When &Ve will refer to the latter two choices as HR@nd HPQ,,

3. Global update interval for HPQ
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Figure 4: CPU timet[s] for HPQ with gap relabeling vs[' for
A = 2.2 > A,. Inthis regime gap relabeling is effective and global Figure 5: [Color online] Number of push-relabel operatipes site
updates are almost unnecessary. Fox n, the running time in- needed to solve for the ground stabé;r /n, plotted as a function
creases due to frequent global updates.IFor n, the running time  of A, for a 2D square lattice with Gaussian disorder. The number o
stays constant. There is no discernible minimum inithe. " curve,  spinsn = L? ranges fron8? to 4096>. Due to the large range of
butT" = n does not hurt performance at largeand improves per-  system sizes and hence running times, we have used a logarith
formance for smalleA. axis for plotting Npr /n. Statistical error bars and individual points
are not displayed, as the point spacing is small and thesttaii
uncertainties are very small, except foe= 4096. The global update
respectively. We computed the mean values afid Npr for interval used wa$' = n. Plateaus are seen whéfr is close to a
alarge range of system sizes and disorders. The running timéultiple of I', especially at largeA. Each curve show a pronounced
were averaged over at least 100 (sometimes as mab§°3s peak, WhICh can b_e used to defife (L). At this v_alue ofA, the
samples, chosen independently for each valug afdT . correlation length is of the order .of thg systgm size and yl;esm
Fig.[ displays the running time per spin for FIFO with crosses over f_rom a_ferromagnetlc regime Wlth one Ia}rge @dotoa
. . a paramagnetic regime where the correlation length is emgilan
I' = n and Fig.[® presents a comparison of all three comye system size. The crossover field approaches zero as L goes
binations forL = 100. The first notable feature in the data is g infinity, but the approach is logarithmically slow.
that all three combinations show a pronounced peakip
atavalue oA, (L) between 0.5 and 2.0 over the range- 8
t0 4096. This peak is reminiscent of the critical slowing down
near a phase transition. It moves slowly to the left with in-
creasing system size (Fig. 5), consistent with(Z) decay- 1e+06
ing with increasingl. As noted in Sedll, there is no phase
transition in 2D, but there is a crossover for any finite size s
tem from a ferromagnetic regime at lafvto a paramagnetic
regime at largeA as the correlation length becomes smaller
than the system size. 2
For small A, HPQ, and FIFO perform very similarly.
HPQ.., on the other hand, is 2 to 4 times slower in this regime.
Near the crossover, the running times for HPénd FIFO e e
start to deviate and the difference is largestAgt, where
HPQ, is about 3 times slower than FIFO and HRQs yet
another factor of 3 slower than HRQ 1000 I
For A > A,, FIFO starts to lose its advantage as domain ' ' A
sizes become smaller and gap relabeling becomes more and
more effective with increasing. WhenA = 3, HPQ, starts
to outperform FIFO; wherh ~ 20, FIFO takes twice as many Figure 6: [Color online] Number of PR stepépr in d = 2 for
push operations as HRQ L = 100. This plot shows the timing for HPQ witl(= ») and
without ' = oo) global updates, compared with FIFO. Note the
significant improvement the global update gives to HPQ fddfie
strengths below and at the finite-size crossover.FIFO némgsr
push operations than HRQ.. over almost 3 orders of magnitude
in A. This difference becomes more pronounced as the system size
Our method for simultaneously rearranging both positiveincreases.

and negative excess, DFIFO, performs well for snaalin

T T T T

G—© Heap[=w
[3—£1 Heap,l'=n
m—m Queue[ =n

|

L=100

b
1le+05

C. Timings for the double Queue (DFIFO)



d = 2 but never better than FIFO. For large valuesafit S0¢ ]
is much slower than FIFO and HPQ. DFIFO performs even : © L=8 ]
worse in 3D. The reason became clear when we visualized the ,~F _ ¢ L=16 E

; e E FIFO,d=3 &» 0 L=32 ]
rearrangements of excess field. The visualization showis tha  f .9 m =64 1
positive and negative excesses tend to miss each other. The | o 2 tz%gg E
potential landscape, given by the two height fields, is net up _ 30 & =
dated when excess is pushed and is not consistently updateg f {OO O% i
by relabels. The rearrangement of excess is generally duidez~  f * © * 1
by the last global update: the negative excess is pushed to 20F o © _-"-."-QQ E
where the positive excess was at the time of the last global : o O_ " ]
update, and vice versa. This lack of coordination between th 10;; o © u ; o0 sesssees ’Qpéa
two height fields becomes more pronounced in higher dimen- )8 O o 9 ¢ 06600000007
sions, where there are more possible paths between sites. It b3 3 2 3 o 000000 ]
possible that using some other combination of the heigliiel ot ‘ ‘2 3
for a heuristic would produce better results. One alteveati A

for example, would be to combine the separate height fields

for positive and negative excesses into a single field. Resit

excess would move down the height field gradient and negéarigure 7: [Color online] Push-relabel operations (cyclpsj site,
tive excesses would move up the same gradient. Npr/n, plotted vs. disorder strength in d = 3, for . = 8, 16,
32, 64, 128, and 256, for the push-relabel algorithm usiegrirO
data structure. The global update interval is fixe@’at n. There
is a clear peak in the running time near~ 2.3, which is in good
agreement with the critical field, = 2.270(5) found [14] for the

] ) ) ] ferro- to paramagnetic phase transition for a Gaussiarituligon.
In three dimensiond, = n remains a good choice for both

FIFO and HPQ. As in the casé = 2, due to a very broad

D. Results for three dimensions{ = 3)

minimum in the dependence 0bnT', the exact value of' is 120: Isriorit ueue; 1
not critical. This is in agreement with previous results véhe F d=3 ya 00, 1
T'min = n has been found to be a good choice for a variety of 100~ oe @ ]
sparse and dense graphs [13]. [ ° ® ]
The peak in the timing of the algorithm is quite pronounced, 80 : iﬁ‘BLESQ ¢ ® 7
as in the 2D data, but in this case the location of the peak [ | e L=32,LPQ e ° o 1
converges to a fixed value at large We gathered data for & 60| m L=64, LPQ . 2 g CB@ N
the number of push-relabel operatiaNisy per site,Npr/n, z L|® L5128, LPQ o OH ° - CIE
. . L |< L=8, HPQ ] o o_ |
vs. A, for sizesL ranging from 8 to 128 for HPQ and LPQ 40| o L=16, HPQ &£ o H 4
and up to size 256 for the FIFO data structure. The plot of the [| ¢ L=32, HPQ 0® & = 493 g ¢ o P
FIFO data (Figld7) shows a growth Mpg /n with L and con- 200 |0 C‘fgéHﬁSg 00 RIS I
vergence to a well-defined curve for the running time for s : g 00® L 4 % 4 2 2 2
in the paramagnetic range. In the ferromagnetic regimeethe 0% $¢ 4 4 @ ‘ % < < ‘f
is a slow growth of the running time with sample dimension 2 3

L. Both the LPQ and HPQ data structures are significantly A

slower than the FIFO data structure, at moderate valués of

(with a I‘at.IO of~ 3 for the peak running t'mes,‘ﬂ - 128), as Figure 8: [Color online] Push-relabel operations (cyclpsj site
seen in FiglB. The LPQ data structure is significantly fastefy,, . /, vs. A'in d = 3, for L = 8, 16, 32, 64, 128, and 256
than the HPQ structure on the paramagnetic side of the peathen using the HPQ and LPQ data structures. There is agaga cl
in the running time, but is very similar in speed on the fer-peak in the running time neax ~ 2.3, but the peak is significantly
romagnetic side. The running time for LPQ converges muctbroader and higher for HPQ, than for LPQ. Note that the nurober
more quickly than the HPQ version to dndependent value cycles grows more quickly witl than for the FIFO structure.

asL is increased at fixedh > A..

i.e., wherer;; = 0. A sample snapshot from the simulation
V. QUALITATIVE DESCRIPTION with both of these options activated is shown in Eig. 9.
WhenA is somewhat larger thad, in d = 2, the differ-

In order to better understand the timing results, we havences between the temporal progress using the HPQ and FIFO
visualized the evolution of the height fields and the reayean data structures are clearly seen in the dynamic visuadizati
ment of excess. The visualization cofle [26] uses a color maps FIFO cycles through all active sites, all the positive ex-
to display the height field. The program has the option to discesses move at a roughly uniform speed down the height gra-
play the location of sites with excess (white for positivelan dients. The utility of the global update at late times for GIF
black for negative) and to indicate where the flow is satakate is apparent: wheh is large (infrequent global updates), a few
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For samples with weak disorder, the algorithm with the
HPQ data structure does lead to a few positive excesses rac-
ing around the network while the others sit idly. The time
to raise a large positive domain high enough to create a gap
is large. Again, active sites tend to move around quite a bit,
while other regions remain unchanged. Towards the middle
of the algorithm execution, the lattice often displays dirue
rings of positive excess sitting on an equipotential linarne
a sink, often immediately adjacent to it. These structures a
at low height and cannot move until all excesses of greater
height have been removed. This should slow the algorithm
down. The positive excesses do not “screen” the sinks, since
the global update doesn’t differentiate between sinks Bf di
ferent capacity. This expectation is consistent with osults
for the LPQ, which performs somewhat better than HPQ, es-
pecially at higher field strengths.

At large field strengths, the proportion of active sites whos
random field strength is greater than the strength of their
1 == : bonds to neighbors (i.eA > 4 in 2D) is large. The algo-

LPJ = = rithm acts on most sites only twice. One can clearly see how

1k HPQ sweeps the lattice and raises (nearly) all the sites-of in
tial height two (those with no adjacent sinks) to the maximum
height, then does the same to sites of height one. FIFO also

Figure 9: [Color online] Image of the state of the auxiliargidis ~ generally makes two or three passes, though its first pass ex-

during the solution of a 2D RFIM of sizé = 50 and with disorder ~ ecutes pushes on the sites where pushing is possible and rela

strengthA = 2. This picture shows a snapshot of the height field  pels otherwise.

the location of non-zero exces$i), and bonds with zero residual

strength £;; = 0), while executing the push-relabel algorithm (HPQ

data structure). The red (darkest non-black) regions haeady

been identified as up; the heights in this region have the mmlxi

valuen = 2500. The colors that are not black or white correspond

to the height field in the remainder of the sample: blue (decktors) As has been demonstrated befré [11 14 24, 30,81 B2, 33,

indicates a low, while green (lighter colors) indicates ghhineight.  [34], the PR algorithm is an efficient method to find the exact

The white squares represent spins with a positive excess(ffl®  ground state for the RFIM at T=0 in any dimension. Here

hglght at the_se sites is not |nd|cated)3 black squaresseptespins e investigated how to implement PR to find the ground state

with a negative excess (and have height zero). The black Bne 4 o ickly. We compared a number of data structures and

dual to the bonds that are saturated (i.e., have zero résiglaagth). the effect of alobal and gap relabeling on the performance of
These saturated dual bonds;(= 0 or r;; = 0) “block” the rear- the algorithmg gap 9 P

rangement of excess. More up-spin regions may be identified as

L L= I |II

VI. SUMMARY

more bonds are saturated and the dual bonds link up to ismlae In agreement with previous W0r@34], our detailed results
gion. The algorithm terminates when all positive excesoisined ~ recommend the FIFO-queue combined with global updates
to up-spin regions. everyI' ~ kn steps, withk a number near unity. FIFO

performs much better near the crossover disorder for

d = 1,2) and the critical disorderX. in d = 3) and never
positive excesses are seen to skate around in regionsmedtai performs significantly worse than HPQ. The exact valug of
by saturated bonds. The pushes have found the minimum cig not crucial since the minimum invs.T" is very broad.
by saturating the bonds that separate the positive andinegat We also tried an implementation that treats positive and
spin regions, but the algorithm hasn’t confirmed that fact ye negative excesses equally. This implementation, howsuvér,
The local relabels, which tend to raise a site’s height only b fers from the lack of coordination between the height fietds f
one step at a time, are inefficient in raising a large up-spirthe two sets of excesses and positive and negative excesses
domain to maximal height. The remaining positive excessetend to miss each other. Itis likely that this algorithm a@bul
are shuffled around within the domain, slowly increasing thebe improved by using a single height field to coordinate the
height by small relabels. When global updates are infregquenmotion of the positive and negative excess.
the algorithm may terminate by a final global update, which A more flexible approach to the global update interval
finds that a set of positive excesses is isolated from allssink might also be useful in speeding up simulations. It is likely
This confirms the picture discussed in $eCTVIA 2. HPQ, onthat adaptively modifying the global updates so that they ar
the other hand, tends to act repeatedly on the same site. Isexecuted when the sink density changes by a defined fraction
lated regions with positive excess are raised uniformlywabo or packets of excess have travelled a given distance would op
the rest of the sample. This allows the gap heuristic to dyick timize the algorithm during each stage of the solution. €her
identify isolated positive spin domains, even wheis large.  is still a lot of room for other modification, e.g., cuttingf of
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the breadth first search to reflect saturation and non-umifor
intervals for global update that depend on the number ofsink
that have been annihilated since the last global updaterath
than the number of PR steps.

We found that the visualization of the operations ($e& [26]
for the source code) greatly improved our understanding of This work has been supported by the National Science
the algorithm. This code may be useful in suggesting furtheFoundation under grants ITR DMR-0219292 and DMR-
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