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Abstract

The ability to process sequences of input and extract regularity across the distribution of

input is fundamental for making predictions from the observed past to the future.

Prediction is rooted in the extraction of both frequency- and conditional statistics from the

distribution of inputs. For example, an animal hunting for food may consistently return to

a particular area to hunt if relative to all other areas visited, that area has the highest

frequency of prey. In contrast, humans asked to predict the next word in a sentence must

make a prediction based upon higher-order regularities rather than simple frequency

statistics (the most frequent word in the English language is the). The Serial Reaction

Time (SRT) task, a model for studying sequential behavior, is used to quantify sensitivity

to sequential constraints present in structured environments (Nissen & Bullemer, 1987).

The SRT task requires S s to make a unique response to each individually presented

element from a sequence of elements. The statistics of SRT sequences, such as the relative

frequency of elements and simple pairwise associations between elements, can be controlled

to create dependencies that can only be predicted by learning higher-order associations.

Sensitivity to the sequential constraints present in the structured input is demonstrated

through differences in reaction time to elements that are, and are not, predictable based

upon the statistics of the input environment. Sensitivity to statistical regularity in the

environment is also a critical dimension of various episodic learning methodologies. Graded

associations have been demonstrated among elements extending in both forward and

backward directions in episodic memory tasks, and are suggested to reflect a gradient of

the underlying structural relationships among the study elements. Graded associations are

beneficial to the extent that they increase the probability of recalling sequence elements.

However, unlike free and serial recall tasks, backward associations, and remote associations

in general, are anti-predictive in the SRT task. The formation of associations beyond the

immediately predictive element in prediction tasks could be suggestive of a ubiquitous

underlying associative mechanism, which universally gives rise to graded contiguity effects,



regardless of the specific application (Howard, Jing, Rao, Provyn, & Datey, 2009). The

following experiment employed a probabilistic SRT task to quantify sensitivity to

immediately backward, backward-remote, and forward-remote associations. S s were

presented sequences of elements probabilistically sampled from an underlying

ring-structure, with the dependent measure S s’ reaction time to elements that either

followed, or deviated from, the structure. Results from the SRT task indicated that S s

demonstrated a robust backward association, as well as evidence for forward-graded

associations. Moreover, in an explicit test of sequence knowledge, while S s did not generate

the probabilistic statistics from the structured learning environment, S s did generate a

statistically significant amount of backward-transitions, relative to other remote-backward

transitions. The graded associations that were formed beyond the immediately predictive

element in the prediction task provide evidence that a similar mechanism that mediates

episodic learning may also mediate statistical learning. Backward and graded associations

may be explained by a ubiquitous underlying associative mechanism, which universally

gives rise to graded contiguity effects, regardless of the specific application.
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Introduction

In the natural world, some environmental elements change according to regular, periodic

patterns over time. Prediction in these non-random environments can be guided by both

the temporal co-occurrences of elements, as well as the probability that groupings, or

sequences, of specific elements are followed by other elements. Organisms that can extract

some degree of the statistical regularity present in the environment can in principle reduce

uncertainty about future events to more accurately anticipate subsequent events. For

example, it behooves a foraging animal to learn that the sight of moving prey often

precedes the scent of the prey, and that the scent of the prey usually precedes its taste.

With respect to human learning, there is behavioral evidence indicating that the

extraction of regularities from temporal sequences of events is a mechanism central to

cognition. In addition to being central to cognition, this identification of patterns within

sequences appears to occur very early in development. At two months of age, after only a

few minutes of exposure to a series of visual stimuli that alternate between the left and

right sides of a display, infants make anticipatory eye movements to the next event in the

sequence (e.g., Canfield & Haith, 1991). By eight months of age, infants can identify

word-like units in continuous speech after as little as 2 minutes of exposure (Saffran, Aslin,

& Newport, 1996; Aslin, Saffran, & Newport, 1998). As demonstrated by infants,

statistical learning of adjacent stimuli can occur without explicit awareness of the

underlying structure of the input. Moreover, statistical learning has been shown to be

domain general, with evidence for sensitivity to different stimulus probabilities across
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streams of continuous auditory input (Saffran, Johnson, Aslin, & Newport, 1999) and

temporal sequences of visual shapes (Fiser & Aslin, 2002).

Serial Reaction Time Task

An overarching goal of the field of statistical learning is to provide a framework for

studying prediction and inference. Central to statistical learning is the assumption that

input, such as events in the environment, follow some unknown probability distribution.

Following this assumption, successful prediction is typically dependent upon sensitivity to

the distributional properties of the input environment. Evidence for having learned the

distributional properties of the input environment is demonstrated by way of accurate

predictions of the frequency and time-course of an events (Vapnik, 1998). Some

methodologies for investigating sequential behavior, but which are not reviewed here, hail

from the artificial grammar learning domain (Knowlton, Ramus, & Squire, 1992; Knowlton

& Squire, 1994), as well as the procedural learning literature (for review see Willingham,

Nissen, & Bullemer, 1989).

The serial reaction time (SRT) task, a model for studying sequential behavior, can

be used to quantify sensitivity to sequential constraints present in structured environments

(Nissen & Bullemer, 1987). During the SRT task, a fixed set of elements, such as letters,

are presented to subjects (S s). Each element is associated in a one-to-one element-response

mapping to a distinct and spatially unique motor response. Elements are presented

individually and the S s task is to produce the motor response, such as pressing a specific

button, that corresponds to each element. Unbeknownst to S s, there are predictive

relationships among the elements. Evidence for sensitivity to the probabilities governing

the transitions among elements is demonstrated through decreases in reaction time (RT) to

predicted, relative to randomly presented, elements.

Consider the sequence a-b-c-a-b-c.... In this example, element a is a predictor for
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element b and element b serves as the prediction. Element b is a predictor for element c,

with element c serving as the prediction. From the example, because element a always

predicts element b, the probability that element a predicts element b is 1,

p(xi+1 = b|xi = a) = 1. A statistical learner’s ability to extract this prediction statistic will

be manifest behaviorally as faster RTs to the predicted element when it follows the

predictor element, relative to RTs to the same element if that element is presented

randomly. Returning to the example, given that element a is presented at time step i, RT

to element b at time step i + 1 should decrease as the statistical learner becomes sensitive

to the prediction statistics of the distribution.

In the classic version of the SRT task the time-course of statistical learning is

assessed by comparing RTs between pseudorandomly assembled sequences of elements to

sequences of elements with an embedded structure, usually much more subtle than the

structure in the example sequence above. However, regardless of whether an SRT sequence

of elements is pseudorandomly assembled or has structure, RT decreases universally across

time for all of the elements as a function of practice and exposure to the SRT task. This

universal decrease in RT is resultant from enhanced proficiency with the specific

element-response mappings. Importantly, if structure is embedded into the sequence, then

RTs to predictable elements decline below the baseline-RT of random-sequence elements.

The decline in RT to structured sequence-elements is ascribed to sensitivity to relevant

sequential contingencies, which presumably enable the learner to anticipate subsequent

elements.

The SRT task can be implemented using either a deterministic or a probabilistic

testing methodology. In the deterministic testing methodology, a fixed sequence of

elements is repeated across blocks of determinstic trials, with transfer blocks of random

trials inserted between blocks of deterministic trials (e.g, Nissen & Bullemer, 1987).

Sequential learning is assesed by comparing performance on deterministic blocks with

performance on random blocks. The structure of the deterministic and transfer block trials
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should be carefully controlled to ensure that sequential learning exhibited by S s is not

simply learning of relative frequency. Consider the Nissen and Bullemer (1987) ordered

trial sequence: 4-2-3-1-3-2-4-3-2-1. Note that some positions occur more frequently than

other positions (i.e., 1 and 4 occur 2x’s; 2 and 3 occur 3x’s). This sequence is in contrast to

transfer blocks from the same study in which on average, each position occurred equally

often. Since position frequency was not equated, RTs to deterministic trials could be faster

than RTs to transfer blocks simply because S s learned the nonsequential information that

some positions were more likely to occur than other positions.

An alternative to deterministic sequence generation is probabilistic sequence

generation. Probabilistic sequences can have noise randomly inserted into the sequence, or,

more commonly, these sequences may be variants of deterministic sequences in which the

conditional probabilities between elements has been maninpulated (e.g., Schvaneveldt &

Gomez, 1998; Cleeremans & McCleeland, 1991). For example, the sequence fragment a b

c may be followed by element d with probability 0.90, and by element e with probability

0.10.

There are three major limitations to the deterministic testing methodology that can

be obviated with probabilistic sequence generation. First, in the deterministic sequence

task design, learning is disrupted during the abrupt switch from deterministic to random

blocks. In contrast, the probabilistic task design enables learning can be assessed

continuously during training, without disruptions to S s’ representations of the task.

Second, S s can more easily explicitly learn sections of a sequence in the deterministic

design, while learning is much slower with a probabilistic design. The attenuated learning

rate associated with the probabilistic sampling allows for a larger number of observations to

be collected (Cleeremans & McCleeland, 1991). Third, by its very design, a greater number

of combinations of sequence elements can be represented in a probabilistic sequence than in

a deterministic sequence. Thus, probabilistic sequence learning is more appropriate for

examining S s’ sensitivity to statisical constraints, particularly higher-order associations.
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Higher-order sequential learning involves developing sensitivity to relationships

across structured input that extends beyond simple frequency effects and beyond simply

learning strings of pairwise associations. In so far as tests of statistical learning are

designed to measure sensitivity to higher-order associations, in addition to controlling for

relative frequency, sequential trials must also control for pairwise associations between

adjacent stimuli. Consider again the (Nissen & Bullemer, 1987) sequential trial sequence:

4-2-3-1-3-2-4-3-2-1. While the sequence does not contain uniquely predictive pairwise

associations, the sequence does contain probabilistically predictive pairwise associations

(Jackson & Jackson, 1992; Stadler, 1992). That is, 3 predicts 2 more often (2x’s) than 3

predicts 1 (1x); 4 predicts both 2 and 3, but 4 never predicts 1. S s who are sensitive to the

probabilistically predictive pairwise associations may exhibit faster RTs for sequential trials

than for pseudorandom trials, without having necessarily learned higher-order relationships

beyond these first-order conditional associations. First-order conditional sequence learning

will first be discussed, followed by higher-order sequence learning.

First-Order Conditional Sequences

The simplest kind of sequence of events is a Markov chain, which is a sequence composed

entirely of adjacent predictive elements in which each sequence element at time-step i, (xi),

unambiguously predicts the next sequence element (xi+1). In the statistical learning

literature, these Markov chains are referred to as deterministic first-order conditional

(FOC) sequences. The probability of a transition between consecutive elements in a FOC

sequence is given by the conditional probability p(xi+1|xi). For example, given the

sequence, a-b-c-a-b-c..., p(xi+1 = B|xi = A) = 1.

While the simplest type of sequence learning involves fixed sequences most

sequences of events in the natural world contain a mix of patterned and un-patterned, or

random, variability. The computational problem of finding structure in a continuous
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stream of experience that can then be used to guide prediction is multi-tiered: reusable

units are first detected; patterns are then generalized or inferred across the units; finally,

the predictive value of the patterns across the units can be assessed to enable accurate

prediction of future events. As an example consider human infant learning. Much of

human infant learning is organized serially (over time), including locomotion, social

interaction and ultimately, language (Goldstein et al., 2010; Lashley, 1951). Elements can

be detected from a stream of continuous input and later predicted by computing the

likelihood that element X predicts element Y .

More similar to the natural world in which events are not perfectly predictable,

probabilistic sequences are composed of relationships between elements in which at least

some of the elements predict other elements with probability < 1. Consider a probabilistic

FOC sequence in which element x is a predictor for both elements y and z with unequal

probabilities. Specifically, assume that element x predicts element y on 80% of the trials in

which it is presented and element z on the remaining 20% of the trials in which it is

presented. As S s become sensitive to the probabilistic prediction statistics for element x,

the conditional uncertainty for elements presented immediately after x should decrease.

Given that element x is presented at time step i, if a sequence learner has extracted the

prediction statistics of element x, then his/her RT to the element presented at time-step

i + 1 should be faster if that element is y, than if that element is z.

Transition probabilities (TPs) are prediction statistics that quantify the strength

with which x predicts y. TPs are calculated according to the equation

TP = p(y|x) = frequency(xy)
frequency(x)

. This conditionalized statistic tracks the frequency that

elements co-occur in a particular order, normalized as a function the element’s overall

frequency in the corpus. TPs are important for extracting temporally co-occurring

sequences of phonemes from continuous input, such as identifying the boundaries between

words in fluid speech.
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Adjacent Statistical Segmentation

Adjacent Linguistic Statistical Segmentation

The continuous nature of speech makes word segmentation a particularly challenging task.

Fluid speech is not characterized by words delineated by obvious acoustic cues, such as

pauses between word boundaries (Cole & Jakimik, 1980; Saffran, 2003). For example,

infants are not innately equipped with the knowledge that pretty and baby are words, while

the sequence of letters tyba spanning the words’ boundaries is not a word (Saffran et al.,

1996).

To successfully segment words from a continuous stream of sounds, S s must first

discriminate the speech syllables, then track the temporal order in which these syllables

occur, and finally, track the probability of these orderings (Newport, Hauser, Spaepen, &

Aslin, 2004). Despite the difficulty of word segmentation, infants as young as 7.5-months of

age are able to extract words from continuous speech streams by tracking the co-occurrence

statistics of adjacent elements (Jusczyk & Aslin, 1995). Saffran et al. (1996) exposed

8-month olds, first graders and adults to continuous sequences of spoken nonsense

languages composed of multisyllabic words (e.g., golabupabikututibubabupugolabubabubu...).

S s were tested on whether they could discriminate words from the language (e.g., golabu)

with sequences that spanned word boundaries (e.g., bupabi). Results confirmed that all

three groups of S s could discriminate word boundaries, which the authors suggest is

evidence for sensitivity to the statistical properties of the languages.

When tracked across a corpus of sounds, the TP between two sounds is typically

higher within words than between words (e.g. Harris, 1955; Saffran et al., 1996; Saffran,

Newport, & Aslin, 1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997; Aslin et al.,

1998). This ability to naturally and automatically encode statistical regularities in speech

streams without overt guidance or reward appears to begin even before infancy, while in

utero, with newborns demonstrating preference for speech in the mother’s language as
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compared to other languages (Moon, Panneton-Cooper, & Fifer, 1993).

Adjacent Non-Linguistic Statistical Segmentation

In addition to evidence that statistical segmentation is present in linguistic domains,

behavioral studies have shown that humans can extract statistical regularity in scenes of

visually displayed shapes. Each visual scene is composed of abstract shape elements. The

shape elements are concatenated into visual chunks in which two or more spatially adjacent

shape elements always co-occur in the same relative configuration. There are no obvious

cues to segment the identity of the visual chunks other than co-occurrence statistics. After

familiarization with the visual scenes, S s reliably choose fragments of visual chunks over

random combinations of shapes. Moreover, both adults (Fiser & Aslin, 2001) and infants

(Kirkham, Slemmer, & Johnson, 2002) are able to detect the statistical consistencies

among adjacent shapes to group them into shape “words”.

In addition to static visual scenes of shape “words”, Kirkham et al. (2002)

habituated young infants to sequences of predictable discrete visual stimuli. Infants were

then tested on the statistically predictable sequence alternating with a novel sequence of

identical discrete visual stimuli. Infants exhibited significantly greater interest in the novel

sequences. Fiser and Aslin (2002) likewise presented adults with a continuous temporal

sequence of shapes. Despite the fact that the frequency of individual shapes across the

sequence was equated, adults demonstrated sensitivity to the temporal structure of the

sequence.

These results suggest that statistical learning of adjacent dependencies extends

across development and domain, with infants and adults alike able to extract the statistical

information for shape word boundaries with potentially the same mechanisms as auditory

word boundaries. Further support for the hypothesis that similar mechanisms for

extracting statistical regularity operate across domains is present in studies of language

impairment. Children with specific language impairments have corresponding difficulty
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with non-language, visual sequence learning (Tomblin, Mainela-Arnold, & Zhang, 2007).

Some authors suggest that the ability to learn from experience through statistical learning

contributes to, if not mediates, subsequent linguistic performance (Misyak, Christiansen, &

Tomblin, 2010).

N th-Order Conditional Sequences

Prediction tasks often involve higher-order non-adjacent dependencies in which recursive

pairwise associations, such as those present in FOC adjacent dependencies, are

non-predictive. Instances of non-adjacent dependencies in the natural environment are

abundant in language comprehension and production. In English, for example, auxiliaries

and inflectional morphemes (e.g., am typing, has worked) as well as number agreement

dependencies (the dogs in the yard are dirty) are separated by intervening elements.

Recurrent connectionist models have been successfully applied to SRT learning (e.g.,

Cleeremans & McCleeland, 1991; Cleeremans, 1993) and in general, a mechanism that is

sensitive exclusively to FOC associations between adjacent stimuli is computationally

insufficient to model higher-order sequence learning. Prediction of higher-order

non-adjacent dependencies is contingent upon some combination of preceding elements

(Reed & Johnson, 1994; Reber & Squire, 1994; Curran, 1997; Schendan, Searl, Melrose, &

Stern, 2003). Consider element b from the repeating second-order conditional (SOC)

sequence a-b-a-d-b-c-d-a-c-b-d-c. b appears in three different FOC prediction contexts,

b-a, b-c and b-d, so is not uniquely predictive of any one element. Computationally,

however, the representation of the first b is different from the representations of the second

and third b’s because in each instance, element b is preceded by different elements (i.e.,

a-b, d-b and c-b). For accurate prediction, learners must extract both the FOC

associations between immediately adjacent elements and extend the temporal context back

two time steps to generate a unique prediction. For example, if xi = B and xi+1 = C, then

9



xi+2 = D, or p(xi+2 = D|xi = B, xi+1 = C) = 1. Insofar as the representation of each

element is a function of all previous elements, higher-order associations (e.g., third-,

fourth-order) can develop. Sensitivity to these higher-order, non-adjacent dependencies

emerges more gradually than sensitivity to FOC, adjacent dependencies (Cleeremans &

McCleeland, 1991).

Non-Adjacent Statistical Segmentation

Consider again the previous examples of instances of non-adjacent dependencies in the

English language: auxiliaries and inflectional morphemes (e.g., am typing, has worked),

and number agreement dependencies (e.g., the dogs in the yard are dirty). Particularly in

the example of number agreement dependencies, the elements of agreement, dogs and are,

are separated by the irrelevant intervening elements, “in the yard”. Non-adjacent

dependencies characterized by irrelevant intervening input can be examined with artificial

strings of the form aXd and bXe, where the relations are a d and b e, and X is completely

non-predictive. Infants and adults display greater sensitivity to the non-adjacencies when

X is drawn from a large pool of elements as compared to a small pool of elements (Gomez,

2002). In other words, when the context for the intervening elements is either not variable

and therefore relevant to prediction (e.g., X is drawn from a pool of 1) or context is highly

variable and therefore irrelevant to prediction (e.g., X is drawn from a pool of 18 or 24), S s

are best able to detect invariant structure (Onnis, Christiansen, Chater, & Gomez, 2003;

Gomez, 2002).

Evidence that statistical learners are sensitive to non-adjacent dependencies appears

in auditorily presented material from linguistic- (Gomez, 2002; Perruchet, Tyler, Galland,

& Peereman, 2004; Onnis, Monaghan, Christiansen, & Chater, 2004; Newport & Aslin,

2004; Aslin et al., 1998; Saffran et al., 1996, 1997) and non-linguistic domains (i.e., tone

sequences) (Kuhn & Dienes, 2005, 2008; Creel, Newport, & Aslin, 2004; Saffran et al.,
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1999). Additionally, non-adjacent contingencies derived from statistically structured

material have been observed in visually presented shape arrays (e.g. Fiser & Aslin, 2001,

2002; Kirkham et al., 2002). The structural relationships in non-linguistic statistical

learning is subject to spatial constraints analogous to the temporal constraints present in

linguistic statistical learning (Conway, Goldstone, & Christiansen, 2007).

Although human adults and infants readily extract regularity among both

immediately adjacent and non-adjacent elements, there are limitations to the groups’

sensitivities to temporal order in studies of non-adjacent sequence learning. These

limitations to non-adjacent sequence learning are evident in language learning, with

manipulation of the non-adjacency between syllables, consonants and vowels.

Non-Adjacent Syllables. Newport and Aslin (2004) presented subjects with continuous

streams of speech in which patterned relations among syllables occurred between

non-adjacent syllables. The non-adjacent syllables were separated by an intervening

unrelated syllable. Results confirmed that human adults are not readily able to acquire an

artificial language in which words of the language are composed of regularities among

non-adjacent syllables. The authors note that natural human languages also do not contain

words formed from a stem consisting of related syllables 1 and 3.

Non-Adjacent Phonemic Segments (Consonants). While human languages do not

frequently contain word-formation patterns consisting of non-adjacent syllables, a common

non-adjacency pattern in human languages are word-formations consisting of non-adjacent

phonemic segments (consonants) (Newport & Aslin, 2004). For example, Semitic languages

such as Hebrew form many words out of a three consonant stem (i.e., k-t-b, meaning “to

write”) (Newport et al., 2004). Vowels inserted between the consonants vary contingent

upon the tense of the word. Learners must therefore attend to consistent patterns among

consonants. Newport and Aslin (2004) tested adult English speakers on streams of

continuous speech in which words of the language were composed of regularities of
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non-adjacent consonants. Results confirmed that S s were able to acquire the regularity

(Newport & Aslin, 2004).

Non-Adjacent Phonemic Segments (Vowels). Non-adjacent vowel segments are

another common non-adjacency word-formation pattern. Consider, for example, Turkish

“vowel harmony”. Vowel harmony occurs when vowels spanning a word agree with one

another in certain features, like place of articulation (Newport et al., 2004). Learners of the

Turkish language must attend to consistent patterns among vowels because the consonants

inserted between the vowels vary. Although the ability to monitor word-formation patterns

composed of non-adjacent vowel segments is critical for some languages, the development of

this non-adjacency tracking does not appear to be contingent upon exposure to these

languages. For example, the English language does not contain vowel harmony, none the

less, when tested on streams of continuous speech in which words of the language were

composed of regularities of non-adjacent vowels, adult English speakers were able to

acquire the regularity (Newport & Aslin, 2004).

In summary, statistical learning is not limited to elementary computations on

immediately adjacent syllables, with adult learners demonstrating selective types of

non-adjacent statistical learning. The lack of uniformity across linguistic non-adjacency

learning might be mediated by processing mechanisms. Newport and Aslin (2004) suggest

that S s may process dependencies in terms of element-level segments, at the level of

individual consonants and vowels, which would complicate tracking non-adjacent syllable

regularities. The authors further suggest that the selective sensitivity to individual

element-level non-adjacent dependencies, coupled with the lack of sensitivity to

syllable-level non-adjacent dependencies, may have helped to shape human languages.
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Representations of Sequences

Work from the adjacent and non-adjacent sequence learning literature provides evidence

that statistical learning is a domain-general, fundamental mechanism that contributes to

the development of internal representations of the environment. Transfer learning tasks can

be employed to tease apart these internal representations. That is, whether the internal

representations are of the stimulus, the response, or some intermediate representations

therein. To isolate the components of the internal representations, Cohen, Ivry, and Keele

(1990) kept the stimuli constant, but modified the response sequence to the stimuli in a

sequential learning task. Despite the change in response representations, the authors

observed transfer of learning. These results would seem to support a stimulus-based

representation account of sequence learning since modifying the response representation

did not detrimentally affect sequence learning gains. To test the limits of stimulus-based

representations, Keele, Jennings, Jones, Caulton, and Cohen (1995) manipulated the

response-sequence modality from manual to verbal. This extreme change in

response-representation resulted in incomplete transfer. Because some of the learning gains

were lost in the transition from manual to verbal responses, the authors suggested that

sequence learning is not entirely stimulus based.

To examine if the internal representations of the environment formed during

sequence learning are response-based, Willingham (1999) initially instructed S s to respond

to spatial locations of stimuli using an incompatible response-key mapping. The

stimulus-sequence was then changed such that the the response-key mapping was

compatible with the stimulus mapping. Results confirmed that the sequence learning

transferred to the new condition, as long as the order of the response-key presses remained

the same as in the initial learning condition.

With data from the transfer learning literature supporting both stimulus- and

response-based representations of the environment, it is likely that what is being

represented in sequence learning is some combination of both the stimulus and response
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contexts. This hypothesis is consistent with within-domain evidence that the products of

statistical learning are fairly abstract and generalizable. In the visual domain, S s presented

with colored visual stimuli at familiarization were able to abstract these regularities to

black shapes during test (Turk-Browne, Junge, & Scholl, 2005). In the auditory domain, S s

were able to generalize from non-distorted input at familiarization to distorted input at

test (Vouloumanos, Brosseau-Liard, Balaban, & Hager, 2012). While segmented units are

fairly abstract and generalizable, the products of statistical learning do not transfer

particularly well across modalities (e.g., from auditory to visual stimuli) (Conway &

Christiansen, 2006).

Explicit Knowledge

An implicit learning task is one performed without the S ’s awareness of, or conscious effort

to use, memory representations to influence performance with items that had been

previously presented. Sequence knowledge is assumed to be implicit insofar as S s

demonstrate sensitivity to the underlying sequence structure in the context of an indirect

test of learning. If the sequential representation is in fact conscious, then S s should employ

this knowledge when instructed to so do in an explicit test of knowledge (Merikle &

Reingold, 1991).

The most standard recall tests of explicit knowledge range from free verbal reports

to unstructured questionnaires (e.g. Willingham et al., 1989; Lewicki, Hill, & Bizot, 1988).

For example, Perruchet and Amorim (1992) employed a “free” generation task in which S s

were instructed to generate complete sequences of trials, absent feedback. Other authors

have proposed recognition tasks in lieu of recall, wherein S s are presented with sections of

sequences and instructed to judge the likelihood that the sequence appeared during the

SRT task (Willingham, Greenley, & Bardone, 1993; Perruchet & Amorim, 1992). However,

both verbal report- and recognition paradigms have been characterized as weak methods

14



for assessing explicit knowledge of implicit learning (Jackson & Jackson, 1995; Perruchet &

Amorim, 1992; Shanks & St. John, 1994) because the test context is incongruent with the

learning context of the SRT task.

Nissen and Bullemer (1987) developed an explicit test of sequence learning

specifically designed to be more contextually equivalent to the SRT task. This “standard”

generation test was a cued-recall design in which S s were presented with a visual stimulus

from the previously performed SRT task, and were instructed to explicitly predict the

stimulus that should come next in the sequence. On each trial, the stimulus appeared

below one of six screen positions and S s had to press the key corresponding to the position

at which they expected the next stimulus to appear. The standard generation task differed

from the SRT task in that S s were instructed to generate a response and to respond slowly.

Accuracy, rather than RT, was the primary dependent measure. S s were instructed to keep

guessing until a correct prediction was produced–such that several guesses could occur

between any two trials of the task–at which point the next stimulus was presented and the

next prediction trial initiated. Accurate performance on the standard generation task was

taken to reflect explicit knowledge of the SRT sequence. Despite demonstrating sensitivity

to the relationships among the sequence elements in the SRT task, S s were not able to

accurately generate these relationships in the explicit prediction task (Nissen & Bullemer,

1987; Cohen et al., 1990; Willingham et al., 1989).

While more contextually similar to the SRT task than recognition or explicit recall

tasks, the standard generation task and the SRT task are arguably still procedurally

distant. Moreover, the multiple guessing design of the generation task may induce memory

interference such that the responses produced by S s on each trial could interfere with

memory of previous elements (Perruchet & Amorim, 1992; Jimenez, Mendez, &

Cleeremans, 1996). An alternative to the standard generation task, the “continuous”

generation task is a more contextually similar, direct test of SRT learning (Cleeremans &

McCleeland, 1991; Cohen et al., 1990; Shanks & Johnstone, 1999; Jimenez et al., 1996).
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During the continuous generation task, S s are required to predict the next stimulus

on each trial in a stimulus-prediction-stimulus-prediction design. Instructions emphasize

accuracy, rather than RT, and consistent with the SRT task, S s’ responses are captured via

keypress rather than via recall. Some designs (e.g., Cleeremans & McCleeland, 1991) sound

a beep for incorrect predictions. In contrast to the standard generation task, the next

stimulus presented on each trial is defined by the sequential structure, regardless of S s’

prediction responses.

The role of awareness, or explicit knowledge, in a sequential learning task may not

be a necessary condition for statistical learning. Instead, the interaction of sequential

learning system(s) with other neural areas could cause the emergence of explicit knowledge.

While explicit knowledge is not a prerequisite for successful performance on the SRT task,

it has been shown to enhance SRT learning (Perruchet & Amorim, 1992; Willingham et al.,

1989). For example, S s who acquire explicit knowledge of the underlying sequence

structure demonstrate more anticipatory responding and faster RTs (Curran & Keele,

1993; Willingham et al., 1989) than do S s with little to no explicit knowledge. Explicit

knowledge may enable S s to generate the next stimulus prior to stimulus onset, while

implicit knowledge may reflect a priming process that facilitates responses but does not

enable explicit recall. Curran and Keele (1993) found that S s who explicitly learned a

sequence demonstrated a RT advantage in comparison to S s who implicitly learned the

same sequence. However, this enhanced SRT performance mediated by explicit knowledge

disappears if S s are transferred to a distraction condition (Curran & Keele, 1993).

A variety of factors can influence S s’ ability to obtain explicit knowledge of the

relationships between sequence elements. S s can be explicitly informed of the presence of

structure in the sequence of stimuli. The complexity of the sequence, that is, whether it is

deterministic or probabilistic, will affect whether S s become explicitly aware of the

structure. The presence or absence of a distractor can attenuate or altogether eliminate the

ability to acquire explicit learning. In addition to explicit instructions, the complexity of
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the sequence structure, and the presence or absence of a distractor, the response-stimulus

interval (RSI) can also influence the acquisition of sequence knowledge. Frensch and Miner

(1994) found implicit learning when RSIs were brief (500ms), while explicit learning was

significant after longer intervals (1500ms). The authors suggest that in the implicit

sequence learning condition, the stimuli become associated together by being co-activated

in short-term memory. However, this co-activation in short-term memory only persists for

short RSIs. In contrast, the authors suggest that explicit SRT learning is related to a

working memory contribution (particularly given the sensitivity to distraction found in

explicit learning conditions). Longer RSIs would enable active rehearsal processes to

maintain the activation of the stimuli across longer time periods, which could result in

explicit knowledge of the relationships between sequence elements.

Episodic Memory

Recall that both adjacent and non-adjacent dependency statistical learning has been

demonstrated across human development and stimulus modality. It is therefore certainly

conceivable that learning mechanisms not necessarily “designed” for a specific application

may mediate both prediction, and more generally, statistical learning. In addition to tasks

historically classified as tests of “statistical learning” (e.g., the SRT task), sensitivity to

statistical regularity in the environment appears to be a critical dimension of various

episodic learning methodologies.

While statistical learning is typically understood as developing the ability to predict

the future, episodic memory is typically understood as the ability to remember specific

instances from the past. Although seemingly disparate paradigms, consider the similarity

between the episodic memory paired-associate learning task and the statistical learning

deterministic FOC sequence learning task. In paired-associate learning (e.g., a-b, c-d), the

first element of each pair (e.g., a, c) serves as a cue for the recall of the second element
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(e.g., b, d). The literal responses required in each task differ (i.e., recall vs. motor

responses). However, within each methodology the task of the learner is to make a future

response based upon the prediction generated by the probe element. The relationship

between elements of each pair in paired-associate learning is similar to that of the

relationship between two sequential elements in a deterministic FOC sequence.

It has been extensively documented in paired-associate learning, as well as across a

variety of episodic recall paradigms, that graded associations can be formed among

elements co-occurring in close temporal proximity (e.g., the first and second elements of a

pair sequence; for a review, see Kahana, Howard, & Polyn, 2008). As such, it has been

hypothesized that temporal contiguity could be the essence of, or at the very least an

underlying mechanism facilitating, episodic memory (Sederberg, Howard, & Kahana,

2008). Kahana (1996) introduced the lag-recency effect to illustrate the associated

structure of item learning in episodic memory. With respect to free recall, after having

learned a list of words, successively recalled items have a higher probability of originating

from nearby serial positions than remote serial positions. This lag-recency effect is

measured by the conditional response probability curve (CRP curve, Howard & Kahana,

1999; Kahana, 1996). The CRP curve is plotted as a function of the lag, or distance in the

list between studied items. The CRP curve is characteristically peaked in the middle

around lag zero, indicating recalls are more probable around nearby serial positions. It is

also asymmetric, with higher conditional probabilities of recalling an item in the forward

than in the backward direction.

In serial list learning, elements can be associated together by virtue of their

temporal order. For example, having recalled element “A” increases the probability that

element “C” will be recalled over element “F”. While a temporal contiguity mechanism

may be sufficient for associating serial elements together, the formation of associations

among non-adjacent elements through temporal contiguity could place an unmanageable

computational burden upon learners. In other words, if elements must co-occur close
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Figure 1: Conditional response probability (CRP; left) and conditional response latency
(CRL; right) as a function of serial position lag. Error bars represent 95% confidence inter-
vals. Figure originally presented in (Sederberg et al., 2010).

together in time to become associated together, then the predictive relationship between

elements not presented together in time could quickly become obfuscated as a function of

the quantity of intervening elements.

Kilic, Criss, and Howard (2013) demonstrated both short- and long-term

continguity effects in a probed recall task in which test order was specifically disrupted to

be uncorrelated by the use of multiple study lists. A short-term continguity effect was

evidenced by the data that S s tended to generate words from nearby serial positions if the

generated words were from the same list as the probe item. Importantly, there was

simultaneous evidence for long-term contiguity effects in the experiment: given that S s

recalled a word from a different list from the probe item, words tended to come from

nearby lists. The Kilic et al. (2013) results provide evidence against temporal contiguity, as

well as correlations between study and tests contexts, as the mechanisms exclusively

driving the associations present in these continguity effects.

Howard et al. (2009) examined the associative structure induced by learning

double-function lists of paired-associates (e.g., a-b, b-c) and demonstrated graded
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contiguity effects. The graded contiguity effects reflected the ordered-sequence from which

elements had been drawn, and importantly, represented associations formed among words

that were never presented together in time (see also, Popper, 1959; Slamecka, 1976; Bunsey

& Eichenbaum, 1996). Rather than reflecting a gradient of temporal contiguity, Howard

et al. (2009) suggested that the associations formed among elements that did not

temporally co-occur reflected a gradient of the underlying structural relationships among

the study elements.

The graded associations formed among elements in the Howard et al. (2009) study

extended in both the forward and the backward directions. Backward associations are a

ubiquitous result across a variety of episodic recall tasks (e.g. Primoff, 1938; Kahana et al.,

2008; Slamecka, 1976; Kahana, 1996; Klein, Addis, & Kahana, 2005) and are beneficial to

the extent that they increase the probability of recalling sequence elements. However,

unlike free and serial recall tasks, backward associations, and graded associations in

general, are anti-predictive in paired-associate learning tasks. That is, there is no benefit to

predicting an element other than the one being probed. In fact, backward associations are

the primary source of interference in paired-associate learning tasks (Primoff, 1938;

Umemoto & Hilgard, 1961; Young, 1961; Slamecka, 1976; Howard et al., 2009; Provyn,

Sliwinski, & Howard, 2007). The formation of associations beyond the immediately

predictive element in prediction tasks is suggestive of a ubiquitous underlying associative

mechanism, which universally gives rise to graded contiguity effects, regardless of the

specific application (Howard et al., 2009).

While Howard et al. (2009) provided evidence in an episodic learning task, Hunt

and Aslin (2010) provided promising evidence for transitive associations among elements in

a non-episodic learning task. The authors constructed “grammars” of elements grouped

into categories. Using an SRT task, they constrained the distributional information

available from the presentation sequence. The extraction of the categorical membership of

the stimulus elements was dependent upon the stimulus elements’ prior and posterior
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probabilities during training and test, rather than on the elements’ serial order positions.

Results demonstrated that S s were able to induce categories on the basis of distributional

information, but also that they became differentially sensitive to variations in the

transitional statistics that defined the categories.

Sensitivity to Backward and Graded Associations

In addition to forward transitional probabilities, Aslin et al. (1998) suggested that

backward associations, while perhaps not informative in standard SRT prediction tasks, are

useful for discovering some relationships in language learning. For example, backward

transitional probabilities are far more informative than forward transitional probabilities

for discovering the grammatical category “noun” (Willits, Seidenberg, & Saffran, 2009).

The specific degree of sensitivity to backward and forward probabilities may in fact be

mediated by the learner’s natural language. For example, in languages with grammatical

gender, sensitivity to backward statistics should facilitate acquisition of linguistic structure

(Pelucchi, Hay, & Saffran, 2009).

Studies that manipulate forward transitional probabilities typically do not control

for backward transitional probabilities. Both probability statistics are typically correlated,

complicating the task of teasing apart independent roles. Pelucchi et al. (2009) specifically

measured whether 8-month-old infants track backward transitional probabilities in

continuous speech of disyllabic sequences. Test words occurred equally often during

familiarization, shared the same trochaic stress pattern and, importantly, had the same

forward transition probability (p = 1.0). After familiarization to the speech stream, infants

were tested on high transitional probability words (where

backward transition probability = 1.0) and low transitional probability words (where

backward transition probability = 0.33). Infants were tested using the Head Turn

Preference Procedure (Saffran et al., 1996). During the familiarization phase, infants
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listened to the language projected from speakers mounted beneath two lights. The lights

served to maintain infant attention and flashed contingent upon looking behavior while the

familiarization sequences played continuously. After familiarization, infants were tested on

trials of single items. Each test item was played and repeated as long as the infant

maintained a head-turn in the direction of the flashing light above the speaker projecting

the sound. Infants demonstrated sensitivity to the backward transitional probability

statistics with significantly longer looking times, on average, to high backward transitional

probability words than to low backward transitional probability words. Perruchet and

Desaulty (2008) likewise demonstrated that adults use both forward and backward TPs for

word segmentation.

Examining Backward and Graded Associations

The following experiment employed a probabilistic SRT task to quantify sensitivity to

backward and remote associations. Stimuli consisted of 11 randomly-selected letters

arranged into an underlying ordered-structure (Figure 2A). Letters were probabilistically

sampled from the structure and assembled into sequences such that the stimulus

presentation traversed the structure in a clockwise direction within the structure. The

transition probability to the sequentially forward-adjacent element was .7. For example,

from Figure 2A, given that l had just been presented, the probability of w next being

presented was p(.7). These transitions were referred to as lag+1. All other letters from the

range of 10 possible letters, excluding the current letter itself—the same element was never

presented in succession—were sampled probabilistically from the ring with probability

p(.3/9). These elements were collectively referred to as lagRM .

The goal of the experiment was to examine whether there would be quantitative

performance differences to lagRM element transitions drawn from an ordered-structure in

which each lagRM transition was constrained to be probabilistically equivalent. The lagRM

associations counter clockwise in the ordered-structure from lag+1 actually reflect a binding
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of an element to elements that preceded it in the past and, as such, are arguably the

opposite of prediction. Interpreted at the task-level, in so far as the goal is to predict the

next clockwise element in the sequence, consistent counter clockwise predictions are

paradoxical. Consistent counter clockwise predictions represent predictions of the past,

which are uninformative and incorrect responses in the context of the SRT task. Beyond

the SRT task, however, a member of the lagRM category, lag−1 (e.g., w → l) associations

have been demonstrated across a variety of recall tasks, and sensitivity to lag−1 statistics

are suggested to facilitate acquisition of linguistic structure (Pelucchi et al., 2009).

Based upon the probabilistic learning environment of this experiment, because the

probability of lag−1 was the same as the probability of any other lagRM , lag−1 should not

be better predicted than any other lagRM . That is, RTs to the transition i→ i− 1, should

not differ from the RTs to i→ i± x, where x is any lag from 2 to 5. Sensitivity to

backward associations in this experimental context would be manifest as a reduction in RT

to lag−1 predictions. For example, given that xi = l, evidence for a backward association

would be faster RT to xi+1 = v, relative to other lagRM transitions. In addition to

sensitivity to lag−1 associations, lagRM RTs were predicted increase as a function of the

absolute value of lag. For example, RT to the transition p(xi+2|xi) was predicted to be

faster than RT to the transition p(xi+5|xi).
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Experiment

The experiment specifically examined the question of whether backward and graded

associations can be observed in a statistical learning paradigm. Letter-elements, henceforth

“elements”, were individually presented in runs of ordered test-sequences in an SRT task.

Elements from the test-sequences were visually presented on a computer screen. The

subjects’ task was to respond, via key-press, to each element. Test-sequences were

systematically assembled from an underlying ordered-structure. To create the

test-sequences, at each time-step i, the probability of moving forward one slot in the

ordered-structure was .7. The probability of jumping to any other element in the

ordered-structure was .3/9.

FOCs were probabilistically constrained to examine whether subjects would

demonstrate sensitivity to the underlying ordered-structure from which the elements were

sampled. If subjects were sensitive only to the probability of each lag transition, then at

each time-step i, RTs should be fastest to elements presented one slot forward in the

ordered structure, and RTs should not differ significantly across the other element

transitions. However, if subjects were also sensitive to the underlying ordered-structure

from which the elements were sampled, then RTs should differ as a function of the distance

within the ordered-structure between the element presented at time-step i and the element

presented at time-step i + 1. A lag statistic (e.g., Kahana, 1996; Howard et al., 2009) was

used to quantify associations within the ordered-structure.

Lag is defined as the distance between two elements in an ordered-structure. Larger
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absolute values of lag indicate greater distance between the elements, while the sign of the

lag indicates the direction of the distance. A positive lag represents a transition to an

element in the clockwise direction within the structure, while a negative lag represents a

transition to an element in the counter-clockwise direction. A function of the circular

nature of the ordered-structure, each transition could be defined by two lags. For example,

from Figure 2A, z → v is both a lag+2 and a lag−9 transition. Unique lag values therefore

were constrained to the ranges [−5,−1] and [1, 5]. Lag0 was excluded from the range of

legal lags because the same element was never presented in succession.

The relationship between the element at time-step i and the element clockwise one

slot in the ordered-structure, is defined as lag+1. Illustrated in Figure 2A and B, an

example of a lag+1 transition is z → o. All other lags were referred to as lagRM . The

lagRM category was further delineated into three specific groups: lag−1; lag+RM ; and

lag−RM . A lag−1, or backward transition, was defined as a transition from the element at

time-step i to the element one slot counter-clockwise in the ordered-structure. From

Figure 2A and B, an example of a lag−1 is the transition l → v. A lag+RM transition was

defined as a non-lag+1 transition in the clockwise direction in the ordered-structure from

the element presented at time-step i. An example of a lag+RM transition from Figure 2A

and B is l → p. Due to the circular nature of the ordered-structure, lag+RM values could

range from lag+2 to lag+10. Note that a lag+10 transition, z → q, has already been defined

as a lag−1 transition. From the specific hypotheses motivating the experiment, lag+RM

values were constrained to the range of clockwise transitions from lag+2 to lag+5.

A lag−RM transition was defined as a counter-clockwise transition in the

ordered-structure from the element presented at time-step i. Lag−RM values, again due to

the circular nature of the ordered-structure from which the test-sequences were generated,

could range from lag−2 to lag−10. Again from the specific hypotheses motivating the

experiment, lag−RM values were constrained to the range of counter-clockwise transitions

from lag−2 to lag−5.
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This experiment provides two distinct and unique contributions to the literature.

First, the exeperimental design marries the SRT methodology for measuring sensitivity to

statistical regularity in structured environments with the analytic techniques limited

heretofore to episodic memory methodologies. The experiment therefore serves as a bridge

between the two literatures. Second, the simplicity of the underlying ring structure from

whence stimuli were probabilistically sampled lends itself precisely to examining sensitivity

in the learning environment, without having to extract variance or otherwise control for

complex finte-state grammatical structures.

To quantify explicit learning of the ordered-structure in this experiment, an

“interposed generation” set of trials followed the final SRT trial. Element sampling and

presentation in the interposed generation trials were identical to that of the SRT trials,

with the exception that occasionally S s were required to explicitly predict which element

should come next in the sequence. If S s are sensitive to the FOC probabilities–wherein

each element predicted another element with probability .7–then predictions should be

primarily composed of lag+1 transitions. Additionally, if S s had become sensitive to the

ordered-structure from which elements were probabilistically sampled, then errant

predictions should be composed of more predictions to promixal lags, with the probability

of errant predictions decreasing as a function of the absolute value of lag.

Importantly, there are two reasons that the interposed generation task is a unqiue

and distinct contribution to the literature as a method for quantifying explicit SRT

learning. First, in both the standard and continuous generation tasks, extended practice

and exposure to the task offers a new learning opportunity for S s. The traditional way to

address this issue has been to limit generation trials, with some authors suggesting that

only the first few repetitions of a sequence can be considered relevant for analysis

(Willingham et al., 1989). The interposed generation task largely removes the task as a

learning opportunity. Recall that the continous generation task requires the S to produce a

prediction at every trial in an element-predict-element-predict format, with some designs
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even incorporating feedback for incorrect responses. In this experiment, since all lagRM

elements were equally likely to be presented, prediction of a lagRM element is not incorrect,

nor does it necessarily lead to new learning by virtue of the fact that the generation trials

were interposed into the stream of the SRT task, rather than in an

element-predict-element-predict format.

Second, both the standard and the continous generation tasks (though see (Jackson

& Jackson, 1995)) emphasize accuracy. Statistical knowledge in a probabilistic learning

environment, however, is reflected in sensitivity to different transition probabilities between

sequentially adjacent elements. The ring structure in this experiment was traversed

probabilistically such that the most statistically likely transition, lag+1, was considered

“accurate” from a serial-order perspective. Beyond lag+1 generated-responses, because each

lagRM transition in the SRT task was equally likely, the pattern of lagRM

generated-responses provides insight into S s ability to express explicit awareness of the

underlying ring structure from which elements were probabistically sampled.

Methods

Subjects

A power analysis using GPower (Faul, Erdfelder, Lang, & Buchner, 2007) indicated that for

an 80% chance of detecting a medium effect (defined by Cohen (1992) as .5 of a population

standard deviation between the means) at the Bonferroni corrected .005 (one-tailed) level,

the mininum total sample size would be 192. Two-hundred and seventeen undergraduate

students participated for course credit in an introductory psychology course at Syracuse

University. Twelve subjects were eliminated from analysis due to errant responses and/or

spurious key-presses comprising ≥ 10% of their total number of responses.
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Materials

Stimulus-elements consisted of the complete 26-letter English alphabet. Lists of elements

were formed for each subject by first randomly sampling 11 elements without replacement

from the alphabet. Each element was then assigned to a slot in an ordered-structure

(Figure 2A). Test-sequences were generated from the elements in the ordered-structure.

Each test-sequence was composed of 60-element slots. A transition matrix

(Figure 3A) was used to sample elements from the ordered-structure to fill each slot. At

each slot in the test-sequence the probability of a lag+1 transition was constrained to be .7.

For example, from Figure 2A, given that element z was presented, element o was presented

next with p(.7). All other lags from the range of 9 lagRM were sampled from the ring with

equal probability, p(.3/9). For example, the probability of a specific lagRM , such as lag−1,

was .03̄. Figure 3A visually depicts these probabilities. Each lagRM was sampled twice per

test-sequence. Twenty-seven 60-element sequences adhering to these transition

probabilities were generated for each subject.

To create the interposed generation sequences, the last two test-sequences generated

for each subject were modified. Twenty-two sequence elements were pseudo-randomly

removed–only elements in list positions six through 60 were eligible for removal and

successive elements were not removed–from each sequence and replaced with a “?” cue.

Procedure

For each of the twenty-five SRT trials, S s were sequentially presented with individual

elements from the given 60-item test-sequence in the center of the computer screen. There

was a one-to-one element-response mapping and S s were instructed to respond as quickly

and accurately as possible to each element with the appropriate key-press. Once an

element was presented it remained on the screen pending a correct key-press. If an

incorrect key was pressed the element remained on the screen and a beep sounded. When

the correct key was pressed the element was cleared from the screen and the next target
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appeared immediately. Previous work has suggested 0 RSI is optimal for eliciting implicit

learning (Destrebecqz & Cleermans, 2001). Response latencies were measured from element

onset to completion of the correct response. If a given RT was ≥ 1200ms, an alert screen to

“PLEASE RESPOND MORE QUICKLY” was interjected for 500ms into the presentation

prior to the onset of the next element. At the completion of each trial there was a break

screen until the next trial was initiated by the S.

After S s had completed twenty-five SRT trials, there were two additional interposed

generation trials. S s were told that they would again be presented with a stream of

sequentially presented elements and were instructed to proceed through the experiment as

in the previous twenty-five trials, as quickly and accurately as possible. In contrast to the

previous trials, however, S s were alerted that they would occasionally see a prompt cue,

“?”. When presented with a prompt cue, S s were instructed to generate the letter that they

predicted came next in the sequence. Consistent with the previous twenty-five SRT trials,

S s were alerted to “PLEASE RESPOND MORE QUICKLY” if RT was ≥ 1200ms. Also

consistent with the previous twenty-five SRT trials, when presented with an element S s

were required to respond with the accurate key-press. In contrast to the SRT trials, when

presented with a prompt cue, if the S pressed any alphabet-character, regardless of the

accuracy of the prediction, the S was not penalized with a beep and the screen advanced to

the next stimulus. If a non-alphabet key was pressed a beep sounded and presentation did

not advance until an alphabet-character was pressed. There was a break after the first

interposed generation trial, with the second interposed generation trial initiated by the S s.

Results and Discussion

Prior to all analyses RT data was subjected to two universal contingencies. First, only

accurate responses to letter-elements were included in RT analyses. Second, all subsequent

RTs were constrained to be within the interval [120, 2500]. The application of these two
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Figure 2: Elements were arranged into an ordered-structure and test-sequences
were generated by probabilistically sampling the structure. A. Ordered-structure
used to generate test-sequences. Elements were randomly assigned a slot in the ordered-
structure. Arrows indicate directionality. B. Example test-sequence. Test-sequences were
generated by probabilistically sampling elements from the ordered-structure. The numbers
indicate lag. Lag is the distance in the ordered-structure between two elements. The sign
of each lag indicates direction in the ordered-structure, with clockwise transitions denoted
by positive values and counter-clockwise transitions denoted by negative values. The dashed
box represents the moving recency-window that captures the elements five time-steps back,
relative to element v. The solid box represents the recency-window relative to element l.

universal contingencies reduced the total analyzable data points from 293,345 to 282,676.

Beyond the two universal contingencies, there were two separate sections of the

experiment, the probabilistic SRT task and the interposed generation task. Each of the two

sections of the experiment warranted further data constraints and specific statistical

analyses. The results from the probabilistic SRT task are first analyzed, followed by

analysis of the results from the interposed generation task.
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Figure 3: Test-sequences were created by probabilistically sampling an ordered-
structure of elements. A. Transition matrix. Elements from Figure 2A are decoupled
and plotted along the rows and columns of the transition matrix. Each cell of the matrix
displays the probability that Element 1 predicted Element 2. The probability of making a
lag+1 transition was p(.7), and is plotted on the diagonal of the matrix. Each .03 value is
a concatenation of (.3/9). B. Lag probability curve. Taken from the transition matrix, the
probability of each lag transition at time-step i is plotted in black. Given the high probability
of lag+1 transitions, there is a non-zero probability of generating a run of elements in a test-
sequence composed exclusively of lag+1 transitions. For example, from Figure 2A, there
is a possibility of generating the sequence z o v l w p g r y x q. Referring back to
Figure 3B, the grey points represent the probability that the lag transition at time step i
is lag+1, contingent upon all previous lags having also been lag+1, p(lagxi

= +1|lagxi−1
=

+1...lagxi−n
= +1). Lags one through five are equivalent to steps one through five clockwise

through the structure. Due to the circular nature of the structure, each lag can be identified
by traversing the structure in either the clockwise or counter-clockwise direction. Lags were
defined as [1, 5] and [−5,−1], with the element at time-step i defined as lag0.

Probabilistic SRT Task

Analysis: Learning Curve

The first section of the experiment was composed of trials one through twenty-five and

consisted exclusively of the SRT task. Figure 4 plots average RT for the sequence

categories, lag+1 and lagRM , aggregated across S s as a function of trial. Examination of
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Figure 4: Learning Curves: Reaction time (RT) is faster to lag+1 transitioned
elements than to lagRM transitioned elements, and this difference increases as a
function of trial. Accurate-response RTs between 120 to 2500 milliseconds are included in
the figure. Error bars reflect 95% confidence intervals. RT was averaged across subjects and
plotted for each trial. Closed bullets are RTs to lag+1 transitioned elements. Open bullets
are RTs to lagRM transitioned elements.

this figure indicates that RT decreases universally across trials. Despite the divergence of

RT trajectories with later trials, there appear to be no differences between lag+1 and lagRM

RTs across the initial trials. Prior to statistical analysis, data were log transformed to

minimize deviations from normality that result from the skew of RT distributions. A

within-subject repeated-measures ANOVA with log-transformed RT as the dependent

measure, trials one through five as regressors and sequence category as a factor (total data

points = 56,525), confirmed a highly significant main effect of trial, F (1, 2042) = 17.1, Mse

= 0.09, p < .001, no significant main effect of sequence category, F (1, 2042) = 0.3, MSe

= .00, p = .6, and no significant interaction of trial with sequence category,

F (1, 2042) = 0.2, Mse = .00, p = .7.

The main effect of trial indicates that performance universally improved with

exposure to the task. The absence of a main effect of sequence category demonstrates that

there were no a priori differences between lag+1 and lagRM RTs. Further, the lack of a
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significant interaction between trial and sequence category indicates that the trajectory of

RT increases were not initially influenced by sequence category. Presumably the absence of

RT differences across the sequence categories, as well as the lack of an interaction of

sequence category and trial, reflect initial skill-learning of the SRT task and corresponding

element-response mappings.

Consider again Figure 4. After initial task and stimulus familiarization, Figure 4

illustrates that although RT continued to decrease universally as a function of trial, RT was

differentially affected by sequence category. Relative to lagRM transitioned elements, RTs

were faster to lag+1 transitioned elements. Moreover, the advantage for lag+1 transitioned

elements appears to increase as a function of trial, widening the performance gap between

the two sequence-category RT trajectories. A within-subject repeated-measures ANOVA

with log-transformed RT as the dependent measure, trials six through twenty-five as a

regressor and sequence category as a factor (total data points = 262,151) demonstrated a

significant main effect of trial, F (1, 8192) = 41.9, MSe = .2, p < .001, a significant main

effect of sequence category F (1, 8192) = 48.7, Mse = .3, p < .001, and a significant

interaction of trial with sequence category, F (1, 8192) = 4.4, Mse = .02, p < .05.

The main effect of trial indicates that RT performance continued to improve for

both sequence categories with continued exposure. The main effect of sequence category

and the interaction of sequence category and trial demonstrate that beyond mere element

exposure, RTs to probabilistic lag+1 transitioned elements were differentially facilitated and

this advantage grew with learning. In short, the main effect of sequence category and the

interaction of sequence category and trial suggests that subjects became increasingly

sensitive to the probabilistic statistics of the test-sequence.

Analysis: CRL Curves

The conditional response latency statistic was used to quantify learning across this section.

The conditional response latency is a RT measure that parses RT as a function of lag
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Figure 5: CRL Figures: while probability of lagRM transitions were equivalent
across lag, lag−1 RTs were faster than lag−RM RTs, and lag+RM RTs increased as a
function of lag. Trials one through five were excluded from analysis, as well as the initial
five RTs of each trial. Only accurate-response RTs between 120 to 2500 milliseconds are
included in the figures. RTs were log-transformed and then normalized by the averaged RT
of lag+1 transitions by subject and trial. Error bars in both panels reflect 95% confidence
intervals. A. Conditional response latency across all lags. Points represent average RT
plotted as a function of lag. Lag+1 was equivalent to zero as a function of the normalization
process so is not plotted. B. Conditional response latency across lag categories. LagRM was
partitioned into three categories: lag−1, lag+RM and lag−RM . The lag+RM category included
lags [2, 5] and the lag−RM category included lags [−2,−5].

(lag-CRL). Lag, in this context (for inter-response time applications see Kahana & Loftus,

1999; Howard & Kahana, 1999; Murdock & Okada, 1970; Zaromb et al., 2005; Kahana &

Howard, 2005; Kahana et al., 2008), is defined as the distance in the ordered-structure

between a stimulus presented at time-step i and the stimulus presented at time-step i + 1.

Prior to lag-CRL analysis, the data was subjected to three additional constraints.

First, trials one through five were regarded as preliminary and were excluded from

subsequent lag-CRL analysis. Additionally, the first five responses from each trial were

removed. Second, a pilot analysis demonstrated that RTs to accurate responses

immediately following inaccurate responses were artifactually facilitated. For example, if

when presented with element a, the S incorrectedly pressed f, a beep sounded and the S
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was required to press the correct key to advance forward in the sequence. The RT to the

correct key, a in this example, was facilitated from having been primed and was therefore

excluded from subsequent lag-CRL analyses. The third constraint to the data was the

instantiation of a five-item recency-window: an element was excluded if it had appeared

within five elements of its previous presentation. For example, lag−1 transitions

overwhelmingly occurred as part of sequences following the presentation format A B A. It

is therefore possible that robust backward associations could result from a simple priming

effect. To control for priming effects, the recency-window excluded elements if they had

appeared within the previous five element-responses.

In summary: data was constrained to include only accurate responses, all RTs were

constrained to be within the interval [120, 2500], the first five trials of the experiment were

considered practice and removed, the first five ‘warm-up’ responses of each trial were

further excluded from analysis, responses immediately following inaccurate responses were

excluded, and a five-element recency-window was instated. The resultant data was then log

transformed to minimize deviations from normality that result from the skew of RT

distributions. The application of these constraints resulted in 158,739 analyzable data

points.

To account for individual differences inherent in between-subject designs, the lagRM

sequence category data was normalized. Average lag+1 log(RTs) were calculated as a

function of S for each trial and subtracted from subject- and trial-matched lagRM RTs.

Normalized RT values greater than zero represent RTs slower than the average lag+1 RT,

zero values indicate performance equivalent to the average lag+1 RT, and values less than

zero indicate RTs faster than the average lag+1 RT.

Figure 5A plots the lag-CRL for lagRM across S s and trials. Importantly, lagRM

sequenced elements do not reflect the underlying probabilistic structure of the lag

presentation. That is, despite the fact that lagRM transitioned elements were all equally

likely to be presented, RTs appear to vary systematically, with RT increasing as a function
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of lag, particularly for the lag+RM category. While Figure 5A represents data collapsed

across trials, data at the individual S by trial level was rather unbalanced across the

various response categories: there were missing response-values for individual lags on any

given trial across S s due to the conservative inclusion restrictions imposed upon the data

set. Therefore, to ensure that all S s were represented across all lags, trials were grouped

into 4 blocks: trials 6-10; trials 11-15; trials 16-20; and trials 21-25. An initial

within-subject repeated-measures ANOVA with normalized log-transformed lagRM RT as

the dependent measure, lag as a factor and block as a regressor, confirmed a highly

significant main effect of lag, F (8, 39774) = 4.18, Mse = 0.03, p < .001, a highly significant

main effect of trial series, F (1, 39774) = 398.54, MSe = 2.59, p < .001, and no significant

interaction of lag with trial series, F (8, 39774) = 1.42, Mse = .01, p = .18.

The main effect of lag indicates that some subset of lags from within the lagRM

category produced differentially faster RTs relative to the other lags, as visually depicted in

Figure 5A. The main effect of trial series indicates that RT performance continued to

improve for all lags with continued exposure. The lack of an interaction of lag and trial

series demonstrates that the average RT differences across the lagRM category did not

differ significantly across the blocks of trials.

From the main effect of lag, rather than a factorial set of comparisons, the specific

interest was in determining if there was a reliable lag−1 effect, as well as determining if

there were statistically reliable graded RTs as a function of increasing lag. Evidence for a

lag−1 effect would include significant RT differences between lag−1 transitioned elements

and other lagRM transitioned elements. Evidence for lag-mediated graded RTs would

include statistically significant RT differences between adjacent lags, such as the

comparison lag2 to lag3. Therefore, separate analysis were specifically conducted on each of

the sets of lags: lag−1, lag−RM , lag+RM , with the first analysis the comparison of the

averages of the three groups of lags.
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Analysis: lag groups. The omnibus ANOVA with individual lags as factors confirmed

the main effect of lag suggested by Figure 5A . To examine this effect, the lagRM category

was divided into three groups: lag−1 (total data points = 1,670); lag−RM , which consisted

of lags [−2 : −5] (total data points = 16,053); and lag+RM , which consisted of lags [2 : 5]

(total data points = 22,273). Figure 5B plots the normalized log(RTs), averaged by S

across lag category and trial series. The figure demonstrates two important points. First,

RT to lag−1 transitioned elements was faster than RT to either category of lagRM

transitioned elements. Second, lag+RM RTs appear to be significantly faster than the

lag−RM RTs.

A within-subject repeated-measures ANOVA with normalized log-transformed RT

as the dependent measure, lag group as a factor and trial series as a regressor, confirmed a

main effect of lag group, F (2, 408) = 10.03, Mse = 0.01, p < .001, a main effect of trial

series, F (1, 408) = 112.5, MSe = .19, p < .001, and no significant interaction of group with

trial series, F (2, 408) = 0.97, Mse = .00, p < .38. The main effect of group demonstrates

significant differences between at least two of the groups, as suggested from Figure 5B. The

main effect of trial series indicates that RTs decreased as a function of trial series. The

insignificant interaction of lag group and trial series indicates that the difference between

lag groups was not significantly different across trials.

To specifically examine the main effect of group, Wilcoxon rank-sum tests with

Bonferroni’s correction were performed between lag categories across trial series for lag−1

and lag+RM , lag−1 and lag−RM , and lag+RM and lag−RM . As suggested by Figure 5B as

well as the main effect in the corresponding ANOVA, lag−1 RTs were significantly faster

than both lag+RM (p < .001) and lag−RM (p < .001) RTs. Additionally, lag+RM RTs were

significantly faster than lag−RM RTs (p < .001).

Analysis: lag−RM . Inspection of Figure 5A indicates that there is no visual evidence for

graded RTs as a function of lag across the lag−RM category. A within-subject
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repeated-measures ANOVA with normalized log-transformed RT as the dependent

measure, lag−RM as a factor (i.e, lags [−2,−5]) and trial series as a regressor confirmed no

main effect of lag, F (3, 15841) = 0.68, Mse = 0.00, p < .55, a main effect of trial series,

F (1, 15841) = 156.0, MSe = .03, p < .001, and no significant interaction of lag with trial

series, F (3, 15841) = 1.26, Mse = .01, p = .29. In short, the lag−RM RTs did not differ

significantly across lags. While lag−RM RTs did decrease with trial, the increases were not

significantly different across the category.

Analysis: lag+RM . The statistical environment of stimulus presentation was designed

such that all lagRM transitions, both forward and backward, were constrained to the

predictive probability p(.3/9). Therefore, graded contiguity effects, which would be

evidenced by RT increases as a function of lag, would not be a reflection of the underlying

statistics of the probabilistic environment.

Averaged across S by trial, the lag+RM RTs plotted in Figure 5A appear to increase

gradually across lags. To examine lag+RM , data was first submitted to a within-subject

repeated-measures ANOVA with normalized log-transformed RT as the dependent

measure, lag as a factor and trial series a regressor. Results confirmed a main effect of lag,

F (3, 22061) = 5.19, Mse = 0.03, p < .01, a significant main effect of trial series,

F (1, 22061) = 217.13, MSe = 1.4, p > .001, and no significant interaction of group with

trial series, F (1, 22061) = 1.89, Mse = .01, p = .13.

The main effect of lag from the omnibus lag+RM ANOVA indicates significant

differences among at least two of the lags included in the lag+RM category. The main effect

of trial shows that as S s became sensitive to the probabilistic sampling environment, RTs

to lag+RM elements decreased across trials. The lack of an interaction between lag and trial

series indicates that the average RT differences across the lag+RM category did not differ

significantly across the blocks of trials.

To test for graded associations across the lag+RM category, a simple linear regression
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Figure 6: Error Rate: average total number of errors increased as a function
of block. Trials one through five were excluded from analysis, as well as the initial five
responses of each trial. Only inaccurate-responses with RTs between 120 to 2500 milliseconds
are included in the figure. Five-item recency window was applied to the data. Error bars
reflect 95% confidence intervals. The number of errors was summed across subjects for each
trial; trials were then collapsed into blocks consisting of trials 6-10, 11-15, 16-20 and 21-25.

was performed with normalized log-transformed RT as the dependent measure and lag as a

regressor. Results confirmed evidence for a linear relationship across RT as a function of

lag, F (1, 22271) = 14.22, p < .001. There was a significant positive linear relationship

between RT and lag: rate = 0.03 + (.001)lag, R2 = .0006. As forward-going lag-values

increase, RT increases, a result that supports the hypothesis that RTs should increase as a

function of increasing lag. However, only .06% of the variation in RT is due to differences

in lag+RM , such that lag+RM is not a good predictor of RT. This result is consistent with

the low prediction statistic (p(.3/9)) associated with each member of the lag+RM category.

Interposed Generation Task

Error Rates in SRT Task

Recall that all of the analyses of the SRT data were constrained to include only accurate

responses. However, in so far as S s became increasingly sensitive to the underlying
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ordered-structure from which elements were probabilistically sampled, error rates could

potentially vary systematically across blocks. Figure 6 displays the mean error rates

collapsed across S for each block of trials. From visual inspection of the figure, error rates

do appear to increase with exposure to the probabilistic environment. That is, with

practice, while RT decreased universally (Figure 4), as well as systematically as a function

of lag (Figure 5), the average error rate actually increased. This pattern of results could be

consistent with a general sensitivity to the probablistic learning environment, or, it could

also be a reflection of explicit awareness of the underlying sequence. To specifically examine

if S s were explicity aware of the underlying sequence, S s were tested on a generation task.

Analysis

The second section of the experiment was composed of trials twenty-six and twenty-seven.

Procedurally identical to the SRT task in trials one through twenty-five, S s were required

to respond to elements presented on the screen with the appropriate keypress. However, in

addition to elements from the ordered-structure, generate-response cues were interposed in

place of some of the elements. When presented with the prompt cue, “?”, S s were required

to generate a prediction by pressing the key representing the element that they predicted

should appear next. The dependent measure in the interposed generation task was the

frequency of the S -generated lags.

Proportions were used to measure learning across this section. A proportion is a

frequency statistic that quantifies the magnitude of selected subsets of data in comparative

relation to the whole data set. Proportions enabled the comparison of the data subsets

that were a priori of empirical interest in the interposed generation task. To calculate a

proportion statistic for the interposed generation data, a group of lags was first selected

from the total data set. For example, consider the lag+RM group. The lag+RM group is

composed of the lags lag+2, lag+3, lag+4, and lag+5. To calculate the proportion of each lag

relative to the lag+RM set, the frequency of each lag becomes a numerator, and the sum of
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the numerators becomes the denominator. Each numerator statistic is therefore a

proportion of the denominator, such that the numerators form a conditionalized

probability distribution that sums to one.

Recall that all data was subjected to two universal contingencies. First, only

accurate responses to letter-elements were included in analyses. If S s made an incorrect

response to a letter-element, for example if the S was presented with the element “r” and

the S pressed the key “l”, this response was removed from analysis. In contrast, when

presented with the generate cue-element, “?”, any alphabet response a S generated was

included in the analysis. The second universal data contingency was that RTs were

constrained to be within the interval [120, 2500]. The RT interval was imposed for all data,

that is, both the letter-element and the cue-element responses. While the dependent

measure in the interposed generation task was the frequency of S -generated lags, the RT

range was applied to ensure that S s were adhering to the instructions of the SRT task.

Prior to analysis, the interposed generation data was subjected to two further

constraints. First, consistent with the SRT data from trials six through twenty-five, the

first five responses from each trial were removed. Second, again consistent with the SRT

data from trials six through twenty-five, a five-item recency-window was applied. The

recency-window excluded from analysis any element that had been presented or generated

within five elements of its previous presentation. For example, consider the sequence in

which the S is prompted to generate an element at serial position five: a b c d ? g a b c.

Now assume that the S generated the element c in response to the generate cue, a b c d c

g a b c. The recency window would exclude the generated c from analysis because this

element had been presented within five items, at serial position three within the sequence.

Additionally, element c in serial position nine of the sequence would also be excluded from

analysis, due to the generated c at serial position five.

In contrast to the constraints applied to the SRT data in section one of the

experiment, there were three constraints that were relaxed for the interposed generation
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data analysis. First, as previously noted, while response data in the condition in which

letter-elements were presented (e.g., a,d,k...) continued to be constrained to include only

correct responses, response data in the condition in which the cue-element was presented

(i.e., “?”) necessarily included both sequential, lag+1 responses, as well as non-sequential,

lagRM responses. Second, data was not normalized by lag+1 RTs; the interest in the

interposed generation task was the frequency of S -generated lags, not differences in RT to

letter- vs. cue-element responses. Third, accurate responses to letter-elements immediately

following inaccurate responses to letter-elements were not excluded from analysis. While

preliminary analysis in the SRT task in section one of the experiment indicated that

accurate responses immediately following inaccurate responses were artifactually

facilitated, the goal of the interposed generation task was to compare proportions of

S -generated responses, not RTs. The application of data constraints reduced the total data

points from 27,968 to 25,798.

To increase the pool of predictions for each S, the interposed generation trials were

collapsed across trials, which collapsed the available 25,798 data points to 2,461.

S -generated letters that were not part of a S ’s 11-element pool were labeled extra-list

intrusions (eli). Predictions were grouped into three categories: lag+1, lagRM and eli. A

primary comparison of the proportions of the three categories was first performed.

Specifically, a proportion for each of the three prediction categories was calculated for each

S by dividing the total number of predictions in each category by the total number of

predictions summed across all three prediction categories. Figure 7A plots the proportion

of S -generated predictions for the lag+1, lagRM and eli categories. Plotted beside the

proportion of generated predictions is the probability of lag+1 and lagRM transitions

(p(eli) = 0) from the probabilistic SRT task of trials one through twenty-five. From the

figure, in contrast to the prediction statistics of the SRT task, S s appear to have generated

significantly more lagRM predictions than lag+1 predictions. A paired Wilcoxon rank-sum

test was performed between the lag+1 and lagRM categories and results confirmed that S s
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did generate significantly more lagRM than lag+1 predictions (p < .001).

To examine the lagRM category, proportions were generated for each individual

lagRM lag, relative only to the lagRM category. Figure 7B plots the proportion of generated

responses, averaged across S s, as a function of lag. From the figure, lag−1 elements appear

to be predicted more than other lag−RM elements, and lag+2 elements appear to be

predicted more often than all other lagRM elements, including lag−1 elements. A

within-subject repeated-measures ANOVA with conditionalized lagRM probability as the

dependent measure and lag as a factor, confirmed a main effect of lag, F (8, 1616) = 7.93,

Mse = 0.10, p < .001. The main effect of lag demonstrates significant differences between

at least two of the lags, as suggested from Figure 7B.

While there is a main effect of lag in the lagRM analysis, given the smaller data set

generated from the two-trial interposed generation task, the five-item recency-window

differentially affects the lag−RM and lag+RM responses. That is, the recency-window

removes a full 56% of responses from the lag−RM group, in comparison to a lesser 42% of

responses from the lag+RM group. Therefore, analysis was restricted to comparisons within

the lag−RM and lag+RM groups, respectively.

To specifically examine the lagRM groups, a Wilcoxon rank-sum test with

Bonferroni’s correction was performed between the lag−1 and lag−RM groups, and the lag+2

and lag+RM -modified groups. As suggested by Figure 7B, the proportion of lag−1 generated

responses was significantly greater than the proportion of lag−RM (p < .002) generated

responses. Again from Figure 7B, the proportion of lag+2 S -generated responses appears to

be greater than the proportions of the positive lag responses. For these analyses,

lag+RM -modified was defined as lags ranging from [3 : 5]. A Wilcoxon rank-sum test with

Bonferroni’s correction confirmed that the proportion of lag+2 S -generated responses was

significantly greater than the proportion of lag+RM -modified S -generated responses

(p < .001).
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Figure 7: Interposed Generation Task: Ss generated more lagRM elements than
lag+1 elements. Given that Ss generated a lagRM element, Ss generated more
lag−1 elements than lag−RM elements, and more lag+2 elements than any other
lag+RM element. Excluded from analysis were the initial five stimuli on both trials, stimuli
in which response RTs either fell below 120ms or exceeded 2500ms, and stimuli that had
been presented within a five-item recency-window. Trial was collapsed across S s. A.
Proportion of lag+1, lagRM and eli (extra-list intrusion) generated elements plotted beside
the proportion of lag+1 and lagRM transitions (p(eli) = 0) from the probabilistic SRT task of
trials one through twenty-five. B. Proportion of each lagRM generated element as a function
of the total number of lagRM elements generated. Proportions were calculated by S for
each lag by dividing individual lags by the total number of lagRM elements generated. Lag
quantifies the distance from the preceding to the measured stimulus in the latent stimulus-
structure. The sum of the proportions across lags is one. Error bars reflect 95% confidence
intervals.
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General Discussion

The goal of the experiment was to examine and quantify sensitivity to backward and

graded associations in a non-episodic memory task. While backward and graded

associations are a ubiquitous finding across multiple episodic memory paradigms, these

associations had not been specifically examined in the context of the statistical learning

paradigm. Results from the probabilistic SRT task indicated that S s did make backward

associations, as well as forward-graded associations. To assess explicit sequence knowledge,

after the probabilistic SRT task S s completed two additional trials in which they were

required to generate a prediction at various points throughout the sequence. The

distribution of generated responses from the “interposed generation task” did not mirror

the presentation statistics of the probabilistic SRT task, which suggests that S s were not

able to explicitly produce the underlying sequence order. The shape of the associations

demonstrated in the experimental data, with emphasis on the similarity to the shape of

associations evidenced in episodic memory tasks, is atheoretically discussed below.

RT Differences and Priming Effects

The primary dependent measure in this test of sequential learning was RT differences

among the probabilistically equivalent lagRM transitions. However, the interpretation of

RTs across S s can be complicated by individual performance differences. That is, lag−1

and lag+3 RTs cannot be unambiguously compared between a faster S and a slower S due

to individual differences across baseline RTs (Chapman, Chapman, Curran, & Miller,
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1994). To control for individual RT differences, each S ’s data was log-transformed and

then normalized by the S ’s average lag+1 RT, as a function of trial.

RTnormalized = log(µlag+1
)− log(RT)

In addition to individual S differences, priming effects can also drive artifactual RT

differences between lags. Importantly, the lag−1 category was particularly subject to

priming effects. As an example consider the sequence a b a. RT could be faster to the

second presentation of a, relative to the first presentation of a, by virtue of the fact that a

had just recently been presented. Any conclusions that a backward effect was present in

the a b a data would necessarily be distorted by the presence of a simple priming effect.

To control for priming effects in the experiment, a recency-window was instated in the

analysis: elements were excluded from analysis if they had appeared within the previous

five element-responses. The recency window necessarily eliminated a great number of

transitions, particularly from the lag−RM and lag−1 categories. While the design of the

experiment allowed elements that deviated from the underlying sequence-order to be

presented within a five-item recency window, the design of the analysis was conservative

enough to enable detection of only robust lag effects.

Backward and Graded Associations

Backward associations are a ubiquitous finding within episodic memory (for a review, see

Kahana et al., 2008). Episodic memory recall tasks include free recall, serial recall and

paired-associate learning. In the context of episodic free and serial recall tasks, both

backward and graded associations are beneficial to the extent that they increase the

probability of recalling sequence elements. In contrast, backward and graded associations

are anti-predictive in paired-associate learning tasks. None the less, backward and graded

associations are formed during paired-associate learning, with backward associations the

46



primary source of interference (Primoff, 1938; Umemoto & Hilgard, 1961; Young, 1961;

Slamecka, 1976; Howard et al., 2009; Provyn et al., 2007). The phenomenon that backward

and graded association have been demonstrated in data across episodic memory tasks,

despite the fact that the associations may inhibit performance in specific tasks, leads to the

question of whether backward and graded associations are a natural consequence of

extracting regularity in structured environments, regardless of the surface-level task.

Both episodic memory tasks, such as free and serial recall, and statistical learning

tasks, such as the probabilistic SRT task, require learners to extract regularity from a

structured environment. If similar associative properties are present in both episodic and

statistical learning, and backward and graded associations are formed during episodic

learning, then backward and graded associations may also be formed during statistical

learning. The lagRM category, composed of probabilistically equivalent lags, was

specifically designed to detect the formation of associations in the context of a statistical

learning task, that would not be beneficial for predicting the most statistically predictable

lag+1 transition.

From the probabilistic SRT task data, S s did demonstrate significantly faster RTs

to lag−1 elements than to other lag−RM elements. In other words, S s displayed differential

sensitivity to the lag−1 transition, despite the fact that this transition was no more

predicted than any other lag−RM element. Moreover, the lag−1 effect is arguably robust

given that the five-item recency-window significantly reduced the number of instances of

lag−1 transitions (n=1670), relative to other lag−RM transitions (n=16053).

Conditional Probability

Joint and conditional probabilities are often employed to describe the relationship between

elements in the context of statistical learning. Joint probability signals the overall

frequency with which two elements co-occur, p(x,y). Conditional probability measures the

frequency of one element given another element, p(y|x), and has predictive power in tests
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of sequential learning. Importantly, while x and y can have a high joint probability, they

will have a low conditional probability if one of the elements does not routinely predict the

other. The role of joint and conditional probability has been examined in both auditory

(Saffran et al., 1997) and visual (Fiser & Aslin, 2001) statistical learning, with results

indicating that statistical learners are sensitive to conditional probability statistics, even

when joint probability statistics have been equated.

While elements in the probabilistic SRT task of the experiment were presented

sequentially such that there were no true joint probability co-occurrence statistics, each

lagRM did have a specifically controlled conditional probability: each lagRM transition was

sampled with p(.3/7). However, as previously noted, the conservative recency-window

differentially reduced the instances of particular lags. Consider an example of an illegal and

a legal sequence containing a lag−1 transition. The sequence a b a contains the lag−1

transition from b to a, which would be excluded by the recency-window. The sequence g b

a contains the lag−1 transition from b to a, which would not be excluded by the

recency-window. In short, while lag−1 transitions were defined in the experimental design

to be sampled with p(.3/7), the analysis constrained the conditional probability to be a

subset of the sampled transitions.

As illustrated in the example, legal lag−1 transitions were marked by a “jump” in the

underlying ordered-structure: the sequence “jumped” from g to b (lag−5) then back from b

to a (lag−1). These jumps in the sequence order should have presumably yielded slower

RTs to lag−1 transitioned elements. None the less, S s demonstrated significantly faster RTs

to lag−1 transitioned elements than to lag−RM transitioned elements. The lag−1 association

is therefore arguably robust and fairly remarkable given the subset of data included in the

analysis. Similar to the results demonstrated in the paired-associate learning paradigm,

backward and graded associations appear to have been formed automatically, regardless of

whether this property was beneficial or relevant to the surface-task of prediction.
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Chaining

While each lagRM transition was constrained to be equivalently predictive, the high

probability of lag+1 transitions gave rise to runs of a series of lag+1 transitions within the

test-sequences. Figure 3B visually displays the probability of generating a run of elements

in a test-sequence composed of exclusively lag+1 transitions at each slot in the

ordered-structure. From the figure, despite the equivalent sampling probability of each

lagRM transition (solid black lines) there is an appreciable degree of predictability of an

element n + i at time-step i (solid grey lines) due to the presence of longer-range predictive

relationships. These longer-range predictive relationships are particularly marked in the

forward direction and necessarily decrease a function of lag. In episodic recall tests of serial

learning, in which each element of a series elicits the next element, elements can be

associated together in chains of larger chunks of elements (Tichner, 1909). The result that

S s demonstrated forward-graded associations could be a reflection of S s’ sensitivity to

these longer range “chains” of conditional probabilities.

While the forward-graded associations might be mediated by the longer-range

forward-conditional probabilities of traversing the underlying-ordered structure, the lag−1

association is less easily accounted for. The probability of traversing the entire structure to

time-step i = 10, contingent upon all previous lags having been lag+1,

p(lagxi=10
= +1|lagxi−1

= +1...lagxi−9
= +1), is necessarily lower than any other run of

lag+1 transitions through the sequence. Given the fact that all remote lags, of which lag−1

is a member, are equally likely to have occurred with probability p = .03, and given the

fact that the probability of transitioning sequentially through the entire 11-element

ordered-structure is quite low (p(.107)), the lag−1 transition yields an element that is

statistically the least predictive in this probabilistic environment. Nonetheless, S s

responded significantly faster to lag−1 elements than to other lag−RM elements.
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Temporal Contiguity

Each element and its backward associate were consistently presented close together in time

by virtue of the high probability of lag+1 transitions. For example, from the sequence a b

c d element b and its backward associate, element a, were presented in close temporal

proximity on approximately 70% of presentations. Temporal contiguity effects refer to the

phenomenon that associations are formed between elements presented close together in

time. For example, in tests of free recall in which S s recall a list of words in the order they

come to mind, the probability of making a recall transition from a just-recalled word to

other words in the list is higher for words originating from nearby serial positions, relative

to remote serial positions (for review, see Kahana et al., 2008). In contrast to episodic

memory tasks such as free recall, simply associating elements together by virtue of close

temporal proximity will not yield accurate prediction statistics in the statistical learning

SRT task. The direction of the association must also be encoded for prediction. The

presence of the lag−1 effect, which is actually under-sampled and the least predictive

transition in this prediction task, is therefore rather paradoxical. Associations beyond those

that are statistically most probable are anti-predictive in an SRT task. The experiment

provides evidence that properties of associative learning are not necessarily task-mediated.

The lag−1 association, and to a lesser extent the forward-graded associations, may reflect a

general binding of the elements occurring in close temporal contiguity, irrespective of the

predictive relationship between the elements. Given that statistical learning is a kind of

associative learning, and given that temporal contiguity is a mechanism of associative

learning that has been used to describe the same associative properties demonstrated

across episodic memory tasks, the lag−1 and forward-graded associations in this experiment

are consistent with general properties of associative learning.
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Chunking and Hierarchic Coding

In addition to conditional transition probabilities and temporal contiguity, statistical

learners may attend to multiple sources of information simultaneously in an effort to

reduce environmental uncertainty and detect regularity in structured input streams.

Consider the following three examples of the interplay between bottom-up segmentation

(i.e., transitional probabilities) and top-down lexical segmentation, which support the

notion that the statistical learner can combine statistical cues from the structured input

with other segmentation cues.

First, previous experience with language stress patterns has been demonstrated to

shape infant statistical learning. When presented with streams of unfamiliar words, infants

demonstrate facilitated word-segmentation performance if the unfamiliar words match the

infants’ native language stress patterns (Thiessen & Saffran, 2003). Second, in addition to

stress-patterns, pre-exposure to either disyllabic or trisyllabic words can induce a

word-length expectation in infants. That is, infants pre-exposed to nonsense words

inconsistent with the length of words embedded in fluent speech during a segmentation

task were unable to discriminate words from part-words (Lew-Williams & Saffran, 2012).

And third, recently acquired “anchor” words can facilitate adult S s’ ability to segment

words in a new language when the recently acquired words appear in the continuous stream

of input (Cunillera, Camara, Laine, & Rodriguez-Fornells, 2010). All three of these

examples provide evidence that statistical learning is not an isolated mechanism. Instead,

previous experience can induce a prior, or learning bias, that shapes the ability to process

subsequent sequential input.

Certainly conscious rehearsal processes are associative mechanisms that are utilized

in tests of episodic learning, in which lag−1 and graded-associations have been widely

demonstrated. It is possible that the lag−1 and forward-graded associations present in this

data reflect a combination of sensitivity to chains of conditional probabilities, temporal

contiguity, and conscious rehearsal processes. For example, sequences of FOC could be
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learned by memorizing chunks of bigrams and trigrams, as proposed by proponents of

exemplar-based models (Perruchet & Pacteau, 1990; Servan-Schreiber & Anderson, 1990).

Chunking in this context would involve explicitly remembering high-frequency fragments

within the sequence, such as runs of lag+1 transitions. It is possible that higher-order

conditionals build upon lower-level conditionals. That is, FOCs could be embedded in

SOCs, such that learners chunk adjacent dependencies and then form higher-order relations

between chunks of FOCs, and these relations result in forward-graded associations.

Consider the Nissen and Bullemer (1987) sequence 4-2-3-1-3-2-4-3-2-1. A chunking

strategy for learning the sequence would be to segment the longer sequence into smaller

chunks, such as 4-2-3, 1-3-2, ... or 4-2, 3-1, 1-3... . Runs of lag+1 transitions from the

ordered-structure (e.g., Figure 3B) provide an environment that could be supported by a

chunking strategy. A hierarchic representation strategy simply extends the chunking

mechanism to represent chunks at multiple levels, including: the entire sequence (e.g.,

4-2-3-1-3-2-4-3-2-1); chunks of the sequence (e.g., 4-2-3, 1-3-2, ... or 4-2, 3-1, 1-3...); and

individual elements within the chunks (e.g., 4, 2, 3 ...).

To measure whether S s were explicitly aware of the underlying stimulus-structure in

this experiment, cues requiring a S -generated prediction were interposed into 2 additional

trials of the SRT task. This “interposed generation task” was used to evaluate the

probability of specific learner-generated lag-transitions to the prompt cues. If S s were

explicitly aware of the underlying sequence order, then when prompted to generate the

next response in the sequence, the proportion of lag+1-predicted elements should

approximate the probabilistic sampling statistic of the SRT trials (p(.7)). Results indicated

that S s did not generate the presentation statistics of the SRT task: S s generated a greater

proportion of lagRM elements than lag+1 elements. In fact, given that S s generated a

lag−RM , the proportion of lag−1 transitions was greater than other lag−RM transitions.

This result is similar to the finding from the paired-associate learning literature: given that

an incorrect element is recalled, the lag−1 transition is generated significantly more than
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other lagRM transitions.

The differing pattern of results from the probabilistic SRT data and the interposed

generation data may indicate that while S s were sensitive to the underlying

ordered-structure from which the sequences were composed, this learning was not

demonstrable in an explicit variant of the SRT task. The interposed generation task cannot

be used to conclusively reject the notion that S s had some explicit knowledge of the

underlying ordered-structure. What the task does demonstrate is that S s were not able to

explicitly generate the the probabilistic presentation statistics of the SRT task. Despite the

inability to explicitly generate this associative learning, the properties of associations

across the lag−1 and lag+RM elements in this SRT task is consistent with the properties of

associations across episodic recall tasks.

Associative Learning

Statistical learning is simply the name given to the domain general process of extracting

variability in the environment to reduce uncertainty and, correspondingly, make

statistically beneficial predictions. The SRT task provides a device for controlling,

quantifying and examining transitional probabilities among adjacent and non-adjacent

elements in structured sequences. If statistical learning is to be considered a paradigm that

is unrelated in terms of learning mechanisms to episodic learning, then the examination of

the associative properties of the SRT data from this experiment yielded paradoxical

associations. The fact that similar associative properties demonstrated across episodic

learning are also present in this data could be evidence for the presence of episodic learning

that then contaminated the data. However, results from the interposed generation task

indicate quite the contrary: there was not substantive evidence for episodic learning of the

underlying statistical structure of the data.

There is no a priori reason that associations beyond the most statistically predictive

associations are beneficial in statistical learning tasks. In fact, associations beyond the
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most statistically predictive are arguably anti-predictive. If the task is to anticipate the

next most likely element given the conditional probabilities of the distribution of elements,

and if a lag−1 transition is not statistically likely, then this transition should not be

anticipated. This paradoxical prediction of the past in the context of this experiment is

not, however, inconsistent with work on language learning. The ability to extract

sequential structure in the environment is crucial for word segmentation, and sensitivity to

backward transitions has been demonstrated to be beneficial toward this end (Aslin et al.,

1998; Willits et al., 2009; Pelucchi et al., 2009).

Backward associations appear to be a ubiquitous property of associative memory

that transcend surface level task characterstics. These associations are present in and

beneficial for word segementation and recall tasks. These associations are not however

limited to recall tasks nor to tasks in which they are necessarily beneficial. Backward

associations are present in cued recall data, despite being the largest source of interference,

and in the context of the SRT task are actually anti-predictive. What appears to be a

common denominator for the creation of lag−1 associations is not necessarily the task itself,

nor the paradigm under which a task is defined. Rather, what appears to be necessary for

the creation of lag−1 associations is statistically structured input. If statistical learning is

to be considered a paradigm with shared or at least similar learning mechanisms as

associative learning paradigms, then the associative properties emergent from the

structured-SRT data from this experiment, while anti-predictive, were in fact predictable.

Conclusions and Future Direction

Conclusions

The goal of the experiment was to test whether the backward and graded associations that

have been extensively documented across a variety of episodic recall paradigms, would also

be present in a statistical learning paradigm. From the probabilistic SRT data, there is

54



evidence that both backward and forward-graded associations are formed in a probabilistic

SRT task. Moreover, results from an explicit variant of the probabilistic SRT task, the

interposed generation task, provided evidence that S s were not able to explicitly generate

the probabilistically most predicted elements, despite displaying sensitivity to these

statistics. This data, taken in conjunction with evidence from the episodic recall literature,

provides support to the hypothesis that, given a structured input environment, backward

and forward-graded associations may automatically be formed as a general property of

memory, regardless of the specific application.

Future Directions

Future work that could build upon the present findings to provide converging evidence for

backward and forward-graded associations in the context of statistical learning tasks could

involve varying the stimulus material, diversifying the S population, and the manipulating

the experimental design.

First, the stimulus material of the experiment could be varied, and the experiment

replicated using non-verbal material. For example, sequences of visually presented

shape-elements, rather than letter-elements, could be employed to test the domain

generality of the backward and forward-graded associations that were demonstrated in this

verbal variant of the task.

Second, while younger adults comprised the S population of the present experiment,

older adults are also a population of interest. Older adults demonstrate an associative

memory deficit that has been attributed to difficulty binding item information to

contextual information (e.g., Naveh-Benjamin, 2000; Provyn et al., 2007). A deficit in the

ability to bind sequence elements to the context of the underlying structure from which the

elements are drawn might be manifest as attenuated backward and forward-graded

associations. Therefore, if item-to-context binding is an associative process that gives rise

to the backward and forward-graded asssociations in the present experiment, and if older
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adults have impaired item-to-context binding abilities, older adults may not demonstrate

the marked backward and forwad-graded associations present in the young adults’ RT data.

Finally, the underlying structure from which the sequence elements are drawn could

be manipulated. While the underlying ring structure was selected for its robust simplicity,

this design does not necessarily reflect the complexity of natural languge. Statistical

learning is often used to examine natural language on a smaller, more controlled scale.

Therefore, the case to be made for these lag-effects could be strengthened by converging

evidence from other statistical learning designs. A design of concentric rings, with

conditional probabilities for lags both within and across rings could be employed. Lag

could also be measured in artificial grammar tasks. While artificial grammars are arguably

more complex than a simple ring, grammars could be designed to examine category rules,

induction and violations (see Hunt & Aslin, 2010) as an extension of the more basic

concept of lag.
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