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Abstract 

We consider the problem of distributing the documents to a given set of processors so 
that the load on each processor is as equal as possible and the amount of communication 
is as small as possible. This is an NP-Complete problem. We apply continuous as well as 
discrete Hop:field neural networks to obtain suboptimal solutions for the problem. These 
networks perform better than a genetic algorithm for this task proposed by Frieder et al. 
[4]; in particular, the continuous Hopfield network performs extremely well. 
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1 Introduction 

Multiprocessor systems with distributed memory are powerful tools for information retrieval. 
These systems can support multiple queries simultaneously, with various documents distributed 
among the processors. Efficient exploitation of parallelism in such systems requires fast access 
to documents. In this paper, we address the task of allocating documents onto processors to 
achieve better performance and lower operating costs. A poor allocation can cause, for example, 
heavy traffic on the communication network degrading the performance drastically. On the other 
hand, a clever allocation can reduce the unnecessary communication, causing the network to 
have a faster response time. 

Our objective is to minimize the communication cost among processors while maintaining an 
even load of documents on processors and maximizing the throughput of the retrieval system. 
This is done by minimizing the "average cluster distance", which is the average distance between 
different processors containing documents which belong to the same cluster, and by making 
the processors evenly loaded. Therefore, the multiprocessor document allocation problem is a 
constrained nonlinear optimization problem, where the cost (energy) function to be minimized 
is the average cluster distance, subject to the conditions that the processors should be evenly 
loaded, and that every document should appear exactly once on only one processor. 

Frieder and Siegelmann [4] have proved that the multiprocessor document allocation problem 
is NP-complete. Therefore, the determination of an optimal allocation of documents is not 
computationally feasible, and heuristic approaches should be applied. Frieder and Siegelmann 
used a genetic algorithm to find a good suboptimal allocations for small sets of documents. In 
this paper, we show that excellent suboptimal solutions can be obtained for the multiprocessor 
document allocation problem using discrete and continuous Hopfield neural networks. The 
Hopfield networks give equally good or better solutions using much less computational resources. 

The rest of this paper is organized as follows. Section 2 describes the neural network model 
for solving the multiprocessor document allocation problem using the discrete Hopfield network, 
while Section 3 describes the continuous Hopfield model. Performance of these two models is 
evaluated in Section 4. Conclusions are presented in Section 5. 

2 The Discrete Hopfield Network Model 

We assume that a set of d documents, D = { di : 1 ::; i ::; d}, is partitioned into C clusters, 
with m(q) being the number of documents in the qth cluster, q = 1, 2, ... . C. A multiprocessor 
system with P nodes is given. The communication cost of sending a unit data from processor 
i to processor j is given by Cij for i,j = 1, ... , P. We consider a neural network approach to 
solve this problem. 

The first neural network model is based on the discrete Hopfield network. Let Xi,j,q be a 
decision variable that takes the value 1 if the document j of the qth cluster is assigned to the ith 
processor, and 0 otherwise. Then the neural network for the multiprocessor document allocation 
problem can be represented as a three-dimensional array of neurons. The first dimension repre­
sents the processors, the second dimension represents the documents, and the third dimension 
represents the clusters. The network has P x C x d nodes. 

Tagliarini et al. [12] have used a similar architecture to solve the weapon-to-target assign-
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ment problem. 
Using the above representation for document allocation, the average cluster distance is pro­

portional to 

1 C P P m(q)m(q) 

F = 2 L: L: L: L: L: Xi,j,qXil,jl,qCi,il· 
q=l i=l i 1=1 i=1 j'=l 

This is minimized subject to the constraint that all processors receive equal load, i.e., 

C m(q) d 
L: L: Xi,j,q = P' fori= 1, ... ,P, 
q=l j=l 

and each document is assigned to one and only one processor, i.e., 
p 

L: Xi,j,q = 1, for all j and q. 
i=l 

Therefore, the function to be minimized can be written as 

P d C m(q) C m(q) p 

E = F + kt I;(- - L: L: Xi,j,q) 2 + k2 L: L: (1 - L: Xi,j,q) 2 

i=l p q=l i=l q=l j=l i=l 

where k1 , k2 are positive penalty factors that are used to penalize violations of the constraints. 
The above energy function can be rearranged in terms of its quadratic, linear, and constant 
components to obtain the connection weights between nodes. 

Assume asynchronous update rule for the nodes of the network, and let node Xi1 j 1q1 be the 
node selected for updating at timet. Then the change of energy LlE(t) = E(t + 1) - E(t) is 
given by 

LlE(t) 

For convenience, we will write the above equation as LlE = ( netiJi1 qJLlxiJi1 q1 • The selected 
node Xi1 J 11q1 will change state if and only if LlE < 0. Assuming that Xi11iJ,q1 (t) = 0 and 
Xi1,j1,q1 (t + 1) = 1, then the node will change its state if and only if (neti1iJqJ < 0. Likewise, if 
Xi1 ,jltq1 (t) = 1, and Xiltj11q1 (t + 1) = 0 then Llxiti1q1 = -1, and the node will change its state if 
and only if ( neti1.it.q1 ) > 0. 

The nodes on the same cluster plane (the nodes with the same cluster index q) are connected 
by symmetric connections with weight Wx; ,. 9 x 1 1 = Ciil, the nodes on the same processor plane 

, , ' .. J q 

(nodes with the same processor index i) are connected by symmetric connections with weight 
Wx . x· 1 1 = 2kt, and the nodes with the same cluster and document indices, q and J. respec-

.. ,J,q' I,J ,q 

tively, are connected by symmetric connections with weight Wx-. x-1 . = 2k2 • Every node has 
I,J,q' I ,J,q 

an external input Iijq = - 2k1 .!}; + k1 - k2 • 

The following algorithm simulates computation using the above described neural network: 
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REPEAT 
initialize all nodes randomly; 
while there is a change in state do 

for each node do 
if (D.E < 0) then change node state; 

end for; 
end while; 
if the solution is feasible 

then calculate average communication distance 
UNTIL the number of trials= MAX-NUM; 
Compute the average cost over all the trials. 

3 The Continuous Hopfield Neural Network Model 

The previous approach has the disadvantage of requiring a very large network because the 
number of neurons increases linearly with the number of documents. An alternative approach 
is to make the number of nodes proportional to the number of clusters. For this approach, we 
reformulate the neural network as a two dimensional array of C x P neurons. The (ij)th node of 
this array represents the fraction of the number of documents of the cluster i allocated to the 
jth processor. This fraction is denoted by Xij· This approach results in a continuous Hopfield 
model, because Xi/stake values in the continuous range from 0 to 1; 0:::;: Xij :::;: 1; Vi,j. 

When this neural network reaches its stable state, the outputs of the neurons are interpreted 
as proportions of documents of every cluster to be allocated onto the different processors. 

We formulate the problem as an energy function to be minimized based on the average cluster 
distance, subject to the conditions that each processor receives equal load and each document 
is assigned to one and only one processor. From the energy function so obtained, we will derive 
the connection weights and external inputs of the neural network. 

3.1 The Energy Function 

The jth processor receives 2:::~1 Xijm( i) documents and the kth processor receives 2:::~ 1 Xikm( i) 
documents. Therefore, the average cluster distance is proportional to 

This is the function that we wish to minimize, subject to the constraint that processors have 
roughly equal load, i.e., minimizing 

( c d) 2 ?= Xijm(i)- p , 
l=l 
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for every processor, and that each document in each cluster is assigned to some processor, i.e., 

( tXij -1) 2 

J=l 

is minimized for every cluster. 
The total energy function to be minimized can hence be written as : 

p d c c p 

E = F + k1 L)p- L:;xijm(i))2 + k2 ~)1- I:; Xij) 2 

j=l i=l i=l j=l 

Separating the quadratic, linear, and constant components, 
p c c d 

E = F + k1 L:;((L:; Xijm(i)?- 2 I:; Xijm(i) + ( p?) + 
j=l i=l i=l 

c p p 

k2 L:;((L:; Xij) 2 - 2 I: Xij + 1). (1) 
i=l j=l j=l 

After some mathematical manipulation, equation (1) can be expanded as 

PCC dPC Pd 

E = F + k1 I:; I:; I:; XijXljm( i)m( l) - 2kl p I:; I:; Xijm( i) + k1 I:;( p )2 + 
j=l i=l l=l j=l i=l j=l 

c p p c p c 
k2 I: I: I: XijXik - 2k2 I: I: Xij + k2 I: 1. (2) 

i=l j=l k=l i=l j=l i=l 

We use a sigmoidal neuron activation function Xij = g( Uij) such that 

g(uii) = 0.5(1 + tanh(AU.ij)) 

where Uij denotes the net input (activation level) of neuron Xij, and A is the gain parameter 
which controls the gradient magnitude of the transfer function. 

The network will have no inherent loss terms, and its dynamics are governed by the following 
equation 

(3) 

Additionally, 
8u·· c P 
____!!_ = """""" T: "[kXlk + L 0 8t L..J L..J t), t) 

l=l k=l 
(4) 

where Equation 3 is used to obtain the connection weights Tij,lk between neurons Xij, Xlk, and 
the external input Iii to Xij as : 

Tij,lk -m( i?Cikhil - 2kl m( i)m( l)hik - 2k2hil 

Iii 2kl !m(i) + 2k2 

where hij = 1 if and only if i = j, and hii = 0 otherwise. 
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3.2 Minimization of the Energy Function 

Using the standard argument (see, for example, Takefuji [13]) we show that any change in the 
network will lead to a decrease in the energy of the system. In view of Equation 4, it is easy to 
see that 

8E 
at 

since g( Uij) is a monotonic function, hence ~~ is either negative or zero. In other words, the 
energy is non-increasing with any change in the network. 

3.3 Network Parameters 

The continuous Hopfield neural network described above is simulated for several values of the 
network parameters, e.g., the slope of the transfer function, penalty factors, k1 and k2 and 
document sets with different numbers of documents and different cluster sizes. Equation 3, 
which plays an important role in insuring that the dynamics of the network is satisfied, is solved 
numerically. 

3.3.1 Effect of the Gradient Magnitude 

When the gradient magnitude of the transfer function is high, the convergence is very slow, and 
in some experiments it did not converge within a prespecified time. On the other hand, if the 
gradient magnitude is low, the convergence is fast but the quality of results is not good. So, the 
gradient magnitude of the transfer function is treated as a time-varying parameter. 

So we start with a transfer function of a high gradient magnitude and during the simulation 
we decrease the gradient magnitude as the number of iterations increases. This gave good results 
with fast convergence. 

3.3.2 Effect of the Penalty Factors 

We performed many experiments using different penalty factors, k1 and k2 • Some of these 
parameters gave infeasible allocations, i.e., a large fraction of a cluster is not allocated onto any 
processor or some clusters are duplicated redundantly among many processors. The penalty 
factor, k2 , associated with feasibility was small in the experiments which gave infeasible results. 
So, to get feasible allocations, k2 should be selected large enough to guarantee feasibility, but 
at the same time it should not be too large to minimize the negative effect of increasing the 
average distance or load balancing. 

To get a feasible solution, the sum of the fractions of each cluster on the different proces­
sors should be 1. But trying to make the sum exactly 1 may slow down the convergence and 
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substantially increase the average distance. For this reason, if 

p 

I LXij -11::; 0.1 
i=l 

for any duster i, then we consider the solution to be feasible, otherwise it is considered as an 
infeasible solution. 

3.4 Interpretation of the Final Outputs of Neurons 

In acceptable solutions, we normalize the node outputs by dividing each Xij by Lj Xij· Mul­
tiplying this fraction by the number of documents in duster i and rounding the result to the 
nearest integer, yields mij, the number of documents of cluster i that is allocated onto processor 
j. We add m(i)- Lj mij documents to the processor that contains the largest fraction of duster 
z. This addition has a negligible effect on load balancing. 

4 Performance Evaluation 

The performance measures used are: 

• load imbalance: expressed as the standard deviation of variance of load among various 
processors. 

• average distance: the average distance between documents of a certain duster which are 
allocated onto different processors. 

Performance depends on the network parameters, the initial states of the neurons and the 
underlying data set. For this reason, we performed many experiments using different penalty 
factors, different network initializations and different data sets. 

We performed many iterations in each case. Some of these iterations may not converge to 
feasible results, e.g., one or more documents are not allocated onto any processor. So, for every 
one of these experiments, we have measured the valid-rate, which is the proportion of iterations 
that gave feasible results. 

Since an optimal allocation is computationally intractable (NP-Complete problem), we have 
compared our results with those of the genetic algorithm proposed in [4) as well as with the 
results of random allocation of documents. 

The two models (the discrete and continuous Hopfield models) were tested using two multi­
processor architectures, a 16-1 mesh and a 16-node hypercube. The communication cost between 
any two adjacent nodes (any two nodes connected by a direct link) in these architectures is as­
sumed to be 1 unit, where the unit can be considered as transmission time for 1 data packet. 

We tested the discrete model using small data sets (small sets of documents) which consists 
of 64, 128, and 256 documents partitioned into 8 clusters. We observed that as we increase the 
value of k2 (the penalty factor associated with feasibility) we get higher values of valid-rate, 
i.e., more iterations giving feasible allocations. Also, as we increase the value of k1 (the penalty 
factor associated with load balancing of documents), the standard deviation of the distribution 
of documents on processors gets smaller. By increasing k1 and k2 , the average cluster distance 
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a e T bl 1 A verage 1ame ers an d" t d average d" t f all Is ances o t expenmen s. 
Average Diameter Average Distance 

Equal Clustering Uneq. Clustering Equal Clustering Uneq. Clustering 
No. of Documents 64 128 256 64 128 256 64 128 256 64 128 256 

Hop-Disc-Mesh 3.70 6.68 8.35 4.8 9.28 12.0 1.56 2.26 3.47 1.94 3.70 4.17 
Hop-Disc-Hyper 2.16 2.125 2.66 3.35 3.78 4.0 1.09 0.99 1.17 1.88 1.83 1.94 
Hop-Cont-Mesh 1.0 1.0 0.94 1.0 1.0 1.0 0.46 0.44 0.39 0.50 0.47 0.45 
Hop-Cont-Hyper 1.0 1.25 1.25 1.0 1.0 1.0 0.58 0.57 0.56 0.58 0.53 0.52 
Genetic-Mesh 5.38 12.25 13.625 8.25 11.38 13.38 2.58 4.93 5.20 3.69 4.60 4.97 
Genetic-Hyper 3.0 3.88 4.0 3.0 3.63 3.88 1.90 2.0 2.05 1.80 1.93 2.0 

increases, due to the reason that more weight is given to the constraints (feasibility and load 
balancing) and less emphasis to the main objective function. These observations are consistent 
with the expected behavior of the system. 

We tested the continuous model with the the same document sets as well as with other larger 
data sets of 2560 and 25600 documents, partitioned into 8 clusters. In these experiments, we 
observed that for small values of k2 some experiments did not converge to feasible solutions 
indicating that k2 (the penalty factor associated with feasibility) should be large. On the other 
hand, when we increase k1 (the penalty factor associated with load balancing) while maintaining 
the feasibility condition, the average distance of clusters increases, which means that there is a 
trade-off between load balancing and minimizing the average distance. Therefore, to keep the 
average distance small, k1 should not be set to large values. As expected the results of both 
Hopfield networks are much better than random allocations (results not presented in this paper). 
In the next section, we focus on comparison with the genetic algorithms. 

4.1 The Genetic Algorithm vs. Hopfield Models 

We implemented the genetic algorithm proposed in [4] in order to compare its results to those 
we obtained using the two Hopfield models. As suggested in [4], we used two document dis­
tributions. In the first distribution, clusters contain equal numbers of documents, while in the 
second, 25 percent of the clusters contain 50 percent of the documents. We refer to the former 
case as "equal-distribution" and the latter as "non-equal-distribution". 

We compared the performance of the genetic algorithm and Hopfield networks in terms of 
the average diameter as well as the average distance of clusters, and the CPU times needed to 
run these algorithms. 

In the genetic algorithm, the mutation rate varied from 0.1 to 0.5 and the population size was 
proportional to the number of documents, i.e., it was set to 50, 100, and 200, for the document 
sets 64, 128, and 256, respectively. 

In Figure 1 and Table 1, we see that the two Hopfield models are superior to the genetic 
algorithm in terms of both the average diameter and the average distance of clusters, especially 
for the 16-1 mesh. The continuous Hopfield model is superior to the discrete model with respect 
to both measures. The genetic algorithm was slightly better than the discrete Hopfield model 
with respect to the average diameter in the case of "non-equal-distribution" for the hypercube 
topology, but the difference between the performance of the two algorithms was very small. 
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Table 2: CPU Time of all experiments. 

CPU Time 
Equal Clustering Uneq. Clustering 

No. of Documents 64 128 256 64 128 256 

Hop-Disc-Mesh 4.40 11.70 54.30 4.49 16.0 35.0 
Hop-Disc-Hyper 4.80 12.89 85.04 4.10 12.89 34.37 
Hop-Cont-Mesh 275.18 134.53 49.50 325.47 176.39 97.04 
Hop-Cont-Hyper 178.56 131.05 49.13 324.89 206.69 96.31 
Genetic-Mesh 139.30 215.95 1882.5 191.9 232.80 1680.20 
Genetic-Hyper 33.90 209.35 1534.68 73.99 238.50 1819.02 

On a SUN-4.1.3 Spare workstation, the Hopfield models needed much less time to execute 
as it is presented in Table 2 and Figure l((e) and (f)). The continuous Hopfield model becomes 
faster than the discrete as the number of documents gets larger. 

5 Conclusions 

In this paper, we have implemented two neural network approaches to solve the multiprocessor 
document allocation problem. The first approach is based on the discrete Hopfield model of 
neural networks where the number of neurons is proportional to the number of documents, 
the number of clusters, and the number of processors. The other approach is based on the 
continuous Hopfield model. In this model, we allocate fractions of clusters (and not individual 
documents) onto the processors. In other words, the size of the neural network is proportional 
to the number of clusters of documents (instead of the number of documents) and the number of 
processors. The final outputs of the neurons represent the fractions of clusters that are allocated 
onto processors, and should be interpreted accurately to know the number of documents of each 
cluster that are allocated onto different processors. 

Performance of both approaches is superior to that of the genetic algorithm proposed by 
Frieder and Siegelmann, as well as to that of random allocations of documents. Another major 
advantage, especially for the continuous model, is fast convergence to a feasible solution for large 
sets of documents, provided that network parameters are selected properly. 
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