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Effects of disorder on electron transport in

arrays of quantum dots

Shantenu Jha and A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, NY, 13244, USA

(Dated: February 2, 2008)

Using analytical and numerical methods, we investigate the zero-temperature transport of elec-
trons in a model of quantum dot arrays with a disordered background potential, where the electrons
incoherently tunnel between the dots. One effect of the disorder is that conduction through the
array is possible only for voltages across the array that exceed a critical voltage VT . We investigate
the behavior of arrays in three voltage regimes: below the critical voltage, above, but arbitrarily
close to, the critical voltage, and further above the critical voltage. For voltages less than VT , we find
that the features of the invasion of charge onto the array depend on whether the dots have uniform
or varying capacitances. We compute the first conduction path at voltages just above VT using a
transfer-matrix style algorithm. Though only the first path can be studied using this technique, it
can be used to elucidate the important energy and length scales. We find that the geometrical struc-
ture of the first conducting path is essentially unaffected by the addition of capacitive or tunneling
resistance disorder. We also investigate the effects of this added disorder to transport further above
the threshold. We find that qualitative behavior is dominated by the presence of the background
potential, rather than capacitive or tunneling disorder, at least as long as these additional disorders
do not have an extremely broad distribution. We use finite size scaling analysis to explore the non-
linear current-voltage relationship near VT . The scaling of the current I near VT , I ∼ (V − VT )β,
gives similar values for the effective exponent β for all varieties of tunneling and capacitive disorder,
when the current is computed for voltages within a few percent of threshold. We do note that the
value of β near the transition is not converged at this distance from threshold and difficulties in
obtaining its value in the V ց VT limit.

I. INTRODUCTION

It is now possible to engineer arrays of nanoparticles (1-
2 nm in diameter) in various geometrical configurations1

and to lithographically fabricate arrays of low capaci-
tance islands separated by tunnel junctions with reason-
able control over array parameters2. Such quantum dot
arrays (QDA) have been the subject of intense investiga-
tion recently3,4. In spite of the relatively well controlled
properties of these arrays however, there are limitations
on the homogeneity of such systems. Disorder at the
sub-micron length scales arises due to a variety of rea-
sons, is inevitable and significantly influences the prop-
erties of these otherwise well ordered arrays. For ligand
coated nanoparticles the variation in coating properties
and separation result in different resistances to electron
tunneling. As a consequence of the poly-dispersion in
the sizes of metallic nanoparticles, the charging energies
of the individual islands differ. Similarly for lithograph-
ically fabricated tunnel junctions, islands with variable
charging energies arise due to a dispersion of island sizes
or due to fluctuating capacitative coupling between dots
and the underlying gate. Given the pervasiveness of ran-
dom background charges, nonuniform charging energy
and fluctuations in tunneling resistance across the array,
an important focus of the current work is to study the ef-
fect of these on transport properties of electrons. Due to
limitations of the fabrication process, it is difficult to con-
trol the different types of disorder independently, whereas
this can can be relatively easily addressed by computer
simulations.

There are many dynamical systems in which strongly
interacting particles exhibit collective transport in a ran-
dom environment5. Even though the underlying micro-
scopic details are different, systems like the vortex glass
in type-II superconductors and charge density waves6,
share some general features in the long wavelength limit,
e.g., they are both characterized by the presence of a
well defined threshold force below which the system is
essentially static and above which the system has a non-
linear response. Electron transport in disordered QDA
also provide a useful system to study problems of quali-
tative similarity. An advantage of QDA is that the pri-
mary interactions and the fundamental physics are rela-
tively better understood and arguably under greater ex-
perimental control.

Using a combination of analytic and numerical tech-
niques, we investigate electron transport at zero temper-
ature in arrays of disordered small capacitance islands
which are capacitatively uncoupled to their neighbors.
We use this system both as a model for collective trans-
port of discrete charges in a random environment and for
better understanding the role of disorder. By studying
similar systems, but for different values of parameters,
different regimes of the collective transport problem can
be addressed. These regimes may be characterized by
the relative strengths of disorder, tunneling rates and
electron-electron interaction. These regimes are accessi-
ble experimentally too, as arrays can be fabricated with
varying degree of tunability of the coupling between the
array elements7. For example, the model in Refs. [8,
9] is similar to the model we study in this paper – in
that offset charge disorder is included, although Gaus-
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sian distributed as opposed to uniformly distributed –
but the screening length is assumed infinite. (Transport
in this regime is believed to belong to the same univer-
sality class of two dimensional magnetic vortex model in
disordered superconducting films.) Ref. [10] which inves-
tigates 2DEG at semiconductor heterointerfaces designed
to keep the self-capacitance and disorder low – the I-V
characteristic is better explained by charge soliton injec-
tion as no threshold voltage is observed. Such systems
can be used to study two dimensional Coulomb gases
which undergo charge Kosterlitz-Thouless (KT) transi-
tions.

A. Outline

There have been many experimental and simulation
papers 11,12,13,14,15 (to cite just a few) which have used
the theory developed in Ref. [16] by Middleton and
Wingreen (MW). This paper expands on the MW dis-
cussion of electron transport in disordered arrays. The
original model and its extension to include other forms
of disorder are described in the remainder of this section.
One-dimensional arrays – both below and above thresh-
old – are discussed in detail in section II. In section III
results for 2D arrays below the threshold voltage are pre-
sented including several results not discussed previously.
As the original MW paper sketched only briefly the con-
nection between the independent conducting paths and
the properties of a directed polymer in random media
(DPRM), a major aim of section IV and III is to establish
the connection on a more rigorous basis. In section IV we
discuss the morphology and current carrying properties
of the first conducting path at threshold for QDA. It also
provides some of the details required to understand the
non-linear scaling of current (I) with voltage (V), which
is addressed in section V.

There have been several papers that have used nu-
merical approaches to investigate transport in arrays
(both 1D and 2D) in the presence of random background
charges as well as other types of disorder15,17,18,19. Some
approaches, have used discrete event simulation tech-
niques to model the individual tunneling events, whereas
some have explicitly used computed transition rates in a
master-equation approach. The common aim is to com-
pute the general I-V characteristics, which as a conse-
quence of the collective behavior of electron tunneling
is non-trivially dependent on the individual rates. We
focus on a statistical physics approach to the problem,
thus laying a theoretical basis for the scaling exponents
observed experimentally and numerically.

B. The Model

The three main energy scales of QD are the charging
energy (EcΣ

), the electron in-a-box energy levels (∆) and
the thermal energy (kT ). As a consequence of the small

size of these islands and tunnel junctions the capacitance
involved are in the femto to atto-Farad range, thus the
charging energy – which is the increase in energy due to
the addition of a single electron is given by e2/CΣ – of
these islands is large. A characteristic feature of QD is
the clear separation of internal energy scales ∆ and EcΣ

.
An external energy scale (kT ) is set by the temperature
of interest, which determines the levels that are resolved
and participate in transport. When EcΣ

≫ kT the role
of thermal fluctuations can be ignored. Depending upon
the temperatures of interest, ∆ maybe comparable to
kT or different; for kT ≫ ∆, the discrete energy level
spectrum of the QD do not play a role during transport.
Metallic dots are different from semi-conducting dots by
the fact that typically the level spacings for metallic dots
are much smaller compared to other energies. At suffi-
ciently low temperatures, the scale of which is set by, EcΣ

≫ kT , the addition of a single extra electron to an dot
increases the dot energy; in spite of the increased energy,
the dot is stable to thermal energy fluctuations, which in
turn makes it unfavorable for more electrons to tunnel
onto the same dot, resulting in its blocking other elec-
trons onto the dot. This is called the Coulomb blockade

regime.

The parameters required to characterize QDA can vary
over a large range of values and consequently so do the
properties of QDA. Thus, it is instructive to understand
the parameter space of QDA in order to appreciate the
details of the model. The main parameters used to char-
acterize QDA, as opposed to individual quantum dots
(QD) are: the tunneling resistance (RT ) which to a first
approximation is a measure of how well confined the elec-
trons are on a dot, the inter-dot capacitance (CI) and the
dot capacitance (CΣ) which is a function of the junction,
gate and self-capacitances. The relative values of CΣ

and CI are important as it determines the extent of elec-
trostatic coupling between dots in the array. The exact
value of CΣ depends on the system under consideration.
For example, typically the self-capacitance of lithograph-
ically prepared arrays is negligible compared to the other
capacitances, thus CΣ is a function of the dot-gate and
tunnel junction capacitances (for example in Ref. [13] CΣ

= Cg + 4C). For nanoparticles with diameters of a few
nm, the self-capacitance becomes important and should
possibly be considered in the computation of CΣ

20. Ei-
ther way, CΣ still sets the scale for the charging energy.
Independent of the actual experimental setup considered,
as long as CΣ ≫ CI , the dots are considered to be ca-
pacitatively uncoupled to each other and the electrostatic
energy is determined by on site interactions only. How-
ever if CΣ is comparable or less than CI the dots are
capacitatively coupled. A screening length (λ) can be
thought of the distance (in units of dots) upto which the
charge on a dot can be felt electrostatically, i.e., distance
that an excess charge placed on a dot will effect neigh-
boring dots by polarization. The polarization decreases
exponentially with λ, which in turn decreases with the
ratio of CI

CΣ

; this is consistent with understanding that
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there is a stronger screening of the electrons on a dot
from electrons on adjacent dots as the capacitative cou-
pling between a dot and the back gate increases. For CΣ

≫ CI , λ ≈ ( CI

CΣ

)
1/2

.

The main modification to the original MW model is the
introduction of nonuniform dot capacitance CΣ and tun-
neling resistances RT . The effects of underlying charge
impurities trapped at the interfaces and in the substrate
are captured in a random background charge on each
dot. The effect of background charges is modeled as off-
set charges on each dot (qi). The offset charge at any
site is considered to be [0,1[, as any value outside this
range will be compensated by electron hopping. Arrays
with only offset charge disorder are referred to as UC
(uniform capacitance) systems. The area and capacita-
tive coupling of an island to the underlying electron gas
varies from dot-to-dot in an array. These fluctuations in
the dot-gate and self-capacitance of dots, along with stray
capacitances are incorporated by assuming a varying dot
capacitance CΣ. As CΣ controls the charging energy of
the dot, a non-uniform CΣ results in different charging
energies EcΣ

of dots. Arrays with both offset charge dis-
order and a varying CΣ, are referred to as DC (disordered
capacitance) systems. Fluctuations in the tunneling re-
sistance – either due to varying distance between metal-
lic dots or the varying material properties of the tunnel
junction separating the metallic islands between dots – is
captured by assuming a log-normal distribution of tun-
neling resistances. Arrays that incorporate variation in
tunneling resistance as well as offset charge disorder, but
with a fixed value of CΣ, are referred to as RT (resistance
disorder) systems.

We assume small metallic islands are separated from
each other by tunnel junctions of resistance RT but ca-
pacitatively coupled to neighboring dots (CI). We as-
sume a constant capacitance CI between neighboring
dots and between the left and right leads and dots adja-
cent to them. The dots are assumed to be separated from
an underlying back gate by an insulating layer. Each
dot is capacitatively coupled to the back gate with a
capacitance CΣ. The leads and back gate are assumed
to have infinite self capacitance. As a consequence of
the proximity of the back gate to the dots CΣ ≫ CI ,
the screening-length is taken to be less than one lattice
spacing. Consequently the capacitative coupling between
dots is neglected.

We will consider arrays where the single-energy levels
of the dots are essentially a continuum at the Fermi level
in the strongly Coulomb blockaded (EcΣ

≫ kT ) regime.
Thus tunneling is between levels determined by EcΣ

.
Where a spread in values of RT is considered, we as-
sume tunneling resistance between any two dots is still
sufficiently large to consider electrons localized on a site
(RT ≫ h/e2). This is the regime of the “orthodox the-
ory” of single electron tunneling and is applicable for
both the micron sized lithographically defined SET (e.g.,
metal islands embedded in a substrate14 and separated
by tunnel junctions or semi-conductor islands separated

by barriers7) as well as the 3D metallic grains. According
to the “orthodox theory”21 of a tunneling event across a
tunnel junction, tunneling rates (transition probability
per unit time) associated with an event are given by,

Γ =
∆E

e2RT

1

[1 − exp(−∆E
kT )]

(1)

where ∆E is the difference in the free energy of the sys-
tem before and after the tunneling event, RT is the tun-
neling resistance of the junction involved in the tunneling
event, T the temperature and k is the usual Boltzmann
constant. The kinetic energy gained by the tunneling
electron is assumed to be dissipated. The value of RT is
assumed to be much greater than h/e2. This essentially
implies that the wavefunction of electrons are localized
to a single dot which permits the number of electrons on
any single dot to be treated as a classical variable. It
should be pointed out that the orthodox theory is still
valid for arrays in the limit Ci ≫ CΣ, but not for dots in
the other limits of RT ≪ RQ and EcΣ

≪ kT .
In this limit the energy is all electrostatic and is de-

termined by a capacitance matrix Cij and is represented
as:

E = VLQL+VRQR+
1

2

∑

ij

(Qi + qi)C
−ij(Qj + qj), (2)

where QL (QR) are the charges on the left (right) leads,
which are at voltages VL (VR) and C−ij is the inverse of
the matrix of capacitances between dots i and j. The
diagonal elements of Cij are the sum of all capacitances
associated with a dot and the off-diagonal elements are
the negative of the inter dot capacitances. Hence for
a N×N array in the limit of CI

CΣ

→ 0, the capacitance
matrix is a N×N diagonal matrix.

In the limit of small screening length (less than 1 dot
spacing) and the presence of offset charge disorder the
voltage on dot i is given by Vi is (Qi + qi)/CΣ.

At zero temperatures the expression (1) for tunneling
rates reduces to

Γ =
∆E

e2RT
Θ(∆E) (3)

hence a charge may tunnel from dot i to j, only if such
an event lowers the free energy of the array i.e.

Vi > Vj + e/CΣ (4)

II. 1D ARRAYS

Before attempting to understand the detailed proper-
ties of two dimensional arrays, we begin by an attempt
to understand the relatively simpler case of a linear chain
of quantum dots, as they facilitate an understanding of
some of the ideas required later. There have been sev-
eral experiments aimed at understanding the conduc-
tion properties of essentially one dimensional arrays of
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nanoparticles20,22. The ability of metallic nanoparticles
to be patterned using polymers templates makes them
attractive candidates for potential future self-assembling
electronic devices.

A. Uniform CΣ: Insulating State

We start by exploring the tunneling of electrons onto
the array from the emitter lead. In the zero temperature
limit, as the capacitance of the leads is assumed to be in-
finite, electrons can flow onto the array when the voltage
of the emitter lead (VL) is equal to or greater than the
voltage of the leftmost dot as given by Eqn. 4. At this
applied voltage, an electron cannot tunnel from the left-
most dot to the next dot, say represented by the index i,
if dot i has an offset charge impurity qi greater than the
offset charge impurity q of the leftmost dot. Electrons
tunnel onto the array only if it is possible to do so with-
out an increase in the free energy of the system. This is
no longer possible for the configuration in Fig. 1(a). In
this configuration the electron residing on the leftmost
dot is considered to be pinned.

As shown in Figs. 1(b) and 1(c) the emitter lead volt-
age has to be increased by at least one unit in order that
the electrons can overcome the barrier. As the value of
the emitter lead voltage is successively increased, there
will be a cascade of electrons tunneling onto the array
from the lead, until they get progressively pinned and it

V
V

L
R

(a)

V

V

L

R

(b)

V

V

T

R

(c)

FIG. 1: A schematic illustrating the build of charges in a
1D array as the emitter voltage is progressively increased to
threshold.

is no longer energetically possible for electrons to pene-
trate further into the array. The flow of charges onto the
array at a given emitter lead voltage until they are all
pinned due to the disorder and thus no further electrons
can tunnel onto the array constitutes an avalanche.

There exists a unique value of the emitter lead voltage
– which depends upon the underlying disorder profile – at
which electrons will be able to reach the collector lead for
the first time (Fig. 1(c)). This well-defined voltage value
is referred to as the threshold voltage (VT ). VT separates
the conducting phase from an insulating phase. Typi-
cally in order to reach the collector lead end of an array
L dots long, an electron will have to overcome L

2 upward
steps. These steps can be can be understood as the av-
erage number of steps a random walk in 1D makes in a
given direction, thus the mean threshold voltage should

 10

 100

 1000

 10  100  1000
 0.1

 1

 10

 100

 
V

T
 in

 u
ni

ts
 o

f 
<

e/
R

C
Σ>

σ(
V

T
)

L

VT
σ(VT)
0.5 L
0.28 L1/2

(a)

 10

 100

 1000

 10  100  1000
 0.1

 1

 10

 
V

T
 in

 u
ni

ts
 o

f 
<

e/
R

C
Σ>

σ(
V

T
)

L

VT
σ(VT)
0.346 L
0.215 L1/2

(b)

FIG. 2: In Fig.2(a) a plot of the scaling of VT and root mean
square fluctuations of VT with system size for a 1D array when
the CΣ is uniform. In Fig.2(b) scaling of VT and root mean
square fluctuations in VT with system size for a 1D array but
with non-uniform distribution of CΣ.
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be given by

VT = (
L

2
)(

e

CΣ
) (5)

where the over-bar represents an averaging over disorder
realizations. Sample-to-sample fluctuations in the VT can
be thought of as the root-mean-square fluctuations of a
random walk in 1D which scales as N1/2, where N is the
number of steps of the random walk. Hence fluctuations
in VT should scale with system size as

σ(VT ) ∼ L1/2 (6)

The scaling of both VT and σ(VT ) with system size, as
shown in Fig. 2(a) are consistent with the above expla-
nation.

B. Uniform CΣ: Conducting State

The threshold voltage represents the lowest voltage at
which electrons can tunnel across the array, hence for
VL > VT , current flows through the array. For a given
disorder realization, VT depends on the number of up-
steps encountered due to the offset charge impurities.

If VL is marginally greater than VT , so that ν ≡
(VL − VT )/VT ≪ 1, then the discreteness of charge and
offset charge impurities play a crucial role in determining
the current. At these voltages the current is determined
by the slowest tunneling rate (Γslow) between any two
neighboring dots in the array (analogous to the net flow
of traffic being determined by the bottleneck in the path
of flow), which on the average is given by VL−VT

eRL , where
L is the number of dots in the 1D array.

This can be understood as follows: (VL−VT ) represents
the voltage increment over VT . In principle the voltage
drop can be anywhere between between 0 and VL − VT

for a given pair of dots. For an array with L dots there
are L+1 (∼ L when L is large) voltage drops (tunneling
rates), hence the minimum voltage drop across any two
dots is on the average VL−VT

L , which results in a tunneling

rate given by Eqn. (3) to be VL−VT

eRL . Using VT = eL
2CΣ

we

get Γslow = VL−VT

2RCΣVT
. As I = eΓslow we have

I = (
e

2RCΣ
)ν. (7)

As can be seen from simulation results in Fig. 3(d), in
the limit of low ν and for large system sizes, the local
value of the exponent is consistent with 1. Note that the
for smaller system sizes (L ≤ 1000) the effective exponent
is quite far away from 1. The fact that chains at least
larger than 1000 are required is an important observation.
We will revisit its implication later in the chapter.

In the opposite regime of a high applied voltage, ν ≫
1, the current is determined by the average tunneling
rate across a pair of dots. This is given by the 1

eR of

the average voltage drop across a pair of dots, VL−VT

L ,

i.e., Γ = VL−VT

eRL , which gives the same scaling expression
for the current with ν as Eqn. (7). For values of ν ∼
1, a crossover from slow point dominated current linear
scaling to high applied voltage linear scaling is observed.

C. Non-Uniform CΣ: Insulating State

As mentioned, the introduction of dots with non-
uniform CΣ leads to an array with dots of different charg-
ing voltages. For our simulations, we assume CΣ to be
uniformly distributed between 1.0 and a maximum fluc-
tuation of 2.0. If we attribute the variation in CΣ by
a factor of 2 to fluctuations in the size of the dots, it
corresponds to a change in a variation in the linear di-
mension of dots by a factor of

√
2. The determination of

the VT gets complicated by the presence of both offset
charge disorder and varying charging energies. This is
illustrated in Fig. 4(b) where the spacings between volt-
ages are different for different dots; this is in contrast to
dots with uniform CΣ as shown in Fig. 4(a). The incre-
ment in voltage required in order to tunnel between a
pair of dots is due to two independent random variables
– 1

CΣ

and βi, where 1/CΣ is the charging energy of dot i
and βi is between 0 and 1 which represents the required
increment due to the offset charges. VT can be written as
the Σi(βi/CΣ), where the summation runs over the num-
ber of dots in the array, L. VT can therefore be written
as L.〈βi〉.〈 1

CΣ

〉, where 〈〉 represents the average values.
Hence

VT = 〈1/CΣ〉L/2, (8)

where 1
CΣ

is log(2.0) for the assumed maximum value of
2.0. Although VT scales as L, similar to the UC arrays,
σ(VT ) behavior is more complicated. An exact analytical
expression for σ(VT ) – which can be derived using the
expectation values of 1/CΣ and 1/CΣ

2 gives,

σ(VT ) =

√

L

6
− L

4
(log(2))2. (9)

Thus, up to leading order σ(VT ) scales as L1/2. This is
consistent with our results as can be seen in Fig. 2(b).

An often used technique to explore the disorder en-
ergy scale is to study the response of the system on
changing the boundary condition23. For disordered 1D
QDA, we change the boundary condition at the right
lead and study the change in threshold voltage. We de-
fine ∆VT (δVR) as the difference in VT on changing the
value of VR by δVR. Recall that for UC arrays VT was
completely determinable by the number of up-steps in
the offset charge impurities. For the uniform capacitance
case the response is trivial: a shift in the VR by δVR –
where δVR is e

CΣ

or a multiple thereof – changes VT by
the same amount. This is a consequence of the response
being periodic in voltage. For the 1D QDA with disor-
dered capacitances, however, a shift in VR by δVR guar-
antees a change in VT by δVR only on the average, due
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FIG. 3: I-V curves for 1D array with uniform capacitances
drawn on a log-log plot. Fig. 3(b) is the plot of the local
slope of the current versus ν derived from the data in plot
Fig. 3(a). The value of the local exponent is computed us-
ing the values of the current at neighboring values of ν, and
assigned a value equal to the geometric mean of the two ν.
For clarity small systems have been separated from the largest
three 1D chains simulated. In general at low voltages the cur-
rent scales linearly with reduced voltage (ν). Flat regions for
smaller system sizes arise because the corresponding increase

V

(a)

V

(b)

FIG. 4: Fig. 4(a) is a schematic of dot voltages in a 1D array of
dots with uniform CΣ. The block heights indicate the increase
in potential on the addition of an electron. The block heights
are the same for different dots as CΣ is the same. The broken
line boxes at the top indicate the potential if another electron
were added. The left arrow indicate the difference in potential
that will determine the rate of tunneling when the occupation
number of the leftmost dot is 4 and its right neighbor is 2.
Similarly the right arrow indicates the rate of tunneling when
the occupation number of the last dot is 1 and the preceeding
dot to its left is 2. Fig. 4(b) is a similar schematic when CΣ

is non-uniform, with CΣ for the second, fourth and fifth dots
different.

to a consequence of the threshold voltage being invariant
to the zero-level of the lead voltages. Specific values of
∆VT depend upon the specific disorder configuration. As
a consequence of the invariance just mentioned,

〈∆VT 〉 = P (∆VT 6= 0)〈∆VT 〉∆VT 6=0 +

P (∆VT = 0)〈∆VT 〉∆VT =0 (10)

where P (∆VT 6= 0) ( P (∆VT = 0) ) is the probability
that the threshold voltage changes (does not change),
〈∆VT 〉∆VT 6=0 the average of the non-zero values of ∆VT =
0. Also 〈∆VT 〉∆VT =0 is 0.

The response to a change in the right lead voltage can
be formulated in terms of a 1D random walk problem.
Given the initial and final points of a random walk, one
can ask what is the probability that a random walk start-
ing a distance a from the initial point of the original walk,



7

 0.01

 0.1

 1

 10

 10  100  1000

P(
∆ 

V
T
 ≠

 0
)

L

P(∆ VT ≠ 0)
2.75 x-0.5

(a)

 0.1

 1

 10

 10  100  1000

∆ 
V

T
 in

 u
ni

ts
 o

f(
e/

R
C

g)
>

L

< ∆ VT ≠ 0>
0.36 x0.5

(b)

FIG. 5: Fig. 5(a) plots the probability for 1D systems with
non-uniform CΣ that that VT changes when the right lead
voltage is increased by one unit. The probability decreases

as L−

1

2 . For 1D systems with non-uniform CΣ, the mean
value of non-zero ∆VT scales as the square root of the system
size. As a consequence of invariance, the mean value of all
∆VT is equal to the value by which the right lead voltage is
incremented.

intercepts the original walk before a distance l? If we as-
sume that interception with the original walk results in
annihilation, we can ask of the surviving walks – what is
the typical separation of the end-point of surviving walks
from the end-point of the original random walk? It is
known24, that the probability of “survival” decreases as
l1/2 and the typical separation scales as l1/2 (the square
root of the mean standard deviation of a l step random
walk). The mapping to the random walk problem is car-
ried out by considering VR as the origin of the walk, the
potential of each dot at threshold (minus the gradient) to
be the positions of the original random walk and finally
δVR as the distance a of the initial point of the second
random walk from the original random walk. Thus, we

expect that the probability of ∆VT 6= 0 (i.e., survival)
and the mean of the non-zero ∆VT (〈∆VT 〉∆VT 6=0) should

scale as L− 1

2 and L
1

2 respectively. This is consistent with
our numerical results as shown in Fig. 5(a) , although
there are significant deviations at smaller system sizes.

D. Non-uniform CΣ: Conducting State

We discussed earlier how for UC arrays in the regime
of low ν, the value of the current is determined by the
presence of dynamically important slow points. An im-
portant distinction that arises in DC arrays is that the
location and value of slow points is less regular. For
UC arrays, the value of smallest voltage drop – and
hence the minimal tunneling rate – was bound to in-
crease every time the emitter lead voltage was incre-
mented by one unit ( e

CΣ

). Unlike UC arrays, the amount
by which the emitter lead voltage must be increased in
order to overcome the slow point does not have a well-
defined lower bound and varies significantly from sample-
to-sample and with the value of reduced voltage. As can
be seen from the presence of plateaus in Fig. 6, the I-V
at low ν for a single DC array is qualitatively different
to a sample-averaged I-V.

At a given value of ν, the mean tunneling rate (Γ)
is proportional to the average potential gradient, and is
given by,

Γ =
ν

2
〈 e

CΣ
〉. (11)

Based upon the relative values of the Γ and the typical
maximum fluctuations from Γ, we can categorize the ap-
plied voltage into three regimes. These regimes are: (i)
when the maximum fluctuation are larger then the mean
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FIG. 6: I-V characteristic for a single sample 1D QDA with
disordered CΣ. Unlike UC arrays, at small reduced voltages
an the current value remains constant over a range of ν val-
ues – hence the observed plateau(s). This happens when the
smallest tunneling rate does not change in spite of increasing
ν. When the rate at the slow point does change, however, the
value of the current jumps resulting in the step like features.
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tunneling rate; (ii) when the maximum fluctuations are
of the same value as the average gradient, and (iii) when
the maximum fluctuations are much less then the average
gradient.

In regime (iii) the fluctuations about the mean gra-
dient can be ignored; they no longer influence the cur-
rent value and consequently the current is given by the
Eqn. (7). The average potential profile at any given dot
can be computed using the average potential gradient and
the distance of the dot from the boundary. By subtract-
ing the dot potentials from the averaged potential profile
at each site, we can calculate the fluctuations, and thus
the roughness of the voltage surface. In regime (i) the

roughness of the voltage surface scales as L
1

2 . Assum-
ing Gaussian distribution of the fluctuations, the mean
value of the maximum of N variables from a distribu-
tion with mean µ and standard deviation σ is given by µ
+ σ

√
a log N25. The deviation from the mean tunneling

rate is maximum at the slow point. Given that the slow
point can occur anywhere between any two dots (i.e., 0
and L), the typical value of the maximum fluctuation

scales as µ + σ
√

a log(L
2 ). The increment in voltage ∆ν

should thus be greater than the maximum barrier (fluc-
tuation) in order that the slow point be overcome, i.e.,
an additional electron flows over the slow point which in
turn will result in an increase in current. Therefore the
probability that a change by ∆ν will overcome a slow
point is given by the probability that the typical maxi-
mum fluctuation is less than ∆ν. As ∆ν ∼ L, P(∆ν >
typical maximum) ∼ L

L1/2

√
a log(L)

, which approaches 1

as L gets larger.
If step like features persist in the I-V for single sam-

ples, then given the sample-to-sample fluctuations in the
location of the plateaus, the sample averaged I-V curve
will be more or less flat. As seen in Fig. 7(a), there is
a voltage upto which the averaged current is more or
less static. The value of this voltage decreases with in-
creasing system size – consistent with the arguments that
the same increase in ν is more likely to result in a slow
point being overcome as L gets larger. In spite of the
irregular change in the value of the minimum rate, the
average value of the minimum voltage drop across any
two dots remains VL−VT

L . Hence the average value of

the minimum rate remains as before – VL−VT

eRL , which im-
plies that once the “static current regime” is overcome
the current should scale linearly with voltage. Thus in
spite of the introduction of variable CΣ, current scales
linearly with ν in regimes (i) and (iii), similar to UC ar-
rays. The crossover from linear scaling in regime (i) to
(iii) – corresponds to regime (ii) and is more complicated
to understand analytically.

In Fig. 7(a) and Fig. 7(b) we plot the current and lo-
cal exponent values for the largest systems (L ≥ 500).
As shown in the plot of effective exponents (Fig. 7(a)),
numerically we find β= 0.85 ± 0.02 in the low voltage
regime (0.05 < ν <0.5) and 1.2 ±0.05 in the high voltage
regime (ν > 1.0). Similar exponent values are found for
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FIG. 7: Analogous to Fig. 3, the I-V curves and βlocal for
1D arrays with disordered CΣ . The major difference is that
the value of the effective exponent, even for the largest 1D
arrays, does not appear to plateau at 1.0, but seem to flatten
out at 0.85.

system sizes less than L=500 (not shown).

III. 2D ARRAYS: INSULATING STATE

We saw in the previous section, how for one-
dimensional arrays, charge flowed onto the array from
the emitter lead till it was energetically favorable. In
this section we will attempt to develop an understanding
of the progressive build up of charge in two-dimensional
arrays, as the emitter lead voltage (VL) is increased; the
tunneling of charge is still governed by Eqn. 4. The flow
of charge onto the array can thus be viewed as lowering
the energy. Such relaxation of charges so as to lower the
system energy, is analogous to several different systems
where the system reaches a lower energy via a series of
avalanches5,26.
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The threshold voltage is the minimal emitter lead volt-
age possible such that when electrons tunneling onto the
array from the emitter lead have sufficient potential to
overcome the disorder barriers and reach the collector
lead. Given a disorder configuration it is not trivial to
determine the minimal voltage for 2D arrays. A naive
approach might be to think of the L×W array as W, 1D
arrays of L dots each; trivially compute the “threshold”
voltage for each of the 1D arrays and then find the min-
imum. The computed minimum would still probably be
overestimating the true threshold voltage. Determining
the threshold voltage can be formulated as an optimiza-
tion problem, but motivated by the aim of understanding
the physical buildup of charge in QDA, we take a different
approach. For a given emitter voltage, we add charges
till a meta-stable insulating state is reached; then the
emitter lead voltage is progressively increased, building
up charges until an insulating state no longer exists. The
value of the emitter lead voltage at which electrons first
tunnel onto the collector lead is our computed threshold
voltage.

A. Avalanches

As briefly mentioned earlier that an avalanche at a
given voltage is the flow of charge onto the array un-
til the flow is arrested by disorder. Avalanches in QDA
are qualitatively similar to those found in other systems
with collective elastic transport. Some well studied ex-
amples are vortex flow in disordered superconductors27

and the avalanches when an interface like a CDW moves
in quenched disordered systems28,29. For 2D arrays, the
location where charges tunnel in a given avalanche, helps
develop the notion of connected elastic domains – basins.

We define qi(V
−
L ) as the charge of site i before the

emitter lead voltage is incremented to VL and qi(V
+
L ) as

the charge of site i after the emitter lead voltage has been
incremented to VL. The physical size A of an avalanche
is the number of sites where qi(V

−
L ) 6= qi(V

+
L ), and the

volume is
∑

i qi(V
−
L ) − qi(V

+
L ). If we set n(A, VL) to be

the number of avalanches between size A and A + dA,
at an emitter lead voltage of VL and define N(A) =
∫ VT

0
n(A, V )dV , then N(A) can be thought of as the

number of such avalanches that occur in going from a
VL= 0 to VL = VT .

We explore the distribution of avalanche sizes for
square samples (L×L). The size of an avalanche A can
also be thought of as the “surface area” – which is equal
to the number of dots that electrons tunnel onto during
an avalanche at a given VL. As the size of avalanches
vary over several orders of magnitude – starting with
avalanches of size 1 to system spanning avalanches – we
use logarithmic bin sizes. Logarithmic binning is natu-
ral for exploring power laws and reduces fluctuations in
plots.

Using standard finite size scaling, we conjecture a scal-
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FIG. 8: Scaling collapse for the distribution of avalanche sizes
N(A), for symmetrical systems with uniform CΣ is plotted in
Fig. 8(a). The exponent a, gives the typical size of the largest
avalanches as La ; avalanches of sizes greater than La become
increasingly improbable. Fig. 8(b) shows the collapse of data
for the mean linear size of avalanches with size between A
and A+dA for systems with uniform CΣ. From the scaling
collapse we estimate df to have a value of (= ρ/σ) = 1.5.

ing form for N(A) to be of the type:

N(A) = LbN̂(A/La), (12)

where N̂(x) scales as xc in the limit of x ≪ 1 and N̂(x)
approaches a constant in the limit of x ≈ 1, where L
is the length of the system. The exponents a and b are
determined to be those exponents for which a scaling
plot of N(A)/Lb vs A/La yields a single scaling function

N̂(A/La). The two exponents are not independent and
can be shown to be related by the relation a+b = 3.46 In
addition to the two exponents a and b, a third exponent
c, can be used to make the curve flat in the regime where
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FIG. 9: The data collapse for distribution of avalanche sizes
for symmetrical arrays with non-uniform CΣ is plotted in
Fig. 9(a), whilst the collapse of data for the mean linear size
of avalanches with size between A and A+dA for symmet-
rical systems with non-uniform CΣ is plotted in Fig. 9(b).
From the range of exponents for which the scaling collapse is
acceptable we get the df (= ρ/σ) = 1.5 ± for avalanches.

A < La, which for square systems of length and width L
is related to the other two exponents by b− ac = 2.47 As
there are two constraints for the three scaling exponents,
we get only one independent exponent from the scaling
collapse of the distribution of the sizes of avalanches. As
shown in Fig. 8(a) the collapse of data to a single scaling
function is satisfactory, which indicates that the dimen-
sion of the avalanches is 5

3 . The typical size of the largest

avalanches is given by L
5

3 . To study further the morphol-
ogy of the avalanches, we compute the the mean of the
maximum length of avalanches with sizes between A and
A+dA. We collapse the data as shown in Fig. 8(b) onto
a single curve and determine that exponents σ and ρ,

defined in the scaling function:

l(A) = LσL̂(A/Lρ), (13)

to have values consistent with 2
3and 1 respectively. We

get a collapse to l/Lσ ∼ (A/Lρ)κ for all system sizes L,
thus l ∼ Aκ and the relation constraining the exponents
is therefore σ = ρκ or κ = σ/ρ. We know that the
A ∼ ldf , where df is defined to be the fractal dimension,
from which we get κ = 1/df thus df = ρ/σ. From the
computed values of ρ and σ, df works out to be 1.5. This
is consistent with the conclusions from the distribution
of avalanche sizes.

Finally, we have also investigated the avalanche struc-
ture using the radius of gyration (Rg) of avalanches,
which is defined in the usual way as:

Rg
2 =

∑

(ri − r)2

N
, (14)

and study the scaling of the mean Rg for avalanches of
sizes between A and A + dA. Numerical evidence30 indi-
cates that the scaling of the area with Rg is similar to the
fractal dimension of the avalanches, which implies that
the avalanche morphology is compact, i.e., does not have
any significant holes.

We have investigated avalanche structure using three
ways and the results of all three are consistent with the
hypothesis that typical avalanches are compact with di-
mension of 5

3 . For systems with uniform CΣ, the sequence
of dots at which avalanches originate is periodic in left
lead voltage (with periodicity e

CΣ

). We can thus think

of “basins” of dimension 5
3 evolving as charge flows into

the array, with some basins growing at the expense of
others. In general the basin structure is not isotropic,
as they have a preferred growth direction and the linear
size in the direction transverse to this preferred direc-
tion grows only as l

2

3 where l is the linear extent in the
preferred direction. Thus in a square samples of length
and width L, there are approximately Nb(l) ∼ L/l

2

3 in-
dependent regions of activity, where Nb(l) is defined as
the number of basins at a distance l from the left lead.
Hence to increase the chances of having the large basins
that scale with L, we simulated systems of length L and
width a multiple of L

2

3 (width = Nb L
2

3 ).
Similar to square samples, exponents in the scaling col-

lapse for the distribution of avalanche sizes for systems
of size L×L

2

3 (Fig. 10(a)), are not independent but con-
strained by two relations.

Given that the total number of dots is L
5

3 the sum of
the product N(A)A scales as L

8

3 rather than L3.0; hence
a + b = 8

3 . Also the number of avalanches in the bin [A,

A+dA] scales as L
5

3 , so b − ac = 5
3 in this case.

An important difference in the avalanche structures be-
tween the uniform and disordered CΣ systems is the lack
of periodicity (irregular) in emitter lead voltage and that
the basins no longer evolve by quenching other basins
(they overlap).
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FIG. 10: Scaling collapse for the distribution of avalanche
size for UC arrays of size L× L2/3. The exponent a and c are
the same for symmetrical systems to within errors, while b

differs. Fig. 10(b) plots the data collapse for the mean linear
size of avalanches with sizes between A and A+dA for systems
of size L ×L2/3 with uniform CΣ. Exponents are the same as
those for symmetrical systems.

Avalanches in DC arrays are not periodic in emitter
lead voltage and basins don’t typically evolve by quench-
ing other basins – they tend to overlap. This behavior
is different to UC arrays. By using the three methods
discussed earlier we find that capacitance disorder does
not affect the structure of the avalanches. Fig. 9(a) shows
the scaling collapse for the distribution of avalanche sizes
N(A), for square arrays with nonuniform CΣ. The con-
straining equations in this case are now a+b = 2.8 (as the
sum of the product of N(A)A for all avalanches ∼ L2.8)
and b − ac = 2.0. In spite of the presence of capaci-
tance disorder, the value for the exponent a is the same
to within errors for the value for uniform CΣ. Exponents

characterizing the scaling of mean linear size and mean
Rg with area for DC arrays also agree to within errors
with exponent values from UC arrays. Thus avalanches
remain essentially compact with a dimensionality of 5

3 .

For L×L
2

3 DC arrays there is no change in the values
of the exponent a, though the constraining equations
change to a + b = 2.47 and b − ac = 1.6730.

In this subsection, we have used finite-size analysis and
been able to successfully relate several finite-size expo-
nents via scaling relations. Table I provides a quick sum-
mary of the values and the context in which they are
used. Taken along with the fact that these exponents and
scaling relations help characterize the transition from an
insulating to a conducting state (the conducting state is
yet to be discussed), it is reasonable to view the transition
as a critical transition with associated critical exponents
and behavior.

B. Interface motion

The maximum advance of charge into the system at a
given VL can be used to define an interface. Properties
of the interface can be used to understand other proper-
ties of the system like fluctuations in VT . Some details
are required about the way we define the interface. At
a given VL, there will be some dots onto which electrons
have not tunneled yet, defined relative to the original
stable configuration reached by relaxing an original con-
figuration with 0 < Vi < e/CΣ. We refer to such dots
as zero excess dots. We can define the interface as either
of the following: (i) contour of leftmost sites along each
row which has not had an electron tunnel onto it, or (ii)
the contour of last sites along each row which has had
an electron tunnel onto it. The two although seemingly
similar are different in the sense that the second defi-
nition considers the case where there may be “bubbles”
of zero electron dots enclosed behind the interface. The
difference, however, is not significant as the long wave-
length properties of the interface (e.g., roughness) do not
seem to depend upon which definition is used. As VL

is increased, electrons tunnel onto arrays, via avalanches
and if electrons tunnel onto a zero excess dots, the inter-
face advances. The motion of the interface in response
to a driving force, can be described in the language of an
elastic medium driven through a random potential. We
will argue that some quantitative correspondences exist
in fact. The dynamics of such elastic interfaces through
quenched disorder has been extensively studied in recent
years31, e.g., CDW, flux lines in type II superconductors
etc, fluid flow through a porous medium to name some,
flux front in thin films of type II superconductors32, com-
bustion of paper33,34.

We define the roughness (width) of the interface as the
square root of the mean of the square of the fluctuation
from the mean position. On increasing VL the interface
advances further into the system and gets rougher. As
charge builds up behind the interface, the advance of the
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FIG. 11: Collapse of the roughness of the interface for L ×

L2/3 systems using the scaling form given by Eqn. 15. Here
W is the system width and t is measured by the distance
of the mean location of the interface from the emitter lead.
Fig. 11(a) is for systems with uniform CΣ, where the values
of the exponents used in the collapse are α= 0.5 and z=1.5.
Fig. 11(b) is for systems with non-uniform CΣ and the values
of the exponents used in the collapse are α= 0.5 and z=1.5
as well.

interface is analogous to the growth of a surface due to
deposition of a material. It is well known, that such
surfaces become increasingly rough with time, gradually
reaching a saturation width. For QDA as the advance of
the interface is governed by VL; it plays the role of time,
which upto a constant factor is the same as the mean
position of the interface. Using the well known scaling
form35:

w(L, t) = LαŴ (t/Lz), (15)

we were able to collapse data on the width of the in-
terface with time onto a single scaling curve Fig. 11(a).
We initially used symmetrical L×L systems to study the

properties of the interface. Due to the large values of the
dynamic exponent z (1.5), we were able to study only
small system sizes with interfaces with saturated width.
Consequently in order to study steady state properties of
larger interface lengths, it is prudent to study non-square
systems like L×L

2

3 , thereby permitting a more accurate
determination of the exponents and hence the universal-
ity class the interface growth process belongs to.

From the the collapse in Fig. 11(a), we find values of
the roughness exponent α = 0.5 and dynamic exponent
z = 1.5 – therefore the growth exponent βg = 0.33. This
is consistent with the roughening of the interface being
in the KPZ universality class31, where α= 1

2and z= 3
2 .

The KPZ universality class is consistent with the sym-
metries of the system, viz., rotation is a symmetry on
large scales16, interactions are short range and the speed
of the interface advance lacks large fluctuations. In light
of the assumed lack of spatial correlation of the underly-
ing charge disorder for dot arrays (statistically Galilean
invariant) and the fact that the interface will move for-
ward when the emitter lead voltage is increased by one
unit ( e

CΣ

), a description of the interface advance in terms
of thermal KPZ equation seems valid.

Some avalanches involve electrons hoping onto a zero
excess dot – a new-site. When an avalanche involves
new-sites, the interface is reconfigured; the distribution
of the avalanches that involve new-sites provides infor-
mation on the reconfiguration (advance) of the interface.
The scaling collapse for the distribution of avalanches
that have between s and s+ds new-sites for UC arrays
is shown in Fig. (12(a)). We define N(s) analogous to
N(A), where s is the number of new-sites visited in an

avalanche. For L×L
2

3 samples the sum of the product
N(s)s for all avalanches, scales as the number of dots in

the array (L
5

3 ). Thus the constraint on the exponents µ
and δ in the scaling ansatz:

N(s) = Lδη̂(s/Lµ), (16)

is given by µ + δ = 1.67. Another constraint is de-
termined by the scaling of the number distribution of
avalanches with the number of new-sites for a given bin
([s, s+ds]), with system length as L

2

3 , which results
in only one independent exponent in the scaling ansatz.
Hence δ − µυ = 0.67. We find that the exponent values
from the collapse consistent with these constraints. We
interpret the value of the exponent µ = 0.67 as giving
the typical number of new sites involved in an avalanche
of linear length l as l0.67. We know that the width of
the an avalanche of linear length l, is also l

2

3 , which indi-
cates that the avalanche typically involves one new dot
for each dot along the width. Thus the interface ad-
vances smoothly on the average by 1 dot along the width
of the basin of activity. Fig. 12(b) shows the configura-
tion of the interface at a given VL and an avalanche that
crosses the interface with the portion to the right of the
interface being the new-sites involved in the avalanche.
These new-sites will determine the new configuration of
the interface after the avalanche.
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FIG. 12: Scaling collapse for the distribution of the num-
ber of avalanches involving between s and s+ds new-sites for
uniform CΣ. The exponents are related by µ + δ = 1.67 and
δ − µυ = 0.67. The value of µ = 0.67 indicates that when
the interface moves it typically advances by 1 dot spacing.
Fig. 12(a) shows an avalanche crossing the interface for uni-
form CΣ. Notice that the amount by which the avalanche
overshoots the interface is of the order one.

Further information on the movement of the interface
can be obtained by studying the voltages (VL) at which
an avalanche that involves new-sites occurs, or equiva-
lently when the interface advances. We can define ∆VX

as the difference in VL between two avalanches that man-
age to cross the interface (there may be several avalanches
that do not cross the interface between two interface
crossing avalanches). Based upon the assumption that
the advance within basins should be independent, it can
be shown30 that ∆VX scales as W/l

2

3 .

We’ve seen how the structure of the avalanches is the
same irrespective of the presence or absence of disorder in
the capacitance, even though there are changes of major
significance in the motion of the interface. If however, as
shown in Fig. 13(a) we attempt a scaling collapse for the
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FIG. 13: Scaling collapse for the distribution of the num-
ber of avalanches involving between s and s+ds new-sites for
L ×L2/3 systems with non-uniform CΣ. The exponents are
related by µ + δ = 1.67 and δ − µυ = 0.67. The value of
µ = 1.0 indicates that when a segment of the interface moves
it typically advances by l1/3. Fig. 13(b) shows an avalanche
crossing the interface for non-uniform CΣ systems. Typically
the overshoot of the l2/3 portion of the interface is l1/3.

number of new sites covered in an avalanche the exponent
values are different from the uniform CΣ exponent values.
The exponent µ has a value 1.0 to within errors. This
value can be interpreted as follows: the dimensionality of
avalanches is 5

3 , which means for linear size l the width

is typically l
2

3 . When an interface crossing avalanche
occurs, the average amount by which it overshoots the
interface scales as l

1

3 , hence covering l
2

3 x l
1

3 new sites.

This can be seen in Fig. 13(b), which represents a typ-
ical interface crossing avalanche in a sample with dis-
ordered CΣ, where the avalanche overshoots the inter-
face by a significant amount compared to the uniform
CΣ(where the overshoot was of order one spacing). For
DC arrays avalanches do not occur with any fixed reg-
ularity – either spatial or temporal – so a large number
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of avalanches may occur which do not reconfigure the
interface, followed by an avalanche that rearranges the
interface by a large amount. Compared to the smooth
motion of the interface in arrays with uniform CΣ, the
motion of the interface for DC arrays is rather jerky. It
is important to mention that the motion appears jerky
locally, but at a coarse-grained scale and on average the
velocity of the interface is well defined and smooth till it
reaches the collector lead.

C. Threshold voltages revisited

Similar to one-dimensional systems the VT for two-
dimensional systems scales linearly with the system
length. For two-dimensions however, there is an addi-
tional dependence on the width of the samples, which
can be understood using the concepts of basins and in-
terface advance from earlier subsections. It also helps
explain voltage fluctuations.

With increasing VL the interface advances further
along into the system until finally electrons reach the col-
lector lead at VT . Fig. 14(a) shows how VT normalized by
system length (L) depends upon the width of the system
studied. When Nb(L) > 1, in addition to fluctuations
within a single basin, VT is determined by the basin that
moves the interface to the right lead the earliest. With
increasing Nb(L), the expectation value of the maximum
advance of the interface at a given VL increases, explain-
ing the decreasing value of VT

L . The sample-to-sample
fluctuations in VT can be attributed to the roughness of
the advancing interface. We saw that the roughness ex-
ponent α for the interface was 1

2 . Assuming a value of

z= 3
2 , for L × W samples, where W = L

2

3 the interface

reaches its saturation width given by W
1

2 , which is L
1

3 .
As shown in Table II, fluctuations in VT agree with this
picture. Local values of the threshold fluctuation expo-
nents are plotted in Fig. 15(a) and 15(b) and they are
consistent with the scenario depicted.

A finite-size scaling length can be defined in terms of
the characteristic fluctuations in VT . σ(VT )/VT can be
thought of as defining the scale characterized by L−1/νT ,
where νT is the exponent characterizing the finite-size
effects on the transition and for both uniform and disor-
dered CΣ systems has a value of 3

2 .
Analogous to the 1D systems, we investigated the re-

sponse to changed boundary conditions – measured by
the change in right lead voltage Vr – by measuring differ-
ence in VT , as a method of probing the disorder energy
scale. It is shown30 that 〈∆VT 〉∆VT 6=0 scales as L

1

3 , i.e.,
for 2D when VT changes, it changes on average by a value
given by L

1

3 . We have discussed the mapping between
Eden growth (which is in the KPZ universality class)
and DPRM36. Using the analogy, the maximum point of
advance of the interface in our systems can be mapped
to the ground state of a DPRM. It is known that the free
energy fluctuations of the ground states, both for sample-
to-sample fluctuations and higher order excitations scale
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FIG. 14: The dependence of VT on the number of basins,
Nb(L) for uniform CΣ systems is plotted in Fig. 14(a). The
dependence of VT on the number of basins (Nb(L)) for non-
uniform CΣ systems is plotted in Fig. 14(b).

as L
1

3 . For systems whose ground state (maximum ad-
vance of interface) is unable to overcome the increased
voltage of the right lead (a change in boundary condi-
tions) the next lowest energy state (interface position)
needs to be enough to overcome the changed boundary
condition; the energy of which is typically L

1

3 higher than
the ground state. The L

1

3 behavior can be understood
without invoking the mapping between Eden growth and
DPRM. We saw in the subsection on interfaces, that the
mean voltage increment to move the interface so as to
have a new maximum position scaled as L

1

3 . When
the right boundary condition is changed, either the last
avalanche is able to overcome the increased right lead
voltage (in which case ∆VL = 0) or requires an increase
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FIG. 15: Effective exponents for the fluctuation of threshold
voltage for arrays with uniform capacitance and arrays with
disordered capacitance are plotted in Fig. 15(a) and Fig. 15(b)
respectively. Sample-to-sample fluctuations in VT for nonuni-
form CΣ arrays are similar to the uniform CΣ and scale as
L0.33 to within errors for all values of Nb(L).

in VL, in order to surmount the barrier at the right lead.

In addition to a well defined critical point, a true con-
tinuous phase transition is characterized by the fact that
there aren’t any characteristic length scales in the sys-
tem, i.e., fluctuations take place at all length scales. Ob-
viously this is not true for finite size systems – where
possibly all length scales upto the system size, but no
larger can be present. This system-size dependent cut-

off explains why we see finite-size deviation from the true
(infinite-size) values. There is a systematic dependence
of these deviations with the system sizes studied. By
examining these systematic dependences on the scaling
exponents, we try to extrapolate to the infinite-size value
of the exponents. The fact that a system-size indepen-
dent behavior is possible over a range of system sizes
(e.g., the collapse of several system sizes onto a single

TABLE I: Symbols used and comparison of values for uniform
and non-uniform CΣ samples.

Symbol Used in uniform CΣ non-uniform CΣ

a, b, c N(A) vs A 1.7, 1.3, -0.43 1.7, 1.1, -0.55
ρ, σ, κ l vs A 1.0, 0.63, 0.58 1.0, 0.67, 0.67
α, βg, z Family-Vicsek scaling 0.5, 0.33, 1.5 0.5, 0.33, 1.5
µ, δ, υ N(s) vs s 0.67, 1.0, -0.3 1.0, 0.67, -0.05

θ fluctuations in VT 0.33 0.33
τ mean of nonzero ∆VT 0.0 0.3

TABLE II: Fit values for θ for uniform and non-uniform CΣ

samples, with different number of basins (Nb). For σ(VT ) =
ALθ both A and θ were fit parameters.

Nb(L) uniform CΣ non-uniform CΣ

1 0.33 ± 0.01 0.33 ± 0.01
2 0.34 ± 0.01 0.34 ± 0.01
4 0.35 ± 0.01 0.34 ± 0.01
8 0.36 ± 0.02 0.35 ± 0.01

curve) is the crucial indication that finite-size scaling ap-
proach is successful, which in turn is an indication of a
phase transition. Hence the claim that VT can be viewed
as the critical point of a phase transition.

IV. 2D ARRAYS AT THRESHOLD

VT is defined as the lowest lead voltage at which there
exists at least one dot in the column adjacent to the
emitter lead, onto which electrons can tunnel and subse-
quently find a way onto the collector lead. Having estab-
lished the existence of a threshold voltage in the previ-
ous section, our aim in this section is to understand the
current conduction in the array at exactly the threshold
voltage. A few samples of the first conducting path at
VT are shown in Fig. 16, from which it can be seen that
there are frequent splittings and possible recombination
of paths, leading to an overall complicated geometry and
topology. We investigate the structure and the current
carrying capacity of the ground state paths. We will find
immediate application of our understanding in the next
section, when we investigate the I-V characteristics of 2D
arrays. In the next subsection we present the details of
how the first conducting path at VT is determined. We
then present results on the transverse deviations (mean-
dering) of the path – characterized by a wandering expo-
nent (ζ) – followed by a discussion of the main structural
features of paths. Finally, we discuss the current density
profiles at the end-points and establish a connection be-
tween structure and current density profiles and compare
the ground state path for UC arrays and DC arrays.

A. Computing the ground state path

To describe the ground state path, in addition to de-
termining the location of where electrons flow, we are
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(a) a

(b) b

(c) c

FIG. 16: A few ground state path samples illustrating the
merges and splits along a single path. Some splits are “effec-
tive” in that paths do not recombine, for example, the middle
split in figure a. Some paths have multiple splits but none
go onto persist till the end (figure c). Then there are paths
that split early on and then wrap around – due to periodic
boundary conditions, and merge with the original path (fig-
ure b). This results in a mouth width equal to the system
width. The gray-scale is an encoding for the current density
at a given dot.

interested in determining the relative probability of an
electron tunneling through a given site. We will use rel-
ative probabilities as measured by current densities (j)
[to be defined in Eqn. (17)] and not macroscopic currents
(I). We use a transfer-matrix approach to determine the
relative probability of electrons tunneling through dots.
This involves computing the probability of being in state
i, using known probabilities of being in all possible previ-
ous states j and the transition probability of going from
the states j to state i. Due to the numerical uniqueness
of the random potential at each site, there is in practice
only a single dot onto which electrons can tunnel from
the emitter lead at VT . We assign this dot, which is at the
same potential as the emitter lead, a current density of
1.0, as all current flowing onto the array passes through
this head dot. It can be shown that an electron cannot
tunnel onto any other dot in the left most column other
than the root of the spanning avalanche30 – the head dot.
Thus all other dots in the leftmost column are assigned
a probability of 0.0 (the boundary condition).

As electrons can tunnel onto a dot only from dots that
have a higher electro-static potential. Hence in order
to compute the current density of a dot (probability of

an electron flowing onto a dot), the current density of all
neighboring dots which have a higher potential should be
known. The current density of any dot i (ji ), is computed
as the product of the current densities of dots in the
immediate vicinity of i with the probability of tunneling
from the neighboring dot onto dot i, summed over all
dots:

ji =
∑

Vj>Vi

jjpj−>i, (17)

where jj is the current density of dot j and pj−>i is the
probability of tunneling from a dot j to i. pj−>i is com-
puted as,

pj→i = Γj→i/Γj
out, (18)

where Γj→i/Γj
out is the ratio of the tunneling rate from

dot j onto dot i over the sum of all outgoing rates from
dot j. As the probability of tunneling onto a dot from
a dot at lower potential is zero. Thus starting with the
head dot with a current density of 1.0 and sorting all dots
in decreasing order of potential, the current density is
computed for the dot with next highest potential. As the
current densities and the probabilities of tunneling are
known for all dots from which electrons can tunnel onto
it, the current density for the new dot can be determined
using Eqn.(17).

A special case of ji is jL(i), which is defined as the
current density from the ith dot in the last column onto
the collector lead. It is useful to note that the sum of
the j′s along any column can be greater than 1.0 (e.g.
when there is intra-column hopping), but the sum of all
current densities between adjacent two columns must be
equal to 1.0 (essentially a current continuity equation).
Thus the sum of all jL(i) will be 1.0.

There isn’t a simple connection between the current
densities computed using our approach and the actual
macroscopic currents that can be carried by a path. The
current densities approach taken here, provides informa-
tion on the relative proportion of the current that would
tunnel off the dots onto the collector lead, i.e., be carried
along different paths, but says nothing about the exact
values corresponding to a given path. It is possible for
example, that at threshold, a simple non-splitting path
conduct more current than a highly complex path with
many splittings and recombinations.

B. Ground state path properties

1. Path meandering, widths and energy fluctuations

The number of end-points (nep) is defined as the num-
ber of dots in the last column – adjacent to the collector
lead – which have a nonzero value of ji (strictly speak-
ing, a non-zero value of jL(i)). As shown in Fig. 17 it
becomes exponentially less probable to find paths with
an an increasing number of end-points. It is relatively
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FIG. 17: The probability distribution of the nep taken deter-
mined using approximately 75000 disorder realizations. There
is a good fit to an exponential line, implying that there is an
exponentially decreasing probability of a path having higher
number of end-points. Other system sizes have a similar dis-
tribution.

simple to implement a tracking algorithm that by work-
ing downwards from the head node computes the trajec-
tory of the electron hopping and determines the number
of transverse (inter-row) deviations en-route to the end
nodes. The deviation of end-points is of interest and
for the ith dot is given by yL(i). The current density
weighted transverse deviation can be defined as:

φi = jLyL(i) (19)

and the current density weighted mean transverse devia-
tion as:

Φ =
∑

φi (20)

As there are often more than a single end-point, thus
the weighted mean Φ determines the location of the ef-
fective end-point of the path and thereby the deviation
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FIG. 18: Plot of the value of the effective value of the fluctu-
ation of Φ with L which gives the wandering exponent. The
wandering exponent approaches a value consistent with 2

3
.

of the path from the head node. The value of Φ av-
eraged over many samples will be zero, as there is an
equal probability of the effective end-point being on ei-
ther side. A look at the values of Φ over many disorder
realizations, reveals essentially a Gaussian distribution
about the mean value and the standard deviation of the
distribution grows as Lζ , where ζ is the wandering expo-
nent and is found to have a value of 2

3 . This sets the scale
for typical sample-to-sample fluctuations of the effective
end-point. Fig. 18 plots the local value of the exponents,
which in general is a useful way to get a handle on the
finite-size dependencies of the exponents.48

Computing the transverse deviation associated with
dots helps calculate the width of the “mouth” of the
path in the last column, which is defined as the differ-
ence of the transverse coordinates of the extreme end-
points. It is of interest to understand how the width of
the mouth grows with system size. The wandering expo-
nent provides insight into the typical fluctuations of the
location of current density weighted end-point but does
the width of the mouth grow with the same exponent?
The mean value of mouth-widths for UC arrays is shown
in Fig. 19(a). The growth in the width is consistent with

L
1

3 – definitely different from L
2

3 . This is indicative of
a situation where the location of the effective end-point
fluctuates as L

2

3 but the distribution of the extreme end-
points around the effective end-point gets “smaller” rela-
tive to the effective end-point fluctuations. The increase
in the mean width of the mouth tells us that paths that
require the same potential difference as the ground-state
path to within O(1), are to be found upto L

1

3 around
the effective end-point. The fluctuations in the width of
the mouth is plotted in Fig. 19(b). The fact that the

fluctuation in the width scales as L
1

2 , indicates that the
extremities of the mouth are determined by randomly
juggling end points. We’ve discussed the fluctuations in
the threshold voltage in the section III C; we remind the
reader, that as shown in Fig. 15(a) and Fig. 15(b), the

fluctuations in the threshold voltage scales as L
1

3 .
As a quick consistency check that the wandering ex-

ponent is not dependent on the width, we compared
the wandering exponent for systems with Nb = 4
(L×NbL

2/3) with those of systems with Nb = 1. Al-
though there are significant differences at smaller system
sizes, for larger system sizes the boundary effects become
less significant. For systems with Nb =4, the convergence
to the L2/3 is sooner than for Nb =1, indicative that
boundary effects dominate at small system lengths.

C. Path geometry and topology: Gap sizes, merge
lengths and typical splitting distances

So far our understanding of the structure of the ground
state path is that there are possibly many branchpoints
leading to multiple end-points. The current density
weighted transverse deviation leads to an effective-end-
point, with sample-to-sample fluctuations of L

2

3 and
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FIG. 19: The width of the mouth of the path is defined as the
[max(yL(i))−min(yL(i))]. In Fig. 19(a) the left y-axis gives a
plot of the width as a function of system size; using the right
y-axis gives the local slope of the width with system size.
As can be seen the value of the exponent settles to around
0.37 ±0.03. Fig.19(b) shows the results for the fluctuation
of the width of the mouth of the path. The growth in the

fluctuations of the width are consistent with L
1

2 . The left-
hand y-axis represents the sample-to-sample fluctuations of
the width, whereas the right-hand y-axis gives the value of
the local slope.

mouth-width which scales as L
1

3 . As a consequence of
the many interspersed end-points between the extremal
end-points of the mouth, the mouth has a fine structure
not accessible by studying only the transverse fluctua-
tions of the effective end-point and widths. We would
like to understand the details of fine structure of the
mouth, viz., to understand if any two physically contigu-
ous end-points are part of the same path segment or if
they belong to two different path segments. In general,
if two end-points belong to different segments, typically
how far back did those segments separate? Answers to

these questions, will help understand several important
length scales characterizing paths at threshold. It will
also provide additional metrics to compare the ground-
state paths of systems with different disorders (UC, DC
and RT).

In order to compute the size of gaps separating the
end-points and to compute how frequently and over what
length scales paths split we need to look beyond the
transverse deviations of each point. We need to track the
complete trajectory electrons may take before tunneling
onto the end-points. This involves knowing the location
of all branchpoints along the path , where a branchpoint
maybe defined as a location at which a split occurs, i.e.,
where there is more than one neighboring dot onto which
electrons can tunnel. There are many splits along the
path; the majority of the splits along the path do not
survive and merge a short distance after splitting. In the
thermodynamic limit, not all branchpoints are of inter-
est, but only those branchpoints that go on to produce
end-points – do not merge after splitting. We find the
last possible location that is common to the trajectories
associated with the two end-points of interest. This point
is referred to as the effective branchpoint corresponding
to the two end-points. Having thus determined the lo-
cation of the effective branchpoints for all pairs we can
compute the position at which paths to the end-points
last overlap. Equivalently, this location can be used to
establish a lateral distance from the collector lead that
paths from end-points a transverse distance ∆yL apart
will most likely merge by.

We then compute the mean value of the lateral length
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FIG. 20: Fig. 20(a) is a plot showing the mean lateral length
for all gaps of size ∆. The mean lateral length of a gap of size
∆, can be thought of as the typical distance at which the path
to the head-node from two end-points a distance ∆ apart will
have merged. The fit indicates that the lateral length scales
as 3/2 of the gap size. The plot also shows a comparison of
the mean lateral lengths for the maximum and minimum gaps
for an effective branchpoint.
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of gaps of size ∆. Given that the wandering exponent has
a value of 2

3 , one would expect that the paths to two end-
points separated by ∆yL would be typically joined upto

a distance ∆yL
1/ζ from the collector leads. This is anal-

ogous to the typical separation of the optimal paths to

two ends of a DPRM that are ∆yL apart, viz., ∆yL
1/ζ).

As shown in Fig. 20(a) our findings are in good agree-
ment with this expectation; the mean lateral length for

all the n(n−1)
2 gaps for the n end-points is used in the fit.

The fact that the path structure of QDA is similar to the
scale-invariant tree structure of DPRM, is further indi-
cation that ground state paths of QDA are in the same
universality class of DPRM. The significance of this con-
clusion will be explored later. Also plotted are the mean
lateral lengths of the maximal and minimal sized gaps of
an effective branchpoint, which scale like 5

3 and 4
3 respec-

tively with the transverse size of the gaps.

The gap between two end-points is defined as the num-
ber of the intermediate dots separating them. Thus
for two physically adjacent end-points (irrespective of
whether they belong to the same path segment or not),
the gap is defined to be of zero size. We computed the ef-
fective branchpoints for all pairs of end-points (there are
n(n−1)

2 pairs for n end-points) and computed the lateral
and transverse sizes of the gaps. The results of the prob-
ability distribution for a fixed system size are shown in
Fig. 21(a) and Fig. 21(b). The probability distributions
represent the simple fact that large gaps resulting from
earlier permanent splittings of the path at the threshold
become less probable. As the path at threshold and the
end-points have become reachable within the last O(1)
increase in potential, all path segments at threshold must
be equal to each other to within voltage of O(1). Con-
sequently they will overlap for the most part. We have
seen that the sample to sample fluctuation in the thresh-
old voltages scales as L

1

3 which should set the scale for the
typical difference between non-overlapping paths, thus at

threshold we expect typically O(1)

L
1

3

fraction of paths seg-

ments to not overlap. Consequently if for a given system
size, we were to plot the mean of all lateral sizes of the
gaps as a fraction of the system length, we’d expect to
see a L− 1

3 dependence.

By studying the distribution of the location of the ef-
fective branchpoints, and found that it became increas-
ingly improbable that they would be located closer to the
emitter lead30. It is also useful to compute the number of
effective branchpoints (depth) encountered on a path to
an end-point and how the depth varies for the different
end-points in a given sample. This tells us if the paths to
the end-points are typically similar, as well as permitting
us to determine a correlation between physical proximity
of end-points and difference in depths. Thus we deter-
mine the average number of end-points for a given mean
depth of end-points. If the tree structure was perfectly
random the number of end-points would grow like the
square root of the depth. On the other hand for an essen-
tially unbalanced trees (where all the splittings take place
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FIG. 21: Fits to the probability distributions of the gap sizes
(Fig. 21(a)) and the lateral length of the gaps (Fig. 21(b)) for
a single system size. Although not shown, there is not a sys-
tem size dependence at which probability decreases (though
there is a system size dependent cut-off). Fits indicate the
probability of occurrence of a gap of size ∆ decreases as ∆−1.
A similar dependence is observed for l, which is consistent
with expected probability distribution for l computed using a
variable transformation from ∆ to l (where ∆ ∼ l2/3). Given
the distribution of l, the chance that paths that split, will sur-
vive as independent paths all the way to the end gets smaller
the earlier they split.

on the path to one particular end-point), the number of
end-points, nep grows linearly with the mean depth. For
an essentially balanced tree each path splits essentially
with equal probability in which case the number of end-
points grows as some number to the power of the mean
depth (for a perfectly balanced tree this would be the
number would be 2). As shown in Fig. 22, we find that
the mean depth grows logarithmically with the number of
end-points, characteristic of an essentially balanced tree.

Finally we’d like to determine if the trees (representing
the ground-state paths) are spatially homogenous and if
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FIG. 22: In Fig. 22 the mean value of the dcg of the end-
points is plotted as a function of nep. As the number of end-
points increases the mean depth of the end-points increases
logarithmically. This is indicative of an essentially balanced
tree. For a perfectly balanced tree the number of end-points
increases exponentially with the depth, whilst for an hierar-
chically split tree (in the limit of a perfectly unbalanced tree)
the mean value of the depth increases linearly with the num-
ber of end-points.
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FIG. 23: ∆yL is the transverse separation of two end-points
on the path and ∆dcg is the difference in the dcg between the
nodes. Given the logarithmic increase in the value of ∆dcg

with transverse separation, the paths to the nodes typically
have a net difference of one additional branchpoint with every
scale of two increase in the separation between nodes.

the path segments from the different end-points to the
head node, are essentially similar in the number of effec-
tive branchpoints encountered. To do so, we investigate
the difference in the depth (on the path to the end-point),
represented as ∆dcg, of end-points separated by a trans-
verse distance ∆yL. As shown in Fig. 23, the difference
in depths increases logarithmically with transverse sepa-
ration of end-points. Given the logarithmic dependence
of ∆dcg on transverse separation of end-points, the paths

to the nodes typically have a net difference of one addi-
tional branchpoint with every scale of two increase in the
separation between nodes.

It is fair to assume that path segments that are not im-
mediate descendents of the same parent are essentially in-
dependent; every pair of end-points with a ∆dcg > 1 can
be considered independent and thus the plot in Fig. 23
provides a measure of the number of independent paths
segments (channels) that reach the collector lead. This
could possibly be experimentally verified by studying the
spectrum of the discrete current at the collector lead. Us-
ing this definition of ’independent’ paths, we find that
the number of independent channels increases logarith-
mically in the transverse direction upto the width of the
mouth.

D. Current densities

We have found that the structure and the topology
of the first conducting path to have several interesting
features and characteristic length scales. An important
question is what is the profile of the current densities
at the end-points? Also, what does the fluctuations of
the current densities within the mouth tell us about the
overall structure of the paths?

To address what the current density values for a pair
of end-points tell us, we take j> and j< as the values of
the larger and smaller current density (for the two end-
points in consideration) respectively, and as a measure of
the difference in the number of splittings encountered for
two end-points define ∆ns as:

∆ns = log(
j>

j<
) (21)

In Fig. 24, we plot the value of ∆ns as the transverse
separation between end-points increases. The best fit to
the largest system size considered (L=3375, W=225) is
consistent with a logarithmic dependence over the range
1 to about 20. From the logarithmic increase in ∆ns with
transverse distance (∆yL), it follows that j> = ∆yLj<,
i.e., with increasing distance between the two points con-
sidered, the larger current density (j>) tends to get larger
relative to the smaller (j<) – increasing linearly in ∆yL.
We know from insight gained from the structure of the
paths, that as the transverse distance separating two end-
points increases, the paths taken to the two end-points
separate earlier. If the paths to the end-points after sep-
aration typically undergo the same number of current
splittings, then on average there would not be any varia-
tion in ∆ns with distance; but given the slow but definite
distance dependence, it is consistent to conclude that one
path undergoes more current splits than the other, and
that for end-points separated by a greater transverse dis-
tance, the correlation in current densities will be less than
for those end-points which have greater overlap in their
paths.
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FIG. 24: ∆ns is a measure of the difference in the number
of splits in the paths traversed to get to two end-points. In
Fig. 24(a) the dependence of the mean value of ∆ns on the
separation ∆yL is plotted. As can be seen initially there is a
logarithmic dependence of ∆ns on ∆yL (the fit shown here is
for the largest system size) before gradually crossing over to
a ∆yL independent value. Data for widely differing system
sizes (from L=343 to L=3375). To within errors, the plateau
value appears to be independent of the system size.

It is useful to point out the similarity between the log-
arithmic dependence of ∆ns on ∆yL as in Fig. 24(a) and
the logarithmic dependence between the dcg on ∆yL as
shown Fig. 23. In general, given the similarity in the
properties of the current densities at the end-points and
the structure of the path, it appears to be the case that
the effective branchpoints not only determine the struc-
ture of the paths but also play a role in determining the
current profiles of the end-points.

E. QDAs with capacitance disorder

In this subsection, we study the properties of the first
path for DC arrays and begin by investigating the trans-
verse deviations of the path and the structure of the
mouth for ground-state paths. As shown in Fig. 25(a),
the wandering exponent gradually approaches the value
of ζ = 2

3 for larger systems, which is similar to UC ar-
rays. In Fig. 25(b), the relationship between dcg and nep

is shown to be logarithmic (recall that the probability of
occurrence decreases exponentially as nep increases).

In Figs. 26 we plot the distribution of the gaps and the
mean lateral distance of splitting for gaps of size ∆. Both
the distribution of the gaps sizes (and thereby lateral size
of the gaps) and the mean lateral distance dependence on
gap sizes are similar to UC arrays.

In addition to the structure of the path, current flow

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 10  100  1000

d 
ln

[σ
(Φ

)]
 / 

d 
ln

[ 
L

]

L

Effective Exponent [ζ]

(a)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 1  10  100

D
ep

th
 [

d c
g]

Number of end-points [nep]

DC
y ~log(x)

(b)

FIG. 25: The values of the local slopes for the wandering ex-
ponent computed for arrays with disordered capacitance are
plotted in Fig. 25(a). From Fig. 25(b) dcg increases logarith-
mically with nep. Both are essentially indistinguishable from
UC arrays.

properties are also indistinguishable to UC systems as
shown by the sample averaged fluctuations of the current-
density weighted transverse locations30. From the data
as presented in this section, ground state paths are effec-
tively indistinguishable from the UC. It is highly unlikely
that any further investigations will indicate any signifi-
cant differences between the ground path structures for
the UC and DC systems.

DPRM is controlled by a zero fixed point thus the
ground state (lowest energy) strongly determines the
properties of the system. Given the fact that the ground-
state conducting path is in the same universality class as
the DPRM, one would expect excited conducting paths –
those with energy higher than the ground state at higher
voltages as well as ground-states at non-zero tempera-
tures – to be strongly influenced by the structure and
energetics of the first conducting path. Thus the connec-
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FIG. 26: Comparing the gap distribution and spacing for UC
and DC in Fig. 26(a) and Fig. 26(b), indicates that they are
essentially indistinguishable.

tion between QDA and DPRM in addition to providing
an idea of the structure of the ground state path at zero
temperature, indicates that an extension of the approach
used here to study the ground state path might possibly
be used in determining sensitivity to boundary conditions
and temperature changes of the ground state paths. The
latter is of significant practical importance. Given the
putative similarity between QDA and DPRM we can use
results obtained in the DPRM case to predict a temper-
ature sensitivity: namely that the ground state configu-
ration is sensitive to temperature changes and will most
likely rearrange. As to whether this is sufficient to change
any scaling properties will require explicit numerical and
analytic work.

V. CONDUCTION IN 2D ARRAYS

In the previous sections, we saw how the threshold
voltage can be viewed as the critical point of a continu-
ous phase transition and explored the associated critical
phenomenon at and below the critical point. This sets the
stage to address the next, and arguably most important
question in our investigation of disordered QDA – the
nature of the critical phenomenon for voltages above the

critical point. Based based on the strength of the driving
force (V ) relative to the strength of internal interactions
and disorder strength, roughly three distinct regimes can
be identified. The first regime can be thought of as when
the scales of disorder, interaction and driving force are
all similar. In this regime the role of disorder is generally
crucial and the interactions between the many degrees-
of-freedom result in strong deviations from a mean-field
behavior. This regime typically occurs when V is very
close to the threshold voltage. A second regime lies at
the other end of the spectrum, where the driving force
is extremely strong compared to the strength of disorder
and interactions between the degrees of freedom; in this
regime the disorder and interactions become irrelevant
and the system is driven into a linear response mode. Our
primary focus will be on the investigation of the critical
behavior and dynamical response close to the transition
– corresponding to the first regime. We will study the
dynamic response by computing the I-V characteristics
for a range of different systems sizes. Details of theory
and implementation of our numerical simulations can be
found in Ref. [30].

The relative strength of the interactions and disorder
in turn has been used to broadly classify two widely dif-
fering types of collective transport: weak disorder rela-
tive to the strength of interactions most likely leads to
an elastic structure without breaking up; an example of
which are CDW. In general when the disorder is strong
relative to the interactions, the elastic structure breaks
and transport is far more inhomogeneous and plastic like.
Examples of transport in such a plastic regime include,
the flow of a non-wetting fluid in porous medium37, the
transport of strongly pinned two-dimensional Abrikosov
flux array38, driven collective transport of neutral carri-
ers in randomly varying traps26,39 and the flow of a fluid
with no elastic interactions flowing down a rough inclined
plane40 (the dirty windshield problem). We will find that
conduction in the low ν regime is plastic-like, i.e., along
well defined narrow channels.

Recall that below VT , the concept of an advancing
elastic interface – defined as the contour of maximum
advance of charge along a given row was useful. As a
consequence of our definition, this elastic interface is no
longer well defined at driving voltages above threshold,
and thus not the interface that tears and results in plas-
tic flow. This leads to an interesting situation where
as a consequence of asymmetry around threshold, the
variables and description of the system on the opposite
sides of the critical point are different; consequently the
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same exponents are not valid both above and below the
transition point. This is unlike many continuous phase
transitions, especially equilibrium (e.g., two-dimensional
Ising magnets in the absence of an external field) but even
non-equilibrium phase transitions (e.g., CDW) where the
same exponents with possibly the same values character-
ize the critical regimes on either side of the critical point.

It is instructive to review the MW scaling hypothesis
originally presented in Ref. [16] to understand current
flow in a two-dimensional arrays before discussing the nu-
merical results. Similar to one-dimensional arrays, any
current-carrying channel at a given emitter lead voltage
VL, there will be VL−VT

( e
CΣ

) extra charges on average. The

locations of these extra charges can be viewed as charge
steps relative to the threshold configuration. Where ex-
actly these extra charges are located on the channel de-
pends on the underlying disorder; typically charge down-
steps are where the tunneling rates are sufficiently smaller
than the mean tunneling rates. The location of these
steps give the most likely locations of a split in the path;
and thus can be used to define a correlation length ξ‖,

where ξ‖ = eL
(VL−VT )CΣ

, where L is the linear dimension

between the emitter and collector leads. We have seen
that the transverse deviation (ξ⊥) of a path segment of

length ξ‖ is given by ξ
2/3
‖ . Also VT ∼ L, thus ξ‖ ∼ ν−1

and therefore ξ⊥ ∼ v−2/3. ξ⊥ sets the scale for separation
between channels before splitting. The number of chan-
nels (Nch) at the collector lead will thus be given by W

ξ⊥
,

where W is the width of the array. Under the assump-
tion that each channel reaching the collector acts as an
independent one-dimensional current-carrying chain, the
current in a channel is Ich ∼ ν. Thus the total current
carried by the array will be given as:

I ∼ Nch × Ich ∼ ν5/3 (22)

It is important to discuss some of the assumptions that
the MW hypothesis depends critically on.

Firstly, that each channel behaves like a one-
dimensional array and the current in the 1D array grows
linearly with ν. Secondly, that number of channels grows
like ∼ ν2/3, which in turn is dependent upon two assump-
tions. The first is that the transverse deviations grows
like l2/3, where l is a linear dimension of the path. We
have extensively verified this to be true at VT ; it is fair
to assume that it is above VT too. The second assump-
tion is that the most likely effective splits – splits that do
not result in a recombination – take place at the charge
down-steps. This has been harder to verify rigorously; at
best we find for arrays at VT that the sample-averaged
probability of effective splits decreased as ∼ 1

l . We find
that the fluctuations in the current carrying capacity of
one-dimensional arrays decreases as ∼ ν−1/2

It was originally predicted16 that to observe the true
exponent arrays larger than 400×400 would be required.
We will go onto show that the linear dimension required
before the “true exponent” might be observed is probably
an order of magnitude larger than initially estimated. A

significant portion of the remainder of this section will
be devoted in support of this statement.

A. Simulation results, analysis and discussion

From our analysis of the avalanches and path mean-
dering, we developed an understanding that on average,
a L×L

2

3 sized system contains one independent basin and
thus one channel. Before we can understand the current
carrying capacity of several interacting channels, it is im-
portant to determine how the current carrying properties
of a single channel changes with driving voltage. Conse-
quently, we will most often investigate the I-V curves of
asymmetrical systems of length L and width L

2

3 . Due to
finite size effects and computational cost, this also hap-
pens to be a practical approach.

We are investigating the scaling properties of a hy-
pothesized power law between I and ν, thus rather than
perform a coarse grained fit to the entire I-V and gener-
ate a single value for the scaling exponent, we compute
“local” values of the exponent β as a function of ν. We
find this a more useful and meaningful representation for
determining how the scaling relation between the I and
ν changes. The procedure although helpful, is not suffi-
ciently sophisticated to be a complete replacement for a
rigorous fitting, as error bounds with confidence intervals
are not easily determinable from this approach.

The local exponents for UC arrays are plotted in
Fig. 27(b), from which there is a clear dependence on
system size for the local exponents. There isn’t a range
of ν, however small, where the local exponent curves for
all the different system sizes lie on a single curve, as would
be expected for a valid scaling regime. Thus it is difficult
to claim that there is a unique single value of the local
exponent for all sizes, even over the smallest regime of ν.
At lower values of ν the statistical noise starts to dom-
inate and the true value of the local exponent becomes
unclear.

The aim of rigorously verifying the MW scaling hy-
pothesis numerically does not appear to be easily at-
tainable with available computational resources at the
present moment; thus it remains open, as to whether the
MW scaling hypothesis is valid. If we assume that MW
is the correct hypothesis, we can at best determine the
constraints on system sizes and values of ν to establish a
regime for the validity of the hypothesis. This is some-
what analogous to determining an upper bound of the
reduced variable upto which critical behavior can be ob-
served:

It is known that for CDW one has to be within
f ≤ 0.0141 (where f = (F−Fc)

Fc
) of the critical point in

order to observe associated critical phenomenon. Simi-
larly for high-Tc superconductors (copper oxide) in three-
dimensions, by some estimates42 the critical region exists

for t = 10−4 where t = (T−Tc)
Tc

The quoted estimates are
from analytical calculations and supported by numeri-
cal data. With the caveat that it is much harder to
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FIG. 27: I-V curves for 2D arrays with offset charge disor-
der for a range of system sizes. The βlocal for the I-V curves
in Fig. 27(a) is plotted in Fig. 27(b). For a true power law
scaling, the value of βlocal for different system sizes should
overlap. As can be seen this does not happen for values less
than ν = 0.1. Following the MW scaling hypothesis, we ex-
pect a plateau at values less than ν = 0.1. The inability to
see clearly a definitive plateau is primarily due to large finite
size effects.

estimate correctly using numerical data alone, we haz-
ard an estimate of the critical region for QDA solely on
numerical data. From the plot of the local slopes for
the largest two-dimensional QDA simulated (L = 2744
and W = 196 in Fig. 27(b)) and the plot of βlocal for
largest one-dimensional systems (L= 2000) a similar up-
per bound would be somewhere between ν = 0.01 − 0.1
for L×L

2

3 arrays. As can be seen from Fig. 27(b), there
are strong indications of a plateau in βlocal, albeit over a
small region – for values of ν around 0.1 – and only for the
largest arrays. In addition, from the very brief flattening
out of βlocal for 1000× 100 arrays around ν = 0.1 before

dipping, it is conceivable that for values of ν < 0.1, the
“true exponent” value lie somewhere in between 1.5-2.0;
this is consistent with the hypothesized value of βlocal

= 5/3. If at all, this will be the critical region and the
likely value of the critical exponent.

It is clear that simulations of even larger system sizes
will be required to observe a plateau for at least a decade
in ν – which is the really the minimum range over which
a power law should be observed before definitive claims
of scaling are valid. As mentioned simulations of systems
large than 2744× 196 are currently computationally not
feasible.

For values of ν > 0.1 the values of βlocal are influenced
by a crossover to a peak value of approximately 2.0, be-
fore being driven into the linear regime. This bump in
the values of the βlocal corresponds to a regime outside of
the putative MW regime, when new splits in the current
carrying channels are taking place at all length scales and
thus there are rapidly increasing new outlets giving rise to
the value of 2.0 for the βlocal. New channels open, but are
not all independent; for L×L

2

3 arrays these newly opened
channels will typically merge with the ground state path.
The effective value of βlocal at 2.0 appears to be a coin-
cidence, a malicious one for several experiments seem to
encounter this value too. The effective exponent value at
a given ν is sensitive to the ratio of the length to widths,
albeit in a complex fashion.

As a consequence of finite-sizes, a crossover region over
which the effective exponent is different from the “true
exponent” arises. The crossover region gets larger for
smaller system sizes. Somewhat analogous to the finite-
size scaling exponent νT characterizing fluctuations in the
threshold voltage, we attempt to define a finite-size ex-
ponent νl, which helps characterize this crossover region
over which values of the βlocal for arrays L× L

2

3 deviate
from the true exponent. From the plot in Fig. 28(a) we
find that the best estimate is given by νl = 1.5. Although
the quality of the collapse is by no means satisfactory, a
couple of trends are noticeable: there appears to be a
a region over which the βlocal appears to lie on a sin-
gle curve (roughly over νL1/νl values from 1 to 10) and
one notices that larger systems appear to stay on the
collapsed curve upto smaller values of νL1/νl . It is in-
teresting to note that it appears that νl is similar to νT ,
which if true would imply the existence of single finite-
size length scale. Also, for small systems at large ν, there
are strong signs from the values of βlocal that the transi-
tion towards linear behavior has begun.

There are at least a couple of factors possibly prevent-
ing the observance of a true scaling region. Firstly, there
are very strong finite size effects. Systems of a sufficient
size are required before the putative scaling behavior can
be discerned. For example, 1D channel sizes need to be
long before the linear dependence of I on ν can be ob-
served. We estimate from our analysis in Sec(II)that they
should be at least longer than 1000 dots. So although
using brute force computational power we have reduced
significantly the statistical noise for smaller systems (e.g.,
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FIG. 28: The collapse of the local slopes for uniform capac-
itance systems is plotted in Fig. 28(a). Collapse of the local
slopes for symmetric systems with uniform gate capacitance
is plotted in Fig. 28(b). Note that the value of νT that gives
good data collapse is different from the value of νT that gives
similar collapse for systems of size L x L2/3.

343 × 49, 216 × 36) , these systems sizes are insufficient
to actually observe the putative scaling and we observe
an effective exponent not in agreement with the theoret-
ically expected scaling values. Secondly, statistical noise
needs to be reduced significantly further for larger sys-
tems. The reduction of statistical noise for large system
sizes, especially at lower ν, is strongly dependent on the
cost of determining correctly the value of the current. We
will elaborate on this further.

Additional complications arise from the fact that there
are large fluctuations and large timescales associated
with channel formation. It is the complexity associated
with both determining correctly the channel structure as
well as the converged current value that makes the exact

and proper simulation of electron flow in arrays such a
difficult task. The two issues are in someways aspects
of the same problem – the timescales required to form
a steady state current pattern are long and broadly dis-
tributed between samples. This phenomenon is common
to several other dynamical systems involving collective
transport and disorder26,38. The timescale required for
current patterns to reach a steady state appears to be
different from the timescale required for the current val-
ues to reach steady state. For a particular sample con-
sidered, the difference in current after the last channel
formed was only 2%, but while investigating systems of
the same size and at similar ν’s (to within a factor of 2),
we noticed that when channels formed, there were con-
comitant changes in the current by more than 20%. This
wide variation is part of the problem – for it is difficult
to estimate how much, a well formed channel will con-
tribute to the overall current. Any adaptive algorithm
based upon channel formation and activity isn’t easy. As
L gets larger the problem gets more acute. A somewhat
similar problem, is the long time scale required to form
a channel, even if there is just a single channel involved
in conduction.

As a consequence of the above features, it can be diffi-
cult to determine the current value correctly. At best, we
can strive to minimize the probability of getting an in-
correct current value. As with other simulation schemas,
it soon becomes a problem of optimizing a finite amount
of resources – the reduction of statistical noise has to be
traded off with systematic errors. Naively one would ex-
pect that the channels that conduct most of the current
would form early on, and thus with simulations of suffi-

cient duration the major current carrying channels will
have reached a steady-state, both in terms of current car-
ried and formation. This is not necessarily the case and
even if it were, given the broad range of times for this to
happen between samples of a given size, it would require
setting all simulation runs to be sufficiently long to ac-
commodate the longest time to steady-state. In addition
to being difficult to estimate a priori, it would be com-
putationally no more efficient than using an algorithm
that determines dynamically whether the current chan-
nels have reached a steady-state.

After accounting for initial transient effects, we set a
bin size to be 10000 and compute the current in the first
two bins, based upon which we use a convergence crite-
ria (to be described later) to determine if the current has
reached a steady state. If the current hasn’t converged,
the bin-sizes are doubled, i.e., the number of electrons
that we wait for to tunnel off are doubled, after which
similar checks to determine the steady state is done on
the next two bins. This process disregards the history
and values of previous bins. One of the reasons this is
done, is because it can take very long for the steady-state
distribution to be free of initial transients and biases. It
is difficult to use two successive bins from the same initial

configuration for convergence to determine in a definitive
way whether we have reached a steady state. Our ap-
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proach to correctly determining steady-state current, is
to use two different initial conditions and to simulate un-
til they each reach values that: (i) individually converge,
and (ii) converge with respect to each other. (This is
somewhat analogous to the situation for simulations of
glassy systems where at least two different starting con-
figurations are adopted as a measure to check against
getting stuck in a local minima while exploring state
space). We refer to the two starting states as the “hot”
and “cold” configurations respectively. The classification
of hot and cold states reflects the fact that the cold initial
configuration has been prepared by the addition of elec-
trons so as to have a smooth spatial gradient of electron
potential from the emitter lead to the collector lead for
the given value of ν, while the hot initial configuration
has a smooth spatial gradient of electron potential but
corresponding some value greater ν′ than the required
value of ν.

The rate at which the local values of current change
can be very different for hot and cold states; it is also
typically very different for different samples. It is possi-
ble that a simple measure of convergence like setting an
acceptable upper limit on the percent difference between
the values of local current in two bins before considering
the current to have converged, mistake the slow change
to be an incorrect convergence. Any measure of conver-
gence whether hybrid or for a single state should take into
account the fluctuations in the value of the local current.
Our method for determining convergence can be summa-
rized as follows: After reaching threshold, we initialize
two different states – hot and cold. We start by simulat-
ing the hot configuration until it converges after which
we switch to the cold configuration. We check if hot and
cold states satisfy the convergence criteria so as to distin-
guish it from the convergence test of two successive bins
from the same starting convergence (single convergence).
Every time the cold configuration is checked for single
convergence. If the cold configuration is singly converged,
but the hybrid convergence criteria isn’t satisfied then we
switch to the previously saved hot configuration. In gen-
eral, we check for hybrid convergence every time a single
convergence check is performed and toggle between hot
and cold states every time either one of them satisfies sin-
gle convergence but the test for hybrid convergence isn’t
satisfied. This is an attempt to keep the dynamical evo-
lution of the hot and cold simulations somewhat in phase.
By ensuring that the individual configurations have sep-
arately converged – once the test of hybrid convergence is
passed, it is fair to assume that we have determined the
steady-state current value and pattern. For the same net
computational resource, the hybrid convergence method
provides higher quality data30.

Related to the ongoing analysis of statistical versus
systematic errors, we present some final remarks about
simulations of larger system versus more disorder aver-
aging: just because the ability to simulate larger systems
may exist, does not make it necessarily an efficient use
of computational resources. Bigger may not always be

better – for it maybe possible to get more accurate re-
sults by simulating larger number of samples (disorder
realizations) of smaller system sizes than smaller number
of samples of larger system sizes.

A system is said to be self-averaging43 for a variable A,
if the error in n statistically independent measurements
of A (∆A) tends to go to zero as L → ∞, i.e.,

∆A(n, L) =

√

(< A2 > −< A >2)/n, n ≫ 1 (23)

If it goes to an L-independent value the system lacks self-
averaging. We computed ∆VT (n, L) for n = 10000 sam-
ples and we find that one-dimensional arrays are strongly

self-averaging, i.e., ∆VT (n, L) ∼ (nLd)
−1/2

, where d = 1.
Two-dimensional arrays are weakly self-averaging: in this
case ∆VT (n, L) ∼ (nL−2/3). Generally if a system is
self-averaging than simulations of larger system sizes is
not counter-productive. Recapitulate that from plots of
βlocal in one-dimensions, we saw that linear chains of
lengths greater than a 1000 are required to observe lin-
ear scaling; this in turn in a way sets a lower bound on
the sizes of two-dimensional arrays.

B. Disordered capacitance

We plot the I-V curves and the βlocal for DC arrays
in Fig. 29(a). As can be seen in Fig. 29(b) there does
not exist a regime where a definite single value of the
exponent describes the scaling of I with ν for all system
sizes. Unlike UC systems, we have not simulated arrays
of size 2744 × 196 but only upto 1000×100 – which goes
to substantiate the dependence of the putative scaling
exponent on system sizes.

VI. OTHER RESULTS

We briefly discuss results for for one-dimensional ar-
rays with tunneling disorder. Along with the understand-
ing of paths at threshold from section IV, we can use it
to infer some basic features of the ground-state path of
RD arrays, even though we have not explicitly simulated
2D systems with tunneling disorder. The βlocal for 1D
arrays with tunneling disorder is shown in Fig. 30. The
βlocal are qualitatively and even quantitatively similar
to 1D arrays without tunneling disorder. We note that
the value of βlocal approaches 1 at smaller ν for larger
system sizes. The system sizes and values of ν at which
they approach 1 are essentially similar to 1D arrays with-
out tunneling disorder. So although the slow points now
are a consequence of a combination of tunneling resis-
tance fluctuations and local minimums in the potential
gradient (rate differences), the basic mechanism as out-
lined earlier for 1D arrays of overcoming slow points with
increasing voltage remains valid and thus the linear de-
pendence on increasing ν. This combined with results
of the transverse deviation of paths at threshold, where
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FIG. 29: I-V curves for systems with disordered capacitance
are plotted in Fig. 29(a). Local slopes of the I-V curves are
plotted in Fig. 29(b).

we found that ζ scales as L
2

3 , irrespective of the type of
disorder, indicates that a priori there is no reason to ex-
pect that splittings will occur any differently (pre-factors
may change) and thus the probability is very small that
I-V scaling on introducing tunneling disorder will be any
different in the thermodynamic limit.

Similar to the comparisons of ζ between DC and UC
arrays, we compute the wandering exponent for RD ar-
rays. We find that the value of the wandering exponent
ζ, as shown in Fig. 31(a), approaches the value of 2

3 as the
size of systems simulated gets larger. Also, as shown in
Fig. 31(b), the structural properties of the ground-state
path as measured by the relationship between the depth
and the number of end-points is similar to that of UC.
The probability distribution of gaps and the mean lat-
eral length of separation for gaps of size ∆ are plotted in
Fig. 32(a) and Fig. 32(b) respectively. Differences with
UC if any are not significant. From the comparisons be-
tween UC and RD arrays as well as UC and DC arrays,
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FIG. 30: The βlocal for 1D arrays with offset charge disorder
and tunneling resistance disorder. The effective exponents are
quantitatively similar to 1D arrays without tunneling disor-
der. For larger system sizes the value of βlocal approaches 1
at smaller ν. Although the slow points are a consequence of
a combination of tunneling resistance fluctuations and small
voltage differences, the basic mechanism of overcoming slow
points with increasing voltage remains and thus the linear
dependence on increasing ν.

it can be confidently said that the main features of the
ground-state path – meandering, structure and geometry
– are invariant to the type of underlying disorder.

There have been suggestions based on experiments
Ref. [11] that the presence of the tunneling disorder could
lead to greater transverse fluctuations because of the in-
troduction of additional possible bottlenecks arising due
to the large fluctuations in the tunneling resistances.
Based upon numerical simulations, we do not notice any
changes from the properties of UC arrays in the trans-
verse meandering or the structure of the paths. To vali-
date further the claim we carried out the following numer-
ical experiment: we first computed the path in a few UC
arrays. Keeping everything else the same, we introduced
disorder in the tunneling resistances in the otherwise sim-
ilar arrays and computed the paths. For the four different
arrays we experimented with, we did not find any signif-
icant changes in the structure of path (although actual
values of the current densities will be different). Fig. 33
shows the results for one of them. Although not conclu-
sive, this is indicative that resistance disorder at most
changes the current density distribution for a given sam-
ple and that change is indistinguishable when averaged
over many samples. It is important to mention that the
ground state paths in Fig. 33 and similar experiments,
were not computed using the transfer-matrix approach,
but was dynamically determined at ν = 0.0. It is possi-
ble, however, that due to greater dynamical freedom in
selecting current flow paths at higher values of ν, there
still be differences in the properties of current carrying
paths.
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FIG. 31: Fig. 31(a) plots the dependence of the standard de-
viation of Φ with L for arrays with both offset charge disorder
and random tunneling resistances is plotted. Note that the in
spite of the introduction of resistance disorder the scaling ex-
ponent of the transverse meanderings is not different from the
meandering of the first path for UC arrays. Fig. 31(b) shows
a comparison of the relationship between nep and dcg for UC
and RD arrays. A logarithmic dependence (dcg ≈ log(nep))
holds for both.

VII. SUMMARY AND CONCLUSIONS

Using computer simulations we can easily control the
presence of different disorder types and thus discern the
individual and collective effects. In doing so, we find
that the presence of background charge disorder is the
dominant type of disorder, and although there are some
minor changes for arrays with variable capacitance and
tunneling disorder, the main scaling arguments and ex-
ponents characterizing the arrays at VT and in the con-
ducting regime close to VT remain unchanged. A study
of the interface properties in section III indicated that
the ground-state path for two-dimensional QDA should
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FIG. 32: Plots comparing the probability distribution of gap
sizes and the dependence of mean lateral length with gap sizes

for UC and RD arrays. The mean lateral length scales as ∆
3

2

for RD arrays as shown in Fig. 32(b) whereas, Fig. 32(a)
compares the probability distribution of the gap sizes for UC
and RD arrays.

belong to the same universality class as the DPRM. By
looking at the structure and the transverse deviations of
the ground-state path we were able to establish the con-
nection conclusively. We also saw in sections II and IV
that the introduction of disordered CΣ does not change
the current-scaling exponents for one-dimensional arrays
nor of the ground-state paths. From section V, it ap-
pears that the scaling exponent ζ for 2D arrays does not
depend upon the types of disorder simulated either.

The dominance of charge disorder is probably due to
the fact that the disorder energy scale is set by the pres-
ence of the background charge impurities, is the crucial
energy scale of the system. This in part is due to the
fact that the fluctuation between the charging energy of
dots as a consequence of the particular parameter val-
ues we choose (Cmax

Σ = 2.0), is less than the fluctuation
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(a)

(b)

FIG. 33: Comparing the ground state path at ν = 0.0.
Fig. 33(b) is an array with exactly similar charge disorder as
the array in Fig. 33(a), but with tunneling resistance disorder
included. Although the current densities at various locations
are different, the overall structure is similar.

in electrostatic energy due to offset charges being cho-
sen randomly between [0,1[. The presence of tunneling
disorder does not change the energetics of the arrays,
i.e., VT and fluctuations in VT . It is important to re-
mark, however, that if the offset-charge impurities were
disregarded and only a non-uniform CΣ considered, the
arrays would still exhibit a threshold voltage, separating
the insulating and conducting phases and most proper-
ties would still be similar to the situation where there
was only offset-charge impurities. If the energy fluctu-
ations due to of non-uniform CΣ, was greater than the
background charges the claim would be that the domi-
nant form of disorder was the CΣ although the properties

of the array would be essentially insensitive to which was

the dominant disorder.

From our discussion in section [V], we make the im-
portant conclusion that it is most likely that the MW
hypothesis is correct and valid for disordered QDA irre-
spective of the actual relative strengths of the disorder.
It is important to appreciate that one needs to get suffi-

ciently close to threshold to observe the scaling and that

too only for large systems.

From our experience, a naive approach to determining
the steady state current consistently underestimated the
current values, which tends to get more acute at lower
values of ν. As a consequence, a higher putative value of
β would be observed. It also follows that there is a need
for careful simulations, for with slightly less diligence it
would have been tempting to predict an exponent range
of 2.0-2.25. This is intertwined with the issue of high
computational cost, which arises from a combination of
the need to compute the converged current accurately for
a single sample and the need to simulate large systems as
a consequence of strong finite-size effects. It is not easy
to formulate an elegant algorithmic solution to this prob-
lem. Although, parallelization is a well defined and often
used approach to reduce time-to-solution of a problem,
our problem does not appear to be a suitable candidate,
for as mentioned, one of the primary bottlenecks in our
simulations is the extremely long times required to reach
a steady-state configuration. It is physically-meaningless
to run a simulation at a time t2 without state informa-
tion at time t1, where t2 is a time later than time t1; thus
there is a fundamental limitation on speed-up that can
be achieved via parallelization. But parallelization pos-
sibly along the lines of Ref. [44] may be a possible route
forward.

We have focused on QDA in the extreme limit
where the screening-length is less than the spacing be-
tween dots. The opposite regime of essentially infinite
screening-length has been well studied, both numeri-
cally and theoretically for non-disordered arrays45 and
recently for arrays with a random background potential17

– although neither of these studies, nor others that we
are aware of, use the statistical physics approach that we
have used. Surprisingly, there has been little activity in
the regime representing the middle ground, viz., a screen-
ing length from a few upto a dozen dot spacings. With
a screening-length more than a single dot spacing, the
on-site interaction model that we have used in this work
is not valid and computational approaches will require
fundamental reworking. Ironically this regime is impor-
tant (and interesting), as most nanoparticle arrays as a
consequence of the absence of an underlying gate most

probably have an electrostatic screening-length of a few
dot spacings.

In summary, we have investigated the effect of disor-
der on the transport of electrons in arrays of mesoscopic
sized metallic islands, at, below and above a critical volt-
age VT . In contrast to experiments, using computer sim-
ulations we can easily control the effects of different dis-
order types. We find that the presence of background
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charge disorder is the dominant type of disorder and al-
though there are some minor changes with the addition
of variable capacitance and tunneling disorder, the main
scaling arguments and exponents characterizing the ar-
rays at threshold and in the conducting regime remain
unchanged. Our numerical results indicate a value for
the exponent β to be in the range 1.5-2.0.
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