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Statistics of static avalanches in a random pinning landscape

Pierre Le Doussal1, A. Alan Middleton2, Kay Jörg Wiese1

1CNRS-Laboratoire de Physique Théorique de l’Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France.
2Physics Department, Syracuse University, Syracuse, NY 13244, USA.

(Dated: March 6, 2008)

We study the minimum-energy configuration of a d-dimensional elastic interface in a random
potential tied to a harmonic spring. As a function of the spring position, the center of mass of the
interface changes in discrete jumps, also called shocks or “static avalanches”. We obtain analytically
the distribution of avalanche sizes and its cumulants within an ǫ = 4 − d expansion from a tree
and 1-loop resummation, using functional renormalization. This is compared with exact numerical
minimizations of interface energies for random field disorder in d = 2, 3. Connections to the Burgers
equation and to dynamic avalanches are discussed.

In numerous systems, the equilibrium or non-
equilibrium response to perturbations is not smooth and
involves jumps, avalanches or bursts. In systems at the
brink of instability, with many metastable states, it is of-
ten self-organized and critical with power-law tails for the
probability of large events. This is observed ubiquitously
in systems with heterogeneities, such as Barkhausen noise
and hysteresis in magnets, field response of supercon-
ductors, contact line of fluids, cracks, granular matter,
dry friction and earthquakes. Sandpile automata [1] and
elastic media pinned by quenched disorder [2] have been
studied as simple models for these phenomena. Rela-
tions between sandpiles and periodic interface depinning
[3, 4] and between sandpile models and loop-erased walks
[5, 6, 7] have proved fruitful, especially in d = 2, where
conformal field theory can be used [8]. Despite much ef-
fort it has proven difficult to obtain analytical results,
e.g. for the distribution of the size s of avalanches (de-
fined below), except in mean-field models for sandpiles
[10] and for random field Ising magnets [9] as well as for
a toy model for avalanches at depinning [2], which all
yield P (s) ∼ s−τ with τ = 3/2. Scaling arguments for
sandpiles [1, 7] and for depinning [11], were developed to-
gether with numerical analysis [3, 12, 13]. The Functional
Renormalization Group (FRG) theory for pinned systems
has led to detailed predictions for e.g. the roughness of
interfaces but, until now, has failed to describe discon-
tinuous jump processes [14, 15, 16]. Hence it remains an
outstanding issue to find a limit where mean field theory
is valid, prove this, and to develop a controlled field-
theoretic expansion around it. It should allow to clarify
the differences between equilibrium and non-equilibrium
avalanches, recently questioned in a model for magnetic
hysteresis [17].

The aim of this Letter is to provide a first analyti-
cal calculation of the distribution of avalanche sizes in a
static, equilibrium setting, using FRG, and to compare
with numerical calculations. It opens the way to a closely
related calculation for depinning [18]. As demonstrated
in our previous work [19], a model which allows a precise
FRG treatment and comparison with numerics, both in

statics and dynamics, consists of an elastic interface in
a random potential, parameterized by a (scalar) height
field u(x), and submitted to an external parabolic well,
i.e. a spring, centered at u = w,

H[u; w] =

∫

ddx
1

2
[∇u(x)]2+V (x, u(x))+

m2

2
[u(x)−w]2 .

(1)
We are interested in energy minimization as w is varied in
a given realization of the random potential V (x, u). We
denote V̂ (w) = min{u(x)}H[u; w] the optimal energy and
u(x; w) the optimal interface position. The force per unit
volume exerted by the spring is V̂ ′(w) = m2[w − u(w)],
where u(w) := L−d

∫

ddxu(x; w) is the center-of-mass
position and Ld the volume of the system. We study
the three important universality classes for disorder, with
short range (random bond, RB), long range (random
field, RF) or periodic disorder correlator (random pe-
riodic, RP). Their definitions can be found in [19] and in
standard papers on pinning [20] and FRG [14, 15, 16].

Although we often use the language of dynamics, one
should emphasize the difference between the static prob-
lem studied here, where the interface finds the global en-
ergy minimum for each w, and the dynamic one, where
w(t) grows very slowly, and the interface visits a deter-
ministic sequence of metastable states. In the scaling
limit m → 0, on which we focus here, the first case is
about interface configurations of zero-temperature equi-
librium, studied in [19], whereas the latter one is about
critical depinning, studied in [24, 25]. In the statics u(w)
is a (single-valued) function, while it shows some history
dependence at depinning. Despite these differences, de-
pinning and statics are close cousins and some differences
within the FRG are found only beyond one loop [16].

As shown previously [14, 19, 20, 22, 23], the optimal
interface is statistically self-affine with (u(x) − u(0))2 ∼
|x|2ζ and a roughness exponent ζ which depends on the
class of disorder, and with a ǫ = 4 − d expansion [16]:
ζ = ǫ/3 for RF, ζ = 0 for RP, and ζ = 0.2083ǫ+0.00686ǫ2

for RB (and ζ = 2/3 in d = 1). This holds for scales
Lc < L < Lm, where Lc is the Larkin length (here of the
order of the microscopic cutoff) and Lm ∼ 1/m, the large
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scale cutoff induced by the harmonic well. It is useful to
picture the interface as a collection of (L/Lm)d regions
pinned almost independently.

We found that u(x; w) is an increasing function of w
which can be decomposed into smooth parts, negligible
in the scaling limit m → 0 and jumps (alias “shocks” or
“static avalanches”) as ux(w) =

∑

i Sx
i θ(w − wi), where

Si =
∫

ddxSx
i is the size of the shock or avalanche la-

belled i, and θ(x) the unit-step function. The avalanche-
size distribution, defined from an average over samples,

∑

i

δ(S − Si)δ(w − wi) = ρ(S) = ρ0P (S) , (2)

can equivalently be defined from a translational average
in a given sample. Here P (S) is the normalized size dis-
tribution and ρ0dw the average number of shocks in an
interval dw. The scaling ansatz

ρ(S) = LdmρS−τ ρ̃(Smd+ζ) (3)

is shown below to hold within the ǫ expansion and verified
by our numerics. The constraint u′(v) = 1 relates the
shock rate to the first moment L−dρ0〈S〉 = 1, where
〈Sn〉 :=

∫

dS SnP (S) denotes the normalized moments.
It implies for τ < 2 the exponent relation ρ = (2−τ)(d+
ζ). The distribution is qualitatively different for (i) τ < 1
when a unique scale Sm ∼ m−(d+ζ) exists, i.e. p(S) =
S−1

m p̃(S/Sm), and (ii) 1 < τ < 2, where

P (S) = CτS−1
0 (S/S0)

−τf(S/Sm) , (4)

and typical avalanches are of the order of the microscopic
(UV) cutoff S0, while moments 〈Sp〉 with p > τ − 1 are
controlled by rare avalanches of size ∼ Sm, the large-scale
cutoff.

As discussed recently [26], shocks for manifolds are
a natural generalization of shocks in decaying Burg-
ers turbulence, seen as their d = 0 limit (with, for
the RF case, τ = 1/2 in that limit). The force
field V̂ ′(w) = m2[w − u(w)] generalizes the Burg-
ers velocity field. Its n-point connected correlation

V̂ ′(w1) . . . V̂ ′(wn)
c

= L−(n−1)d(−1)nĈ(n)(w1, . . . , wn)
obeys FRG equations, which generalize the hierarchies
of Burgers multi-point correlations. Shock-size moments
can be extracted from their non-analytic part: E.g. the
second moment is contained in the cusp of the dis-
order correlator ∆(w) = Ĉ(2)(w, 0) of the FRG, as
seen from the relation −m−4L−d∆′′(w) = u′(w)u′(0) =

L−2d
∑

i S2
i δ(w − wi)δ(w)+smooth function, which upon

integration gives −2∆′(0+) = m4〈S2〉/〈S〉. This
generalizes to higher cumulants [26] K(n)(w) :=

m2nL(n−1)d[u(w) − w − u(0)]n
c

(the linear cusp of K(3),
measured in [19], generalizes Kolmogorov’s law). Hence
we can compute the avalanche-size distribution using the
generating function

L−d(eλLd[u(w)−w−u(0)] − 1) = Z(λ)w + O(w2)

FIG. 1: Example of a diagram at MF level, as generated by
Eq. (6) at α = 0. It contains a correction to disorder i.e.
∆′(0+) at 1 loop (shaded in gray).

Z(λ) =
1

〈S〉
(

〈eλS〉 − 1 − λ〈S〉
)

(5)

for w > 0. It assumes a linear cusp (i.e. a finite density
of shocks) and generalizes to depinning [18].

We have computed the leading non-analyticity of the
functions Ĉ(n) and Kn(w) [28] from (i) a Legendre trans-
form of the replicated effective action Γ computed order
by order in ǫ; (ii) a direct perturbative expansion without
replica. The calculation is more involved than usually for
FRG: the size distribution already at order O(ǫ0) requires
a summation of all tree diagrams. The latter could be
termed mean field, but with the proviso that the scale of
S involves ∆′(0+) computed to O(ǫ). Here we compute
to order O(ǫ), which amounts to sum all trees and single
loops; for details see [27]. The main result is that Z(λ)
satisfies a remarkable self-consistent equation to one loop

Z̃(λ) = λ + Z̃(λ)2 + α
∑

n≥3

(n + 1)2n−2inZ̃(λ)n , (6)

where Z(λ) = m4

|∆′(0+)| Z̃(λm−4|∆′(0+)|) − λ, in =

In/(ǫĨ2), Ĩn =
∫

k
(k2 + 1)−n, α = −ǫĨ2m

−ǫ∆′′(0+). It
can graphically be written as

... ... ......
...λ

... ...

.

The type of resummed diagrams is presented on figure 1.
Since α = O(ǫ), to leading order one solves (6) setting
α = 0. This yields Z̃(λ) = 1

2 (1 −
√

1 − 4λ), identical to
the generating function of the number of rooted binary
planar trees with n leaves [29], and a size distribution,
with τ = 3/2:

P (S) =
〈S〉
2
√

π
S−1/2

m S−3/2e−S/(4Sm) . (7)

This is valid for S ≫ S0, such that [30] the moments
with p > 1

2 satisfy 〈Sp〉/〈S〉 = apS
p−1
m with ap =

22p−2π−1/2Γ(p − 1
2 ), independent of the non-universal

small-scale cutoff S0. Hence the rigorous summation
of tree diagrams in the FRG yields the same P (S) as
that of a mean-field toy model for dynamic avalanches
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FIG. 2: Z̃(λ) for RF, d = 2. The mean field and one loop
analytical curves are given in the text, λ being rescaled so as
to reproduce the numerically measured second moment (given

by the curvature of Z̃(λ)). While the MF result differs sub-
stantially from the numerical measurement, the 1-loop curve,
i.e. (9) with α given by (8) setting ǫ = 2 and ζ1 = 1/3, coin-
cides for all negative λ, and almost up to the singularity for
λ > 0. Changing ǫ from 2 to 2.1 or 1.9 already results in a
visible disagreement for λ < 0.

[2] and that of mean-field sandpiles [10]. In addition,
since the FRG is a first principle method, it predicts
Sm = cm−d−ζ where c = (ǫĨ2)|∆̃′(0+)| is obtained
from the FRG fixed point for the rescaled correlator
∆̃(u) = (ǫĨ2)m

−ǫ+2ζ∆(um−ζ) and depends on the uni-
versality class [27]. Since τ > 1 the scale 〈S〉 ∼ Sτ−1

0 S2−τ
m

remains undetermined and UV cutoff dependent. Eq. (6),
seen as a convolution equation for P (S), may allow to put
the physical picture in [2] on a more rigorous footing.

To next order in ǫ we solve Eq. (6) which includes
higher branchings with a universal dimensionless rate

α = −1

3
(1 − ζ1)ǫ (8)

at the fixed point, where ζ = ζ1ǫ+O(ǫ2) and in = 1/2(n−
1)(n − 2) in d = 4. It yields

Z̃(λ) =
1

2

[

1 −
√

1 − 4λ
]

+
α

4
√

1 − 4λ

[

log(1 − 4λ) ×

×(3λ +
√

1 − 4λ − 1) − 2(2λ +
√

1 − 4λ − 1)
]

+O
(

α2
)

, (9)

from which one can calculate the universal ratios:

rn : = 〈Sn+1〉〈Sn−1〉〈Sn〉−2 =
2n − 1

2n − 3
(10)

− ǫ

3
(1 − ζ1)

nΓ(n − 3
2 ) +

√
πΓ(n − 1)

(2n − 3)2Γ(n − 3
2 )

+ O(ǫ2) ,

for any real n > 3/2, with ζ1 = 1/3 for RF, ζ1 = 0 for
RP and ζ1 = 0.283 for RB. Upon inversion of the Laplace

1 2 3 4 5
Log10HSL

3.5

4.0

4.5

5.0

Log10IS
1.25 PHSLM

0 1 2 3 4
Log10HSL4.5

4.6

4.7

4.8

4.9

Log10IS
1.25 PHSLM

FIG. 3: Numerically computed normalized avalanche distri-
bution P (S), for random-field disorder and d = 2 (ζ = 2/3),
multiplied by Sτ with τ = 1.25 (from (14)) to emphasize devi-
ations from the power law P (S) ∼ S−1.25. Error-bars are 3σ-
errors for P (S) and the size of the box for S. The solid curve
is a 1-parameter fit to Eqn. (11), with Sm = 3500, τ = 1.25,
α given by (8) with ζ1 = 1/3, ǫ = 2 and the corresponding
values for B, C given in the text. We use the measured value
for 〈S〉 in (11) hence there is no additional free parameter.
The dashed line is a constant (guide to the eye). Inset: blow-
up of main plot. The best fit to a pure power law would give
τ = 1.23, and to a power law times exponential τ = 1.2.

transform one finds:

P (S) =
〈S〉
2
√

π
Sτ−2

m AS−τ exp

(

C

√

S

Sm
− B

4

[

S

Sm

]δ
)

(11)
for S ≫ S0, with C = − 1

2

√
πα, B = 1 − α(1 + γE

4 ),
A = 1 + 1

8 (2 − 3γE)α, γE = 0.577216, and exponents:

τ =
3

2
+

3

8
α =

3

2
− 1

8
(1 − ζ1)ǫ + O(ǫ2) (12)

δ = 1 − α

4
= 1 +

1

4
(1 − ζ1)ǫ . (13)

Note that the decay of large avalanches becomes
stretched (sub)exponential (in d = 0 for RF, δ = 3).

RF r2 r3 r4

mean field 3 1.67 1.4

d = 3, eq. (10) 2.33 1.54 1.34

d = 3, numerics 2.25±.05±.2 1.48±.04±.14 1.27±.02±.13

d = 2, eq. (10) 1.66 1.42 1.28

d = 2, numerics 1.95±.02±.06 1.38±.02±.06 1.21±.02±.06

TABLE I: Universal amplitude ratios with statistical and sys-
tematic errors (in this order) for numerics; there is a system-
atic error since the measured ratios decrease with decreasing
mass. For d = 2, the decrease which we take as systematic
error was measured from masses m2 = 0.025, m2 = 0.00125,
and m2 = 0.000625 (whose values are given). For d = 3, the
corresponding one is measured for the two smallest masses
m2 = 0.0025 and m2 = 0.00125 (with values from the latter).
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We note that our result for τ agrees to O(ǫ) with the
conjecture

τ = 2 − 2

d + ζ
(14)

equivalent to ρ = 2. It was presented for depinning [11]
and for the τs = 4/3 exponent of the number of topplings
in a sandpile model in d = 3 [7], which may be compared
to CDWs. Since assumptions leading to (14) are not
rigorous, our first-principle calculation confirms this to
one loop, and leaves open the possibility of higher-loop
corrections. Our results are straightforwardly extended
to the case of LR elasticity [27].

Exact numerical calculation of minimum-energy inter-
faces has been performed using the discrete models and
algorithms as described in [19] were details can be found.
The (corrected) distribution is presented on figure 3, for
the example of RF in d = 2. We measure

τ = 1.25±0.02 (RF, d = 2) , τ = 1.37±0.03 (RF, d = 3)
(15)

This is compatible with eq. (14). Note that the extra
stretched-exponential term C in (11) (which could not
be interpreted as summation of a pre-exponential power)
leads to a bump which can clearly be seen in the nu-
merics on figure 3. Finally we have measured (see Fig. 4)
the distribution of the intervals between successive jumps
(occuring at positions w = wi) and found it to be very
close to a pure exponential.

To conclude, using Functional RG we have performed
an expansion around the upper critical dimension to ob-
tain the avalanche or shock distribution in the statics.
It compares well with the numerics. Preliminary results
[18] indicate that the above mean-field and 1-loop results
also hold for depinning (with the corresponding values
for ζ); 2-loop calculations are in progress to further check
the conjecture (14) and quantify the difference between
static and dynamic avalanches.

100 200 300 400 500 600
w

-1

1

2

3

Log10HPwL

FIG. 4: Distribution of intervals between jumps, in units of
the step-size δw = 0.002. Error-bars are 3σ-errors. (The last
5 boxes are overlapping.)
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