
Syracuse University Syracuse University

SURFACE SURFACE

Architecture Senior Theses School of Architecture Dissertations and
Theses

Spring 2013

Reconsidering the User Reconsidering the User

Nathan M. Aleskovsky
Syracuse University

Follow this and additional works at: https://surface.syr.edu/architecture_theses

 Part of the Architecture Commons, and the Entrepreneurial and Small Business Operations Commons

Recommended Citation Recommended Citation
Aleskovsky, Nathan M., "Reconsidering the User" (2013). Architecture Senior Theses. 181.
https://surface.syr.edu/architecture_theses/181

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and
Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/architecture_theses
https://surface.syr.edu/architecture_etds
https://surface.syr.edu/architecture_etds
https://surface.syr.edu/architecture_theses?utm_source=surface.syr.edu%2Farchitecture_theses%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/773?utm_source=surface.syr.edu%2Farchitecture_theses%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/630?utm_source=surface.syr.edu%2Farchitecture_theses%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/architecture_theses/181?utm_source=surface.syr.edu%2Farchitecture_theses%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

RECONSIDERINGtheuser
Nathan M. Aleskovsky

Master of Architecture I Candidate 2013
Syracuse University School of Architecture

Master of Science in Entrepreneurship Candidate 2013
Martin J. Whitman School of Management

Founder & CEO, ShowCode LLC

RECONSIDERING THE USER

My thesis, Reconsidering The User, is a proposal
for a digital application that unites the architect
and the occupant in the design process of a
home by transforming how design criteria are
obtained and controlled.

Within the scope of the detached single-family
house, my thesis argues that a design process
that engages the expertise of both the architect
and the occupant has the potential to create a
design solution that is more accurately tailored
to the preferences of the occupant. This is
possible through reconfiguring the information-
gathering phase of architectural design. Given
my background and current entrepreneurial
pursuit,1 I, along with my advisor, felt that the
best way for me to contribute to the field or
architecture was not to design a building, but
rather how buildings could be built.

My thesis is the culmination and synthesis of
several bodies of research within and outside
of the field of architecture, which ultimately
results my thesis. It is not a proposal for
automatic form generation software; I am not
attempting to distinguish good designs from
bad designs; and I am not suggesting that it
is, in any way, superior to the way architects
traditionally work.

What I am exploring is (1) an alternative to
the way design criteria is gathered from that
of a traditional design process and (2) an
advancement to the current Do-It-Yourself
home design software and floor plan catalogs

In a traditional design process, information
collection occurs primarily at the beginning
of the design process in an interview. Then
the architect uses their expertise and works
independently to create a design that the client
will routinely review. With the exception of
explicitly stated client requirements derived
from the interview and subsequent meetings,
the architect is free to design as desired (figure
3).

From a floor plan catalog, the future occupant
of the home relies on the capitalistic motives
of developers. They browse hundreds of
floor plans until they find one that is the least
objectionable.

Those who choose to design their homes with
DIY software typically create homes designs
that are infeasible or plagued with problems
because they lack the design expertise and are
not tailored to the site (figure 4).

The methodology I am proposing eliminates
the pre-design interview and implements a

communication interface, which (1) facilitates
how information is gathered and utilized to
influence the design, (2) translates the expertise
back and forth between architect and client, and
(3) creates an environment in which the client
and the architect can simultaneously participate
in the design process without compromising
the desires of either party (figure 5).

Why is this important? Currently, architects
are only directly involved in 2% of single-
family home design in the U.S.2 This is startling
considering more than 2/3 of the country lives
in detached single-family homes (figure 6).3

This means that of the nearly 60 million single-
family homes in the U.S., architects were only
directly responsible for a little over 1 million.
The reasons for this vary a great deal and
there is not a definitive conclusion. However,
the most prominent causes are (1)Economics
and efficiency of detached single family home
development,4 (2) Perception of elitism and
exclusivity involved in hiring an architect,5
and (3) a lack of understanding by the general
public about the benefit architects bring to a
project beyond aesthetics (figure 7).6

I do not, in any way, claim that my thesis is the
solution to these concerns, but it recognizes
them and attempts to minimize their effects on

the design process (figure 8).

In order to accurately present the product of my
thesis, it is necessary to quickly elaborate on the
areas of research that serve as my proposal’s
foundation. This diagram (figure 9) is a non-
linear, visual representation of my thesis
argument that I developed during the course of
this project to help me organize and connect the
disparate bodies of knowledge.

Before going further, I want to touch briefly on
a few concepts that will prove crucial to the
understanding of my thesis.

First, User-participatory design, or
“Architecture-by-yourself” is concept in
which the client and/or the future user of
the architecture plays a major role in, and is
responsible for, the design decisions.7

Historically, in such a practice, the role of the
architect is diminished or even eliminated. A
clear example of user participatory design is a
project called the Flatwriter by Yona Friedman
in the 1960’s (figure 24).8 The Flatwriter was
a combination of hardware and software in
which the future inhabitant of an apartment
would select from a series of formal design
options in order to create the flat they would
eventually live in. In this scenario, the architect

is responsible for creating the repertoire of
possible solutions for the user from which to
select. This project will be detailed later.

Second, I want to distinguish the use of
computers in architectural design from that of a
computational design process. The traditional
use of computers and software for drafting
and to aid in the production of drawings and
images are simply “more convenient” ways
of performing the same process by hand. It
is therefore distinct from my reference to
a computational process which I define as
the method by which an electronic system,
constrained by a set of variables.

Within the scope of the detached single family house,
a constraint-based design process

that engages the expertise of both the architect and the occupant

has the potential to create a design solution that is more

accurately tailored to the

preferences of the occupant.

A proposal for a digital application that unites the architect and the occupant in the design
process of a home by transforming how design criteria are obtained and controlled.

an alternative to the way design criteria is currently gathered

- and -

an advancement to the current DIY home design software and floor plan catalogs

Figure 2. Examples of the software and 3D models used to of
current at-home DIY software packages as well as examples
of catalog home designs.

2.

HISTORICAL CONTEXT

In the 1960s and 1970s, many individuals did
research into user-participatory design and
architectural computing. Among those whose
work is most noteworthy, as evidenced by
their continued relevance in contemporary
discussions, is Nicholas Negroponte,
Christopher Alexander, and Yona Friedman.

Each of these architects developed
methodologies that utilize technology and
computing as the armature of a design process
and, to some extent, propose a design system
that favors analytical and/or logical thinking
over intuitive thinking. Each methodology
creates a technological platform from which to
work and results in a sample of differentiated
projects that are each realized by implementing
varying degrees of end-user participatory
design. As one who – beyond the realm of this
thesis – is studying, participating in, and actively
developing a system in which computing and
technology play a significant role in the design
process, I am intrigued by their distinctive
conclusions, specifically as they relate to the
roles of the end user and the architect.

The technology- and computing-based design
processes developed by these three authors
are valid and cogent propositions that have
withstood the evolution of technology and
computing over the past five decades and are as
valid now as they were decades earlier.

I will begin this argument by providing an
overview of each author and their respective
theories as derived from their written work(s)
relating to the use of technology and computing
in the design process. The overview will
serve two purposes. First, it will provide a
background for readers who are not closely
familiar with the work of these authors. Second,
it will establish some boundaries regarding the
scope of my thesis. Each of these architects over
the course of their lives has been associated
with larger arguments regarding, among others,
phenomenology and the importance of place.
However, the scope of this thesis will be limited
to the application of their respective theories
and systems regarding the use of technology
and computing in the design process. Through
this structure, I will pay specific attention to
the proposed design process that resulted from
the theoretical argument as well as the realized
projects.

I will begin with and spend more time discussing
Yona Friedman’s work in order to provide
clarity to the computational architectural
design process, the backbone of which can be
applied to the subsequent theories.

In Toward a Scientific Architecture, “Friedman’s
main objective is to “democratize” design, to free
the user from the “patronage” of the architect,
to enable “non experts” to make their own
designs, as they are the ones who better know
their needs and desires and, most importantly,
bear the risk of failure.”9

Friedman argues that in the past, architecture
consisted of a “simple chain of operations”10 in
which the architect worked directly with the
client and future user. In its most basic form,
the future user makes decisions directly about
the finished product.

However, he argues that as buildings became
more complex, the architect became involved
in the process. The future user conveyed his
specific needs for his building directly to the
architect who, in turn, translated the future
user’s needs into the design of the finished
product. In this arrangement, the architect
essentially does not exist in the decision making
process. The architect was the middleman
between the client and the builder but “all
the decisions had been made exclusively by
the client.”11 What has changed in the present
(1960’s) is that the architect now works
for thousands of future users and it is thus
impossible for the architect to consider all of
the needs and requirements of every future user
when designing the building. He argues that the
industry is left with two solutions:

“1. Supply a large enough number of
architects…so that each of them can devote
himself to a very few clients.
 2. Reduce the period of time spent gathering

information (between the client’s visit and
the construction of the hardware)”12

Given that it would require an unbelievable
number of architects to make option 1 feasible,
the industry has chosen option 2. The result
is that instead of designing for each individual
user, architects now design for the specific
needs of the average future user.

The problem with this approach, he states, that
the average user does not exist. To express
this in an extremely simplified manner: the
architect has gone from designing for one user,
to designing for thousands of users, to designing
for no user.

Notice that in figures 6 and 7, there is a
bottleneck where the information is being
received by the architect. Friedman seeks to
eliminate the bottleneck by implementing
a feedback loop (figure 8). He claims that
constructing this new process will, “eliminate
information short circuits and therefore
unreliability from the message on arrival”,13 in
other words, ‘noise’” as seen in figure 8.

Friedman states, “The act of deciding also
implies that the one who makes the decisions is
the one who takes the risks. Any system that
does not give the right of choice to those who
must bear the consequences of a bad choice is
an immoral system. However, that is exactly
the way that architects and planners work.
They make the decisions and the users take the
risks.”14

Through this process, Friedman recognizes that

the future user must thoroughly understand
the risks involved in making design decisions,
stating that it is, “immoral and dangerous to
leave choices to people who have not been
properly informed about the consequences of
their decisions”.15 Freidman argues that the
role of the architect should be to construct the
repertoire that the occupants use, instead of
designing the spaces in which they occupy.

This thinking paved the way for Friedman’s
Flatwriter a hardware and software solution
that allows the end user or occupant to design
their housing unit to their exact specifications
based on how often they used the space and the
positioning of programmatic spaces in relation
to one another.

To accomplish this he diagrams possibilities of
connections between exterior spaces to interior
spaces and interior spaces to one another. The
following are a series of diagrams originally
drawn by Friedman that I have redrawn here
for clarity (figures 10, 11, 12, and 13).

Figure 10. “Yona Friedman”. from http://www.ina.fr//images_v2/fresques/
imagettes/europe/jpegVisionneuse/Europe00061.jpg

Figure 11. Redrawn from Friedman, Yona. 1980. Toward a Scientific Architecture.
Cambridge, Mass.: MIT Press.

Figure 12. Ibid.

yona friedman

1ST SPECTATOR

2ND SPECTATOR

3RD SPECTATOR

A GREAT ARTIST

WORK OF ART
CONTAINING
A MESSAGE

A SPECIFICATIONS
B FOR THE
C SEQUENCE OF STEPS}

STEPS

KNOWLEDGE OF THE

SPECIFICATIONS
RECONSTRUCTION
OF THE PRESCRIBED
STEPS
FROM THE RESULTS

RESULT OF THE
EXPERIMENT

1ST EXPERIMENTER

2ND EXPERIMENTER

3RD EXPERIMENTER

10.

11. 12.

PROGRAMMING

Looking at these projects the way that I
have, I see it very much as a mathematical
programming method that fit in constraints, but
it was not a computing model that was made for
constraint-based work. Instead, it was made for
order of operations that these architects had to
then shoehorn in constraint-based logic.

To elaborate on two terms I just used,
mathematical programming and constraint
programming. With mathematical
programming, a predefined sequence of steps is
defined to reach a particular result (figure 38).

While these steps can have conditional elements,
the end solutions are already figured out and
the design can only be considered “finished”
when the sequence of steps is complete. This
requires that the end product is predetermined
before beginning the design process.

This is problematic because architectural design
is not a mathematical. The design process is not
a prescribed sequence; it is iterative and non-
linear. The solution to a design is not the end

result but rather some desirable point in the
process when we feel that all our criteria have
been met. “We do not find the solution to a set
of design specifications; we find one solution
out of many alternatives.”25

Constraint programming differs from
mathematical programming and akin to
architectural design in that, it is non-linear
and therefore does not specify a sequence
of steps. A constraint is a rule. As the name
suggests, constraint programming considers
any number of constraints, or rules, which must
all be satisfied to achieve a solution. It does not
propose the process for meeting the constraints.
The collection of constraints indicates the
boundaries to an infinite solution space.

Regardless of the number of constraints and
how they are related, there is still a possible
solution

As Alexander suggested, finding the solution is
made by compromising between any number of
elements within a given solution space.

Mathematical Programming

step1 step1 step 3 step 5 step 6step 4

yes?

yesno?

no?

option

option

38. 39.

INFORMATION GATHERING

If the constraints are controlling the limits of
design, it is imperative that the information
we receive is accurate. Traditionally an
architecture-led home design usually begins
with some form of meeting or interview
between the architect and the future occupant
of the house. However, studies into information
gathering reveal that the interview is the least
effective way to obtain information due to bias.
“Respondents give answers that they think
the interviewer wants to hear, rather than
what they really feel and/or… the respondent
may be tempted to answer in a way that gives
him/her credibility and limits embarrassment
in the eyes of onlookers, rather than giving a
truthful reply.”26 This is an unavoidable reality
of a personal interview process. It is therefore
difficult to assume that the constraints derived
from this process are as accurate as they could

be. Specifically, in the case of architecture the
problem is enhanced by the fact that population
at large is unaware of what architects do, what
is considered when designing a building or why
we consider all of that information

To formulate a more accurate way of collecting
information from clients I researched the
science of survey methodology. Within this,
there are three main prerogatives: question
wording, question order, and question typology.

In summary there are ways of asking certain
types of questions that are worded in a
particular way and presented in a particular
order that have the greatest potential of yielding
accurate and truthful responses from the future
occupant of a home.

INTERFACE & OPTIMIZATION PRECEDENCE
The BVO model employs constraint
programming (CP) instead of mathematical
programming for the search of feasible and
optimal solutions. This is a crucial element of
the project. In mathematical programming,
the program code consists of a sequence of
steps that are followed in order to achieve a
result. CP, on the other hand, uses a declarative
programming environment. “A Constraint
Program is not a statement of a problem as
in mathematical programming, but is rather a
computer program that indicates a method for
solving a particular problem.”27

Recalling Alexander’s theory on defining a
design problem through a identifying the
negative requirements, it is easy to the relation
to CP.

The differences in programming languages
relate directly to the architectural design
processes I am illustrating. Mathematical
programming is, by its very nature, a linear
process; the variables are defined, the
sequence of steps is identified, and one best
answer is found. CP, on the other hand, is
non-linear because is continually searching
for an optimized solution based on a set of
constraints. There is not a unique, defined
solution, but rather an optimized discovery
that is the result of multiple iterations within
the constraints of the design domain.

It is obviously difficult to say which routes

architects follow while designing. It is
therefore complicated to code a set of steps
that describe how a design problem could be
solved by a machine. Referring to what was
said before, a different programming paradigm
that specifies a set of constraints that must be
met without stating how to achieve this task.

In 2010, Yasha Grobman published an article
in the International Journal of Architectural
Computing entitled “Non-Linear Architectural
Design Process”. In it, he touches on several
of the elements I previously highlighted but
delves deeper into the differences between
linear parametric design and a non-linear
process. Grobman states,

“The main difference between the linear
parametric design process and the non-linear
process, besides the obvious ability to generate
and work with several design alternatives, has
to do with the ability of the nonlinear algorithm
to generate new alternatives deriving from
both single and multiple initial alternatives.
This allows the designer to combine successful
alternatives from different sub-stages in the
generation process.

The idea of multiple design solutions has been
discussed widely in traditional design thinking
and cognition discourse. Some examples are
the discussion on parallel lines of thought
by Lawson, the discussion on top-down and
bottom-up approaches within the space

problem by Rowe and Alexander’s procedural
design method described in his seminal book
‘Notes on the Synthesis of Form’. However, these
approaches and methods still fall within the
realm of linear design. Although, the possibility
to go back and forth during the design process
is mentioned and discussed in these texts,
they do not discuss nor mention the option
of combining ideas from various stages of the
design process as suggested in the nonlinear
design process. This can be explained by the
connection of nonlinear design to computers,
which were not widely used for design when
these ideas were developed.”28

In developing his program, Schoch relied on
the findings of T.M. Locher who stated that,
“the use of a mathematical description to
characterize a design problem implies the
following hypotheses:

(1) Architectural design is affected by rules.
(2) Rules can be used to constrain the solution
space of a design problem. (3) Provided that
constraints and objectives are specified by the
architect, computers can extend the number of
feasible solutions for a design problem.29

Furthermore, it is possible to classify the
following assumptions as integral components
of an optimization model. (1) The design
solution has to meet specific requirements
[constraints]; (2) the design has to strive for
specific goals [objectives];(3) there are choices

that might meet the constraints and objectives
[design variables].

The optimization model itself consists of a given
number of variable and constant parameters,
one or more objectives, as well as a fluctuating
number of constraints. Each object that belongs
to the model can be accessed and altered by
the use of parameters. A room, for example,
is an object with geometric parameters such
as length, width, and height. Objects can also
imply alphanumerical parameters such as their
occupancy or neighborhood. Parameters are
defined in the form of variables or constants,
whereas variables can be used as inputs for
the optimization process. Responses result
from the composition of other variables. If a
variable is changed during the optimization
process, dependent variables will be changed
as well. Inputs and Responses are often named
Optimization Variables. 30

These variables form the basis of constraints
and objective functions. Both must be functions
of one or more optimization variables. Within
an architectural problem domain, a response
variable could be the area occupied by a specific
room. Through multiplication of two input
parameters (width and length), a response
variable would be rendered. It is of primary
interest that suchlike parameters generate
serious problems for the optimization process
due to their nonlinear form. Once the design
problem is stated in form of design variables,

constraints, and objectives, the parameters will
be passed to the optimization engine, which
tries to find a feasible solution to the problem.
A programming language that supports this
paradigm and that was used herein is OPL
(Optimization Programming Language), which
was developed in 1995.30

The principle of the geometric model adopted
is the representation of rooms as rectangular
units. Michalek [4] demonstrated this concept
in his work on architectural layout planning.
In contrast to his concept, a geometric
representation was chosen that describes a
rectangular unit through a reference point, a
length, and a width dimension. 30

Constraints were taken from this work that
describe the location of a unit inside another
(Force Inside), the intersection of two units
(Prohibit Intersection), the location of a unit on
the border of another unit (Force To Border),
the connection of two units (Force Connection),
the location of a unit on the outside of another
unit (Force Outside), as well as the prohibition
of a connection between two units (Prohibit
Connection). 30

Various design constraints (e.g. aspect ratio,
symmetry) that refer to subjective rules were
implemented. These design constraints as well
as constraint combinations make it possible to
extend the architect’s ability to intervene in the
creative process of automatic layout planning.

The use of constraint combinations, for
example, led to a new constraint that made
it possible to extend the geometric model to
non-rectangular units. These so-called Void
Units accommodate complex shapes that must
not be specified differently from other units,
according to their geometrical measures. 30

In figure 49, a rectangular floor plan with an
area of 900 square meters and side lengths
of 30 by 30 meters is shown. Satisfying a
large number of additional conditions, an
arrangement of the nineteen areas of the room
program had to be found with the sum of the
areas of slots 1 through 8 equaling the total
area of the building floor plan and with slots
11 through 19 arranged within slot 6 (figure
50). 31

In attempting to determine what occurs in the
computational precursor stage, I looked to
research that is more contemporary. In 2011,
Martin Schoch of Shinawatra University in
Bangkok, Thailand published an article entitled,
Building-volume designs with optimal life-
cycle costs. In it, he describes a methodology
in which a computational decision-support
system would address problems associated
with missing quantitative information.

Using a constraint programming language,
the BVO model enables designers to find
design solutions that offer cost-effectiveness.

Minimizing LCC, it determines optimal-
volume dimensions, number of floor levels,
building orientation and opening ratios of
exterior surface-areas while satisfying site
criteria, building-code regulations and design
constraints such as suggested floor-area
usage boundaries or building depth. Further,
through its three-dimensional building-volume
visualization of optimal or feasible solutions,
the BVO model allows for a comprehensive
understanding between its implemented
optimization strategies and its resulting effect
on the continuously improving building-
volume shape. 32

Schoch determined that the lifecycle costs of a
building are the result of the summation of four
costs: Energy Costs (EC), Construction Costs
(CC), Operation and Maintenance Costs (OMC),
and Repair and Renovation Costs (RRC). Thus
by adding the present value of these costs one
can determine the present value of the total
Life Cycle costs of a building. By tying these
costs to the aforementioned variables, Schoch
was able to develop a software application that
evaluates the quantitative data and proposes
an overall building volume that is optimized
with regards to lowering the life cycle cost of
the building. 33

“For implementation, the BVO model facilitates
two existing software applications. The
optimization of building-volumes using CP
techniques is realized with ILOG OPL Studio

6.1.1 [25]. For the visualization of its results,
Processing, an open-source programming
environment for data presentation and
visualization is used [26].When conducting
experiments, the solution-data is recorded;
successful optimization runs are then
visualized, allowing for visual examination of
all feasible and optimal solutions, as illustrated
in Figure 4.” 33

“The results of the BVO model testing
confirmed the assumption that the CP engine
solver continuously improves the found
solutions. An optimal solution could be
found within a practical period of less than
three minutes with the range of the allowable
building-volume opening ratio limited to 40 -
60%.The generated volume solutions of the
test runs satisfied the model constraints and
remained within the theoretical building-
volume. Repeated optimization runs with
similar setups concluded with the same
optimal objective value. Yet, earlier attempts
showed that search time could significantly
increase when the specifications of decision
variables are inconsiderably high. For
example, by allowing the opening ratio to use
a range between 0 - 100 %, the search space
increases unnecessarily. The model results
thus indicate that thoughtful calibration of its
decision variables is required.” 33

The BVO model is a promising tool in the
development of cost effective buildings, but it

is geared for use exclusively by architects and
construction professionals and does nothing
to facilitate a design process that incorporates
the future user. In addition, it fails to consider
how this breakthrough analysis tool could be
used to assist designers throughout the design
process.

Friedman and Negroponte propose
methodologies that reduce and even eliminate
the role of the architect in the architectural
design process, claiming that it is irresponsible
to let an architect dictate a design because
the architect does not have the suffer the
consequences of poor design choices. The
future is the best person to create space,
heavily proposing “architecture by yourself”.
Alexander proposes a methodology in which
the architect utilizes logic and set theory to
determine the best fit for design decisions,
employing a primitive version of constraint
programming. Arguing in an opposite fashion
that not even an architect, and certainly nor
the future user is capable of making competent
design decisions without the use of a logic
based computation process to evaluate criteria.
Each of the aforementioned theories suffer
from being a linear process, however,
contemporary technology and programming
methods such as constraint and optimization
programming create an opportunity to
revisit and reapply these theories within the
framework of a modern system.

one two three

Architectural design is
affected by rules

Rules can be used to
constrain the solution

space

Computer can extend the
number of feasible options

one two three

Design solution has to
meet specific requirements

(Constraints)

The design has to strive for
specific goals

(Objectives)

There are choices
available that meet the

constraintsand objectives

(Design Variables)

operations research for a mathematical description of architecturehypotheses for a mathematical description of architecture

genpod variation results
Visual catalogue of generated alternatives: A-total grade, B-extrinsic criteria’s values, C-deviation/adherence to
performance envelope (intrinsic criteria), D-generated alternatives (the alternative with the highest grade in the
current �itness settings is marked by a dark/red rectangle.

genpod - Possible use of the selected envelope
Building’s initial form

genpod - Possible use of the selected envelope
Design space

Figure 3: User interface, initial set
up and generated alternatives visual
interactive catalogue (the alternative
with the highest grade in the current
�tness settings is marked by a dark/red
rectangle).

51. 52.

INTERFACE DESIGN & FUNCTIONALITY

It would be impossible to analyze every
element of design and critical decision in the
design process, therefore the scope of my
argument will specifically consider a finite set
of three variables: (1) site, (2) enclosure, and
(3) materials. These three variables are the
topics outlined by David Leatherbarrow in The
Roots of Architectural Invention. In this text,
Leatherbarrow states that every architect will
have to consider site, enclosure, and materials at
some point in the architectural design process.
Moreover, he argues that these elements must
be worked out fully before considerations of
style and aesthetic are applied. 34

The interface I have designed is a constraint
driven program that (1) indirectly obtains
missing design information by asking the user
about the quality of the spaces in their home in
layman’s terms; (2) it serves as an impersonal

communication interface between the future
occupant of the home and an architect; and (3)
it is 3D modeling and design software that uses
the information that it gathered to facilitate the
design process.

The most troubling aspect of current DIY
home design software is the user is typically
unaware of the full scope of their design
decisions. Maybe it is something simple
like a building code violation or maybe it is
something more complex like a design feature
that hinders passive cooling when that was
originally something that the user really wanted
Integrating design constraints prevents the user
from making uninformed decisions.

The primary objective of the interface is to collect
necessary and accurate data by translating the
needs of the architect into questions that are

answered by the user. This is necessary because
the reason for asking a question can be very
different between an architect and an occupant.
If a client is asked to determine the best
orientation for their house, there are dozens of
variable that go into making that decision that
the average consumer will likely not have the
expertise to consider. However, if asked, “do
you like sunlight to come into your bedroom in
the morning?” that question helps to determine
the orientation of the house. It also helps to
determine the location of the bedroom in the
overall plan, the number of widows or amount
of transparency that is present etc.

The occupant is the expert in how they want
to live; the architect should facilitate the most
appropriate design to meet that expectation.

The interface begins by requesting simple,
objective information like the property
address. From this address, the program can
pull in thousands of constraints defined by the
building code, zoning codes, and homeowner’s
association design regulations and it can begin
assembling the data for constraints that have
not yet been defined by the user such as climate
data, topography, soil conditions, etc. From the
constraints, the program can formulate that
without some type of variance, the volume here
is the maximum buildable volume of the house.

wind velocity

wind frequency

rain quantity

rain quality

snow qunatity

solar intensity

solar availability

solar altitude

solar azimuth

cloud cover

sky illumination value

quality of direct light

quality of diffuse light

heating degree days

cooling degree days

average high
temperature

average low
temperature

ultra-violet quality

ultra-violet quantity

relative humidity

vapor pressure

diurnal swing range

water table level

ground water
temperature

ground temperature

topography grading

proximity to
body of water

presence of
flood zoning

general soil
conditions

presence of
protected flora

parcel dimensions

age of adjacent
structures

current use of
adjacent structures

and land

previous use of
adjacent structures

and land

size of adjacent
structures and land

materiality of
adjacent structures and

land

architectural style of
adjacent structures

orientation of
adjacent structures

proximity of parcel to
adjacent structures

zoning codes

building codes

HOA regulations

future land use
regulations

contractor
requirements

real estate
transaction laws

title history

availability of
materials

cost of materials

feasible treatment
of materials

regional vernacular

smog levels

noise levels

traffic volume

crime data

school districts

voting districts

development tax
incentives

allowable
construction hours

proximity to
public safety

etc.
59.

Client/User View Architect View
60. 61.

Client/User View Architect View
62. 63.

Client/User View Architect View
64. 65.

Client/User View Architect View
66. 67.

Client/User View Architect View
68. 69.

Client/User View Architect View
70. 71.

Client/User View Architect View
72. 73.

Continue to work in the software
through completed construction drawings

Download constraints and graphic information
in order to take them to a builder or architect to complete construction drawings

Work without architect support
similiar to typical DIY software while utilizing established constraints

ENDNOTES

1.	 Nathan Aleskovsky is the founder and CEO of ShowCode
LLC – a software company that is developing software
application to conduct building code and regulatory
compliance analysis.

2.	 (LaBarre 2008)
3.	 (U. S. Census Bureau 2013)
4.	 (LaBarre 2008; U. S. Census Bureau 2013)
5.	 (LaBarre 2008)
6.	 (Thompson 2012)
7.	 (Vardouli)
8.	 (Friedman 1980)
9.	 (Vardouli)
10.	 (Friedman 1980)
11.	 (Ibid.)
12.	 (Ibid.)
13.	 (Ibid.)
14.	 (Ibid.)
15.	 (Ibid.)
16.	 (Alexander, Christopher 1964)
17.	 (Ibid.)

18.	 (Ibid.)
19.	 (Ibid.)
20.	 (Ibid.)
21.	 (Ibid.)
22.	 (Negroponte 1972)
23.	 (Ibid.)
24.	 (Ibid.)
25.	 (Gross 1986)
26.	 (“Question Wording | Pew Research Center for the People

and the Press” 2013)
27.	 (Lustig and Puget 2001)
28.	 (Grobman, Yezioro, and Capeluto 2010)
29.	 (Schoch, Prakasvudhisarn, and Praditsmanont 2011)
30.	 (Ibid.)
31.	 (Ibid.)
32.	 (Ibid.)
33.	 (Ibid.)
34.	 (Leatherbarrow 1993)

BIBLIOGRAPHY
Alexander, Christopher. 1964. Notes on the Synthesis of Form.

London: Oxford University Press.

“Barnes Collection | Tod Williams | Billie Tsien | The New
Barnes Shouldn’t Work—But Does | By Ada Louise
Huxtable - WSJ.com.” 2013. Accessed February 5.
http://online.wsj.com/article/SB10001424052702
304019404577417984288542236.html.

“Chapter 5: Personal Interviews.” 2013. Accessed March 25.
http://www.fao.org/docrep/W3241E/w3241e06.
htm.

City of Plano, Illinois. 2010. “Minimum Construction Stan-
dards.” http://www.cityofplanoil.com/zoning/
MinConstStdsFY10.pdf.

———. 2013. “Welcome to the City of Plano, Illinois.” Accessed
April 9. http://www.cityofplanoil.com/.

City of Riviera Beach. “CITY OF RIVIERA BEACH, BUILDING
DIVISION PERMIT APPLICATION
REQUIREMENTS FOR NEW SIGNLE FAMILY OR
DUPLEX.” http://www.rivierabch.com/filestorage/
305/307/1035/1041/permit_app_single_duplex.
pdf.

City of Riviera Beach Community Development Department.
“Riviera Beach Zoning Map.” http://www.rivierabch.
com/filestorage/305/307/1035/1039/
official_zoning_update_2010.pdf.

“City of Riviera Beach Comprehensive Plan.” http://www.
rivierabch.com/filestorage/305/307/1035/1039/
CRB_Comprehensive_Plan0_(1).pdf.

Colquhoun, Alan. 1996. “Typology and Design Method.” In
Theorizing a New Agenda for Architecture, by Kate
Nesbitt, 248–257. New York: Princeton
Architectural Press.

“Create House Floor Plans Online with Free Floor Plan
Software.” 2013. Accessed February 5.
http://www.homestyler.com/designer.

Derix, Christian. 2009. “In-Between Architecture Computa-
tion.” International Journal of Architectural
Computing 7 (4) (December 1): 565–586.
doi:10.1260/1478-0771.7.4.565.

Emrath, Paul. 2009. “NAHB: How Long Buyers Remain in
Their Homes.” HousingEconomics.com. February 11.
http://www.nahb.org/generic.aspx?section
ID=734&genericContentID=110770&
channelID=311.

Estvez, Alberto T. 2003. Genetic Architectures = Arquitecturas
Geneticas. Santa Fe: Sites Books.

FAIA, Marvin J. Malecha. 2002. Reconfiguration in the Study and
Practice of Design and Architectureure. 1st ed. San
Francisco, CA: William Stout Publishers.

Fisher, Thomas. 2000. In the Scheme of Things: Alternative
Thinking on the Practice of Architecture.
Minneapolis: University of Minnesota Press.

“Five Basic Types of Questions.” 2013. Accessed April 14.
http://www4.uwsp.edu/Education/lwilson/
learning/quest2.htm.

Frary, Robert. 2013. “A Brief Guide to Questionnaire Develop-
ment”. Virginia Polytechnic Institute and State Uni-
versity. Accessed February 20. http://www.ericae.
net/ft/tamu/vpiques3.htm.

Friedman, Yona. 1980. Toward a Scientific Architecture.
Cambridge, Mass.: MIT Press.

Grobman, Yasha, Abraham Yezioro, and Isaac Capeluto. 2009.
“Computer-Based Form Generation in Architectural
Design - a Critical Review.” International Journal of
Architectural Computing 7 (4) (December 1): 535–
554. doi:10.1260/1478-0771.7.4.535.

———. 2010. “Non-Linear Architectural Design Process.” In-
ternational Journal of Architectural Computing 8 (1)
(January 1): 41–54. doi:10.1260/1478-0771.8.1.41.

Gross, Mark Donald. 1986. “Design as Exploring Constraints”.
Thesis Ph. D., Cambridge: Massachusetts Institute of
Technology. Dept. of Architecture. http://hdl.handle.
net/1721.1/15036.

“Historical Census of Housing Tables - Units in Structure.”
2013. Accessed April 24. http://www.census.gov/
hhes/www/housing/census/historic/units.html.

“Home & Landscape Design Professional V17 | Punch Software
| Official Site.” 2013. Accessed February 5. http://
www.punchsoftware.com/p-59-home-landscape-
design-professional-v17.aspx.

“Home Designing & Decorating Software | HGTV Software.”
2013. Accessed February 5.
http://www.homedesignsoftware.tv.

Hubbard, Bill. 1996. “The Roots of Architectural Invention:
Site, Enclosure, Materials by David Leatherbarrow.”
Journal of the Society of Architectural Historians 55
(2) (June 1): 186–187. doi:10.2307/991121.

“IEM | Custom Wind Roses.” 2013. Accessed April 21. http://
mesonet.agron.iastate.edu.

Kaspori, Dennis. 2003. “A Communism of Ideas: Towards an
Open-source Architectural Practice.” Archis #.

Kendall, Illinois Planning, Building and Zoning. 2013. “Zoning
Ordinance.” Kendall, Illinois Planning, Building and
Zoning. Accessed May 9. http://www.co.kendall.
il.us/zoning/zoning_ordinance.htm.

“Kitchen Design Questionnaire.”
http://www.platinumdesignsllc.com/files/
KITCHEN_DESIGN_QUESTIONNAIRE.pdf.

LaBarre, Suzanne. 2008. “Truth in Numbers | Metropolis Maga-
zine.” Metropolis Magazine. October 15.
http://www.metropolismag.com/story/20081015/
truth-in-numbers.

Lömker, T.M. 2006. “Solving Revitalization Problems by the Use
of a Constraint Programming Language.” 17th Inter-
national Conference on the Applications of Computer
Science and Mathematics in Architecture and Civil
Engineering.

Lustig, Irvin, and Jean-Francois Puget. 2001. “Program Does
Not Equal Program: Constraint Programming and Its
Relationship to Mathematical Programming.”
NTERFACES 31 (December): 29–53.

McLeod, Virginia. 2007. Detail in Contemporary Residential
Architecture. London: Laurence King Publishing.

Moloney, Jules, and Bharat Dave. 2011. “From Abstraction to
Being There: Mixed Reality at the Early Stages of
Design.” International Journal of Architectural
Computing 9 (1) (March 1): 1–16. doi:10.1260/
1478-0771.9.1.1.

National Trust for Historic Preservation. 2013. “Farnsworth
House.” Accessed April 16.
http://www.farnsworthhouse.org/history.htm.

Negroponte, Nicholas. 1972. The Architecture Machine: Toward
a More Human Environment. Cambridge, Mass.;
London: MIT Press.

———. 1975. Soft Architecture Machines. Cambridge, Mass:
The MIT Press.

Penttilä, Hannu. 2009. “Services in Digital Design: New Visions
for AEC-field Collaboration.” International Journal
of Architectural Computing 7 (3) (September 1):
459–478. doi:10.1260/147807709789621257.

Pérez Gómez, Alberto. 1983. “Architecture and the Crisis of
Modern Science.” http://hdl.handle.net/2027/
heb.05875.

Physician Associates. “Health Questionnaire.” http://www.
paof.com/sites/default/files/patient-forms/
Adult%20New%20Patient%20Forms%20OH.pdf.

Program Evalution and Methodology Department. 1993.
“Developing and Using Questionnaires”. United
States General Accounting Office.
http://archive.gao.gov/t2pbat4/150366.pdf.

“Question Order | Pew Research Center for the People and the
Press.” 2013. Accessed February 13.
http://www.people-press.org/methodology/
questionnaire-design/question-order/.

“Question Wording | Pew Research Center for the People and
the Press.” 2013. Accessed February 13. http://
www.people-press.org/methodology/question-
naire-design/question-wording/.

“Questionnaire Design, Interviewing and Attitude Measure-
ment - A. N. Oppenheim - Google Books.” 2013.
Accessed February 13. http://books.google.com/
books?id=6V4GnZS7TO4C

Riddle, Bethany Joy. 2008. “Does TurboTax Threaten to Make
Accountants Obsolete? Local Experts Say ‘no’.”
Tri-Cities Area Journal of Business. January. http://
www.tricitiesbusinessnews.com/2008/01/does-
turbotax-threaten-to-make-accountants-obsolete-
local-experts-say-no/.

Schoch, Martin, Chakguy Prakasvudhisarn, and Apichat
Praditsmanont. 2011. “Building-Volume Designs
with Optimal Life-Cycle Costs.” International Journal
of Architectural Computing 9 (1) (March 1): 55–76.
doi:10.1260/1478-0771.9.1.55.

Thompson, Max. 2012. “It’s True: People Don’t Know What
Architects Do | News | Architects Journal.” Architects
Journal. July 19. http://www.architectsjournal.
co.uk/news/daily-news/its-true-people-dont-
know-what-architects-do/8633240.article.

Tugend, Alina. 2010. “Too Many Choices: A Problem That
Can Paralyze.” The New York Times, Febru-
ary 26, sec. Your Money. http://www.nytimes.
com/2010/02/27/your-money/27shortcuts.html.

U. S. Census Bureau, Demographic Internet Staff. 2013.
“Residential Finance Survey Main.” Accessed April
24. http://www.census.gov/housing/rfs/.

Vardouli, Theodora. 2012. “Design-for-empowerment-for-
design : Computational Structures for Design
Democratization”. Cambridge: Massachusetts
Institute of Technology. http://dspace.mit.edu/
handle/1721.1/72864.

———. “‘Architecture-by-yourself’: Early Studies in
Computer-aided Participatory Design”. Cambridge:
MIT.

	Reconsidering the User
	Recommended Citation

	tmp.1384289369.pdf.wSkob

