
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

11-14-1994

Multiprocessor Document Allocation: a Neural Network Approach Multiprocessor Document Allocation: a Neural Network Approach

Abdulaziz Sultan Al-Sehibani
Syracuse University

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Al-Sehibani, Abdulaziz Sultan; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "Multiprocessor
Document Allocation: a Neural Network Approach" (1994). Electrical Engineering and Computer Science -
Technical Reports. 151.
https://surface.syr.edu/eecs_techreports/151

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/151?utm_source=surface.syr.edu%2Feecs_techreports%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Multiprocessor Document Allocation: a Neural
Network Approach

Abdulaziz Al-Sehibani
Kishan Mehrotra, Chilukuri Mohan, Sanjay Ranka

School of Computer and Information Science
4-116 Center for Science and Technology

Syracuse University
Syracuse, NY 13244-4100

email: asalsehi/kishanfmohanfranka@top.cis.syr.edu

tel: (315) 443-2368

November 14, 1994

Abstract

We consider the problem of distributing the documents to a given set of processors so
that the load on each processor is as equal as possible and the amount of communication
is as small as possible. This is an NP-Complete problem. We apply continuous as well as
discrete Hop:field neural networks to obtain suboptimal solutions for the problem. These
networks perform better than a genetic algorithm for this task proposed by Frieder et al.
[4]; in particular, the continuous Hopfield network performs extremely well.

Keywords: Document Allocation, Hopfield Network, Multiprocessor, Information Retrieval

1 Introduction

Multiprocessor systems with distributed memory are powerful tools for information retrieval.
These systems can support multiple queries simultaneously, with various documents distributed
among the processors. Efficient exploitation of parallelism in such systems requires fast access
to documents. In this paper, we address the task of allocating documents onto processors to
achieve better performance and lower operating costs. A poor allocation can cause, for example,
heavy traffic on the communication network degrading the performance drastically. On the other
hand, a clever allocation can reduce the unnecessary communication, causing the network to
have a faster response time.

Our objective is to minimize the communication cost among processors while maintaining an
even load of documents on processors and maximizing the throughput of the retrieval system.
This is done by minimizing the "average cluster distance", which is the average distance between
different processors containing documents which belong to the same cluster, and by making
the processors evenly loaded. Therefore, the multiprocessor document allocation problem is a
constrained nonlinear optimization problem, where the cost (energy) function to be minimized
is the average cluster distance, subject to the conditions that the processors should be evenly
loaded, and that every document should appear exactly once on only one processor.

Frieder and Siegelmann [4] have proved that the multiprocessor document allocation problem
is NP-complete. Therefore, the determination of an optimal allocation of documents is not
computationally feasible, and heuristic approaches should be applied. Frieder and Siegelmann
used a genetic algorithm to find a good suboptimal allocations for small sets of documents. In
this paper, we show that excellent suboptimal solutions can be obtained for the multiprocessor
document allocation problem using discrete and continuous Hopfield neural networks. The
Hopfield networks give equally good or better solutions using much less computational resources.

The rest of this paper is organized as follows. Section 2 describes the neural network model
for solving the multiprocessor document allocation problem using the discrete Hopfield network,
while Section 3 describes the continuous Hopfield model. Performance of these two models is
evaluated in Section 4. Conclusions are presented in Section 5.

2 The Discrete Hopfield Network Model

We assume that a set of d documents, D = { di : 1 ::; i ::; d}, is partitioned into C clusters,
with m(q) being the number of documents in the qth cluster, q = 1, 2, C. A multiprocessor
system with P nodes is given. The communication cost of sending a unit data from processor
i to processor j is given by Cij for i,j = 1, ... , P. We consider a neural network approach to
solve this problem.

The first neural network model is based on the discrete Hopfield network. Let Xi,j,q be a
decision variable that takes the value 1 if the document j of the qth cluster is assigned to the ith
processor, and 0 otherwise. Then the neural network for the multiprocessor document allocation
problem can be represented as a three-dimensional array of neurons. The first dimension repre­
sents the processors, the second dimension represents the documents, and the third dimension
represents the clusters. The network has P x C x d nodes.

Tagliarini et al. [12] have used a similar architecture to solve the weapon-to-target assign-

2

ment problem.
Using the above representation for document allocation, the average cluster distance is pro­

portional to

1 C P P m(q)m(q)

F = 2 L: L: L: L: L: Xi,j,qXil,jl,qCi,il·
q=l i=l i 1=1 i=1 j'=l

This is minimized subject to the constraint that all processors receive equal load, i.e.,

C m(q) d
L: L: Xi,j,q = P' fori= 1, ... ,P,
q=l j=l

and each document is assigned to one and only one processor, i.e.,
p

L: Xi,j,q = 1, for all j and q.
i=l

Therefore, the function to be minimized can be written as

P d C m(q) C m(q) p

E = F + kt I;(- - L: L: Xi,j,q) 2 + k2 L: L: (1 - L: Xi,j,q) 2

i=l p q=l i=l q=l j=l i=l

where k1 , k2 are positive penalty factors that are used to penalize violations of the constraints.
The above energy function can be rearranged in terms of its quadratic, linear, and constant
components to obtain the connection weights between nodes.

Assume asynchronous update rule for the nodes of the network, and let node Xi1 j 1q1 be the
node selected for updating at timet. Then the change of energy LlE(t) = E(t + 1) - E(t) is
given by

LlE(t)

For convenience, we will write the above equation as LlE = (netiJi1 qJLlxiJi1 q1 • The selected
node Xi1 J 11q1 will change state if and only if LlE < 0. Assuming that Xi11iJ,q1 (t) = 0 and
Xi1,j1,q1 (t + 1) = 1, then the node will change its state if and only if (neti1iJqJ < 0. Likewise, if
Xi1 ,jltq1 (t) = 1, and Xiltj11q1 (t + 1) = 0 then Llxiti1q1 = -1, and the node will change its state if
and only if (neti1.it.q1) > 0.

The nodes on the same cluster plane (the nodes with the same cluster index q) are connected
by symmetric connections with weight Wx; ,. 9 x 1 1 = Ciil, the nodes on the same processor plane

, , ' .. J q

(nodes with the same processor index i) are connected by symmetric connections with weight
Wx . x· 1 1 = 2kt, and the nodes with the same cluster and document indices, q and J. respec-

.. ,J,q' I,J ,q

tively, are connected by symmetric connections with weight Wx-. x-1 . = 2k2 • Every node has
I,J,q' I ,J,q

an external input Iijq = - 2k1 .!}; + k1 - k2 •

The following algorithm simulates computation using the above described neural network:

3

REPEAT
initialize all nodes randomly;
while there is a change in state do

for each node do
if (D.E < 0) then change node state;

end for;
end while;
if the solution is feasible

then calculate average communication distance
UNTIL the number of trials= MAX-NUM;
Compute the average cost over all the trials.

3 The Continuous Hopfield Neural Network Model

The previous approach has the disadvantage of requiring a very large network because the
number of neurons increases linearly with the number of documents. An alternative approach
is to make the number of nodes proportional to the number of clusters. For this approach, we
reformulate the neural network as a two dimensional array of C x P neurons. The (ij)th node of
this array represents the fraction of the number of documents of the cluster i allocated to the
jth processor. This fraction is denoted by Xij· This approach results in a continuous Hopfield
model, because Xi/stake values in the continuous range from 0 to 1; 0:::;: Xij :::;: 1; Vi,j.

When this neural network reaches its stable state, the outputs of the neurons are interpreted
as proportions of documents of every cluster to be allocated onto the different processors.

We formulate the problem as an energy function to be minimized based on the average cluster
distance, subject to the conditions that each processor receives equal load and each document
is assigned to one and only one processor. From the energy function so obtained, we will derive
the connection weights and external inputs of the neural network.

3.1 The Energy Function

The jth processor receives 2:::~1 Xijm(i) documents and the kth processor receives 2:::~ 1 Xikm(i)
documents. Therefore, the average cluster distance is proportional to

This is the function that we wish to minimize, subject to the constraint that processors have
roughly equal load, i.e., minimizing

(c d) 2 ?= Xijm(i)- p ,
l=l

4

for every processor, and that each document in each cluster is assigned to some processor, i.e.,

(tXij -1) 2

J=l

is minimized for every cluster.
The total energy function to be minimized can hence be written as :

p d c c p

E = F + k1 L)p- L:;xijm(i))2 + k2 ~)1- I:; Xij) 2

j=l i=l i=l j=l

Separating the quadratic, linear, and constant components,
p c c d

E = F + k1 L:;((L:; Xijm(i)?- 2 I:; Xijm(i) + (p?) +
j=l i=l i=l

c p p

k2 L:;((L:; Xij) 2 - 2 I: Xij + 1). (1)
i=l j=l j=l

After some mathematical manipulation, equation (1) can be expanded as

PCC dPC Pd

E = F + k1 I:; I:; I:; XijXljm(i)m(l) - 2kl p I:; I:; Xijm(i) + k1 I:;(p)2 +
j=l i=l l=l j=l i=l j=l

c p p c p c
k2 I: I: I: XijXik - 2k2 I: I: Xij + k2 I: 1. (2)

i=l j=l k=l i=l j=l i=l

We use a sigmoidal neuron activation function Xij = g(Uij) such that

g(uii) = 0.5(1 + tanh(AU.ij))

where Uij denotes the net input (activation level) of neuron Xij, and A is the gain parameter
which controls the gradient magnitude of the transfer function.

The network will have no inherent loss terms, and its dynamics are governed by the following
equation

(3)

Additionally,
8u·· c P
____!!_ = """""" T: "[kXlk + L 0 8t L..J L..J t), t)

l=l k=l
(4)

where Equation 3 is used to obtain the connection weights Tij,lk between neurons Xij, Xlk, and
the external input Iii to Xij as :

Tij,lk -m(i?Cikhil - 2kl m(i)m(l)hik - 2k2hil

Iii 2kl !m(i) + 2k2

where hij = 1 if and only if i = j, and hii = 0 otherwise.

5

3.2 Minimization of the Energy Function

Using the standard argument (see, for example, Takefuji [13]) we show that any change in the
network will lead to a decrease in the energy of the system. In view of Equation 4, it is easy to
see that

8E
at

since g(Uij) is a monotonic function, hence ~~ is either negative or zero. In other words, the
energy is non-increasing with any change in the network.

3.3 Network Parameters

The continuous Hopfield neural network described above is simulated for several values of the
network parameters, e.g., the slope of the transfer function, penalty factors, k1 and k2 and
document sets with different numbers of documents and different cluster sizes. Equation 3,
which plays an important role in insuring that the dynamics of the network is satisfied, is solved
numerically.

3.3.1 Effect of the Gradient Magnitude

When the gradient magnitude of the transfer function is high, the convergence is very slow, and
in some experiments it did not converge within a prespecified time. On the other hand, if the
gradient magnitude is low, the convergence is fast but the quality of results is not good. So, the
gradient magnitude of the transfer function is treated as a time-varying parameter.

So we start with a transfer function of a high gradient magnitude and during the simulation
we decrease the gradient magnitude as the number of iterations increases. This gave good results
with fast convergence.

3.3.2 Effect of the Penalty Factors

We performed many experiments using different penalty factors, k1 and k2 • Some of these
parameters gave infeasible allocations, i.e., a large fraction of a cluster is not allocated onto any
processor or some clusters are duplicated redundantly among many processors. The penalty
factor, k2 , associated with feasibility was small in the experiments which gave infeasible results.
So, to get feasible allocations, k2 should be selected large enough to guarantee feasibility, but
at the same time it should not be too large to minimize the negative effect of increasing the
average distance or load balancing.

To get a feasible solution, the sum of the fractions of each cluster on the different proces­
sors should be 1. But trying to make the sum exactly 1 may slow down the convergence and

6

substantially increase the average distance. For this reason, if

p

I LXij -11::; 0.1
i=l

for any duster i, then we consider the solution to be feasible, otherwise it is considered as an
infeasible solution.

3.4 Interpretation of the Final Outputs of Neurons

In acceptable solutions, we normalize the node outputs by dividing each Xij by Lj Xij· Mul­
tiplying this fraction by the number of documents in duster i and rounding the result to the
nearest integer, yields mij, the number of documents of cluster i that is allocated onto processor
j. We add m(i)- Lj mij documents to the processor that contains the largest fraction of duster
z. This addition has a negligible effect on load balancing.

4 Performance Evaluation

The performance measures used are:

• load imbalance: expressed as the standard deviation of variance of load among various
processors.

• average distance: the average distance between documents of a certain duster which are
allocated onto different processors.

Performance depends on the network parameters, the initial states of the neurons and the
underlying data set. For this reason, we performed many experiments using different penalty
factors, different network initializations and different data sets.

We performed many iterations in each case. Some of these iterations may not converge to
feasible results, e.g., one or more documents are not allocated onto any processor. So, for every
one of these experiments, we have measured the valid-rate, which is the proportion of iterations
that gave feasible results.

Since an optimal allocation is computationally intractable (NP-Complete problem), we have
compared our results with those of the genetic algorithm proposed in [4) as well as with the
results of random allocation of documents.

The two models (the discrete and continuous Hopfield models) were tested using two multi­
processor architectures, a 16-1 mesh and a 16-node hypercube. The communication cost between
any two adjacent nodes (any two nodes connected by a direct link) in these architectures is as­
sumed to be 1 unit, where the unit can be considered as transmission time for 1 data packet.

We tested the discrete model using small data sets (small sets of documents) which consists
of 64, 128, and 256 documents partitioned into 8 clusters. We observed that as we increase the
value of k2 (the penalty factor associated with feasibility) we get higher values of valid-rate,
i.e., more iterations giving feasible allocations. Also, as we increase the value of k1 (the penalty
factor associated with load balancing of documents), the standard deviation of the distribution
of documents on processors gets smaller. By increasing k1 and k2 , the average cluster distance

7

a e T bl 1 A verage 1ame ers an d" t d average d" t f all Is ances o t expenmen s.
Average Diameter Average Distance

Equal Clustering Uneq. Clustering Equal Clustering Uneq. Clustering
No. of Documents 64 128 256 64 128 256 64 128 256 64 128 256

Hop-Disc-Mesh 3.70 6.68 8.35 4.8 9.28 12.0 1.56 2.26 3.47 1.94 3.70 4.17
Hop-Disc-Hyper 2.16 2.125 2.66 3.35 3.78 4.0 1.09 0.99 1.17 1.88 1.83 1.94
Hop-Cont-Mesh 1.0 1.0 0.94 1.0 1.0 1.0 0.46 0.44 0.39 0.50 0.47 0.45
Hop-Cont-Hyper 1.0 1.25 1.25 1.0 1.0 1.0 0.58 0.57 0.56 0.58 0.53 0.52
Genetic-Mesh 5.38 12.25 13.625 8.25 11.38 13.38 2.58 4.93 5.20 3.69 4.60 4.97
Genetic-Hyper 3.0 3.88 4.0 3.0 3.63 3.88 1.90 2.0 2.05 1.80 1.93 2.0

increases, due to the reason that more weight is given to the constraints (feasibility and load
balancing) and less emphasis to the main objective function. These observations are consistent
with the expected behavior of the system.

We tested the continuous model with the the same document sets as well as with other larger
data sets of 2560 and 25600 documents, partitioned into 8 clusters. In these experiments, we
observed that for small values of k2 some experiments did not converge to feasible solutions
indicating that k2 (the penalty factor associated with feasibility) should be large. On the other
hand, when we increase k1 (the penalty factor associated with load balancing) while maintaining
the feasibility condition, the average distance of clusters increases, which means that there is a
trade-off between load balancing and minimizing the average distance. Therefore, to keep the
average distance small, k1 should not be set to large values. As expected the results of both
Hopfield networks are much better than random allocations (results not presented in this paper).
In the next section, we focus on comparison with the genetic algorithms.

4.1 The Genetic Algorithm vs. Hopfield Models

We implemented the genetic algorithm proposed in [4] in order to compare its results to those
we obtained using the two Hopfield models. As suggested in [4], we used two document dis­
tributions. In the first distribution, clusters contain equal numbers of documents, while in the
second, 25 percent of the clusters contain 50 percent of the documents. We refer to the former
case as "equal-distribution" and the latter as "non-equal-distribution".

We compared the performance of the genetic algorithm and Hopfield networks in terms of
the average diameter as well as the average distance of clusters, and the CPU times needed to
run these algorithms.

In the genetic algorithm, the mutation rate varied from 0.1 to 0.5 and the population size was
proportional to the number of documents, i.e., it was set to 50, 100, and 200, for the document
sets 64, 128, and 256, respectively.

In Figure 1 and Table 1, we see that the two Hopfield models are superior to the genetic
algorithm in terms of both the average diameter and the average distance of clusters, especially
for the 16-1 mesh. The continuous Hopfield model is superior to the discrete model with respect
to both measures. The genetic algorithm was slightly better than the discrete Hopfield model
with respect to the average diameter in the case of "non-equal-distribution" for the hypercube
topology, but the difference between the performance of the two algorithms was very small.

8

Table 2: CPU Time of all experiments.

CPU Time
Equal Clustering Uneq. Clustering

No. of Documents 64 128 256 64 128 256

Hop-Disc-Mesh 4.40 11.70 54.30 4.49 16.0 35.0
Hop-Disc-Hyper 4.80 12.89 85.04 4.10 12.89 34.37
Hop-Cont-Mesh 275.18 134.53 49.50 325.47 176.39 97.04
Hop-Cont-Hyper 178.56 131.05 49.13 324.89 206.69 96.31
Genetic-Mesh 139.30 215.95 1882.5 191.9 232.80 1680.20
Genetic-Hyper 33.90 209.35 1534.68 73.99 238.50 1819.02

On a SUN-4.1.3 Spare workstation, the Hopfield models needed much less time to execute
as it is presented in Table 2 and Figure l((e) and (f)). The continuous Hopfield model becomes
faster than the discrete as the number of documents gets larger.

5 Conclusions

In this paper, we have implemented two neural network approaches to solve the multiprocessor
document allocation problem. The first approach is based on the discrete Hopfield model of
neural networks where the number of neurons is proportional to the number of documents,
the number of clusters, and the number of processors. The other approach is based on the
continuous Hopfield model. In this model, we allocate fractions of clusters (and not individual
documents) onto the processors. In other words, the size of the neural network is proportional
to the number of clusters of documents (instead of the number of documents) and the number of
processors. The final outputs of the neurons represent the fractions of clusters that are allocated
onto processors, and should be interpreted accurately to know the number of documents of each
cluster that are allocated onto different processors.

Performance of both approaches is superior to that of the genetic algorithm proposed by
Frieder and Siegelmann, as well as to that of random allocations of documents. Another major
advantage, especially for the continuous model, is fast convergence to a feasible solution for large
sets of documents, provided that network parameters are selected properly.

References

[1] Chakraborty K., Mehrotra K., Mohan C., and Ranka S., "An Optimization Network for
Solving a Set of Simultaneous Linear Equations," IEEE/INNS Inti. Joint Conf. on Neural
Networks, Baltimore, June, 1992.

[2] Cichocki A. and Unhehauen R., "Neural Networks for Optimization and Signal Processing,"
John Wiley and Sons, 1993.

9

[3] Cornell D. and Yu P., "On Optimal Site Assignment for Relations in the Distributed
Database Environment," IEEE Trans. on Software Engineering, Vol. 15, No. 8, Aug. 1989.

[4] Frieder 0. and Siegelmann H., "The Allocation of Documents in Multiprocessor Information
Retrieval Systems: An Application of Genetic Algorithms," Proc. of the 1991 IEEE Intl.
Con£. on Systems, Man. and Cybernetics.

[5) Hecht-Nielsen R., "Neurocomputing," Addison Wesley, 1990.

[6] Hertz J., Krogh A. and Palmer R., "Introduction to the Theory of Neural Computation,"
Addison Wesley, 1991.

[7] Hopfield J., "Neurons with graded response have collective computational properties like
those of two-state neurons," Proc. of the National Academy of Sciences, Vol. 81, pp.3088-
3092, May 1984.

[8] Kamoun F. and Ali M., "Neural Networks for Shortest Path Computation and Routing in
Computer Networks," IEEE Trans. on Neural Networks, Vol. 4, No. 6, Nov. 1993.

[9] Lu Y. and Thomborson C., "Gate Array Global Routing Using A Neural Network," Arti­
ficial Neural Networks in Engineering, Dagli, Kumar and Shin, editors, pp.985-990, Nov.
1991.

[10) Protzel W., Palumbo D. and Arras M., "Performance and Fault Tolerance of Neural Net­
works for Optimization," IEEE Trans. on Neural Networks, Vol. 4, No. 4, July 1993.

[11] Rotem D., Schloss A. and Segev A.," Data Allocation for Multidisk Databases," IEEE
Trans. on Knowledge and Data Engineering., Vol. 5, No. 5, Oct. 1993.

[12] Tagliarini G., Christ F., and Page E., "Optimization Using Neural Networks," IEEE Trans.
on Computers, Vol. 40, No. 12, Dec. 1991.

[13] Takefuji Y., "Neural Network Parallel Computer,"Kluwer Academic Publisher, Boston,
1992.

10

" !l
';'

"' "' u

14r-------~--------.----------r---------r~

-- ------------~----------------.. ---,-,_,· 12

j "///
~ ____ .. ___ _

2 =~~~------------------+--------------------------------------+
,....._.......=co==1J:":=:::::~===:=::====--------15

100 150 200 250

Number of documents

(a) Average Diameter (equal-distribution)

" u

", ...
" t

·--·

///

1 ---------------------+---+

100 150 200 250

Number of documents

(c) Average Distance (equal-distribution)

1800

1600

1400

1200

1000

800

600

400

200

0
100 150 200 250

Number of documents

(e) CPU-Time (equal-distribution)

" " ...
';'

"' "' u

...
" 1
"

14r-------r---------,---------,----------r-,

12

10
............

/

~--

100

_.,...,.,.
-------­·----

150

_____________ ...

200 250

Number of documents

(b) Average Diameter (unequal-distribution)

6r-------r--------,,--------,---------,-,

" u

" :'l ., ...
"

4 --
------------- - -

... ------
---------------..li.:- ------ --

E 2 ~=-:-----=~:"="=:fc:_::-":;;;;c;:=-::-":;:"=c=~"'-::-"="="=o=~=~-"="==o==-

/Foo===c=o==-==11'-=------------------------------'··-·-·-----·········'i!l

oL-----~L-------~~------~--------~~
100 150 200 250

Number of documents

(d) Average Distance (unequal-distribution)

1800

1600

1400

1200

1000

800

600

400

200

0
100 150 200 250

Number of documents

(f) CPU-Time (unequal-distribution)

Figure 1.
rithm.

Performance of Hopfield models and the genetic algo- Legend

11

Hop-Disc-Mesh ~
Hop-Disc-Hyp -+--·

Hop-Cent-Mesh ·EI···
Hop-Cont-llyp ·*·····
Genetic-Mesh ..._._

Genetic-Hyp -11-··

	Multiprocessor Document Allocation: a Neural Network Approach
	Recommended Citation

	SU-CIS-94-08_001c
	SU-CIS-94-08_002c
	SU-CIS-94-08_003c
	SU-CIS-94-08_004c
	SU-CIS-94-08_005c
	SU-CIS-94-08_006c
	SU-CIS-94-08_007c
	SU-CIS-94-08_008c
	SU-CIS-94-08_009c
	SU-CIS-94-08_010c
	SU-CIS-94-08_011c

