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Measuring functional renormalization group fixed-point functions for pinned manifolds

A. Alan Middleton1, Pierre Le Doussal2, and Kay Jörg Wiese2

1Department of Physics, Syracuse University, Syracuse, NY 13244, USA.
2CNRS-Laboratoire de Physique Théorique de l’Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France.

(Dated: February 6, 2008)

Exact numerical minimization of interface energies is usedto test the functional renormalization group (FRG)
analysis for interfaces pinned by quenched disorder. The fixed-point functionR(u) (the correlator of the coarse-
grained disorder) is computed. In dimensionsD = d + 1, a linear cusp inR′′(u) is confirmed for random bond
(d = 1, 2, 3), random field (d = 0, 2, 3), and periodic (d = 2, 3) disorders. The functional shocks that lead to
this cusp are seen. Small, but significant, deviations from 1-loop FRG results are compared to 2-loop corrections.
The cross-correlation for two copies of disorder is compared with a recent FRG study of chaos.

Systems with quenched (frozen-in) disorder often exhibit
glassy phases at low temperature. Standard perturbative meth-
ods fail to describe these phases and exact results are limited
to 1D and mean field models [1, 2, 3]. It has been quite a
challenge to develop field theoretic and renormalization group
(RG) methods, which must include both multiple metastable
states and spatial fluctuations in finite dimensions, to describe
universal properties of these phases. Proposed field theo-
ries are unconventional and harder to control than those de-
veloped for pure critical systems. An expansion around the
mean-field replica symmetry (and ergodicity) broken (RSB)
solution, much studied in spin glasses, is very difficult even
at the 1-loop level [4]. The functional RG (FRG) was de-
veloped for elastic objects pinned by substrate disorder and
random fields. This class has numerous physical realizations,
including vortex lattices, magnetic systems, and charge den-
sity waves [5, 6, 7, 8]. The 1-loop FRG has been extended
to describe, e.g., depinning of a driven interface [9], activated
dynamics [10], quantum models [11], and sensitivity of con-
figurations to disorder changes (“chaos”) [12]. Since the FRG
parameterizes the effective action by functions, rather than the
few couplings of standard RG, it is better suited to handle an
infinite number of marginal parameters at the upper critical
dimension (or runaway flows as in correlated fermions [13]).

When applying the FRG to pinned elastic manifolds param-
eterized by a scalar displacement fieldu(x), the function in
the effective action whose flow is relevant belowd = 4 is de-
noted byR(u). Physically, this function represents a coarse
graining of the correlator of the pinning potential; it encodes
an infinite number of couplings,R(2n)(0), n = 0 . . .∞. An
unusual feature of the theory is thatR′′(u) can develop a lin-
ear cusp aroundu = 0 at finite scale [6]. In the space of
non-analytic functions, perturbative control was recovered to
one-loop order (i.e., toO(ǫ = 4−d)) and fixed-point functions
R(u) obtained for various universality classes [6, 8, 14]. The
relations between this cusp singularity, multiple metastable
states and shocks in energy landscapes have been vividly de-
scribed [15]. The FRG agrees with phenomenological mod-
els and successfully predicts the roughness exponentζ of the
pinned interface, with the disorder-averaged correlationfunc-
tion (u(x) − u(0))2 ∼ x2ζ [16, 17, 18].

Though much has been achieved, it has been questioned

[14] whether the FRG can be extended in a systematic loop ex-
pansion, i.e., to higher order inǫ. Dealing with a non-analytic
action is very subtle [19], and even 1-loop consistency is not
obvious [20]. Recently, a candidate renormalizable field the-
ory for statics [19, 21] (and a distinct one for depinning [22])
was obtained beyond one loop. Crucial to its construction is
the propertythat the cusp remains linear to higher orders. If
confirmed, the FRG provides a simpler method to attack glass
problems where the RSB phenomenology can be avoided.

This paper presents a new level of “smoking gun” tests of
the FRG for manifolds, bydirectly measuringthe fixed-point
functionR(u) for three universality classes (Figs. 1-3). This
is achieved, as proposed in Ref. [23], by adding to the dis-
order a parabolic potential (i.e., a massm) with a variable
minimum locationv. The resulting sample-dependent free
energyV̂ (v) defines a renormalized potential whose second
cumulant correlator inv space isthe sameR(v) function as
defined in the field theory (from the replicated effective ac-
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FIG. 1: Filled symbols show numerical results forY (z), a normal-
ized form of the interface displacement correlator−R′′(u) [Eq. (4)],
for D = 2 + 1 random field (RF) andD = 3 + 1 random bond
(RB) disorders. These suggest a linear cusp. The inset plotsthe nu-
merical derivativeY ′(z), with interceptY ′(0) ≈ −0.807 from a
quadratic fit (dashed line). Open symbols plot the cross-correlator
ratio Ys(z) = ∆12(z)/∆11(0) between two related copies of RF
disorder. It does not exhibit a cusp. The points are for confining
wells with width given byM2 = 0.02. Comparisons to 1-loop FRG
predictions (curves) are made with no adjustable parameters.
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tion - deviations arise only in higher cumulants [23]). Thisis
analogous to measuring the coupling constant and the distri-
bution of total magnetization in pure systems, which underlie
phenomenological RG and finite size scaling [24]. As in pure
systems, the FRG predictions are universal at coarse grained
scales, but require specifying the large scale BCs. The mass
provides these conditions and also allows one to control and
quantify the zero mode (center of mass) fluctuations, yielding
the coupling functionR(u). The same procedure allowed an
exact calculation [23] ofR(v) for theD = 0 + 1 theory with
RF disorder (Sinai’s model).

We numerically compute the FRG zero temperature fixed-
point functions using exact ground state configurations. We
study interfaces embedded in dimensionsD = d + 1, d =
0, 1, 2, 3, including random bond (RB), random field (RF),
and periodic (RP) disorder universality classes. We focus
on universal, parameter free functions; treatment of universal
amplitudes requires more details and is presented separately
[25]. The linear cusp in∆(u) = −R′′(u) is confirmed in all
cases. For periodic disorder,∆(u) is consistent with the con-
jectured parabolic form. For RB and RF disorder, the scaled
∆(u) are distinct from the 1-loop calculations and are closer
to the two-loop results, though the curves exhibit at most a
weak dependence ond. The functional shocks responsible for
the cusp in∆(u) are directly seen. The higher statistics of
these shocks are consistent withd = 0 Burgers intermittency.
Cross-correlation (chaos) fixed points for two related copies
of the disorder show a rounding of∆(u) that is consistent
with recent FRG predictions [12].

The continuum Hamiltonian for an interfaceu(x) of inter-
nal areaΩ with elastic constantK, confined in a parabolic
well centered atv is

H(v) =

∫

Ω

ddx

{

K

2
(∇u)

2
+

m2

2
(u − v)2 + V [x, u(x)]

}

(1)
where the random potential V has correlations
V (0, x)V (u, x′) = R0(u)δ(d)(x − x′). The RB univer-
sality class describes short rangedR0(u), the RF class has
R0(u) ∼ −σ|u| at largeu, while the RP class describes
periodic correlations, e.g.,R0(u + 1) = R0(u). The bare
correlatorR0(u) becomesR(u) upon coarse graining. Given
a UV cutoff scaleb, for fixedΩb−d, and continuousV (x, u),
the minimum energy configurationu(x; v) is unique and
smoothly varying withv, except for a discrete set of shock
positions whereu(x; v) jumps between degenerate minima.

For numerics, interfacesu(x) are described by a setI of
edge-sharing plaquettesp. Plaquettes are dual to the edges in
a regular lattice composed ofH layers. Each layer hasLd

points, unit cell volumeΩ0, and periodic BCs. Each point is
connected to points in the layer above byκ bonds, so that an
interfaceI hasκLd plaquettes [25]. The energyHlatt of I,
confined by a well of strengthM centered atv, is

Hlatt(v) =
∑

p∈I

{

M2

2
[u(p) − v]2 + U(p)

}

, (2)

whereu(p) is the layer index for plaquettep and U(p) is
the disorder potential. Long-wavelength elasticity arises from
combinatorial effects [16]. For RB disorder,U(p) is a Gaus-
sian variableh(p) with zero mean and varianceσ2

0 = 1, while
for RF disorderU(p) is the sum ofh(p) along a path of edges
connectingp to the bottom layer. RP disorder with period
P is constructed by stackingH/P identical RB samples of
thicknessP . GivenU(p), v, andM , the ground stateIgs is
found using a program that accommodates all lattices, dimen-
sionalities, and disorder types. The new version of the core
max-flow algorithm [16] in our code has been directly tested
against standard libraries [26] and earlier energy minimiza-
tion calculations [16, 17, 18]. The heightH is always large
enough that the finite size effects are controlled only byL
andM . Lattice discreteness is evident at high values ofM ,
so we chooseM < 0.2. Continuum and discrete models are
then related by equating energiesHlatt andH, displacements
u(p) andu(x), interface areasΩ0κbdLd = Ω, well strengths
m2 = M2(Ω0b

d)−1, and disorder strengthsσ = κσ0

2Ω0bd . The
effective elastic constantK was also measured [25].

We computed the discrete force-force correlation [23]:

∆latt(v) = M4(κLd)[v′ + v − u0(v′ + v)][v′ − u0(v′)], (3)

where the mean positionu0(v) = (κLd)−1
∑

p∈Igs
u(p). The

averaging (overline) is forN > 104 samples with0 ≤ v′ < P
for RP disorder; RF and RP samples are self-averaging over
v′ (we slidev′ over more than105 times the interface width
while computing minima in a window of thicknessH ≈ 20
centered atv′). The plots we present have1σ error bars com-
puted using direct resampling of the data and are thus ex-
pected to overlap the large sample number limit with a prob-
ability of 68%. To check our procedure, we confirm that
∫

∞

0
du ∆latt(u) is consistent within errors with the valueσ0

for RF disorder and with the value0 for RB and RP disorders.
The FRG predicts that, for large volumesΩ/bd, the rescaled

correlator∆̃(z), defined by∆(u) = mǫ−4ζ∆̃(umζ), con-
verges asm → 0 to the FRG fixed-point functioñ∆∗(z),
which depends only ond and disorder. Using Eq. (3), conver-
gence ofM4ζ−ǫ∆latt(zM−ζ) was evident forL > 16 (L > 8
in d = 3) andM < 0.2, choosing [16]ζ = 2/3, 0.44, 0.22 for
d = 1, 2, 3 RB disorder andζ = (4 − d)/3 for RF disorder.
The interface widths grow slowly (ζ = 0) for RP disorder.
As the FP functions still contain an amplitude and a scale, we
introduce the normalized functionY (z),

∆(u) = ∆(0)Y (u/ξ), (4)

so thatY (0) ≡ 1 and with scaleξ chosen according to
disorder type: for the RP model,ξ = P , for RF disor-
der, ξ is set so that

∫

∞

0 dz Y (z) = 1, and for RB disorder,
∫

∞

0
dz Y 2(z) = 1. This function is predicted to be univer-

sal with a dependence ind, Y (z; d), that can be computed to
second order inǫ := 4 − d [19, 21]

Y (z; d) = Y1(z) + ǫY2(z) + O(ǫ2), (5)
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with Y1(z) the 1-loop estimate [6, 8, 14]. Computation ofK
is required to fix universal information not retained inY (z),
e.g., the amplitude∆(0) for RF disorder [25].

We plot illustrative examples ofY (z) in Fig. 1. In all cases,
an apparently linear cusp is found forY (z) (with finite inter-
cepts for fits toY ′(z)). The normalized functions are remark-
ably close to 1-loop predictions, with no adjustable parameter.
We now turn to a systematic analysis of these functions, their
deviation from 1-loop results, and related data.

We start with RF disorder. The FRG predictions for the
functionsY1(z) andY2(z) in (5) are obtained from lineariz-

ing theO(ǫ2) relation [21]z =

√
Y −1−ln Y −

ǫ

3
F (y)

∫

1

0
dy
√

y−1−ln y− ǫ

3
F (y)

, where

F (y) = 2y − 1 + y ln y

1−y
− 1

2 ln y + Li2(1 − y). Plots of
the differencesY (z) − Y1(z) between the numerical result
and the 1-loop prediction [6], for several sizes and masses in
D = 2+1 andD = 3+1, are shown in Fig. 2. There are small,
but statistically significant, systematic deviations fromY1(z).
The sign of the expected corrections linear inǫ, Y2(z), agrees
with numerics. This function changes sign atzc = 1.668 . . .,
near the observed location. The magnitude ofǫY2(z), setting
ǫ = 1, is nearly consistent with numerics for alld. We in-
clude0+1 numerical results (compatible with Refs. [23, 27])
for comparison. Points forD = 2 + 1, 3 + 1 are both close
to D = 0 + 1 results. Our computed slopes at the origin,
−Y ′(0) = 0.815(7) (3+1) and−Y ′(0) = 0.811(6) (2+1), are
to be compared with the FRG value0.7753 . . .+(0.0328 . . .)ǫ
and thed = 0 [23] value0.8109 . . .. The near equality of the
d = 0 curve andY2(z) appears to be a coincidence. Although
more work is needed to resolve the differences (e.g.,d = 0
from d = 2, 3) the trend of the FRG results is encouraging.

For RB disorder,R(u) is expected to decay (so∆(u) has a
zero). Fixingξ as stated sets a non-universal scale. The differ-
encesY (z) − Y1(z) are plotted in Fig. 2: we again find small
but significant deviations from the 1-loop prediction, withat
most a weak dependence ond (within error bars). TheO(ǫ2)
expansion in this case is found from series and numerical so-
lutions [21]. The resultingY2(z) again agrees well in sign
and shape with the data, with a magnitude given byǫ ≈ 1. We
have constructed 2-loop interpolations which agree with the
data in alld [25]. The situation resembles that for RF disor-
der, even though deviations have the opposite sign.

Results for the functionY (z) for RP disorder are shown in
Fig. 3 ford = 3; similar results hold ford = 2. The 1- and 2-
loop FRGs predict [8, 21] a parabolic form,∆(u) = ∆(0)(1−
6u(1−u)), as do thed = 0 and the large-d cases (with a single
shock asm → 0 [15] and many small independent shocks per
period [20], respectively). Counting of derivatives in theFRG
equation has also indicated that the parabolic form holds for
any finited. The parabolic form is consistent with our results
asm → 0.

The use of a harmonic well allows one to define and study
the shocks in the force landscape. Asv increases, sections of
the manifold have degenerate minima at positionsvs and the
polarization jumps forward by

∫

ddx [u(x; v+
s ) − u(x; v−s )].

These are shocks in a functional (scalar ford = 0) de-
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FIG. 2: The difference between the normalized correlatorY (z) and
the 1-loop predictionY1(z) for RF disorder inD = (1, 2) + 1 and
RB disorder inD = (1, 2, 3) + 1. The dashed lines are the linear
2-loop correctionY2(z) = dY (z)

dǫ
|ǫ=0 of Eq. (5). For each disorder

class, the data are close to each other and to thed = 0 andǫ = 1
linear two-loop estimates, but are distinct from the 1-loopresult.

caying Burgers equation [23], with the renormalized force
v − u(v) corresponding to velocity andm−1 corresponding
to time in Burgers turbulence. Examples of these disconti-
nuities in the renormalized force are shown in the inset of
Fig. 4. We have seen shocks merge asm decreases [25].
The moments of the renormalized force areSn(v − v′) =
(v − v′ − u(v) − u(v′))n. A linear cusp inS2 is confirmed
by our study of∆(v). A prediction of the FRG ind > 0 [23]
is thatS3(v − v′) ∼ (v − v′) at smallv − v′, in accord with
exact results ford = 0. Linearity of all Sn, n ≥ 2 is a hall-
mark of intermittency ind = 0 Burgers turbulence. Our data
show linearity ofS3 (Kolmogorov scaling) andS4 in v − v′

for cases studied. This indicates that shocks do not cluster
beyond simple statistical fluctuations.

When the pinning potential is perturbed, correlations be-
tween the original and perturbed samples remain for RF dis-
order and are described by a new chaos FRG fixed point
[12]. We test this prediction using related disordersU1(p)
andU2(p) = [U1(p) + δ · W (p)]/

√
1 + δ2, where the per-

turbationW (p) is a mean-zero univariate Gaussian andδ is
the perturbation strength. We measured the cross correla-
tor ∆12(v − v′) = κLdM4(v − u0,1(v))(v′ − u0,2(v′)). We
check the sum rule

∫

∞

0
du ∆12(u) = σ/

√
1 + δ2 and normal-

ize viaYs(z) = ∆12(ξz)/∆11(0). We find (Fig. 1) thatYs(z)
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, computed
for RF disorder ind = 2, 3, showing the sensitivity to disorder of
magnitudeδ, compared to the 1-loop prediction and to numerical
D = 0 + 1 computations (error bars not shown;1σ errors are about
1/2 of symbol size). Inset: the renormalized pinning forcesv−u0(v)
for a sample (solid line) and aδ = 0.1 perturbed sample (dashed line)
in a typical sample; cross-correlations of such data give the main plot.

is rounded, as predicted [12]. The computedYs(0) is near the
1-loop prediction (see Fig. 4).

Our numerical calculations confirm the main features of the
FRG approach to the glassy system of pinned interfaces, es-
pecially the shape ofR′′(u) and its linear cusp, for a variety
of disorders and dimensionalities. FRG computations to 2-
loop order significantly improve upon the 1-loop results. The

functional shocks found are consistent with expectations;their
statistics merit further study.
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