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libOblivious: A C++ Library for Oblivious
Data Structures and Algorithms

Scott Constable
Syracuse University

Steve Chapin
Syracuse University

Abstract

Infrastructure as a service (IaaS) is an enormously beneficial model for centralized
data computation and storage. Yet, existing network-layer and hardware-layer security
protections do not address a broad category of vulnerabilities known as side-channel
attacks. Over the past several years, numerous techniques have been proposed at all
layers of the software/hardware stack to prevent the inadvertent leakage of sensitive
data. This report discusses a new technique which integrates seamlessly with C++
programs. We introduce a library, libOblivious, which provides thin wrappers around
existing C++ standard template library classes, endowing them with the property of
memory-trace obliviousness.
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1 Introduction
The recent proliferation of infrastructure as a service (IaaS) has allowed big data computations
to be offloaded into the cloud. While this confers computational and cost benefits to small
companies, large companies, research organizations, and end users, it has also been plagued
by concerns over data privacy. Technologies such as the secure sockets layer (SSL) ensure
confidentiality and integrity as sensitive data is transferred to or from the cloud. New
hardware technologies such as Intel SGX [2] and ARM TrustZone [4] use strategies ranging
from encryption to process isolation to protect data while it being used or stored in the
cloud. Yet these techniques are wholly inadequate to protect sensitive data from side-channel
attacks.

A side channel is an inadvertent revelation of information, which can be monitored by
external observers. Side channels fall into one of several interrelated categories by which
they signal information: implicit flows, termination channels, timing channels, probabilistic
channels, resource exhaustion channels, and power channels [42].

Many contemporary techniques for defeating or mitigating side-channel attacks are de-
ployed at a low level, for instance by modifying a compiler [20, 31], instrumenting binaries [41],
or dynamically shuffling memory access patterns [43]. These solutions use computationally
expensive program trace obfuscation techniques. Hardware-based solutions [33] may introduce
less overhead, but are not cross-platform, and typically target only one kind of attack.

At a higher level, recent software-layer solutions have deployed data-oblivious computation
strategies. A program is said to be data oblivious if the adversary’s view of its data memory
accesses (i.e. reads and writes) does not vary with respect to secret program data [23, 37].
An even more secure property is memory-trace obliviousness [30, 31, 41], which additionally
covers the trace of instruction fetches made by a program. In this report we often use the
truncated term obliviousness in place of memory-trace obliviousness.

The definition of “secret" program data is often subjective. In this report, we generally
treat data values, such as values in a container or a value which determines a search query, as
secret. We treat metadata, such as the number of values in a container, as non-secret. So an
oblivious search algorithm must not leak the value of the search query or any of the values
in the dataset being searched, though it may leak the size of the dataset, or the number of
queries on the dataset.

This report describes libOblivious, a C and C++ library which exports APIs to facilitate
oblivious computation at the software level. We must emphasize the word “facilitate" because
other solutions [30, 31, 41, 53] attempt to guarantee either data- or memory-trace obliviousness
for an entire program. libOblivious, on the other hand, provides operations and algorithms
which are locally memory-trace oblivious. For example, a call to a libOblivious search
algorithm will not leak the value of the search query or any value in the container being
searched through either the memory access pattern or the algorithm’s control flow. It is up
to the user to ensure that his/her own code does not leak secrets elsewhere.

The libOblivious comprises four memory-trace oblivious parts: primitives, such as copying
and memory accesses; algorithms built on the primitives; containers (e.g., linked lists, arrays,
etc.); and iterators. These last two parts were not built from scratch. Rather, we define
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wrappers around C++ standard template library (STL) containers and iterators which
endow their operations with the property of memory-trace obliviousness. This allows our
implementation to be light-weight, easy to use, and flexible. libOblivious is supported and
has been tested on Linux, macOS, and Windows 64-bit operating systems with Intel x86-64
CPUs.
Adversary Model. We assume that the adversary—by means of a side channel or otherwise—
may observe the sequence of cache blocks touched by the victim program. This assumption
covers both instruction fetch accesses and data accesses (reads and writes). We also assume
that the user has deployed libOblivious in the manner recommended above, so as to obfuscate
memory accesses and control flow branching conditions influenced by secret data. Under this
assumption, libOblivious can guarantee memory-trace oblivious program execution.
Roadmap. The remainder of the report is structured as follows. Section 2 discusses
the problem of side-channel attacks in more depth and reviews recent work on oblivious
computation. Section 3 outlines a popular machine learning algorithm, and suggests how it
can be made memory trace oblivious. Sections 4 and 5 describe the design and implementation
of libOblivious. We provide an in-depth analysis of libOblivious’ performance compared to
the STL in Section 6. Section 7 describes some contemporary related work on oblivious
computation. We discuss our next set of implementation goals for libOblivious in Section 8.
Finally, we state our conclusions in Section 9.

2 Background
With the advent of distributed computations taking place in the cloud, side-channel attacks
have increasingly become a threat to user privacy [9, 34, 36]. For example, many users may
want to deploy a popular data aggregation algorithm in the cloud, such as MapReduce [17].
If the user wishes to protect her sensitive data, and she does not trust the cloud provider,
then she could use a secure (e.g. encryption-protected) implementation of MapReduce, such
as VC3 [44]. However, cloud applications protected only by encryption in the cloud have
been demonstrably vulnerable to side-channel attacks [36].

The recently discovered Spectre-style attacks exploit a common CPU optimization feature
called speculative execution [27]. This vulnerability was so severe that numerous software
products, including operating systems and web browsers, needed to be patched immedi-
ately [39, 40]. Moreover, portions of commodity CPUs are still being redesigned with new
protection schemes [50]. More recent research has even shown that side-channel attacks can
be launched across networks [45].

2.1 Side-Channel Attacks on the Memory Hierarchy
The work in this report addresses a specific category of side-channel attacks: attacks on the
memory hierarchy. Xu et. al. demonstrated on an Intel SGX platform that an adversary
with control over the untrusted operating system running on that platform can observe
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the sequence of pages in memory touched by an SGX enclave program [52]. By constantly
evicting the enclave program’s pages from memory, the adversary can force each attempted
memory access to trigger a page fault, thus notifying the adversary which page has been
touched.

On x86 platforms the page size is 4 KB. The page resolution of this side-channel attack may
be sufficient for attacks on applications which operate on large datasets, such as images [52].
Side-channel attacks have also been demonstrated at much finer resolution. Specifically, Liu
et. al. demonstrated that last-level cache attacks are possible on multi-tenant (i.e. multiple
VMs) server platforms [34]. Their implementation uses the Prime+Probe [38] technique to
“prime" a CPU cache with code or data, then wait for the victim tenant to execute for some
fixed time interval, and finally “probe" by measuring the time required to access memory
within the blocks that had been primed. If a probe on a block that had been primed is slower
after the victim has run, then that block must have been evicted by the victim.

Our work in this report targets side-channel attacks at the cache level. However, since the
cache blocks on x86 are 64 bytes wide (and aligned to 64 bytes), the attack window on caches
is strictly a finer resolution than the attack window on page faults, thus our memory-trace
oblivious technique also defeats the page fault attack.

2.2 Memory-Trace Oblivious Computation
We first formalize the notion of memory-trace obliviousness that was introduced briefly in
Section 1. LetM be a model of a machine controlled by the adversary. The adversary can
useM to run a program P with secret and non-secret inputs ISecret and IP ublic, respectively.
Non-secret inputs are visible to the adversary; secret inputs are not visible. On a concrete
machine, ISecret and IP ublic may correspond to data in memory or in CPU registers, or data
read from a file, stdin, etc. Execution of a program onM emits a memory trace τ , denoted
M(P, ISecret, IP ublic) τ . The trace τ is a sequence of memory addresses of length |τ |.

Definition 1. The adversary’s observational power is characterized by a relation ≈Adv such
that for some positive integer constant n, τ ≈Adv τ

′ if:

1. |τ | = |τ ′|, and

2. all corresponding addresses in τ and τ ′ are equivalent modulo n.

We refer to n as the granularity of ≈Adv
1.

Example 1. An adversary using the forced page fault strategy [52] to observe τ has an
observational granularity of 4 KB.

Example 2. An adversary using the cache block Prime+Probe strategy [34, 38] to observe
τ has an observational granularity of 64 bytes.

1Thus τ ≈Adv τ
′ if τ = τ ′, but τ ≈Adv τ

′ does not necessarily imply τ = τ ′.
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Definition 2. A contiguous region of memory with size and alignment equal to the granularity
of ≈Adv is called the mask of ≈Adv.

For instance, the mask of ≈Adv in Example 1 is an x86 4 KB page, and in Example 2 it is a
cache block. Intuitively, the mask is the smallest contiguous unit of memory within which
the adversary cannot distinguish between accesses at different memory addresses.

Definition 3. A program P is memory trace oblivious for ≈Adv if, for all IP ublic, ISecret, and
I ′Secret,

M(P, ISecret, IP ublic) τ andM(P, I ′Secret, IP ublic) τ ′

implies τ ≈Adv τ
′.

That is, for any fixed non-secret input, any variation in the secret input must not affect the
program trace visible to the adversary. Hence the adversary cannot deduce anything about
the values of the secret inputs by observing the program traces.

Theorem 1. Let ≈Adv1 and ≈Adv2 characterize the observational power of two adversaries
with granularity n and m, respectively. If m is divisible by n, then a program P which is
memory trace oblivious for ≈Adv1, is also memory trace oblivious for ≈Adv2.

Proof. Suppose that P is memory trace oblivious for ≈Adv1 , and let ISecret and I ′Secret be
arbitrary secret input sequences accepted by P , and likewise have IP ublic as an arbitrary
public input sequence accepted by P . Hence if

M(P, ISecret, IP ublic) τ andM(P, I ′Secret, IP ublic) τ ′,
then τ ≈Adv1 τ

′. By Definition 1, |τ | = |τ ′| and all corresponding addresses in τ and τ ′ are
equivalent modulo n. Since m is divisible by n, it follows that all corresponding addresses in
τ and τ ′ are also equivalent modulo m. Thus τ ≈Adv2 τ

′. Because ISecret, I ′Secret, and IP ublic

were arbitrary, it follows from Definition 3 that P is memory trace oblivious for ≈Adv2 .

Example 3. By Theorem 1, a program which is memory-trace oblivious against an adversary
using the cache block Prime+Probe strategy [34, 38] is also memory-trace oblivious against
an adversary using the forced page eviction strategy [52], because the x86 page size is divisible
by the x86 block size.

Memory-trace oblivious computations must not allow secret data to influence memory
accesses in two ways: instruction fetches (via control flow) and data accesses (reads and
writes). This implies that secret data must not be used as a loop termination condition or any
other branch, such as an if/else if/else or switch. This rule also extends to branching
operators (ternary ?:) and short-circuiting operators: && and ||.

This may at first seem too restrictive for the developer. However, many algorithms can be
expressed in terms of ternary operators. A non-branching ternary operator can be constructed
using the cmov family of instructions on x86 [15]. This technique has been utilized in related
projects [37, 41, 43].
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1 int32_t read(const int32_t *I, const int32_t *E,
2 const int32_t *addr) {
3 int32_t ret = 0;
4 while (I++ != E) {
5 ret = o_copy(I == addr , *I, ret);
6 }
7 return ret;
8 }
9
10 int32_t write(const int32_t *I, const int32_t *E,
11 int32_t *addr , int32_t val) {
12 while (I++ != E) {
13 *I = o_copy(I == addr , *I, val);
14 }
15 }

Listing 1: Naïve memory-trace oblivious read and write operations

With a non-branching ternary operator (call this operation o_copy()), it becomes possible
to write oblivious read and write operations. One such solution is given in Listing 1. The
read() function iterates through the entire region of memory spanning the range [I, E),
reading from every address (at 4-byte granularity). Only when the current address matches
the argument addr is the value of ret updated to the value of *I, which at that point is equal
to the value of *addr. This heuristic does not leak the value of addr because every value
in [I, E) is read exactly once. Later in this report, we describe how many kinds of common
algorithms can be built using just a few oblivious primitives such as the non-branching
ternary.

Within the context of our adversary model for x86-64, the machineM does not emit a
trace at byte granularity. Because we assume that the adversary can only observe which
cache block is touched on a given access, and not the specific address within the block, our
model ofM emits a memory trace with 64-byte granularity. Thus the solution in Listing 1 is
naïve for our adversary model because we do not actually need to read from every element in
the array. It suffices to read only one value from each cache block within a range of memory,
rather than read every single value [13]. Listing 1 could then be modified to read one integer
from each cache block covered by [I, E), e.g. it could read every 16th integer before and after
addr.

An even more efficient solution is to vectorize the read. New x86-64 CPUs provide AVX2
instructions which operate on 256-bit vector registers [15]. In particular, AVX2 introduced the
vpagther instruction family. A single vpgatherdd instruction can read eight 32-bit integers
from non-contiguous addresses in memory. As shown in Figure 1, we can use vpgatherdd to
touch eight cache blocks per instruction. We have used primitives built on vpgatherdd to
implement a family of oblivious read and write primitives. This vectorized oblivious read
strategy has also been deployed in related work [37].
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Cache Block (64 bytes, aligned)

addr-0x80
addr-0x40

addr
addr+0x40

addr+0x80
addr+0xc0

addr+0x100

addr-0xc0

Figure 1: Oblivious read using vpgatherdd

1 Input: z, k, classes, d, T = {(xi, yi)}i=1,...,n

2 Find TNear = {(xi, yi)}i=1,...,k and TF ar = {(xi, yi)}i=1,...,n−k such that :
3 T = TNear ∪ TF ar and TNear ∩ TF ar = ∅ // TNear and TF ar pa r t i t i o n T
4 ∀(x, y) ∈ TNear, (x′, y′) ∈ TF ar. d(y, z) ≤ d(y′, z)
5 For c in classes :
6 Set count[c] := 0
7 For a l l (x, y) ∈ TNear :
8 Set count[x] = count[x] + 1
9 Find c ∈ classes such that ∀c′ ∈ classes. count[c′] ≤ count[c]
10 Output: c

Listing 2: The k-nearest neighbors (k-NN)

3 A Motivating Example: k-Nearest Neighbors
One popular application of cloud computing is machine learning. One simple, yet powerful
classification algorithm is the k-nearest neighbors algorithm [16]. In brief, k-NN is a non-
parametric classification algorithm where the program inputs consist of a training set and a
test set. Each set has a series of data points, each of which is characterized by a sequence
of attributes. A generic implementation of k-NN would also accept a measure of distance d
between data points as a parameter. For each data point z in the test set, k-NN finds its
k nearest “neighbors" in the training set (using d). The class c assigned to z by k-NN is
the mode of the classes of its k nearest neighbors. If the neighbors have no mode (e.g. two
classes are equally represented among the k neighbors), then k-NN must use some heuristic
(e.g. randomness) to choose the class for z.

Listing 2 describes the algorithm for a k-NN classifier in more detail. The k-NN classifier
uses a training set T to classify a data point z. The training set consists of pairs (xi, yi),
where each yi is a data point, and each xi is the classification (some element of classes)
assigned to yi. The algorithm proceeds in three steps. The first step is to partition T into
TNear and TF ar: the k data points nearest to z (according to d), and the remaining n−k data
points, respectively. Next, the classes of the data points in TNear are tallied. The classifier
assigns to z the class which has won the highest tally among z’s nearest neighbors. The k-NN
algorithm leaves unspecified how a tie between class tallies should be settled.
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The procedures in each of these three steps have the potential to leak data through a
side channel. Typically, the first step would be implemented by sorting the data structure
containing T and selecting the first k elements. Common sorting algorithms such as quick
sort, merge sort, and insertion sort all have control flow patterns which do depend on the
ordering relationships between container elements. If the class tallying is performed with any
kind of dictionary-like data structure, as Listing 2 would suggest, then each key lookup would
almost certainly leak the value of the key. Finally, determining the class with the highest
tally could leak any or all of the tallies. Consider this typical implementation of a function
to find the maximum value in a container:
1 template < typename It >
2 It find_largest (It first , It last)
3 {
4 if (first == last) return last;
5
6 It largest = first;
7 ++ first;
8 for (; first != last; ++ first) {
9 if (* largest < *first) { // leaks the ordering relationship

10 // between ‘largest ‘ and ‘first ‘
11 largest = first;
12 }
13 }
14 return largest ;
15 }

The relationship between the current element and the largest element found so far is leaked
in line 9, where the < relation influences a branch condition.

In general, it is difficult to write memory-trace oblivious algorithms from scratch, which
is why it is essential to provide programmers with tools to facilitate memory-trace oblivious
programming. libOblivious is one such tool.

4 libOblivious Overview
libOblivious is composed of four components to facilitate memory-trace oblivious programming
in C and C++: (1) oblivious primitives, such as oblivious copy and swap operations; (2)
oblivious container types, e.g. vectors, linked lists, and deque-like structures; (3) oblivious
iterators which can be used to obliviously read/write from/to the oblivious container; and
(4) oblivious algorithms. The next four subsections provide an overview of these features in
more detail. The last subsection demonstrates how these components can be used in concert
to implement a memory-trace oblivious k-NN algorithm in C++.

4.1 libOblivious Primitives
At the time of this writing, we provide four groups of oblivious primitives: oblivious copies,
swaps, reads, and writes. An oblivious copy moves data from one of two sources, depending
on a Boolean condition, to a single destination. The destination and sources could be any
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C Prototype Register Map Implementation
int64_t o_copy_i64 (

int cond ,
int64_t left ,
int64_t right);

cond ⇒ ecx
left ⇒ rdx
right ⇒ r8

mov rax , rdx
test ecx , -1
cmovz rax , r8

void o_swap_i64 (
int cond ,
int64_t *left ,
int64_t *right);

cond ⇒ ecx
left ⇒ rdx
right ⇒ r8

test ecx , -1
mov r10 , QWORD PTR [r8]
mov r9 , QWORD PTR [rdx]
mov r11 , r9
cmovnz r9 , r10
cmovnz r10 , r11
mov QWORD PTR [rdx], r9
mov QWORD PTR [r8], r10

int64_t o_read_i64 (
const void *src_base ,
size_t src_size ,
const int64_t *addr ,
bool base_aligned );

— —

void o_write_i64 (
void *dst_base ,
size_t dst_size ,
int64_t *addr ,
int64_t val ,
bool base_aligned );

— —

Table 1: 64-bit libOblivious primitives

combination of memory locations or CPU registers. Semantically, an oblivious copy is like a
ternary (?:) operator, except that the value of the Boolean condition does not leak through
a side channel. An oblivious swap, like the oblivious copy, swaps the contents of two memory
locations (or two registers) if the given Boolean condition is true, and it does not leak the
value of that condition. An oblivious read/write from/to a region of memory does not leak
the address within that region where the access was made. More complex algorithms such as
those discussed in Section 4.4 can be built on top of these primitives.

Table 1 gives a summary of the 64-bit versions of these operations. For o_copy_i64() and
o_swap_i64() we provide the x86-64 assembly implementations. This is our implementation
for Windows, hence it uses Windows x86-64 procedure call conventions [8] and Microsoft macro
assembler [7] (MASM) syntax (which itself uses Intel assembly syntax [3]). These operations
utilize the x86 cmov family of instructions (as described in Section 2) to conditionally move
data from one register to another—without requiring a branch operation.

The implementations of o_read_i64() and o_write_i64() are much more complex,
but both use the vpgather instructions in a manner similar to that which was described
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in Section 2. One difference is that for 64-bit reads and writes, we use the vpgatherqq
instruction, which reads four 64-bit words from four (possibly) non-contiguous addresses in
memory. As demonstrated later in Section 6, this modification doubles our read and write
throughput.

Each oblivious write actually performs one read and one write per mask. In order for
the write to be memory-trace oblivious, each mask in the given memory region(s) must be
written to once. This is trivial for the mask containing the actual destination address for the
write. But for every other mask, we need to perform a write without corrupting any data.
Hence for every mask, we first read a value from a particular address in each mask, and then
for each address which is not the destination address, we write back the same value which
was read.

For backwards compatibility with older CPUs that do not support AVX2, libOblivious can
be configured to perform scalar oblivious reads and writes instead of the vectorized versions.
The scalar implementation is up to 2x slower than the vectorized implementation.

The oblivious copy and swap operations come in 8, 16, 32, 64, and 256-bit versions, along
with generic o_copy() and o_swap() functions which copy or swap an arbitrary number of
bytes in a single operation. Oblivious reads and writes come in 32 and 64-bit versions and also
have generic o_read() and o_write() functions. For non-contiguous data structures such
as linked lists and deques, libOblivious also provides o_read_list() and o_write_list()
operations which accept a list of memory regions from which to obliviously read or write
data.

When the number of bytes to be copied, swapped, read, or written is large, libOblivious
vectorizes these operations, dramatically increasing throughput without violating the property
of memory-trace obliviousness. Details on these optimizations are given in Section 5.3.

Of the four components of libOblivious, this is the only component which provides an
interface for C programs. Moreover, since the C language does not use name mangling,
other languages with a C foreign function interface (e.g. Python) can use these libOblivious
primitives.

When libOblivious is linked into C++ code, additional generic templatized primitives
are exposed: o_copy_T(), o_swap_T(), o_read_T(), o_write_T(), o_read_list_T(), and
o_write_list_T(). These are easier to use than the pure C APIs, because they automatically
deduce the correct number of bytes to copy/swap/read/write from the types of the function
arguments.

4.2 libOblivious Containers
We provide oblivious wrappers for C++ STL containers. The containers supported by
libOblivious include:

• Arrays (std::array)

• Singly linked lists (std::forward_list)

• Doubly linked lists (std::list)
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Figure 2: Objects in memory covering masks

• Deques (std::deque)

• Queues (std::queue)

• Stacks (std::stack)

• Vectors (std::vector)

Currently, the oblivious containers are just type aliases for the STL containers, except
that they use stateful heap allocators to maintain a record of which regions of the heap
they own. More details on the stateful heap allocators are given in Section 5.1. We are
currently planning to provide memory-trace oblivious member functions for these containers
(see Section 8).

Notice that all of the supported containers are sequential, i.e. containers that can be
accessed by sequential iteration or random access. Associative containers such as maps (e.g.
red-black trees) and unordered maps (e.g. hash tables) are not supported because these
structures use key-value lookup to access container elements in a manner which is not memory
trace oblivious.

It is still possible to simulate associative containers with sequence containers. For example,
a singly linked list can store a key-value pair in each node (e.g. using the std::pair template).
Associative lookup can be performed using the ofind_if algorithm (see Section 4.4), where
the given predicate returns true when a node’s key matches a given query. Unlike ordinary
associative lookup in std::map and std::unordered_map, this operation hasO(n) complexity,
as opposed to O(log n) or O(1) for the STL associative containers.

In fact, O(n) complexity is the best we can hope to achieve for any search algorithm over
an oblivious container when the search criteria are secret. The following theorem establishes
this fact. We introduce some additional notation: ISecret is the set of all possible sequences
of secret inputs, and likewise IP ublic for non-secret input sequences. We denote the image of
a function f : A→ B as:

f→ = {f(x) | x ∈ A},
and similarly for any subset S ⊆ A:

f→(S) = {f(x) | x ∈ S}.

In the following theorem, function f serves as the lookup function, mapping program
input to the address of a container element. We use the term access in this context to refer
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to any combination any combination of memory reads or writes on an object. We say that
an object in memory covers one or more masks (recall Definition 2) when any portion of
the object’s contiguous memory lies within those masks. For example, in Figure 2 object A
covers masks 1, 2, and 3, B covers masks 4 and 5, and C covers mask 7.

Theorem 2 (Oblivious Lookup). Let C be a container with n elements. Let f : IP ublic →
ISecret → C be a function mapping program input to locations of elements in C. Let P
be a memory-trace oblivious program which uses f to locate and then access some element
in C. Let IP ublic ∈ IP ublic, and let fSecret = f IP ublic (i.e. fSecret : ISecret → C). For all
ISecret ∈ ISecret, ifM(P, ISecret, IP ublic) τ , then τ must have recorded at least Ω( |f→Secret| )
accesses on the masks covered by elements of C.

Proof. Let {e1, . . . , em} = f→Secret, where m = |f→Secret|. Partition ISecret into I1
Secret, . . . , Im

Secret

such that for all i from 1 to m, f→Secret(I i
Secret) = {ei}. Let ISecret, I

′
Secret ∈ ISecret be arbitrary,

and note that there exist i, j ∈ {1, . . . ,m} such that ISecret ∈ I i
Secret and I ′Secret ∈ I

j
Secret.

Suppose
M(P, ISecret, IP ublic) τ andM(P, I ′Secret, IP ublic) τ ′.

Since P is memory-trace oblivious, we must have τ ≈Adv τ
′. Let g be the granularity of ≈Adv,

let s be the size of each element in C (container elements must be of uniform size in C++).
If i = j, then τ and τ ′ both recorded accesses on at least

⌈
s
g

⌉
masks covered by ei. If i 6= j,

then τ and τ ′ both recorded accesses on at least
⌈

2·s
g

⌉
masks covered by ei and ej.

In general, the traces emitted by P over secret input sequences from k distinct subsets
of the partition I1

Secret, . . . , Im
Secret must record accesses on at least

⌈
k·s
g

⌉
masks covered by k

elements of C. Since we must consider accesses over the entire partition, each trace must
record at least ⌈

m · s
g

⌉
=
⌈
|f→Secret| · s

g

⌉
∈ Ω( |f→Secret| )

accesses on the masks covered by elements of C.

Example 4. Consider the algorithm ofind(), an oblivious implementation of std::find().
The ofind() function takes as parameters two iterators into a container which define the
range over which to search, and the value to find; it returns an iterator I to the first element
in the container which matches the search query. Suppose that the search query value is
secret, and that the iterators defining the range of the search cover only the first half of a
vector of size n. If the caller then uses I to access the element that was looked up, Theorem 2
requires that Ω(n/2) = Ω(n) additional elements in C must be accessed in order to maintain
memory-trace obliviousness, and thus not leak the value of the secret query.

Example 5. Consider the function std::list::begin(), which returns an iterator I to the
first element of a given list. std::list::begin() is actually a degenerate lookup function
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whose image is a singleton set consisting of the first element of the list. By Theorem 2, if a
caller uses I to access the first list element, then Ω(1) accesses must be performed. In fact,
only the one access must be performed, hence std::list::begin() is invariably memory
trace oblivious.

Corollary 1. Let C be a container with n elements. Let f : ISecret → C be a surjective
function mapping program input to locations of elements in C. Let P be a memory-trace
oblivious program which uses f to locate and then access some element in C, and let IP ublic ∈
IP ublic. For all ISecret ∈ ISecret, if M(P, ISecret, IP ublic)  τ , then τ must have recorded at
least Ω(n) accesses on the masks covered by elements of C.

Proof. This is simply a special case of Theorem 2 with f→Secret = C.

Example 6 (Oblivious Read). Consider the primitive subscript operation on an array, e.g.
arr[42]. Assuming that out-of-bounds accesses are disallowed, the subscript operation is a
lookup operation which maps an integral index to an array element, returning a reference to
that element. If the array has n elements, then by Corollary 1 Ω(n) accesses are required to
access the returned reference, assuming the index is secret.

On a particular concrete machine and with a particular adversary model, we can make
the argument in Example 6 more precise. Recall the discussion about oblivious reads/writes
from Section 2. For an adversary whose observational power ≈Adv has cache block granularity
on x86-64, our strategy was to read one element (e.g. a 32-bit integer) from each cache block
to obfuscate the access at a secret address or index. Recall from the proof of Theorem 2 that
we constructed a precise lower bound on the number of accesses required for a memory-trace
oblivious lookup:

⌈
n·s
g

⌉
when the lookup function’s image is the entire container holding n

elements. Thus to defeat ≈Adv, a 32-bit oblivious read on an array of size n must make at
least

⌈
n·4
64

⌉
=
⌈

n
16

⌉
accesses. The oblivious memory access strategy we employ for o_read_32()

and o_write_32() performs precisely this many accesses for any array of size n.

4.3 libOblivious Iterators
When operating on elements in a container, C++ conventions recommend the use of iterators,
rather than pointers [48]. An iterator is typically implemented as a wrapper around a pointer,
but with semantics more appropriate for its associated container. For instance, an iterator to
a linked list may overload the ++ operator so that instead of incrementing the underlying
pointer, the underlying pointer is advanced to the next link in the list.

All iterators must define the indirection (*) operator, which is used to access the container
element to which the iterator points [25]. Random access iterators, which operator over
sequential containers that support random access operations, also provide a subscript ([])
operator. Random access iterators support all of the arithmetic operations (addition, pointer
difference, etc.) that are supported by ordinary pointers.

libOblivious provides its own iterators, which are themselves wrappers around C++ STL
iterators or ordinary pointers. The O template wraps an iterator or a pointer, and endows
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1 // return the first value less than ‘x‘ in ‘list ‘, or -1 if
2 // there is no such value
3 int find_less_than (const olist <int > &list , int x) {
4 auto finder = [x]( int val) { return val < x; };
5 O i = ofind_if (list.begin (), list.end (), finder , &list);
6 if (i == list.end ()) // value less than ‘x‘ not found
7 return -1;
8 else // return the value we found
9 return *i; // performs an oblivious read
10 }

Listing 3: Using an O iterator to obliviously read an int

it with memory-trace oblivious read and write operations to the container into which the
iterator points. The O template also must wrap a reference to the container, effectively
binding each O iterator to a specific container. The reason for this design decision is discussed
later in Section 5.

Listing 3 shows an example which uses an O iterator to obliviously read from a linked list
element whose address was discovered by an oblivious find (ofind_if() is described in the
next section). Failure to obliviously read from the iterator i could leak the value of x and/or
the values of elements in list.

In general, O iterators conform to the C++ standard requirements for iterators, though
there are two noteworthy exceptions. First, section 27.2.5 the C++17 standard states that
the reference type member of a forward iterator (an input iterator that can be used in
multipass algorithms) must be a reference to the value type of the associated container [25].
When a forward iterator is dereferenced using the * operator, the return type is reference.
The O template uses the temporary proxy pattern [5], a topic which we cover in greater
detail in Section 5.2. One feature of the temporary proxy pattern is that it uses a proxy
object—rather than a reference—to access container elements. So the * and [] operators for
O iterators do not conform to the reference type requirement for forward iterators.

Second, section 27.2.3 of the C++17 standard requires that for an iterator a which satisfies
the requirements for an input iterator (an iterator that can read from the pointed-to element),
the expression a->m must be valid with semantics (*a).m [25]. The O template does not
support the -> operator.

4.4 libOblivious Algorithms
The goal of the libOblivious algorithms library is to provide memory-trace oblivious imple-
mentations of all algorithms supported by the C++ STL algorithms library [1, 25]. These
algorithms are built on top of the memory-trace oblivious primitives that were introduced in
Section 4.1. Algorithms which use oblivious iterators (see: the O template, Section 4.3) can
only be applied over the libOblivious containers (Section 4.2). All other oblivious algorithms
can be applied to any sequential container in the C++ STL.
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1 template <class InputIt , class UnaryPredicate ,
2 class ContainerT >
3 O<InputIt , ContainerT >
4 ofind_if ( InputIt first , InputIt last ,
5 UnaryPredicate p, ContainerT * container ) {
6 InputIt ret = last;
7 for (; first != last; ++ first) {
8 o_copy_T (ret , p(* first) & (ret == last), first , ret);
9 }
10 return {ret , container };
11 }

Listing 4: ofind_if implementation

Listing 4 shows the implementation of ofind_if(), one of the foundational search
algorithms of the libOblivious algorithms library. Its semantics correspond to those of
std::find_if() [25]. The interface is identical to that of std::find_if(), except that
ofind_if() also requires a reference to the container to be searched. This is necessary in
order to construct the oblivious iterator return value, as discussed in Section 4.3. We use
o_copy_T() to obliviously update the return value when the first match is found. Also
noteworthy is the use of a bitwise AND (&) instead of the logical AND (&&) in the copy
condition. This subtle distinction is important because the logical AND in C and C++ has
short-circuiting behavior which may or may not compile into a branch: the second operand
will only be evaluated if the first operand evaluates to true. Thus, if the first operand has
been influenced by secret data, that information could be leaked. Finally, notice that the
for loop does not break when a match is found. The algorithm always examines every
single element in the container once. Other algorithms such as ofind() and oany_of() are
implemented on top of ofind_if().

Table 2 summarizes the algorithms which we have so far completed and tested. We discuss
our future plans for the oblivious algorithms library in Section 8.

4.5 An Oblivious k-NN Implementation
We now revisit the k-NN example introduced in Section 3. libOblivious can be used to craft
a memory-trace oblivious k-NN implementation. This section describes the security-critical
portions of the classify_entry_oblivious() implementation listed in Appendix A.

To ensure memory-trace obliviousness of the implementation, all flow-of-control patterns
and memory access patterns which depend on input categories and attributes must be
obfuscated. There are three places in our implementation of k-NN where this can happen.

First, the training set data points are sorted by their proximity to the given test set
data point. The proximity was computed using the data point attributes. These attributes
must not be leaked. The C++ STL’s std::sort() algorithm is not oblivious, hence it may
leak information about the values in the container being sorted. libOblivious provides the
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Name Description Complexity
osort Sort a container which support random access operations. O(n2)
omax_element Find the greatest element in a container, and return an

oblivious iterator to it. If several elements are equal to
the greatest element, return an oblivious iterator to the
first such element.

O(n)

ofind_if Searches for an element in a container for which a given
predicate P is valid. Return an oblivious iterator to the
first such element found.

O(n)

ofind Searches for an element in a container which is equal to
a given element. Return an oblivious iterator to the first
such element found in the container.

O(n)

Table 2: libOblivious algorithms

oblivious::osort() function to obliviously sort data. We use this instead of std::sort():
35 oblivious :: osort(neighbors , neighbors + training_set_size , cmp);

Second, tallying the votes for each class can also leak information. To perform the tally,
we use a direct address table (implemented as a vector) indexed by class, e.g. 0, 1, 2, and
3 correspond to the first four classes. Whenever one of the k nearest neighbors “votes" for
its class, that class’s entry is incremented in the table. This increment operation—a read
followed by a write—may leak the address in memory where the value is being updated. To
perform this update obliviously, we use the oblivious::O template from libOblivious. O is a
wrapper around an iterator which performs memory accesses obliviously:
37 oblivious :: ovector <unsigned > class_votes ( num_categories );
38 oblivious ::O optr{ class_votes .begin (), & class_votes };
39 for (int i = 0; i < k; ++i) {
40 int category = neighbors [i]. entry -> category ;
41 optr[ category ] = optr[ category ] + 1;
42 }

A subscript operator[]() access on an O iterator will not leak the value of the subscript
argument, nor will it leak the value of the iterator itself.

Third, just as std::sort() was not oblivious, std::max_element() is also not memory
trace oblivious. libOblivious provides a solution:
43 entry -> category =
44 oblivious :: omax_element ( class_votes .begin (), class_votes .end (),
45 & class_votes ) - class_votes .begin ();

5 libOblivious Implementation
Section 4 presented an overview of the capabilities and APIs of libOblivious from the API
user’s perspective. This section discusses the implementation of libOblivious in much more
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detail, especially the innovations which have not been presented in prior works.

5.1 The libOblivious Heap Allocators
The libOblivious primitives are adequate for facilitating memory-trace oblivious computation
on their own. However, the primitive APIs are not elegant or easy to use. The o_write()
API, for example, has 7 parameters. To make oblivious operations easier to use for the
programmer, we added oblivious iterators.

Many aspects of the oblivious iterator O template were tricky to implement, but none more
so than the following. Since an iterator is really just a pointer to a container element, how
can our oblivious iterator determine the entire range of memory covered by the container? On
any given oblivious read or write, the oblivious iterator will need to know this range so that it
can touch each mask covered by the range. To make matters more difficult, a non-contiguous
container such as a linked list may cover many non-contiguous memory regions. The oblivious
iterator will somehow need to determine the base address and size of each region covered by
the non-contiguous container. Our generalized solution for this problem exploits a seldom
used feature of C++ [35]: user-defined heap allocators.

The C++ standard library has a category of containers called allocator-aware contain-
ers [25]. That is, containers which use a heap allocator to store values. Examples of
allocator-aware containers include linked lists, maps, and vectors, but not statically-allocated
or stack-allocated arrays. For any C++ STL allocator-aware container, C++ allows the
default allocator to be substituted by a user-defined allocator, assuming the user-defined
allocator conforms to the C++ standard’s interface and behavioral requirements for a heap
allocator [25].

Our general strategy in libOblivious is to define an allocator which maintains bookkeeping
information for all of the memory currently owned by its parent container. When an oblivious
iterator performs a read or a write, it queries the oblivious container’s allocator to determine
which memory region(s) it must touch. Yet the implementation is not so simple.

The requirements for user-defined allocators changed substantially from C++03 to
C++11 [24, 48]. In particular, prior to C++11 all allocators were required to be stateless.
C++11 relaxed this requirement. However, the need to maintain backwards compatibility
meant that the new interface requirements for stateful user-defined allocators could not be
defined cleanly [35]. For example, allocator-aware containers have always been required to
provide a get_allocator() member function which returns a copy-constructed replica of
that container’s internal heap allocator [25]. Because copy operations are often expensive,
C++ accessor methods typically return a reference to the internal member. But because
user-defined allocators were previously required to be stateless, copy operations were free;
thus the return-by-value semantics of get_allocator() was justifiable.

Unfortunately, the get_allocator() function is the only member function exposed by
C++ STL containers which allows access to the container’s internal allocator. The return-
by-value semantics poses two problems for our design. First, the heap memory ownership
bookkeeping is maintained in a linked list, which can potentially become quite large. Copying
the entire list on each oblivious read or write would be extraordinarily inefficient. Second, it
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may be possible for a container to allocate new memory after an oblivious iterator obtains a
copy of the allocator, but before the oblivious iterator uses the copy to perform an oblivious
read or write. In this scenario, the oblivious iterator would use stale information to determine
which regions it should touch.

We could not find a perfect solution to this problem. Our compromise was to implement
the heap allocator’s internal state as a shared pointer [25, 48] (i.e. a reference-counted pointer)
to the linked list containing the bookkeeping information. Thus when the oblivious iterator
calls get_allocator() on the oblivious container to which it is bound, it receives a copy of
the shared pointer, through which it can access the (fresh) bookkeeping information. We
take care to ensure that the lifetime of the shared pointer copy does not extend beyond the
current read or write operation, so as to not prolong the lifetime of the potentially large
bookkeeping list after its parent container is destroyed.

The libOblivious heap allocator also strategically allocates memory to improve performance
of oblivious reads and writes. Suppose that the underlying libc malloc() routine on a
particular platform tends to scatter each successive heap allocation request across memory.
In the worst case, consider a linked list where each node occupies 16 bytes, and each call
to malloc() returns 16 bytes located in a mask not already occupied by any other node
allocated in this list so far. If the linked list has n nodes, then an oblivious read will need
to access all n nodes in order to touch every mask covered by the container. However, if
the nodes have all been allocated contiguously, then only

⌈
16·n

mask size

⌉
nodes will need to be

touched. For an adversary who has observational power at cache block granularity, this
optimization reduces the work load by as much as a factor of 4.

The libOblivious heap allocator has several implementations which are optimized for
various data structures. The characteristics of each implementation are not particularly
interesting. However, all implementations do share in common at least two attributes. First,
they try to contiguously allocate the container elements as much as possible, with minimal
internal and external fragmentation. Second, all memory regions covered by the allocators are
guaranteed to be at least mask aligned. This enables yet another optimization, as described
in Section 5.3.

5.2 The O Template
The O template wraps an iterator and a reference to the container into which the iterator
points. As mentioned earlier, an oblivious iterator (an instance of the O template) behaves
similarly to the iterator which it wraps, but with several important exceptions. The primary
purpose of the oblivious iterator is to override the read and write semantics of C++, thus
replacing conventional memory accesses on containers with memory-trace oblivious accesses.
We demonstrate that although this is possible in C++, there are some limitations to our
technique. This section describes the novel details of the O template implementation.

If p is a pointer into an array with element type T, then the default behavior in C++ for
the indirection operation * is to return a reference to the pointed-to element, i.e. T &, and
similarly for the subscript operator []. Thus these operations behave predictably when used
in expressions. The expression T x = *p; will assign the value of the reference returned by *p
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to the new variable x. Similarly, *p = x; will assign the value of the variable x to the object
referenced by *p, assuming that p is a non-const pointer: invoking the indirection operator
on a const pointer will return a const (immutable) reference.

The indirection and subscript operations can be overloaded in C++ [25, 48]. This is how
the indirection and subscript operations are defined for C++ STL iterators. The overload
will typically behave similarly to the default operators: a dereference operation on an iterator
will return a reference to the pointed-to element in the container. But the C++ standard
does not mandate this as a requirement for all classes.

The temporary proxy idiom [5] exploits the flexibility of the indirection and subscript
overloads to allow the developer to change the way in which container elements are accessed
through an iterator. The basic mechanics of the idiom are as follows. Instead of returning a
reference to the pointed-to element, the indirection/subscript operator can return a proxy
object with one or both of the following operators overloaded:

operator T() { ... }
void operator =( const T &) { ... }

The first operator is known as the user-defined conversion operator [25, 48]. For a given class
U, a user-defined conversion operator can specify either an implicit or explicit conversion
to any other type T. Without the explicit keyword in the declaration, the conversion is
assumed to be implicit. The second operator defines assignment. For example, when an
object of the given class is assigned (via =) a value of type T, this operator will be called to
perform the assignment.

The temporary proxy idiom uses the user-defined conversion operator to “read" from the
pointed-to element, and it likewise uses the assignment operator to “write" to the pointed-to
element. The process works as follows. Suppose that i is an iterator which points to elements
of type T, and i’s class uses the temporary proxy idiom. In the statement T x = *i;, The
indirection *i will construct and return a proxy object which, at minimum, knows the address
of the pointed-to element. The proxy object and x do not share the same type, so the compiler
will search for a valid conversion sequence from the type of the proxy object to T. The proxy
object’s user-defined conversion operator T() satisfies this requirement, and thus is selected
to perform the conversion. The operator can simply return a copy of the pointed-to element,
or it can do something more interesting. The process for a write is similar. The statement
*i = x; will invoke the proxy object’s assignment operator for a parameter of type T, thus
allowing the user to customize the write behavior of the iterator. Note that the lifetime of
the proxy object should not extend beyond the evaluation of the statement, which is why the
idiom is called temporary proxy.

The oblivious read/write mechanism of the O template is implemented using the temporary
proxy idiom. If o is an oblivious iterator, then the statement T x = *o; is evaluated as follows:

1. The evaluation of *o returns the proxy oblivious accessor object, which essentially
wraps a reference to o.

2. Overload resolution for a conversion sequence from the type of the oblivious accessor
to T selects the oblivious accessor’s implicit conversion operator, which performs the
following sequence of operations:
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(a) Call get_allocator() on o’s container reference to retrieve a shared pointer to
the container’s oblivious allocator.

(b) Call get_regions() on the oblivious allocator, which returns a list of 〈base ad-
dress, size〉 pairs of all heap memory regions covered by the container.

(c) Call o_read_list_T() to obliviously read the value of type T pointed to by o
from the given list of regions.

3. The value returned by this last call is assigned to x.

The process is similar for an oblivious write through an oblivious iterator, except that the
assignment operator on the oblivious accessor is called, and we use o_write_list_T() in
step 2(c) above.

Unfortunately, the temporary proxy object does not always behave as expected. If we
instead declare a variable with the C++ auto keyword, as in auto x = *o;, then the C++
type inference rules will infer the type of x to be the type of the value being assigned to
x—in this case, the proxy object itself. Hence instead of triggering a call to the proxy
object’s conversion operator, the compiler will use the proxy object’s copy constructor to
instantiate x as a copy of the proxy object. In certain situations, this may actually be
what the programmer would want. For example, the copy of the proxy object can act like a
reference to the pointed-to element in the container, allowing repeated oblivious accesses to
it. But it is perhaps more likely that the copy would be created accidentally.

One way to prevent these accidental copies would be to delete the proxy object’s copy
constructor. However, as of C++17 this fix is no longer workable due to guaranteed copy
elision [18, 25].

A similar consequence of the temporary proxy idiom arises when calling template functions.
Given a template function foo() with prototype

template <typename T> void foo(const T &arg);

the function call foo(*o); (where o is an oblivious iterator) will instantiate the template
parameter T as the type of the proxy object. In this case, the lifetime of the temporary proxy
object will be extended, and arg will be a const reference to the proxy object. Again, this is
most likely not the behavior that the user would intend.

It would be inconvenient for the user if he/she were always required to specify the element
type when reading from an oblivious iterator. Therefore, the iterators and the oblivious
accessor both expose a member type value_type, which is the type of the elements in the
container. For instance,

typename decltype (o):: value_type x = *o;
typename decltype (*o):: value_type x = *o;

The first statement uses the oblivious iterator’s value_type. The second statement uses the
oblivious accessor’s value_type. Both statements are equivalent.

One other substantial limitation of the template proxy idiom is that it does not provide
any strategy for similarly modifying the behavior of the member access (->) operator. The
member access operator is typically used to implement wrappers around pointers, such
as iterators and smart pointers. However it is less customizable than the dereference and
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subscript operators. According to section 16.5.6 of the C++ standard, “An expression x->m
is interpreted as (x.operator->())->m for a class object x of type T if T::operator->()
exists and if the operator is selected as the best match function by the overload resolution
mechanism" [25]. Hence any overload of the -> operator must either return a raw pointer or
another object with an overloaded -> operator. There is simply no way to return a proxy
object without inviting an infinite recursion.

The current workaround in libOblivious is to first obliviously read an object from a
container (i.e. create a copy of it on the stack) and then use the x.m member access to read
a member.

5.3 Optimizations for libOblivious Primitives
We made several observations about the execution of libOblivious primitives which led us
to introduce a series of performance optimizations. To the best of our knowledge, these
optimizations for data-oblivious or memory-trace oblivious programs have not been reported
in related works. Section 6 demonstrates the observed performance benefits of some of these
optimizations.

Our first observation pertains to the o_copy() and o_swap() primitives, both of which
move chunks of contiguous data in memory.

Observation 1. Loops which operate sequentially on pairs or tuples of data can often be
optimized into parallel vectorized operations using single instruction, multiple data (SIMD)
instructions.

The use of multimedia SIMD instructions in commercially available desktop, server, and
laptop CPUs to achieve superword level parallelism (SLP) optimizations was first postulated
by Larson and Amarisinghe [28, 29]. This strategy has since been adopted by numerous
optimizing compilers such as GCC and Clang.

Copy and swap operations sequentially operate on tuples of data in a manner which
can be vectorized. However, since we had to write these operations manually in assembly
(to prevent the compiler from using optimizations that would violate obliviousness) we also
effectively disabled all SLP optimizations. Our solution is to manually vectorize the oblivious
copy and swap operations when the number of bytes to copy or swap is sufficiently large
enough to fill an Intel AVX2 vector [15], specifically, 256 bytes. The code which vectorizes
memory-trace oblivious copy in libOblivious for 256 contiguous bytes is given in Listing 5.

Instead of inline assembly, we use Intel’s convenient Streaming SIMD Extensions (SSE)
compiler intrinsics [11], which are available on popular compilers such as GCC, Clang, and
MSVC for supported platforms. For example, the _mm256_loadu_si256() intrinsic compiles
to an appropriately sized vmov instruction. The o_copy_i256() function unconditionally
loads 256 bytes from both the left and right pointer operands. It then uses a vector blend
operation—a kind of piece-wise ternary operation for vectors—to store either the ltmp or
rtmp vector into the result vector, which is then written to the destination dst in memory.

The generic o_copy() and o_swap operations dynamically determine the vectorization
depending on the number of bytes requested for copy or swap at runtime. The C++-only
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1 void o_copy_i256 ( __m256i *dst , int cond ,
2 const __m256i *left , const __m256i *right ,
3 size_t offset) {
4 const __m256i mask = _mm256_set1_epi32 (!! cond - 1);
5 const __m256i ltmp = _mm256_loadu_si256 (left + offset);
6 const __m256i rtmp = _mm256_loadu_si256 (right + offset);
7 const __m256i result =
8 _mm256_blendv_epi8 (ltmp , rtmp , mask);
9 _mm256_storeu_si256 (dst + offset , result);
10 }

Listing 5: o_copy_i256() implementation uses vpblendvb

o_copy_T() and o_swap_T() operations are able to infer the number of bytes to copy/swap
at compile time, since the number of bytes is simply the size of the object(s) to be copied or
swapped. Thus the vectorization can be inlined, and possibly loop-unrolled, hence achieving
even better performance without losing memory-trace obliviousness.

This optimization allows our memory-trace oblivious copy and swap operations to perform
comparatively well against the analogous primitives in C++, as demonstrated later in Section 6.
In fact, as of this writing, libstdc++ and libc++ both do not vectorize the std::swap()
operation. So our oblivious oswap() operation is actually faster than std::swap() for larger
objects.

Observation 2. When obliviously reading or writing an amount of data greater than or
equal to the size of the mask, the read/write can be performed faster by an oblivious copy.

Section 4.1 described our basic approach for obliviously reading data from a memory
region. When reading 4 bytes, we use the vpgatherdd instruction, and we use vpgatherqq
to read 8 bytes, which increases throughput. To read more (contiguous) bytes, we simply
repeat this process, reading 4 or 8 bytes at a time. Figure 3 illustrates this kind of memory
striping pattern to read data. Reads shown in red use vpgatherdd, and reads in blue use
vpgatherqq.

The striped reads offer reasonable throughput because they allow us to read data oblivi-
ously, without having to read from every single address within a memory region. But once
the size of the read reaches the size of the mask (for our adversary model, a cache block), it
becomes necessary to read from every address—otherwise the accesses on cache blocks would
not be uniformly distributed. In this case, instead of striping we can adopt a more efficient
strategy.

In the last diagram in Figure 3, each green box indicates an oblivious copy. Thus, when
an oblivious read is requested with n bytes where n ≥ mask size, the o_read() primitive
iterates over the memory in n-sized chunks, invoking o_copy() for n bytes on each chunk.
The condition for o_copy() is false for every chunk except for the chunk whose beginning
address matches the given addr parameter. Hence only the desired value is actually written
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Figure 3: Obliviously reading n bytes from an array
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Alignment Correction Required

Figure 4: An correction is required when the memory region is not aligned to the mask.

to the destination. This optimization causes the throughput of o_read() to scale linearly
with the size of the memory region.

Observation 3. If a memory region being read/written from/to fits entirely within a mask,
then an oblivious read/write is not necessary.

This observation may sound trivial, but it can be used to improve performance in certain
scenarios. For instance, the oblivious k-NN implementation in Section 4.5 used an O iterator
to perform oblivious accesses on a direct address table containing the tally for each class.
If the number of classes is small enough—specifically, less than 16—then the entire data
structure may fit within the mask. Indeed the oblivious containers will guarantee that this is
the case because all of the memory they allocate for data is at least mask aligned.

The oblivious read and write primitives inline a check to determine whether the target
memory region is entirely contained within a mask. If so, the given address is simply
read/written from/to through the pointer. Otherwise, a call is made into the libOblivious
DLL to perform an oblivious read or write. For a single operation, this optimization may make
very little difference. But in the k-NN example, where potentially many random accesses are
performed in a loop, eliding repeated calls into a DLL can achieve a noticeable performance
improvement.

The last optimization we present also pertains to alignment. Our discussion thus far has
not considered the case where either the beginning or the beginning or the end of a memory
region is not aligned to a mask. Consider the example in Figure 4. The memory region from
which to obliviously read (shaded in orange) is not aligned to the mask at either boundary.
To ensure memory-trace obliviousness for all accesses, we must always touch these masks.

The easiest solution is to treat the memory region as though it extends all the way to
the beginning and end of all of the masks it covers. Computationally, this is as simple as
computing the alignment correction at the beginning of the region (depicted in Figure 4),
subtracting the correction from the base of the region, and adding the correction to the end
of the region. Similarly, we compute the correction at the end of the region, and add this
correction to the region’s size.

Observation 4. If we know at compile time that a memory region will be aligned to the
mask, then we can skip the alignment check and adjustment at run time.
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All of the oblivious read and write primitives have a bool parameter called is_aligned,
which asserts that the given memory region will be aligned to the mask. The alignment
check and adjustment described above is an inlined check. So of an API call asserts true
for is_aligned, the check will be entirely optimized away by the compiler. This is precisely
what the O template does when it is defined over an oblivious container, because libOblivious
containers always allocate memory with mask alignment.

5.4 Shallow vs. Deep Copying in libOblivious
Just about every object-oriented or imperative programming language supports some kind of
mechanism to copy an object from one location in memory to another. For instance, consider
this structure definition of a string in C:

struct MyString {
size_t size;
char *data;

};

If s1 is a MyString, then the statement MyString s2 = s1; copies the value of s1 to the
memory occupied by s2. Note that the string pointed to by s1.data is not actually copied
by this operation. Only the s1.size member and the s1.data pointer itself will be copied,
16 bytes in total on a 64-bit platform. Hence, after the copy s1 and s2 will share the same
state: any modification to s1’s string will be visible through s2, and vice-versa.

In C++, this kind of copy is commonly referred to as a shallow copy [48]. Unlike C, C++
provides support for making deep copies, copies which completely copy the state of the source
object. Deep copies are supported via overload of the copy constructor. For instance, a deep
copy constructor for MyString might look like

MyString (const MyString &other)
: size(other.size), data(new char[size ]) {

memcpy (data , other.data , size);
}

Without going into too much detail about the syntax of C++ constructors, this example
creates a copy of a MyString by first copying its size member, and then instantiating its
own data member with a pointer to size freshly allocated chars on the heap. Then it copies
the string state to the fresh heap memory.

Currently, libOblivious primitives are only able to make shallow copies of objects. The
reason should be obvious. A deep copy requires knowledge of the meaning of an object, and
what exactly constitutes its deeper state. Only the author of the MyString structure would
know that the size member should refer to the number of characters pointed to by the data
member; an algorithm cannot simply infer this. Hence all of the libOblivious C++ primitives
statically check that the types of the arguments are all trivially copyable, meaning that they
use the default copy constructor. That is, only shallow copies of the object can be made
using copy semantics [25].

We do know that it is possible to support deep copies with libOblivious. But, this would
require a lot of extra work on account of the developer. One solution could be to support a
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static interface for obliviously (deep) copyable objects, e.g.
template <typename T> struct ODeepCopy {

static T o_deep_copy (bool c, const T &left , const T &right);
};

If the developer wants one of her classes to be obliviously deep copyable, she can specialize
the ODeepCopy struct for that class and defining an appropriate o_deep_copy() operator,
recursively invoking o_copy()s or o_deep_copy()s as needed. The libOblivious C++ primi-
tives could first check whether the class is trivially copyable and, if not, check whether the
class specializes ODeepCopy. If so, the primitives will use the user-defined o_deep_copy()
instead of o_copy().

6 Evaluation
This section describes our experiments to test the performance of libOblivious’ primitives
and algorithms. Our results demonstrate that the libOblivious read and write primitives
offer a substantial performance increase over the naïve solution described in Section 2. Other
oblivious primitives compare favorably to their C++ and C++ STL counterparts, and in
one case an oblivious primitive outperforms its STL counterpart. Our algorithms generally
perform well in comparison to the C++ STL, with some exceptions. We discuss the reasons
for this poor performance, and suggest how it may be addressed.

6.1 Test Setup
We performed our tests on a laptop machine with an off-the-shelf dual-core Intel SkyLake
CPU, with a base frequency of 2.9 GHz. The CPU has a 32 KB L1 data cache, a 256 KB L2
cache (per core), and a 4 MB L3 cache (shared). It has 16 GB of 2133 MHz LPDDR3 RAM.
All tests were performed on the host operating system, macOS 10.13. Individual tests were
compiled by GCC version 8.1.0. We use libstdc++ as the C++ standard library.

Before running each test, we pre-allocate and lock (e.g. using mlock()) each region of
memory required by the test to preclude paging. Each test is run 100,000 times for each
value of each of the test parameter(s) (e.g. the size of the data structure being operated on).
The reported result is an average of the 100,000 iterations. One exception to this rule is the
sorting test, which we run for only 1,000 iterations. The result of the first iteration for each
test is always discarded because the instruction and data caches are not yet hot, thus the
first iteration is always slower.

For tests which require input parameter(s), such as an index from which to read or write,
or a value to find in a container, we randomize the parameter for each iteration.

6.2 libOblivious Primitive Results
libOblivious currently provides four categories of primitives, upon which more complicated
algorithms can be built. The four categories are reads, writes, swaps, and ternary-like copies.
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For each primitive, we analyze its performance with respect to the size of the data and/or
the memory region over which the primitive is being applied.

Figure 5 shows our performance results for the libOblivious primitives. The top row of
plots shows the performance of the vpgatherdd-based oblivious read and write primitives,
o_read_i32() and o_write_i32(), respectively. Both scalar and vectorized versions of
o_read_i32() substantially outperform the naïve solution. In general, the scalar solution
offers a roughly 10-14x performance improvement. The vectorized solution performs best when
applied to data already in the CPU’s L1 and L2 caches. Beyond the L2 cache, performance
gains against the scalar solution gradually taper off. In particular, we observed at best a
32x improvement over the naïve solution when operating on data within the L1 cache, a 21x
improvement on data in the L2 cache, and an 11x improvement within the L3 cache. This
last result is slightly faster than our observation for the scalar read.

Theoretically, the best performance improvement we could have hoped to achieve over the
naïve solution with our vector or scalar solutions would have been 16x. This is because the
vector and scalar solutions read just 4 bytes for every 64 bytes reads by the naïve solution.
Yet beyond the L2 cache, the boost bottoms out at 10-11x. We can most likely attribute
this discrepancy to cache misses. When the array is larger than 256 KB, the first memory
access in a cache block is always more expensive than each subsequent access, because the
first access is always an L2 cache miss. So for the naïve solution, each access in a cache
block after the first is cheaper. For the scalar and vector solutions, every access should be
an (expensive) L2 cache miss. Hence the 16x improvement beyond the L2 cache is almost
certainly unattainable. We consider our 10-11x improvement to be very close to optimal.

The results for o_write_i32() are less favorable. As we mentioned earlier in Section 5,
at the time of this writing we did not have access to a newer Intel-based machine with
AVX512 instructions, which include the vpscatter family of instructions. We believe that
these instructions could be used to drastically improve the performance of the oblivious write
primitives, in the same manner as vpgatherdd does for oblivious reads. At best, we achieved
a 12x performance improvement in the L1 cache, 11x in the L2 cache, and 7x in the L3 cache.
We plan to revisit this issue in the near future.

The second row of plots in Figure 5 shows the performance of the o_read()/o_write()
primitives against the number of bytes being read/written from an array of fixed size, 1 MB.
Each plot also shows the throughput (number of MB read/written per second) of the operation.
Throughput is at its worst when reading or writing only 4 bytes. In this case, o_read_i32()
and o_write_i32() are being called by o_read() and o_write(), respectively. When the
test parameter is increased to 8 bytes, o_read() instead calls o_read_i64(), and likewise for
o_write(). These 64-bit primitives, as discussed in Section 5, instead use the vpgatherqq
instruction, which gathers four 64-bit integers instead of eight 32-bit integers. The execution
time is nearly identical, and thus the throughput is doubled.

Throughput remains steady until the parameter size reaches 64 bytes: the size of a cache
block. At this point, o_read() and o_write() instead use o_copy(). The reasons for this
were discussed in Section 5. Consequently, for reads and writes exceeding 64 bytes the
throughput increases linearly with respect to the number of bytes being read or written.
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Figure 5: Performance results for libOblivious primitives
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The bottom row in Figure 5 shows our results for the o_copy() and o_swap() primitives,
respectively. The first plot compares the performance of o_copy() against the C++ ternary
?: operator. As the number of bytes copied increases, the slowdown of o_swap() converges
toward 1.5x. This result should not be surprising. When the statement

*d = c ? *x : *y;

is compiled (and the pointee type is sufficiently large), the compiler will produce a branch
depending on c, which will invoke a memcpy() either from *x to *d or from *y to *d. If
the libc memcpy() is optimized for AVX2, then it will repeatedly invoke vectorized vmov
instructions to load from either *x or *y, and then store in *d. The analogous libOblivious
operation would be

*d = o_copy_T(c, *x, *y);

which would similarly invoke vmov to load from both *x and *y, but then use vpblendvb to
select the correct vector depending on c, and then write that result to *d with a third vmov.
So the oblivious copy is performing exactly three vectorized memory accesses for each two
vectorized memory accesses performed by memcpy(), which explains the 1.5x slowdown.

The performance results for o_swap() are much more impressive. Our oblivious swap
implementation actually outperforms the C++ STL’s std::swap() implementation by up
to 2.3x. This is because std::swap() is not optimized with AVX2 to vectorize swaps on
sufficiently large parameters, at least in libstdc++ 8.1.0. At a glance, this might seem like a
surprising oversight. However, it is conventional in C and C++ to swap values in this manner
only when the types of the values are sufficiently small, e.g. when they can fit into a general
purpose register. When the values are larger, the convention is to instead swap pointers to
these values, which is obviously more efficient.

6.3 libOblivious Algorithm Results
For each libOblivious algorithm, we test it over one or more oblivious containers and vary
the containers’s sizes. The results are shown in Figure 6.

The first row of plots test our ofind() implementation against std::find() over a vector
and over a linked list. The container is initialized with a sequence of integers {0, . . . , n− 1},
where n is the number of elements which can fit into the container of its given size. Each
test searches for a random element in the range [0, n). Hence, on average we would expect
the oblivious find to require twice as many memory accesses as the standard library find
(because on average, the randomly chosen element will be located at the middle of the range).
Our results demonstrate a roughly 10-12x slowdown over the oblivious vector container, and
2.7x over the oblivious forward list. We discuss the reasons for this discrepancy in the next
section.

Our oblivious sort is the worst performing algorithm, when compared to its STL counter-
part. Over an array of size 64 KB, osort() runs nearly three orders of magnitude slower, on
average. And this discrepancy only increases as the size of the container increases, because
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Figure 6: Performance results for libOblivious algorithms
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the asymptotic complexity of the oblivious sort is O(n2), as opposed to O(n log(n)) for
std::sort().

Of the three algorithms discussed in this section, only omax_element() actually outper-
forms its STL counterpart, improving performance by nearly a factor of two. However, we
believe this may be related to a known optimization bug in GCC2. When both omax_element()
and std::max_element() are compiled by Clang, we observe a 3.4x slowdown over a 1MB
array. Because the entire container must always be searched to find the maximum element,
an optimal result would have been no slowdown, or very little slowdown.

6.4 Discussion
With the exception of oblivious writes (due to lack of vector scatter support on our test
platform), our oblivious primitives perform exceptionally well. However, our oblivious
algorithms—based on those same primitives—do not always perform as well.

As we discussed earlier in Section 5, the oblivious copy and swap primitives needed to be
implemented in assembly so as to avoid compiler optimizations that would trigger a branch
based on the (potentially) secret copy/swap condition. An unfortunate side effect of this
approach is that the presence of inline assembly in any compiler basic block disables many
optimizations for the rest of that basic block [6]. If the basic block is encountered infrequently,
then the slowdown may be unnoticeable. But if the basic block is part of a loop, then the
slowdown will be multiplicative. And in the case of our oblivious sort, the inline assembly is
actually nested within two loops.

This is precisely what we have observed by manually inspecting the compiled binaries
of the oblivious algorithms. For example, compared to std::find(), we find the compiler
output for ofind over a vector to be more complex, and unnecessarily so. The performance
discrepancy for ofind over a linked list is smaller, in part because each iteration of a traversal
over a linked list is partially dominated by reading the address of the next link from memory.
There is still overhead caused by the disabled optimizations, but it is less noticeable.

One solution would be to manually write the loop in assembly, for each loop which contains
an oblivious copy or swap primitive. Unfortunately it is not possible to do this in a manner
which is entirely generic for each algorithm. For instance, std::find() is parameterized by
the type of its iterator arguments. The compiler uses this type to determine whic increment
operator, dereference operator, and value equality comparison operator to use. Each of these
is called within the main loop. But these operators are almost always inlined by the compiler.
Thus, for any two invocations of std::find() which differ only in container type, iterator
type, or value type, the compiler may produce different output.

It is not possible to manually write enough inlined assembly procedures to account for all
combinations of type parameters, especially for every oblivious algorithm. It may be possible
to write assembly procedures which call the dependent operators, instead of inlining them.
But this would likely produce code that also performs poorly.

2bug reported here: https://stackoverflow.com/questions/25622109/why-is-c-stdmax-element-
so-slow
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7 Related Work
The closest relative to libOblivious is the work done by Ohrimenko et. al. at Microsoft
Research, who used memory-oblivious primitives to implement several popular machine
learning algorithms [37]. At a low level, their approach is very similar to ours. They use x86
instructions such as cmov and vpgatherdd to build oblivious primitives, upon which they
constructed several popular machine learning algorithms. Their implementation was tested
on Intel SGX.

Our work on libOblivious differs primarily in its purpose. Whereas the goal of the
work done at Microsoft Research was to build machine learning algorithms for multi-party
computation on trusted hardware, our goal is to build a software library which can facilitate
memory-trace oblivious computation over a wide variety of problem domains, and on multiple
platforms. However libOblivious was influenced by other work as well.

7.1 ORAM
Oblivious RAM [22, 23, 47] (ORAM) is a related technique for obfuscating memory access
patterns, and can be used to defeat side-channel attacks. This technique is appealing because
it operates under the hood, and thus places no additional burden on the programmer. But it
does incur a rather steep O(log n) cost for each memory access, where n is the size of the
entire program memory. Thus protecting all program secrets in a single ORAM has been has
been shown to be inefficient [19, 46, 51].

ZeroTrace is an Intel SGX enclave runtime which uses an ORAM-based memory controller
to enforce data obliviousness [43]. The ZeroTrace usage model assumes that a remote client
needs to make remote queries on a large (e.g. > 10 GB) dataset. These queries could
include reads, writes, key-value lookups, etc. Within an SGX enclave, ZeroTrace uses a Path
ORAM [47] library to look up the ORAM leaf containing the query. Within each ORAM
leaf, the lookup can be performed by an untrusted party, so the final request is forwarded to
a non-enclave fetch/store controller, which can execute with less overhead. This design has
demonstrated favorable performance for queries over large datasets.

Several works have specifically targeted the design of oblivious data structures using
ORAM variations. Wang et. al. proposed a framework for created ORAM-based oblivious
data structures [49]. Their work reduces access time overhead on oblivious data structures
from O(n) to O(logn). However, the data structure storage scheme requires O(nlog(n))
storage. By specifically optimizing their implementation for each data structure, they were
able to achieve a 10-15x speedup over naïve ORAM for moderately sized ORAMs. Keller and
Scholl also implemented optimized data structures over ORAMs [26]. Their work compared
specifically considered the problem of secure multi-party computation (SMPC) using oblivious
data structures. Their analysis also compared the performance of data structures using Path
ORAM vs. Tree ORAM, and also against naïve scalar accesses.

ORAM itself also does not protect against timing side-channel attacks, such as an attacker
inferring a loop termination condition for the number of loop iterations. This is a problem
which is addressed by libOblivious’ algorithms library. For relatively small (e.g. < 100 MB)
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data structures, ORAM has been demonstrated to be significantly slower than the kind of
memory scanning techniques employed by libOblivious [41].

7.2 Language-based Oblivious Computation
Other solutions have aimed to implement data-oblivious or memory-trace oblivious protection
at the source language level. Liu, Hicks, and Shi have provided foundational work in
programming language theory for constructing a programming language with the property of
memory-trace obliviousness [30]. Furthermore, their work exceeds memory-trace obliviousness
to also cover termination-sensitive noninterference, i.e. secret program inputs cannot influence
public program outputs. Memory accesses are obfuscated using a maximal partition of ORAM
banks over all secret program data structures, and also conditionally-executed code, where
the condition is secret.

ObliVM [32] is a domain-specific language for memory-trace oblivious computation, built
on the theoretical foundation established by Liu, Hicks, and Shi described above. The ObliVM-
lang is a C++-like language with features such as structures, generics, loops, etc. Each variable
in ObliVM-lang is annotated as either “public" or “secret." Memory-trace obliviousness with
respect to the secret values is enforced by the type system. Programs written in ObliVM-lang
are compiled into ObliVM-GC, a Java-based garbled circuit implementation. This effectively
allows a computation to run on an untrusted platform in encrypted form.

Obliv-C [53] is an extension (i.e. strict superset) to the C language which adds a category
of data called “obliv," similar to the “secret" annotation in ObliVM. Similar to ObliVM,
typing in Obliv-C enforces memory-trace obliviousness for obliv-annotated values. The
implementation is simply a wrapper around GCC which performs the oblivious type checking
against a rule set, and then translates the Obliv-C code into ordinary C code, which is then
passed in to GCC.

7.3 Program Transformation
Program transformation techniques can be used before or during the compilation process to
analyze and modify control flow patterns and memory accesses, for the purpose of achieving
some degree of obliviousness.

Raccoon [41] is a kind of source code preprocessing tool which transforms C or C++
programs into a form that is memory-trace oblivious. Raccoon only requires the programmer
to annotate secret variable in the source code. The tool performs inter-procedural taint
analysis on the secret variables to determine precisely where a secret may influence either
control flow or a memory access. When secret data is found to influence a branch, Raccoon
obfuscates the control flow by forcing execution of both paths, replacing memory writes
in each path with an oblivious store operation, similar to the oblivious ternary o_copy()
described in this paper. Raccoon uses software Path ORAM to obfuscate memory accesses
which depend on program secrets.

Dr. SGX [12] is an IR-level instrumentation tool and library which obfuscates heap
memory accesses to make an SGX enclave program data oblivious at cache block granularity.
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Unlike Raccoon, Dr. SGX does not require any additional code annotation by the user. It
obfuscates heap memory accesses by first producing a randomized heap memory layout, and
then constantly re-randomizing the layout, subject to a configurable time window. Dr. SGX
uses an LLVM IR pass to instrument the input program, replacing ordinary heap memory
accesses with calls to the Dr. SGX library. Each call consults the current iteration of the
pseudo-random memory permutation function to obtain the correct randomized address.
Although this solution requires less work from the user, it also cannot distinguish between
public and private data. Thus every access is obfuscated, which may introduce unnecessary
overhead.

SGX Lapd [21] specifically targets the adversary using forced page eviction to observe
enclave memory traces at page granularity, as in [52]. However, instead of promising full
prevention of memory-based side-channel attacks, SGX Lapd is simply a mitigation technique
which makes it much more difficult for the adversary to infer enclave secrets from a memory
trace. Specifically, SGX Lapd consists of two components: (1) an untrusted kernel module
which provides 2 MB pages to the enclave, and (2) a program transformation tool which
inserts instrumentation code into the enclave program. Whenever enclave program control
flow or data accesses cross a 4 KB-aligned boundary, the instrumentation code dynamically
checks whether a forced 4 KB page fault has occurred. If so, this would likely indicate a
malicious OS feeding 4 KB pages to the enclave and forcibly evicting them. Like Dr. SGX,
SGX Lapd uses an LLVM IR pass to perform the enclave code transformation. This technique
effectively increases the granularity of the adversary’s visibility by a factor of 29.

7.4 Other Approaches
The GhostRider [31] project features a co-designed assembly language, compiler, and hardware
architecture for memory-trace oblivious computation. Program analysis of the assembly
allows GhostRider to partition program data into one of three hardware RAMs depending on
its security classification and usage: (unencrypted) RAM, (encrypted) ERAM, or ORAM.
The usage scenario for GhostRider involves an untrusted host system communicating with a
GhostRider co-processor, both of which share the same RAM/ERAM/ORAM banks. The
authors simulated their design in software, and on an FPGA system.

8 Future Work
At the time of this writing, libOblivious is still a work in progress. Each of the four components
in libOblivious has aspects which can be expanded and improved upon.

We plan to complement the oblivious read and write operations with new oblivious update
operations. At present, an oblivious update to a value in a container or memory region is
unnecessarily expensive. Suppose that the programmer wants to obliviously increment a
value in an array. With the current API, the programmer would have to call an o_read() to
obtain the value, then increment it appropriately, and finally use o_write() to record the
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updated value to memory. Since each o_write() function performs both a read and a write,
the sequence

v = o_read(...); −→ update v; −→ o_write(v);

actually performs two oblivious reads, followed by one oblivious write. A semantically
equivalent memory-trace oblivious operation could be performed by a single primitive, say
o_update(), which would perform a single read, then increment/decrement the value by a
given amount, and finally write the updated value back to memory.

This limitation among the libOblivious primitives also limits other components of li-
bOblivious. For this same reason, the O template does not support arithmetic assignment
operations on dereferenced values, such as +=, -=, *= etc. The addition of an oblivious update
operation would allow oblivious iterators to support efficient value assignment operators on
dereferenced values.

As shown in Table 2, we still have many algorithms remaining to implement. We have so
far implemented 4 oblivious algorithms. We believe that there are roughly 40-50 algorithms
in the C++ algorithms library [25] that are not memory-trace oblivious, but which can be
made oblivious.

As discussed in Section 6, several of our oblivious algorithms do not perform as well as they
should, when compared against their C++ STL counterparts. Depending on the algorithm
and the data structure being operated on, we have observed as much as a 10-12x slowdown
for linear algorithms (the result for ofind() over a vector of 32-bit integers), whereas the
theoretical minimum slowdown would have been roughly 2x. At this time, we are unaware of
any feasible strategy for improving the performance of these algorithms, other than manually
writing optimized loops in assembly.

We have also recorded an enormous slowdown for our oblivious sort algorithm. Our
current implementation uses a simple variation on bubble sort, but with oblivious swaps.
A better solution would be to use something like Batcher’s sorting network [10], which
has complexity O(n log2 n). This approach has been employed elsewhere for memory-trace
oblivious computation [37].

We mentioned in Section 4.2 that the oblivious containers are simply type aliases for
STL containers, but with the oblivious heap allocator substituted for the default C++ STL
heap allocator. As such, the member operations on libOblivious containers are identical to
the member operations on the STL containers. Because some STL container operations are
not memory trace oblivious (e.g. sort(), merge(), find(), etc.), this means that the same
operations on the libOblivious containers will be unsafe. One solution is to instead have
each oblivious container inherit the public interface of its corresponding STL container. For
each inherited operation that is not oblivious, we override it with a semantically equivalent
oblivious operation. If any operation cannot be made memory-trace oblivious, we disable it.
All other operations can be inherited as-is. This design would allow libOblivious containers
to be used in exactly the same way as STL containers, except for the few operations which
cannot be supported safely.

Recent advances in hardware and other low-level protections against cache-based side-
channel attacks have made these attacks more difficult [14, 33]. In the near future, cached-
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based side-channel attacks may no longer be feasible. However, side-channel attacks at page
granularity will still be an issue. We are currently planning to update libOblivious with
optimizations to facilitate memory-trace oblivious computation at page granularity and with
substantially improved performance.

Finally, as discussed in [41] and [37], the vpgather-based memory scanning technique
currently employed in libOblivious is a competitive alternative to ORAM-based implementa-
tions. In general, the scanning technique can be faster for smaller structures, while ORAM
is faster for larger structures (e.g. > 100 MB). This is because ORAM execution time
scales logarithmically, with a large constant factor, whereas scanning scales linearly with
a small constant factor. But there are other tradeoffs under certain application scenarios.
For example, Ohrimenko et. al. found the scanning technique to be generally preferable for
machine learning algorithms [37]. We may at some point wish to add back-end support to
libOblivious for a Path ORAM implementation, and allow the user to select between ORAM
and oblivious scanning, depending on the usage scenario.

9 Conclusion
This report introduced libOblivious, a software library which exposes C and C++ APIs to
facilitate memory-trace oblivious computation. libOblivious provides efficient memory-trace
oblivious primitives, upon which more complex oblivious algorithms can be built. The library
currently exposes some basic algorithms, and we hope to add more in the future. We also
introduced the O template, a wrapper which transforms an ordinary C++ STL iterator into
an oblivious iterator. This makes it easy for developers to seamlessly integrate libOblivious
into legacy C++ codebases.

The performance of libOblivious’ primitive operations compares favorably against naïve
scanning implementations, and also against the C++ standard library. The libOblivious
algorithms do not perform as well as their C++ STL counterparts, but most of them do
not perform poorly. We plan to address larger performance gaps—such as with oblivious
sorting—in future work.
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A Oblivious k-NN Implementation
1 typedef struct KNN_Entry {
2 int category ;
3 unsigned int num_attributes ;
4 double * attributes ;
5 } KNN_Entry_t ;
6
7 static void classify_entry_oblivious ( unsigned k, unsigned num_categories ,
8 KNN_Entry_t *entry ,
9 const KNN_Entry_t * training_set ,
10 unsigned int training_set_size ) {
11 struct pair {
12 const KNN_Entry_t *entry;
13 double distance ;
14 };
15
16 auto euclidean_distance = []( auto x, auto y, std :: size_t len) {
17 double distance = 0;
18 for (int i = 0; i < len; ++i) {
19 distance += (x[i] - y[i]) * (x[i] - y[i]);
20 }
21 // safe on x86; std :: sqrt () uses the vsqrtsd instruction
22 return std :: sqrt( distance );
23 };
24
25 pair * neighbors = new pair[ training_set_size ];
26 for ( unsigned int i = 0; i < training_set_size ; ++i) {
27 neighbors [i] = { training_set + i,
28 euclidean_distance ( training_set [i]. attributes ,
29 entry ->attributes ,
30 entry -> num_attributes )};
31 }
32 auto cmp = []( const pair &p1 , const pair &p2) {
33 return p1. distance < p2. distance ;
34 };
35 oblivious :: osort(neighbors , neighbors + training_set_size , cmp);
36
37 oblivious :: ovector <unsigned > class_votes ( num_categories );
38 oblivious ::O optr{ class_votes .begin (), & class_votes };
39 for (int i = 0; i < k; ++i) {
40 int category = neighbors [i]. entry -> category ;
41 optr[ category ] = optr[ category ] + 1;
42 }
43 entry -> category =
44 oblivious :: omax_element ( class_votes .begin (), class_votes .end (),
45 & class_votes ) - class_votes .begin ();
46
47 delete [] neighbors ;
48 }
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