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Are Domain Walls in 2D Spin Glasses desribed by Stohasti Loewner Evolutions?Denis Bernard1, Pierre Le Doussal1, A. Alan Middleton2

1CNRS-Laboratoire de Physique Théorique de l'Eole Normale Supérieure, 24 rue Lhomond, 75005 Paris, Frane. and
2Department of Physis, Syrause University, Syrause, NY 13244, USADomain walls for spin glasses are believed to be sale invariant; a stronger symmetry, onformalinvariane, has the potential to hold. The statistis of zero-temperature Ising spin glass domainwalls in two dimensions are used to test the hypothesis that these domain walls are desribed by aShramm-Loewner evolution SLEκ. Multiple tests are onsistent with SLEκ, where κ = 2.32±0.08.Both onformal invariane and the domain Markov property are tested. The latter does not hold insmall systems, but detailed numerial evidene suggests that it holds in the ontinuum limit.The geometrial haraterization of physial objets isentral to muh of our understanding of their energetisand dynamis. The relevant geometries an be as simpleas points or gently urved surfaes. Many objets are notwell-desribed by an integer dimension, but have a sale-dependent measure that an be represented by a frataldimension. For example, ontinuous phase transitions inhomogeneous systems have nonanalyti behavior onsis-tent with fratal dimensions for the surfaes that separatephases. Evidene for fratal domain walls is seen in sat-tering experiments and numerial simulations. In mod-els of glassy systems with quenhed disorder (frozen-inrandom �elds), analyti work and numerial simulationsindiate that domain walls an be sale-invariant andfratal at low temperatures. In two-dimensional homo-geneous systems, the additional symmetry of onformalinvariane often applies and yields detailed preditionsfor ritial exponents, the e�ets of boundary onditions,and a bakground for physial explanations.The onjuntion of onformal invariane with the pres-ene of a domain Markov property (DMP) in statistialmehanis models has led to an even more omplete -and in several ases mathematially rigorous - desrip-tion of fratal urves suh as loop-erased self-avoidingwalks, perolation hulls, and domain walls at phase tran-sitions in two dimensions in the saling (i.e., ontinuum)limit [1, 2℄. Shramm showed that when both proper-ties are present the probability measure on these urvesis desribed by a Shramm-Loewner evolution SLEκ [3℄.Random sequenes of simple onformal maps an be usedto generate the fratal urves with the orret measure, ifthe real-valued driving funtion that underlies the mapsis a Brownian motion. The di�usion oe�ient κ ofthe Brownian motion uniquely parameterizes the proessand is related to the fratal dimension of the urve via

df = 1+κ/8. This deep onnetion has led to very preiseharaterization of these urves for pure systems suh as
q-states Potts model, O(n) models and perolation.An outstanding question is whether SLE an be ap-plied to other systems. Numerial evidene has been pre-sented, for example, that SLE desribes ertain isolinesin 2D turbulene [4℄. The broad question of whether andhow onformal invariane, a neessary ondition for SLE,

applies to disordered systems is still very muh open. At-tempts to extend the apparatus of onformal �eld theoryto systems with quenhed disorder, a notably di�ultsubjet [5℄, have suggested some numerial tests, suhas �nite size saling [6℄. A positive result was obtainedreently for surfae wavefuntion multifratality at the2D loalization transition with spin-orbit symmetry [7℄.Most importantly for our work, Amoruso, Hartmann,Hastings and Moore [8℄ have suggested that domain wallsin the 2D spin glass have onformal invariane.Here we diretly investigate whether the domain wallstatistis onverges to an SLEκ. We apply several tests.We examine the winding of domain wall around a ylin-der, as well as the angular distribution of the urves andthe dipolar SLE hitting probability. We use an iteratedslit map (disretized inverse Loewner evolution) to deter-mine the driving funtion and test whether it onvergesto Brownian motion. We diretly test the DMP by om-paring preise domain wall statistis in �whole� and �ut�domains. To determine the signi�ane of these tests, wearry out the same analyses for the loop-erased randomwalk (LERW), whih has SLE2 as a saling limit, and forpaths on minimal spanning trees (MST), whih are notonformally invariant [10℄. We �nd that, for one hoieof boundary onditions (BCs), the spin glass domain wallpasses all tests with a onsistent value of κ.We study the domain walls in a 2D Ising spin glasswith Gaussian disorder. We use the Edwards-AndersonHamiltonian H = −∑

〈ij〉 Jijsisj , where si = ±1 andthe Jij are eah hosen from a Gaussian distribution withzero mean. The glass transition is at T = 0; we study theminimum energy states at T = 0 using an exat optimiza-tion algorithm [12℄ and sample over disorder realizations.There are two ground states, onneted by a global spin�ip, in any �nite sample. In the saling piture based ondomain walls and droplets, introdued by MMillan [13℄,Bray and Moore [14℄, and Fisher and Huse [15℄, there aretwo ground states in the thermodynami limit [16, 17℄.Domain walls (DWs) separate these two ground states.The domain wall energy sales as EDW ∼ Lθ [13, 14, 15℄for DWs de�ned at sale L, with θ = −0.28(1).We work on a triangular lattie that has W spins ineah of L rows, as skethed in Fig. 1. Our samples

http://arXiv.org/abs/cond-mat/0611433v1


2are ylindrial, with periodi rows. One an uniquelydesribe ground state pairs by the bond satisfations
σij = sgn(Jijsisj), where Π∆σij = sgn(Π∆Jij) for anyelementary triangle ∆. Periodi BCs result from �xing
Π(ij)∈pα

σij = Π(ij)∈pα
sgn(Jij), where pα are the sets ofboundary bonds on the upper (α = 1) and lower (α = 2)edges BCs. Imposing Π(ij)∈pα

σij = −Π(ij)∈pα
sgn(Jij)gives antiperiodi BCs (equivalent to a hange in thesign of the Jij along a olumn of bonds). Comparingground states for periodi and antiperiodi BCs givesa domain wall: a simple path on the dual lattie thatrosses bonds whose satisfation di�ers between the twoBCs. A domain wall is the minimizer of the ost fun-tion 2

∑

(ij)∈γ Fij , with Fij = Jijs
0
i s

0
j and s0

i the spinsin the periodi ground state, over open paths γ from thebottom to the top of the ylinder. In the ground state,the ost of any losed loop is positive [18℄.We refer to the domain wall found using this par-tiular periodi-antiperiodi BC omparison as ��oat-ing� (F-PA), as the endpoints of the domain wall arenot �xed. We also onsider a periodi-antiperiodi BChange where the domain wall at one end is loally on-strained to a single hosen bond on the lower boundary(L-PA), i.e., a given σij is reversed on the lower boundary.The hoie of L and W give the ylinder shape, withthe irumferene given by X = W and the length by
Y = (

√
3/2)L. We �nd that the averages onverge for

W ≥ 4L. The results for the �rst quarter of the path for
W = L agree with those for W ≫ L, within our au-ray. For omparison, we also study LERW urves andpaths between two points in the MST, both on honey-omb latties; LERW urves have dimension df = 5/4in the ontinuum limit and MST paths appear to have afratal dimension df = 1.217(3) [9℄.We estimate df for the domain wall by omputing themean total path length S(L) of the domain wall, om-paring with S(L) ∼ Ldf , the overline indiating aver-ages over ≈ 104 samples at sizes up 5 × 105 spins, andalso by omputing the sample averaged distane fromthe origin as a funtion of partial path length. We �nd
df = 1.28(1), in statistial agreement with previous work[11℄, for both F-PA and L-PA BC's.We test onformal invariane and onsisteny with theSLE desription by measuring the winding of the F-PAdomain wall around a long ylinders with Y ≫ X . Thepredition from SLE is that the variane of the transversedisplaement x of the end point from the starting loationis 〈x2〉 = 4

π
(df − 1)XY . We studied ylinders with 8 ≤

W ≤ 32 and up to L = 800 for at least 104 samples ateah of at least eight values of L. Our data is onsistentwith π
4 〈x2〉 linear in XY , with a oe�ient of 0.27±0.01for L > 4W , in agreement with onformal invariane,again for both F-PA and L-PA BC's.A powerful result [19℄ from SLE is a predition of theprobability that a urve generated by SLE will pass to theleft of a given point at polar oordinates (R, φ) (see Fig.
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sin(2φ)]/π for

κ = 2 is subtrated to display small variations learly. Thedata from F-PA paths agrees with SLE preditions for κ in therange 2.24 < κ < 2.40, while L-PA paths give κ ≈ 2.85(10).Inset: A domain wall of length S = 9 in a sample with L = 4rows and W = 6 olumns.1 for notation). Given sale invariane, the probabilitythat the urve passes to the left of (R, φ) depends onlyon φ, and the theory of SLE an be used to predit [19℄
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,(1)where F12 is the hypergeometri funtion and κ is thedi�usion parameter from ontinuum SLE. Our results(Fig. 1) for P (φ) depend on the hoie of BC. For F-PA BCs the measured P (φ) is most onsistent with theanalytial form in the range κF
eff = 2.32±0.08, onsistentwith the relation κ = 8(df − 1). For L-PA domain wallsmeasured from the �xed end, we �nd κL

eff = 2.85 ± 0.10.We �nd the same two BC-dependent values [20℄ using an-other test: a omparison of the distribution for the dis-plaement between the DW endpoints with the form pre-dited using dipolar SLE [21℄, whih desribes the limit
X/Y → ∞ for SLE urves that start at a given point aand terminate on the upper boundary. Constraining thedomain wall to start at a given point (L-PA BCs) ratherthan hoosing domain walls that start at a point (i.e.,onditioning on a) with F-PA BCs hanges the e�etive
κ. Domain walls with �xed endpoints are not onsistentlydesribed by SLEκ over their entire length.The boundary onditions appear not to a�et the fra-tal dimension, but learly do a�et more subtle aspetsof the geometry. A similar result holds for the LERW:absorbing and re�eting boundary onditions both areonsistent with df = 5

4 [2℄, but P (φ) is well �t by Eq. (1)with κ = 2 for absorbing BCs, as expeted, in ontrastwith P (φ) ≈ φ/π for re�eting BCs.



3Note that the L-PA DW energy approahes a onstantas L → ∞, in ontrast with EDW ∼ Lθ for F-PA DWs.This di�erene holds in general for θ ≤ 0, as an be seenby summing L-PA domain wall energies de�ned over ge-ometrially inreasing sales onneting the loalized re-gion to the large sale. Essentially, the L-PA onstraintgives an O(1) orretion to EDW from the ost of thesingle bond at the loalized end. Apparently, the opti-mization over suessive sales distorts the urve fromthe form expeted from SLE, while optimization over asingle global sale gives results onsistent with SLE.To more arefully inspet the orrespondene withSLE, we have used a disrete Loewner evolution to mapthe domain walls, represented by sequenes of points
z0

i = x0
i + iy0

i , i = 1 . . . S, in the omplex half-plane, ontoa real-valued sequene ξ(ti) de�ned at disrete ti andstudied the sample statistis and orrelations of the in-terpolated ξ(t). For ontinuous urves generated by SLE,the underlying funtion ξ(t) is Brownian motion with dif-fusion onstant κ. The sequene is initialized by setting
t0 = 0 and ξ(t0) = 0. We then reursively map thesequene {zi−1

i , . . . , zi−1
S } to the transformed and short-ened sequene {zi

i+1, . . . , z
i
S} using the map appropriatefor dipolar SLE (�rst de�ning ∆i = πyi

i/2Y ),
ti = ti−1 − 2(Y/π)2 log[cos(∆i)] ; ξ(ti) = xi−1

i (2)
zi

j = ξ(ti) +
2L

π
cosh−1

{

cosh

[

π(z − ξi)

2L

]

/ cos(∆i)

}

.These maps are a sequene of slit maps that suessivelyremove the �rst point from the sequene (see Fig. 2) andmaintain the hydrodynami normalization used in SLE.The simplest test for the di�usive property of ξ(t) isto examine its distribution at �xed times. Our data for
L2/5 >∼ t >∼ 50 are onsistent with a Gaussian distribu-tion for ξ(t) with variane ξ2(t) = κefft (Fig. 2). Wehave on�rmed that higher umulants satisfy ξ2n(t) =

(2n)!!
(

ξ2(t)
)n for n = 2, 3, 4, within numerial error,for the same range of t. For omputations of ξ(t) thatstart from a free end of a domain wall (F-PA boundaryonditions or the free end of L-PA BCs), we �nd κF

eff =
2.24± 0.08, while for omputations starting from the lo-alized end with L-PA BCs, we estimate κL

eff ≈ 2.85±0.1,onsistent with our estimates from P (φ, R). We note that
ξ2(t) is also nearly linear in time for paths on the MST,even though suh paths are not onformally invariant,but the oe�ient is not onsistent with the fratal di-mension (see [10℄ for MST winding angle results).We have also tested the Markovian property for ξ(t),i.e., that the hanges in ξ(t) depend only on the ur-rent value of ξ(t) and not on previous values. Westudied the orrelation funtion Cd(n) = 〈[ξ(ti+n+1) −
ξ(ti+n)][ξ(ti+1) − ξ(ti)]〉 at intermediate times; it deaysrapidly (by a fator of ≈ 100 over the range n = 2 to
n = 8) for both the spin glass and for the LERW [20℄.Note that there must be short term orrelations in ξ(t)
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Figure 2: Plot of an e�etive di�usion onstant κeff =
ξ2(2t) − ξ2(t)/t, for W ≥ 4L. Lines indiate κ = 2.24, 2.32,2.40, 2.85, and 3.00. The range 2.24 < κ < 2.40 �ts the datafor urves with F-AP BCs, while 2.85 < κ < 3.00 desribesthe di�usion measured from a onstrained domain wall end.Inset: Part of a sample onversion of a domain wall in the2D Ising spin glass to a sequene ξ(ti), i = 1 . . . S. The lefturve is the initial domain wall with ξ(0) = 0, while the red[lighter℄ urve is the remainder after 500 appliations of thedipolar map, giving ξ(t500 ≈ 7239.4) ≈ 101.5.on the lattie, as there are forbidden sequenes of �turns�for the domain wall.Given that the Ising spin glass DW passes several SLEtests one must examine the domain Markov property(DMP) in a disordered system. Let us all PD(γab) theprobability that the DW happens to oinide with theurve γab in a domain D (where a,b are two given bound-ary points). The DMP [22℄ states that if one onditionsthis probability on a piee γac of the urve, then theprobability for the rest of the urve γcb is idential to theoriginal probability on the ut domain D\γac onditionedon urves starting at c, i.e:

PD(γcb|γac) = PD\γac
(γcb|c) (3)Cutting the domain removes bonds that ross the seg-ment γac. In pure statistial systems Eq. 3 is an identity,given proper BCs. One an easily hek that the DMPholds in a single realization of disorder. However thisproperty does not survive disorder averaging (as ondi-tioned probabilities are ratio of probabilities) exept forperolation SLEκ=6 (beause of loality).To evaluate the deviations from the DMP we have om-puted numerially the ratio of sums of the two proba-bilities in Eq. (3). We generate domain walls in bothwhole ylinders and in ylinders ut by all paths γ1 ofa hosen path length s1. We sample at least 3 × 107disorder on�gurations to estimate the ratio r(γ1, γ2) =

∑

γbc⊃γ2
PD\γ1

(γbc|c)/
∑

γbc⊃γ2
PD(γbc|γ1), with γ1 start-ing at the lower boundary, γ2 a subpath of γbc of pathlength s2, and γ1 onneting to γ2 at c. If DMP holds
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r = 1, as learly seen for R-LERW, indiate a failure of thedomain Markov property.stritly, r(γ1, γ2) ≡ 1. We summarize our data in Fig.3, where we plot the umulative probability C(x) =
∑

γ1,γ2|r(γ1,γ2)<x PD(γ1, γ2) that r is less than x. We �ndthat in small samples with L = 8, r is statistially dis-tint from unity for larger |γ2|. The largest deviations areseen for γ2 near to and parallel to γ1. For omparison,we show results of the same analysis for the LERW withboth absorbing BCs (A-LERW), where r is unity withinstatistial error, and for re�eting BCs (R-LERW), where
r learly deviates from unity. In ISG simulations, C(x)is quite lose to the urve for A-LERW. Our data annotrule out the possibility of DMP holding in the ontinuumlimit.It is tempting to onjeture that the emergene of theDMP in the ontinuum limit follows from the existeneof �prinipal� minimizers, separated from eah other ona sale L. These are the basins of attration for min-imizing paths: if the start of a DW is displaed fromthe minimizer's start by a sale ℓ < L, the DW mergeswith prinipal minimizer within a distane of order ℓ [16℄.These minimizers are a result of �nding shortest paths ina graph with negative weights (but no negative weightloops). In partiular, this implies the same statistis forthe L-PA and F-PA BCs on a long ylinder. In a broadstrip (X ≫ Y ), the di�erenes between L-PA and F-PABCs must be related to the approah of the onstrainedpath to the prinipal minimizer over a sequene of sales.Unlike loal minimizers, prinipal minimizers are inde-pendent of the diretion in whih they are traversed. Weexpet that bulk segments of the L-PA urves are welldesribed loally by SLEκ. The onditioning of pathsused in de�ning the DMP may be related to the proper-ties of the minimizing paths [23℄. We also note that theLERW with re�eting BCs passes the same set of testsof onformal invariane as the L-PA 2DISG and fails thesame set of tests of SLEκ.In onlusion, we have numerially sampled over geo-metri objets in a system with disorder, domain walls in

the 2D Ising spin glass, and tested their statistial geo-metri properties. We �nd that the domain walls pass tothe left of a given point with probabilty onsistent withSLE, wind around long ylinders in a manner onsistentwith onformal invariane, and that the sequenes of on-formal maps that generate DWs, i.e., Loewner evolutions
ξ(t), give a di�usion onstant κ = 2.32 ± 0.08 in aordwith a fratal dimension df = 1.28 ± 0.01. We diretlystudy the domain Markov property: it fails in small sys-tems, but we an not rule it out in larger systems. Thisset of tests, whose utility is validated by appliation tourves in LERW and MST, provides strong numerialsupport for a desription of spin-glass domain walls withunonstrained endpoints by SLE, implying both onfor-mal invariane and a domain Markov property on longsales. Domain walls starting from a loalized bond arenot onsistent with the simplest form of SLE, thoughmore omplex onformally invariant desriptions, e.g.,SLE with drift suh as SLEκ;ρ should be investigated.We thank M. Biskup, M. Bauer, J. Cardy, C. New-man, A. Ludwig, K. Wiese, and T. Witten and espe-ially M. Hastings for disussions and the authors ofRef. [8℄ for sharing their unpublished work. This workwas supported in part by NSF grants DMR 0219292,0606424, and ANR blan06-3-134462 and blan05-0099-01.We thank the KITP (NSF PHY99-07949) and the MPI-PKS for their hospitality.[1℄ J. Cardy, Ann. Phys. 318, 81 (2005).[2℄ M. Bauer and D. Bernard, Phys. Rep. 432, 115 (2006).[3℄ O. Shramm, Israel J. Math. 128 221 (2000).[4℄ D. Bernard et al, Nature Physis 2 124 (2006).[5℄ J. Cardy ond-mat/9911024; in Statistial Field The-ories, A. Cappelli and G. Mussardo eds, Kluwer,(2002) ond-mat/0111031; V. Gurarie and A. W. W.Ludwig, J. Phys. A 35, L377 (2002); D. Bernard,ond-mat/9509137.[6℄ J. Cardy and J. Jaobsen, Phys. Rev. Letters, 79, 4063(1997).[7℄ H. Obuse et al., ond-mat/0609161[8℄ C. Amoruso, A. K. Hartmann, M. B. Hastings, and M.A. Moore, ond-mat/0601711.[9℄ We quote our results, onsistent with, e.g., M. Cieplak,A. Maritan, J. R. Banavar, Phys. Rev. Lett. 72 2320(1994); R. Dobrin and P. M. Duxbury, Phys. Rev. Lett.86 5076 (2001); and [10℄.[10℄ D. B. Wilson, Phys. Rev E 69, 037105 (2004); B. Wielandand D. B. Wilson, Phys. Rev. E 68, 056101 (2003).[11℄ See, e.g., H. Rieger et al, J. Phys. A 29, 39 (1996).[12℄ F. Barahona, J. Phys. A 15, 3241 (1982).[13℄ W. L. MMillan, J. Phys. C 17, 3179 (1984).[14℄ A. J. Bray and M. A. Moore, in Heidelberg Colloquium onGlassy Dynamis, van Hemmen and Morgenstern, eds.,Springer (Berlin, 1986).[15℄ D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 386 (1988);J. Phys. A 20, L1005 (1987).[16℄ A. A. Middleton, Phys. Rev. Lett. 83, 1672 (1999).
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5[17℄ M. Palassini and A. P. Young, Phys. Rev. Lett. 83, 5129(1999).[18℄ This is onsistent with κ < 4 and zero double points onthe domain wall in the large sale limit.[19℄ O. Shramm, Ele. Comm. Prob. 6 115 (2001). This for-mula holds for SLE in the upper half plane, but shoulddesribe SLE urves near their start here. Our results areindependent of R, for R < L/2.[20℄ A. A. Middleton, D. Bernard, P. Le Doussal, in prepara-tion.[21℄ M. Bauer, D. Bernard, J. Houdayer, J. Stat. Meh.P03001 (2005).
[22℄ Compared to standard SLE, the formulation of the do-main Markov property is modi�ed for the ase where thestarting point of the urve is not imposed. Eq. 3 is on-sistent with probabilities for urves onditioned to startat a given point de�ned by dipolar SLE.[23℄ Conditioning upon c reveals an interesting stability prop-erty of minimizers to bond removal. For a �xed bond on-�guration in D with minimizer γab, we proved that if theminimizer (DW) γ′ in the ut domain D − γac, where

γac ⊂ γab, starts at c, then (i) the ground states in Dand the ut domain are the same and (ii) γ′ = γcb.
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