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1 Introduction 

Sigmoid functions, whose graphs are "S-shaped" curves, appear in a great variety of contexts, such 
as the transfer functions in many neural networks. 1 Their ubiquity is no accident; these curves are 
the among the simplest non-linear curves, striking a graceful balance between linear and non-linear 
behavior. 

Figure 1 shows three sigmoidal functions, and their inverses; the hyperbolic tangent tanh(·) (graph 
'A'), the "logistic" sigmoid 1/(1 + exp( -x)) (graph 'B'), and the "algebraic" sigmoid, xj J(1 + x2 ) 

(graph 'C'), with inverses, tanh-1 (y), ln y/(1 - y), and yj-/1 - y2 , respectively. In a few cases, 
sigmoid curves can be described by formulae; this rubric includes power series expansions (e.g., 
hyperbolic tangent), integral expressions (e.g., error function), composition of simpler functions (e.g., 
the Gudermannian function), inverses of functions definable by formulae (e.g., the "complexified" 
Langevin function, a sigmoid defined as the inverse of the function, 1/x - cot(x)), differential 
equations et cetera. 

Although the level of abstraction in many problems is such that one does not need to work with 
explicit formulae2 , it is useful to study networks with specific transfer functions for the following 
reasons: 

10ther examples of the use of sigmoid functions are the logistic function in population models, the hyperbolic 
tangent in spin models, the Langevin function in magnetic dipole models, the Gudermannian function in special 
functions theory, the (cumulative) distribution functions in mathematical statistics, the piecewise approximators in 
nonlinear approximation theory, the hysteresis curves in certain nonlinear systems etc. 

2For example, in neural net approximation theory, significant results can be obtained about the existence of real
izations within preassigned tolerances, with very few constraints on the nature of the node transfer function; classic 
results along these lines are found in [5, 7, 11, 20] 
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Figure 1: Some sigmoids and their inverses 

1. In determining whether a single layered feedforward net is uniquely determined by its cor
responding input-output map, Sussmann's elegant proof of uniqueness specifically used the 
properties of the tanh(·) function [35]. A later analysis by Sontag obtained the same results 
with fewer assumptions on the node transfer function, but still requires such functions to be 
odd, and satisfy certain "independence" properties [1]. With respect to the uniqueness problem, 
all node transfer functions are not equivalent3 • 

2. Without tractable analytical forms to work with, many problems relating to sigmoids are 
resistant to theory. Neural net theory offers many examples. For example, there have been 
claims in the literature about the advantage (with respect to computability, training times 
etc.) of certain sigmoidal transfer functions over others in backpropagation networks [8, 17, 33]. 
Some theoretical support comes from considering the first derivatives (if defined) of the various 
transfer functions proposed; the first derivatives are partially responsible for controlling the step 
size in the weight adjustment phase of the back propagation algorithms, which in turn influences 
the rate of convergence. Explicit expressions for sigmoids are useful in such considerations. 

3. The dynamical system describing the continuous Hopfield model raises an intriguing query. 
If one assumes a tanh(·) node transfer function, one can show that the Hopfield model is 
transformable to the Legendre differential equation (see section 6.1); An important question is 
whether this relationship is robust with respect to the choice of the transfer function. 

4. The recent study of sigmoidal derivatives by Minai and Williams [26] is another case in point; 
they derived a connection with Eulerian numbers [15, pp. 252-257] but restricted their inquiry 
to the very specific logistic sigmoid. Any generalization of their results requires a careful look 
at sigmoids representable by formulae. 

3 Another example of the non-equivalence of "sigmoids" is offered by Macintyre and Sontag's work on the Vapnik
Chervonenkis {VC) dimension of feedforward networks, which showed that it is finite only for a class of sigmoidal 
functions they call the exp-RA functions. They showed that analyticity of the transfer function is crucial, and cannot 
be relaxed by say, making the function coo (23). 
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5. There are other related issues. For instance, the hyperbolic tangent and logistic sigmoid are 
essentially equivalent in that, one can be obtained from the other, by simple translation and 
scaling transformations: 

1 1 1 
1 ( ) - -2 = -2 tanh(x/2) + exp -x 

(1.1) 

Many sigmoids have power series expansions which alternate in sign. Many have inverses with 
hypergeometric series expansions. On the other hand, many sigmoids have no such simple 
forms, or obvious connections with well known sigmoids. It is natural to ask whether these 
varied analytical expressions for sigmoids have anything in common. It is difficult to answer 
such questions without a thorough understanding of the analytical expressions for sigmoid 
functions. 

In view of these considerations, this paper undertakes a study of two classes of sigmoids: the 
simple sigmoids, defined to be odd, asymptotically bounded, completely monotone functions in one 
variable, and the Hyperbolic sigmoids, a proper subset of simple sigmoids and a natural generalization 
of the hyperbolic tangent. The class of hyperbolic sigmoids includes a surprising number of well 
known sigmoids. The regular structure of the simple sigmoids often makes a theory tractable, paving 
the way for more general analysis. 

The main contributions of the paper are as follows 

• Simple and Hyperbolic sigmoids and their inverses are completely characterized in Sections 4 
and 5. 

• Using series inversion techniques, in Section 5, we obtain the series expansions of hyperbolic 
sigmoids from those of their inverses. These results extend results of Minai and Williams [26] 
for the logistic function. 

• In section 4, we study the composition of simple sigmoids via differentiation, addition, multi
plication, and functional composition. These results also completely specify the relationship 
between Euler's incomplete Beta function and the parameterized sigmoids. 

• In Section 6.1 we show that the continuous Hop:field equations belong to the class of non
homogeneous Legendre differential equations if the neural transfer function is a simple sigmoid. 

• In Section 6.2 we establish a connection between Fourier transforms and feedforward nets 
with one summing output and one hidden layer whose nodes contain simple sigmoidal transfer 
functions. 

We do not purport to have discovered a general framework to describe all sigmoids; indeed, such 
a quest is largely meaningless; nor are we arguing for limiting the notion of sigmoids to the classes 
considered in this paper. Simple sigmoids are rather special sigmoids, but their regular structure 
often makes a theory tractable, paving the way for more general analysis. 

2 Preliminaries 

Notation: lR and lR+ denote real space, and the set of positive real numbers, respectively. (a, b) and 
[a, b] denote the open and closed intervals from a to b. If A is a set, then IAI is the cardinality of 
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A. Given a function J, its domain and range are denoted by Dom(J) and Ran(!), respectively. J(k) 
refers to the k-th derivative off (if it exists). Occasionally, we shall use f'(x) in place of J< 1l(x). If 
a function J(-) is k times continuously differentiable on a given interval I, then we write f E Ck(I). 
coo functions are called smooth functions. The term "Propositions" refers to results cited from ex
ternal sources. 

The concepts of real analytic functions [21, pp. 1-3], absolute monotonic and completely monotonic 
functions [38, pp. 144-145] and hypergeometric functions [9, pp. 202], are central to what follows; 
for convenience they are reviewed below. 

Definition 2.1 (Real Analyticity) Let U ~ R be an open set. A function f : U ---? R is said 
to be real analytic4 at x 0 E U, if the function may be represented by a convergent power series on 
some interval of positive radius centered at x 0 , i.e. , f(x) = Ei'=o a;(x - x 0 )i. The function is said 
to be real analytic on V ~ U, if it real analytic at each x 0 E V. I 

Definition 2.2 (Monotonicity) A function f : lR ---? lR is absolutely monotonic in (a, b) if it has 
non-negative derivatives of all orders there, i.e. , f E C 00 ((a, b)) and, 

a < x < b, k = 0, 1, 2 ... (2.1) 

A function f : lR ---? R is completely monotonic in (a, b), iff J( -x) is absolutely monotonic in 
( -b, -a). Equivalently, f is completely monotonic in (a, b) iff f E C 00 ((a, b)) and, 

a < x < b, k = 0, 1, 2 ... (2.2) 

A function f : lR ---? R is completely convex in (a, b), iff f E coo((a, b)), and for all non-negative k 
and x E (a, b), ( -1)k J(kl(x) ~ 0. I 

A fundamental property of absolutely monotone and completely monotone functions is that they are 
necessarily real analytic on their domains (S. Bernstein's theorem5 [12, pp. 184]). Additionally, iff 
is absolutely monotone on an interval I ~ R, then it is non-negative, non-decreasing, convex, and 
continuous on I. 

Definition 2.3 The generalized Gauss hypergeometric (GH) series pFq(a1 , ... , ap; rb ... , /qi z) is 
defined by, 

where (a) .. = (a)( a + 1) ···(a + n - 1) is the rising factorial or Pochhammer's polynomial in a. 
By definition, (a)0 = 1. The a/s are the numeratorial parameters, and the 1/s are referred to as 
the denominatorial parameters of the GH series. I 

4Real analytic functions are also referred to as regular, holomorphic, and monogesic functions. 
5In full, Bernstein's theorem asserts that given a function f(z), if infinitely many of its derivatives j(nl), J<n3), • • • 

are of constant sign in the open interval I (J<n~cl is the n11th derivative of/), and if the sequence n 1 , n 2 , • • · does not 
increase more rapidly than a geometric progression, {i.e. there is a fixed quantity C, such that Vk nk+ 1/nk < C), 
then /{z) is analytic on the interval I [12, pp. 184]. 
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In particular, the classical GH series6 in z, 2F1 (a.,/3;7;z) is defined by, 

(2.4) 

Remark 2.1 The pFq representation of a hypergeometric series, though a standard one, can be 

confusing. For example, the series E~o ~~ could be viewed as 0F0 (;; z), or as 1F 1 (1; 1; z), or as 
3F3 (1, 1, 1; 1, 1, 1; z), etc. We shall henceforth use the "minimum" representation, in this case 0F 0 (;; z). 
In the case of E~o ~: it is not necessary to have a non-empty list of numeratorial and denominatorial 
parameters. 

Remark 2.2 In general, the parameters a./s and ")'/s, as well as the variable z, are allowed to 
be complex; however, we follow common practice and restrict our attention to real values i.e. Vi : 
ai, 'Yi, z E ~- Even with this restriction, the hypergeometric function is amazingly versatile. Spanier 
and Oldham list over 170 functions that are representable in terms of the hypergeometric function 
[32, pp. 149-165]. The hypergeometric function is a periodic table a la Mendeleev for mathematical 
functions; different functions get neatly pegged into various groups 7 by the values of the parameters 
and the form of the dependent variable. 

3 Simple & Hyperbolic Sigmoids 

Definition 3.1 (Simple sigmoids) A function a: )R ~ ( -1, 1) is said to be a simple sigmoid if 
it satisfies the following conditions: 

1. a(·) is a smooth function, i.e., a(x) is C 00 • 

2. a(·) is an odd function, i.e., a( -x) = -a(x). 

3. a(·) has y = ±1 as horizontal asymptotes, i.e., limx--+oo a(x) = 1. 

4. a(x)jx is a completely convex function in (0, 1). I 

Simple sigmoids are required to be odd smooth functions bound by horizontal aymptotes; constraints 
impose a degree of standardization on the kinds of sigmoids being considered. The following results 
clarify the implications of the fourth constraint. 

Proposition 3.1 : [10, Theorem 3, pp. 222] A function f: (0, 1) ~ ~is absolutely monotone on 
(0, 1) iff it possesses a power series expansion with non-negative coefficients, converging for 0 < x < 
1. I 

Lemma 3.1 A function f : (0, 1) ~ ~ is completely monotone on (0, 1) iff it possesses an 
alternating power series expansion, converging for 0 < x < 1. 

6 The classical GH series is referred to as the Gauss function in the literature [32, pp. 599]. 
7 "There must be many universities to-day where 95 per cent, if not 100 per cent, of the functions studied by physics, 

engineering, and even mathematics students, are covered by this single symbol F(a, b; c; x)." - W. W. Sawyer, cited 
by Graham et. al. [15, pp. 207] 
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Proof'l: Iff is completely monotone in (0, 1), then the power series expansion off in (0, 1) has to 
be alternating (because, ( -1)k J(k) 2: 0). On the other hand, consider an alternating power series 
f ( x) converging for all 0 < x < 1 and its derivatives: 

f(x) = ao - a1x + a2x2 - a3x3 + · · · ai 2: 0 (0 < x < 1) 

( -1)j<1>(x) = + a1 - 2a2x + 3a3x2 + · · · 
j<2>(x) = 2a2 - 6a3x + · · · 

(3.1) 

From real analysis we know that each of ( -1)n J<n>(x) has the same convergence properties as Equa
tion (3.1). Also, the sum of a convergent infinite alternating series is always less than or equal to 
the first term. This fact, along with the above equations implies that ( -1)k J(k)(x) 2: 0 i.e., f(x) is 
completely monotone on (0, 1). I 

Corollary 3.1 a(x)Jx is a completely convex function in (0, 1) iff a(.Ji)J.../X is a completely mono
tone function in (0, 1). 

Proof: If a(x)Jx is completely convex in (0, 1), then it has to be analytic in (0, 1) [38, 177-179]. 
Also, a(x)Jx is an even function, implying that its power series expansion will consist only of even 
powers in x, which alternate in sign. From Lemma 3.1, a( .../X)/ .../X), will hence be completely mono
tone in (0, 1). The same argument suffices for the converse. I 

If a simple sigmoid is also strictly increasing, then a much stronger statement can be made, as 
demonstrated by the following proposition. 

Proposition 3.2 : [21, pp. 9] Let y = a(x) be a strictly increasing simple sigmoid (i.e. V x E ~' 

a'(x) > 0). Then: 

1. 'f/ = a-1 : ( -1, 1) -+ 31 exists. 

2. 'fi(Y) is a strictly increasing function, analytic in the interval (-1,1). 

3. 'fl'(y) = 1/a'('fl(y)), where 'f/1 and a' are the first derivatives of 'f/ and a respectively. 

4. 'fl(y)Jy is absolutely monotone in (0, 1). I 

Remark 3.1 If a(x)Jx is completely monotone on (0, 1) and a is invertible then 'fi(Y)Jy is absolutely 
monotone on (0, 1), where 'f/ denotes the inverse of a. The converse is also true, and is an immediate 
consequence of Lemma 3.1. 

Remark 3.2 Since a simple sigmoid has two horizontal asymptotes, it implies that its inverse (if it 
exists) will have two vertical asymptotes (i.e. lim11 _+±1 'fi(Y) -+ ±oo). It will be seen that as they 
have been defined, sigmoids and their inverses are quite similar; both are odd, increasing, univalent, 
analytical functions. However, the two differ fundamentally in that sigmoids are aymptotically 
bounded, while their inverses are not. 

8Lemma 3.1 appears to be "folklore"; we have been unable to find a reference. 
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Simple sigmoids encompass many of the often used sigmoids described by formulae. The hyperbolic 
tangent and its close relative, the "exponential" or logistic sigmoid, are often used in many neural 
network theoretical studies and applications. For example, most of the spin-glass models of the 
Hopfield net use the hyperbolic tangent. 9 The hyperbolic tangent has, among others, the following 
properties: 

1. It is an odd, strictly increasing analytical function, asymptotically bounded by the lines y = 
±1. 

2. Its inverse tanh-1 (y) has a GH expansion given by yF(1, 1/2; 3/2; y2 ). 

3. The first derivative of tanh-1 (y) is given by 1/(1 - y2) = 1F0 (1;; y2), i.e. , the GH expansion 
of the first derivative of tanh- 1(y) is dependent on only one numeratorial parameter. 

It can be shown that many other simple sigmoids, such as Elliot's sigmoid [8], the Gudermannian (sec
tion 4.2) etc. , also have inverses with classical GH series representations. 10 The function tanh-1(y)/y 
satisfies a second order linear homogeneous differential equation, with three regular singular points, 
located at 0,1 and oo. A sigmoid with a similar analytical behavior could be expected to have an 
inverse that is a solution to some second order Fuchsian equations11 . Since any second order Fuch
sian equation with three singularities can be transformed into the Gauss hypergeometric differential 
equation, one solution of which is the classical GH series (Klein-Bocher theorem) [37, pp. 203], it 
follows that the inverses would have classical series expansions. These considerations motivate the 
following definition. 

Definition 3.2 (Hyperbolic sigmoids) A function (J' : ~ ---+ ( -1, 1) is said to be a hyperbolic 
sigmoid function if it satisfies the following conditions: 

I 

1. (J' is a real analytic, odd, strictly increasing sigmoid, such that limx-+ oo (J'( x) = 1. 

2. Let 'fJ : ( -1, 1) ---+ ~denote the inverse of (J', and 'f/1 its first derivative. Then, 

(a) 'fl(y)jy has a Gauss hypergeometric series expansion in y2 with at most three parameters. 

(b) rJ1(y) has a Gauss hypergeometric series expansion in y2 with at most one parameter. 

4 Characterization: Inverse hyperbolic sigmoids 

The following result is a complete characterization for the inverses of hyperbolic sigmoids. Proofs 
are presented in the appendix. 

9Stochastic versions of neural nets often start by replacing a set of deterministic state assignment rules, by proba
bilistic ones, obtained from some distribution- usually the Gibbsian distribution (e.g. Holtzman machines, Stochastic 
Hopfield models etc.). Computing expected values for the states of the system then leads to the hyperbolic tangent 
function. See Hertz et. al. for a typical example [18, pp. 28]. 

10The phenomenon is not unduly surprising. A heuristic argument may be given as follows: If the graphs of two 
functions "look" the same, their respective differential equations are usually members of the same family. 

11 Fuchsian equations are linear differential equations each of whose singular points are regular [31, pp. 143-168]. 
tanh -l ( x) / x satisfies such an equation. 
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Theorem 4.1 (Inverses) Let y 
inverse. Then, either 

a(x) be a hyperbolic sigmoid, and let 1J : ( -1, 1) ---t R be its 

( ) - F(a ~. ~. 2) - ~ (ah y2k 

1J y - y ' 2' 2' y - y 6 (2k + 1) k! a ~ 1 ( 4.1) 

or 

a> 0 (4.2) 

where, by F(a, -; -; y2 ), we mean F(a, /3; /3; y2 ) (/3 E R). I 

Notation: Each inverse hyperbolic sigmoid is denoted by 1/a and is characterized by a single pa
rameter a. 

Corollary 4.1 The set of hyperbolic sigmoids is a proper subset of the set of simple sigmoids. 

A proof for Corollary 4.1 may be given along the following lines. If a is a hyperbolic sigmoid, then 
it is simple on the interval ( -1, 1): For, from Theorem 4.1, the series representation for its inverse 
in ( -1, 1) has non-negative coefficients, and this implies rJ(y)jy) is absolutely monotone (Proposi
tion 3.1). Hence a(x)jx is completely monotone, and therfore simple. (Lemma 3.1 and Remark 3.1). 
The converse is not true. Simple sigmoids need not be hyperbolic. The error function erf(·) is simple, 
but one can use Garlitz's study of the function to show that it does not have an inverse representable 
by a classical hypergeometric series [4]. It follows that erf(·) is not a hyperbolic sigmoid, and hence 
the set of hyperbolic sigmoids is a proper subset of the set of simple sigmoids. I 

For specific values of its parameters, the hypergeometric function often reduces to other well known 
special functions. When inverse hyperbolic sigmoids are characterized by Equation ( 4.1), there is an 
intimate connection with Euler's incomplete Beta function. 

Proposition 4.1 : [32, pp. 573] Let a, f3 and 'Y be such that, f3 = 'Y - 1. Then, 

F( _ 1. . ) _ ('Y - 1)B('Y - 1; 1 - a; z) 
a,"( ,"f,Z - 1 z'-

(4.3) 

where B( v; u; z) is the incomplete beta function, defined by J; tv - 1 (1 - t)u - 1dt, where 0 ~ z < 1. 

In particular, ~ B(1/2; 1 - a; z2 ) = J;anh- 1 {z) cosh2{a- 1)(t) dt. I 

Spanier and Oldham give a detailed description of the many properties of this important special 
function [32, pp. 573-580]. The following corollary is an immediate consequence of Theorem 4.1 and 
Proposition 4.1. It gives the connection between inverse hyperbolic sigmoids, and Euler's incomplete 
Beta function. 

Corollary 4.2 If 1Ja(Y) = yF(a, 1/2; 3/2; y2 ), then 1Ja(Y) 
1 

= 2'B(1/2; 1 - a; y2). I 
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The relationship between hyperbolic sigmoids and the incomplete Beta function, also makes explicit 
the relationship between tanh - 1 (-), and inverse hyperbolic sigmoids ofform yF( a; 1/2; 3/2; y2 ). Other 
consequences include: 

1. The availability of good approximations for small values of y and (1 - y). 

2. Rapidly converging series expansions for y close to 1. 

3. Connections with other indefinite integrals of powers of trigonometric or hyperbolic functions. 

4. Connections with statistics via the function I 11 (p, q) [32, pp. 573-580]. 

When inverse hyperbolic sigmoids are characterized by Equation (4.2), we can use the identity, 

- 1 
cosh( tanh 1(y)) = ..j 2 1- y 

(4.4) 

to show that, 

(4.5) 

The fundamental role played by the hyperbolic tangent is once again evident. Here, it relates the 
two types of hyperbolic sigmoids defined by Equations 4.1 and 4.2. 

4.1 New Inverses from Old 

Theorem 4.1 makes it possible to generate new inverse hyperbolic sigmoids from others. The key 
idea is that if yF(a, 1/2; 3/2, y2 ) is an inverse hyperbolic sigmoid, then so is yF(a + 1, 1/2; 3/2; y2 ). 

A similar statement may be made for inverse hyperbolic sigmoids of the form yF(a, -; -; z2). GH 
functions such as F(a, {3; 'Yi z), and F(a + 1, {3; 'Yi z) are said to be contiguous, and there exist several 
differential identities between them [9, pp. 102-104]. Lemma 4.1 is a straightforward consequence of 
three such identities. 

Lemma 4.1 If "'a : ( -1, 1) --+ !R is an inverse hyperbolic sigmoid, then the functions "'a+ 1 and 
"'a _ 1 defined by: 

a ~ 1 (4.6) 

a~2 (4.7) 

are also inverse hyperbolic sigmoids. Also, there exist functions K 1 (a, z), K 2 (a, z) and K 3 (a, z) such 
that, following relation holds: 

(4.8) 

Proof: Equation ( 4.6) that defines "'a+ 1 (y) results from the following identity: 

(4.9) 
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In the following we will use F( 8) as an abbreviation for F( 8; /3; 'Yi z). Equation ( 4. 7) follows from the 
identity: 

dn 
('Y- a)nz-r-a- 1 (1 - z)a+P--r-n F(a- n) = dzn[z-r-a+n-1(1- z)a+P--rF(a)] (4.10) 

Equation ( 4.8), relating 1Ja _ 1 (y ), 1Ja(Y) and 1Ja _ 1 (y) is a consequence of the identity: 

('Y - a)F(a - 1) + (2a - 'Y - az + f3z)F(a) + a(z - 1)F(a + 1) = 0 I (4.11) 

Inverse hyperbolic sigmoids come in two flavors; one form has three parameters (Equation (4.1)), 
while the other has two "missing" parameters (Equation (4.2)). Subject to a minor condition, the 
latter form is always obtainable from the former: 

Lemma 4.2 Let 1Ja = yF(a, 1/2;3/2;y2), where a> 1. Then the function 1Ja- 1 defined by: 

d 
1Ja-1(Y) = y(l- y2 )dy1Ja(Y) = yF(a- 1,-;-;y2) (4.12} 

is an inverse hyperbolic sigmoid, with parameter a - 1. I 

For inverse hyperbolic sigmoids with "missing" parameters, there is a very simple composition rule; 

Lemma 4.3 If 1Ja(Y) = y/(1 - y2)a and 1Ja•(Y) = y/(1 - y2)a' are two inverse hyperbolic sig
moids with a, a' > 0, then the function (TJa(Y)TJa' (y))Jy is also an inverse hyperbolic sigmoid with 
parameter (a + a'). I 

In general, the set of inverse hyperbolic sigmoids is not closed under multiplication or addition. 
But if 1Ja and 1Ja' are inverses of two hyperbolic sigmoids then their sum would also be an inverse 
hyperbolic sigmoid TJ,. for some J.t E ~' i.e., 1Ja + 1Ja' = KTJ,., for some K, if and only if 

( 4.13) 

which in turn, is possible12 if and only if a = a', or a = 0, or a' = 0. 
The definition of hyperbolic sigmoids implies that their inverses have GH expansions in y2 • 

Theorem 4.2 relaxes this requirement by only requiring GH expansions in some odd, injective C 1 

function g(y). A proof is provided in Appendix I. 

Theorem 4.2 Let u : ~ --+ ( -1, 1) be a real analytic, odd, strictly increasing sigmoid, such that 
its inverse 1J: ( -1, 1) --+ ~has a GH series expansion in some injective, odd, increasing C1 function 
g(·), with at most three parameters, convergent in ( -1, 1). Also let 11' have a GH series expansion 
in g(·), with at most one parameter. Then, either 

1 3 2 co (a)A: (g(y))2A: 
TJ(Y) = g(y)F(a, 2; 2; (g(y)) ) = g(y) {; 2k + 1 k! ' for a ~ 1, 

(4.14) 

or 
• • 2 g(y) 

TJ(Y) = g(y)F(a, -, -, (g(y)) ) = (1 _ (g(y))2)a' for a > 0 (4.15) 

provided limy--+ 1 ( 1 g~(~Z)a --+ oo, where g'(-) is the first derivative of g(·). I 

12Equation (4.13), with K = 1, provides an amusing application for Fermat's last theorem; if we accept that for all 
n > 2, there cannot exist positive integers a, band c satisfying the identity an + bn = en, then we may conclude that 
the sum of inverse hyperbolic sigmoids with different integral parameters cannot be an inverse hyperbolic sigmoid with 
an integral parameter. 
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In the case g(y) = y, we obtain the characterization for inverse hyperbolic sigmoids. Another 
interesting special case is when g(y) = 7J(Y ), where 7J(Y) is an inverse hyperbolic sigmoid (since 7J(Y) 
is an injective, smooth, odd, increasing function the conditions of the theorem are satisfied). The 
elementary composition rules presented here allows the generation of an infinite variety of inverse 
hyperbolic sigmoids13 • The next section presents some examples. 

4.2 Examples 

Any function of the form y/(1 - y2 )':X, where a > 0, is the inverse of a hyperbolic sigmoid. For 
example, for a = 2, the function yjJ1 - y2 is the inverse of the hyperbolic sigmoid xjJ1 + x2 • 

Of all inverse hyperbolic sigmoids of the form yF(a, 1/2; 3/2; y2 ), the function tanh(·) is notewor
thy; firstly, it corresponds to the case a = 1, secondly, all inverse hyperbolic sigmoids with integral 
values of a may be generated from tanh(x) by a process of differentiation (Lemma 4.1), and thirdly, 
it is a function often encountered in neural nets [19]. As was mentioned in the Introduction, the 
logistic function may be thought of as a translated and scaled version of the hyperbolic tangent. 

There is a good example of the hypergeometric composition described in Theorem 4.2. Since 
tan(!Jy) is an odd, injective, smooth, increasing function of y (for some constant fJ > 0), from 
Theorem 4.2, one may conclude that for positive a the function, tan(!Jy)F(a, 1/2; 3/2; tan2 (/Jy)) is 
the inverse of some real analytic, odd, strictly increasing sigmoid. It turns out that the inverse 
Gudermannian function1\ may be obtained from this function, by choosing a = 1 as follows: 

7r 7r 
= ln(sec (y) + tan(y)) for - 2 < y < 2 

= 2 tan(y/2) F(1, 1/2; 3/2; tan2 (y/2)) 

Many such examples could be generated. 15 

5 Characterization: Hyperbolic Sigmoids 

It is often desirable and necessary to work with sigmoids themselves, rather than their inverses. In 
this section, we obtain power series expansions of sigmoids. 

If x = 7J(Y) is an inverse hyperbolic sigmoid, then CJ = 71- 1 must have a Maclaurin series 

expansion of the following form: y = CJ(x) = xl:~=o (2~2k:~)! x 2k. We are interested in deter-

mining the coefficients { b21 +I}~ 0 associated with the inverse hyperbolic sigmoids: y and (1 _ y2)a 
yF(a, 1/2; 3/2; y2 ). 

5.1 Hyperbolic Sigmoids of the First Kind 

When an inverse hyperbolic sigmoid is of the form y/(1 - y2 )"', a remarkably explicit form for the 
coefficients { b21 +I} go may be given: 

13 An intriguing case is Elliot's piecewise rational sigmoid [8], defined as u(x) = y/(1 + jxl). Although its inverse 
ry(y) = y/(1 - jyl) does not fit in an obvious way into the framework developed in the last few sections, it is fairly 
simple to relax the conditions placed on g(y), in Theorem 4.2, so as to include this sigmoid as well. 

14The inverse Gudermannian function finds use in relating circular and hyperbolic functions, without the use of 
complex functions. 

151n particular, [32, pp. 149-165], [16, pp. 196-198] are minelodes of such functions and expansions. 
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Theorem 5.1 (Hyperbolic sigmoids- I) If the inverse sigmoid is given by y/(1- y2 )0t., a > 0, 

then in some neighborhood of the origin, we have the valid expansion u(x) = x E:'=o ( 2~2k: ~)! x2k 

where, 

(5.1) 

Proof: (see Appendix I) I 

5.2 Hyperbolic Sigmoids of the Second Kind 

When an inverse hyperbolic sigmoid is of the form x = yF(a, 1/2; 3/2; y2), the problem is much 
harder. The Lagrange inversion formula leads to an intractable expression. Kamber's formulae, as 
presented by Goodman, can be used to give explicit expressions for the coefficients [14, Theorem 7, pp. 
56-57]. Unfortunately, the resulting expressions involve determinants, and are of little computational 
value. The method of repeated differentiation is more successful. The starting point for this line of 
attack is the observation that if x = rJ(Y) is an inverse hyperbolic sigmoid, then: 

dx d 1 1 
dy = dy TJ(Y) = 1J (y) = (1 - y2)CJt. (5.2) 

From Theorem 3.2, we see that for y = u(x), 

dy d ) 1 ( 2)CJt. - = -u(x = -- = 1 - y 
dx dx rJ'(y) 

(5.3) 

By virtue of Equation (5.3), we can compute the higher derivatives of u(·) and hence compute 

b,>+, ~ ,('.:;,: :~x) I. ~; N ole that ;k is expressed in terms of y; this necessitates the use of the 

chain rule. For example, to calculate the second derivative: 

(5.4) 

The following theorem presents an efficient way to implement this procedure. 

Theorem 5.2 (Hyperbolic sigmoids - II A) Let the inverse hyperbolic sigmoid be 1/0t. = 
d 

yF(a, 1/2; 3/2; y2), and u = 11;;1 • Let D = dx. Then, 

(5.5) 

where Gn: ( -1, 1) ~ ~is a function satisfying the recursion 

2yna 
1 2 Gn-t(Y) 
-y 

n ~ 1 
(5.6) 

In particular, b2k = 0, and b2k+l = D 2k+ 1 (u(x)) = G2k(O). 
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Proof: Theorem 5.2 is easily proved by an induction argument on n. I 

While the procedure implicit in Theorem 5.2 is efficient, it does involve the computation of the deriva
tive of Gn(y). Equation (5.6) is a partial difference equation with variable coefficients. Therefore 
there is little hope of solving it in any generality and obtaining a closed form expression. Even more 
sophisticated methods such as Truesdell's generating function technique and Weisner's group theo
retic approach (see [25]), do not give any special insight into the nature of the polynomials G n (y). 16 

The next theorem offers a somewhat different approach to the method of repeated derivatives. 

Theorem 5.3 (Hyperbolic sigmoids- II B) Let u(x) = E~=o (2:2k:~)! x2k be an expansion 

for a hyperbolic sigmoid, whose inverse is of the form yF( a, 1/2; 3/2; y2 ), valid in some neighborhood 
of the origin. Then b2k = 0, and b2k+ 1 = C(2k + 1, k), where the sequence C(n, k) satisfies: 

C(1,0) = 1 

C(n,k)=O Vk~n,k<O (5.7) 

C(n + 1,k) = (2k- n + 1)C(n,k)- 2(na- k + 1)C(n,k- 1) n > 1 

n and k are natural numbers, nn(u(x)), the nth derivative of u, is given by: 

n-1 

nn(y) = nn(u(x)) = L C(n,k)y2k-n+ 1(1- y2ta-k; forn ~ 1 (5.8) 
k=O 

Proof: See Appendix I. I 

The recursive system described by Equation (5.7) does not involve any differentiation. The desired 
value b2k + 1 may be obtained by computing the value of C(2k+ 1, k ). Equation (5.8) gives information 
about the shapes of the derivatives of the hyperbolic sigmoid. From Equation (5. 7), 

b1 = 1 

b5 = 4a(7a - 3) 
b3 = -2a, 

b7 = -8a(127a2 - 123a + 30) 

(5.9) 

(5.10) 

Theorem 5.3 may be viewed as a generalization of the work of Minai and Williams on the derivatives 
of the logistic sigmoid [26]. They obtained relations similar to Equation (5.7)17 • In general, Equa
tion (5.7) is a partial difference equation with variable coefficients, and the system does not appear 
to be related to any well known sets of numbers. A closed form solution for the numbers C(n, k) 
appears to be intractable. 

6 Applications 

In this section, we present two applications. The first shows that if the neural network transfer 
function is a hyperbolic sigmoid, then the dynamical equations describing the Hopfield neural network 

16Equation (5.6) is a differential-difference system of the ascending type; it can then be shown that the polyno
mials {G,.(y)}~=l satisfy Truesdell's F-equation. Unfortunately, the resulting generating function for G,.(y) is too 
complicated for any practical use. 

17Interestingly, in the case of the logistic sigmoid, these relations happened to be the recursions corresponding to 
the Eulerian numbers [15, pp. 253-257]; in other words, the coefficients arising in the computation of higher order 
derivatives of the logistic sigmoid turn out to be the Eulerian numbers. 
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[19] can be transformed into a set of non-homogeneous associated Legendre differential equations. 
Some conclusions regarding the behavior of the Hopfield model, as the outputs saturate (i.e. output--+ 
±1) can then be drawn. 

The second application derives an interesting connection between Fourier transforms and 1-hidden 
layer feedforward nets (1-HL nets). Subject to an additional minor constraint, we show that the use 
of 1-HL nets with simple sigmoidal transfer functions for function approximation is tantamount to 
assuming that the function being approximated is the product of two functions; one the derivative 
of a bounded non-negative function, and the other satisfying some linear n-th order differential 
equation, where n is the number of nodes in the hidden layer. 

6.1 Continuous Hopfield nets & Legendre Differential Equations 

The continuous Hopfield network model [19] with N neurons is described by the following dynamics: 

(6.1) 

where ui and vi are the net input and net output of the ith neuron, respectively, Ii is a constant 
external excitation, and E is the so called "energy" of the network, given by: 

Assume -1 < vi < 1. Let vi = u(ui), where u(·) is a hyperbolic sigmoid. Let 'fJ 
ui = TJ(vi)· There are two cases to consider. 

Case 1: TJ(vi) = viF(a, 1/2; 3/2; v;). In this case, 

1 

(1 - vD" 
and substituting Equation (6.3) in Equation (6.1), we get: 

The following sequence of operations are applied to Equation (6.4): 

S b . dvi d d' a . . h 1. u stitute Yi = dt' an 1uerentiate w1t respect to vi, 

2. multiply throughout by (1 - vD" + 1 , and 

3. differentiate once more with respect to vi. 

Equation (6.4) is then transformed into: 

14 

(6.2) 

u-1 , or, 

(6.3) 

(6.4) 

(6.5) 



where Qi 

yielding, 

zi(1 - 1 v~)'•/ 2 in Equation (6.5) 

(6.6) 

where Ri = (1 - vn-a/2 Qi. Recall that the associated Legendre differential equation is of the form 
[32, pp. 594-597], 

(1 - x2)- - 2x- + v(v + 1) - f.J, f = 0 d2 f df [ 2 ] 

dx2 dx 1 - x2 
(6.7) 

It is clear that the left hand side in equation(6.6), is the associated Legendre differential equation 
with parameters n = -a (Equation (6.5) requires us to choose f.J, = -a, rather than +a), and 
v = a. In other words, the continuous Hopfield model with a neural transfer function given by 
"'(vi) = viF(a, 1/2; 3/2; vn, is reducible to the non-homogeneous associated Legendre differential 
equation with parameters f.J, = -a and v = a. 

Case II: "'(vi) = viF(a, -; -; vn. An analogous approach leads to the very same conclusion, as 
in Case I, i.e., it is possible to transform the continuous Hopfield equation with the above transfer 
function to a non-homogeneous associated Legendre equation. However, the right hand side of the 
transformed equation is complicated and we do not consider this case further. 

We emphasize that the link between the continuous Hopfield equation and the Legendre differential 
equation is not accidental, given that it can be established for all hyperbolic sigmoidal transfer 
functions. For u; = tanh-1 (v;), a = 1, and the above equations have a rather elementary form. 

An immediate application of the above transformation is in studying the saturation behavior of 
the Hopfield neural net. By saturation, we mean that the outputs of the neurons tend to ±1. This 
usually occurs when the network is heading towards a critical point (local or global) [19]. Saturation 
implies that as anode output vi ---. ±1, the quantity Ri ---. 0. In other words, we may study the 
saturation behavior of the continuous Hopfield model by considering the homogeneous version of 
Equation (6.6) viz., 

(6.8) 

From the theory of associated Legendre equations, it is seen that Equation (6.8) has a solution in 
terms of the associated Legendre functions, PS~'-l(x), and Q~l(x) [9, pp. 121-179]. Here, f.J, = -a, 
v = a, and x = vi, and we have: 

Z; = c1Pl-a)(v;) + c2Q~-a)(v;) 
Y; = c1Pl-a)(v;) + c2Q~-a)(vi) 

(1 - vna/2 

1 dv; _ (-a)( ·) (-<>)( ·) 
(1 - vf)<>/2 dt - clPa v, + c2Qa v, 

Neglecting the effect of g;, as is common practice, we obtain from Equation (6.4): 

dv; ~ (1 - v2)"' E· 
dt t t 
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Equation (6.9), in conjunction with Equation (6.10), implies: 

aE 
Ei = -8 = (1 - v7)'42 [c1Pl-a)(vi) + ~Q~-a>(vi)] 

Vi 
(6.11) 

Equation (6.11) in conjunction with Equation (6.2) implies that the overall energy at saturation may 
be written as follows: 

(6.12) 

Ei does not depend on Ei for i =f. j. Thus, to a crude first approximation, the Hopfield network 
"dissociates" at saturation, into independent units, and the quadratic energy function may be written 
as a linear sum of non-linear univalent functions, given by Equation (6.11) and Equation (6.12). 

We wish to stress the possibilities revealed by dealing with the Hopfield equation in a general 
context. For example, in Equation (6.6), 

( 2 ) ~ zi dzi [ ( ) a? ] 1 - v,. --2 - 2v,·- + a a + 1 - z. - R· d d 1 2'-. vi vi - vi 
(6.13) 

where R = (1 - v;)-a/2 Qi, and dd [(1 - v;)<>+l ddEi] + 2givi, consider the case when Qi = K is 
vi vi 

a constant. Then the above equation reduces to the non-homogeneous equation, 

( 2 )~Zi dzi [ ( ) a 2 ] ( 2)-a/2 1 - v. -- - 2vi- + a a + 1 - zi = K 1 - v. 
• dv"f dvi 1 - v"f ' 

(6.14) 

which may be solved using the special function s~.~~ defined and described by Babister [2, pp. 256-
264]. Recall that Equation (6.14) first arose in the context of solving for Poisson's equation in 
spherical polar co-ordinates [2, pp. 362-363]. 

The fact that the connection between Legendre differential equations and the Hopfield equation 
holds for such a wide variety of sigmoids, and is not just an accidental consequence of a particular 
sigmoid, strongly indicates that further exploration is warranted. 

6.2 Fourier transforms & Feedforward nets 

There have been many different attempts to describe the behavior of feedforward networks such 
as the group theoretic analysis of the Perceptron, proposed by Minsky and Papert [27], the space 
partition (via hyperplanes) interpretation discussed by Lippman [22] (and many others), the metric 
synthesis viewpoint introduced by Pao and Sobajic [29], the statistical interpretation emphasized 
by White {36], et cetera. In 1988, Gallant and White showed that a 1-HL feedforward net with 
"monotone cosine" squashing at the hidden layer, and a summing output node, embeds as a special 
case a "Fourier network" that yields a Fourier series approximation to a given function as its output 
[13]. We present a related construction in this section; it is shown that a one hidden layer (1-HL) 
nets with simple sigmoidal convex transfer functions (at the hidden layer), and a single summing 
output, can be thought of as performing trigonometric approximation (regression) {34, Chap. 4]. 
Specifically, the inverse Fourier transform of the function (to be learned) is approximated as a linear 
combination of weighted sinusoids. 

The result is a consequence of a connection between a class of simple sigmoids and Fourier 
transforms, that facilitates a novel interpretation of 1-HL feedforward nets. Polya's theorem is a 
starting point [30]. 

16 



Proposition 6.1 (Polya's theorem) : [12] A real valued and continuous function f(x) defined 
for all real x and satisfying the following properties: 

1. f(O) = 1, 

2. f(x) = !( -x), 

3. f(x) is convex for x > 0, 

4. limx-+oo f(x) = 0, 

is always a characteristic function (Fourier transform) of an absolutely continuous distribution 
function18 , i.e., f(x) = :F(h(t);x) = f~oo eixth(t)dt. Furthermore, the density h(t) is an even 
function, and is continuous everywhere except possibly at t = 0. I 

The following result connects simple sigmoids with Fourier transforms. 

Theorem 6.1 Let a(x) be a simple sigmoid. If a(x)jx is a convex function, then it is the Fourier 
transform of an absolutely continuous distribution function i.e., 

a(x) = :F(h(t); x) = joo eixth(t)dt 
X -oo 

(6.15) 

Proof: It suffices to prove that a( x) j x satisfy the conditions of Polya's theorem. a( x) being simple 
is bounded, and hence limx-oo a(x)jx = 0. Also, a(-x)/- x = -a(x)j- x = a(x)jx. Since 
a(x) is completely monotone in (0, 1), it follows that limx-o a(x)jx = K (some positive constant). 
There is no loss of generality in assuming K = 1, since one can always scale a(·) appropriately. 
Finally, the convexity of a(x)jx ensures that all of the conditions of Polya's theorem are satisfied 
and the conclusion follows. I 

Remark 6.1 Polya's theorem is a sufficient but not necessary condition for f(x) to be the Fourier 
transform of some function h(t). Hence, Theorem 6.1 is also only a sufficient condition for a simple 
sigmoid to be a Fourier transform. A case in point is the function tanh(x) which is not convex, but 
is still a Fourier transform [28, pp. 42, item # 240], i.e., 

tanh(x) 1 
= :F(log(- coth(1rt)); x) 

X 7r 
(6.16) 

In other words, the conclusions we draw in the next few paragraphs may be valid for some non-convex 
simple sigmoids as well. 

Remark 6.2 In Equation (6.15) h(t) is an even function. Hence the transform is a Fourier cosine 
transform. The sine component vanishes during the course of an integration. 

Consider a 1-HL net, with k input nodes, n hidden layer nodes with convex simple sigmoidal transfer 
functions a(·), and one summing output node. Let wij denote the weight of the connection between 
the ith node in the hidden layer and jth node in the input layer; similarly, let ci denote the weight 

18Recall that an absolutely continuous function F(x) is a distribution function if it can be written in the form 
F(x) = f~oo h(t)dt, where h(t) is called the density of F(x). 
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of the connection between the ith hidden layer node and the output node. Then the output 0 may 
be expressed as, 

n n n k 

0 = L C•Y• = L cia(u.) L Ci a(L: WijXj + (}i) (6.17) 
i=l i=l i= 1 j=l 

where ui and 0, are the input and bias for the ith hidden node, respectively. Since a(·) is a convex 
simple sigmoid, using Lemma 6.1, Equation (6.17) may be rewritten as, 

n n 

O(t) = L C;. Yi = L ci ui:F(h(t); ui) (6.18) 
i=l i=l 

where :F(h(t); u;.) denotes the fact that :F(h(t); x) is to be evaluated at the point x = ui = 
E~=I wiixi + (Ji· Using the well known property of Fourier transforms, that if f(x) = :F(h(t);x), 
then xf(x) = -i:F(h'(t); x) = :F( -ih'(t); x), where h'(-) is the first derivative of h(·), and i = v'-I 
[6, pp. 100], Equation {6.18) may be rewritten19 as, 

n 

O(t) = L c, :F( -ih'(t); ui) (6.19) 
i=l 

Equation (6.19) can be recognized as being analogous to the Heaviside expansion formula in Laplace 
transform theory20 , which allows the reconstruction of a time varying function using information 
relating to its spectral components. Equation (6.19) suggests that 1-HL nets with convex simple 
sigmoidal transfer functions can be thought of as implementing a spectral reconstruction of the 
output using the weighted inputs u~s to evaluate the associated pole coefficients (residues) of the 
Heaviside expansion. 

In particular, it can be demonstrated that the results of Gallant and White [13] are implied by 
Equation (6.19). In what follows, we shall use :Fs(h; x) and :Fc(h; x) to indicate the Fourier sine and 
cosine transforms of h(t). 

Since h(t), the continuous distribution function corresponding to a(x)jx is an even function 
(from Polya's theorem), it follows that a(x) = x:F(h(t); x) = x:Fc(h(t); x). Using the property of 
Fourier transforms that x:Fc(g(t); x) = :Fs( -g'(t); x) [6, pp. 104], we may conclude that a(x) = 
:Fa( -h'(t); x). 

Let u, = u + r;., where ri are appropriate functions of the x;.'s (since the u;.'s are functions of 
the inputs x;.'s). 

n 

O(u) = L c,:Fs(-h'(t);u + r;.) {6.20) 
i=l 

From the frequency shifting property of Fourier transforms [6, pp. 104], viz. , 

~:Fs(f(t); X + a) = :Fs(f(t) cos( at); x) + :Fc(f(t) sin( at); x) (6.21) 

19In Equation (6.19), the i term in .1"( -ih'(t); u;) converts the Fourier cosine transform representation of u(z)/z (see 
remark 6.2) into a Fourier sine transform. 

2°For convenience we restate a simple version of the formula: If the Laplace transform of a function h(t), is given 
by /(z), i.e. /(z) = .C(h(t);z) = J0

00 h(t) exp(-zt)dt, and /(z) has only first order poles at ZI,Z2 •· · Zn, then 
h(t) = E: = 1 FA:(zk), where Fk(xk) is the residue or pole-coefficient of f(x) exp(xt). If the poles of f(x) are of higher 
order, then a similar formula is available [3, Equation 2-25, pp. 22] 
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it follows that, 
n 

O(u) = L Ci :Fs( -h'(t); u + ri) 
i = 1 

n 

= L 2ci {:Fs(-h'(t)cos(rit);u) + :Fc(-h'(t)sin(rit);u)} 
i = 1 

n 

:;:-1(0(u)) = -h'(t) L ci sin(ri + u)t (6.22) 
i = 1 

But we may choose u arbitrarily, we set u = 0, implying ri = ui = L:; = 1 WijXj + ()i, and 
Equation (6.22) becomes, 

n 

:;:-1(0(u)) = -4h'(t) L ci sin((L wiixi + Oi)t) (6.23) 
i=1 j 

Equation (6.23) may be used as a starting point for an analysis identical to that adopted by Gallant 
and White in their study of 1-HL nets with "cosine squashing" functions [13]. It is then straight
forward to show that the weights may be so chosen (hardwired) so that the 1-HL nets embeds as a 
special case a Fourier network, which yields a Fourier series approximation to a given function as its 
output. In this sense, the results of this section extend the study of Gallant and White. 

More generally, one can draw similar conclusions by considering sigmoids that are the Laplace 

transforms of some function; for example tanh(x)/x is the Laplace transform of sgn {sin( ~t) }, where 

sgn(x) is +1, 0 or -1 depending on whether x is greater, equal or lesser than zero [32, pp. 248]. 
An analysis similar to the one described above, would lead to a connection with real exponential 
approximation (rather than trigonometric approximation). Efficient algorithms, such as Prony's, 
exist for certain restricted forms of the exponential approximation problem [34, pp. 82-101]. 

Also related are the considerations of Marks and Arabshahi on the multidimensional Fourier 
transforms of the output of a 1-HL feedforward net; they showed that the transform of the output is 
the sum of certain scaled Dirac delta functions [24]. Here, we view the sigmoid itself as the Fourier 
transform of some function; the main advantage of our interpretation is the algorithms it suggests 
for training 1-HL nets of the type considered in this section. Extensions to multiple layer nets, while 
not trivial, should not present undue difficulties. 

Another potential use of Equation (6.23) is its possible use in exploring the "goodness" of the 
approximation obtained by a 1-HL net with simple sigmoidal transfer functions. In the last 200 
years, much has been learned about the errors associated with exponential and trigonometric ap
proximation, and ways to deal with it; however, consideration of these issues is beyond the scope of 
this paper. 

7 Conclusion 

We have analyzed the behavior of important classes of sigmoid functions, called simple and hyperbolic 
sigmoids, instances of which are extensively used as node transfer functions in artificial neural net
work implementations. We have obtained a complete characterization for the inverses of hyperbolic 
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sigmoids using Euler's incomplete beta functions, and have described composition rules that illus
trate how such functions may be synthesized from others. We have obtained power series expansions 
of hyperbolic sigmoids, and suggested procedures for obtaining coefficients of the expansions. For 
a large class of node functions, we have shown that the continuous Hopfield net equations can be 
reduced to Legendre differential equations. Finally, we have shown that a large class of feedforward 
networks represent the output function as a Fourier series sine transform evaluated at the hidden 
layer node inputs, thus extending an earlier result due to Gallant and White. 
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Appendix I 

Theorem 4.1: Let y - u(x) be a hyperbolic sigmoid, and let TJ : ( -1, 1) -+ !R be its inverse. 
Then, either 

1 3 2 co (a)r. y2k 

TJ(Y) = yF(a, 2; 2; y ) = y {;, (2k + 1) k! a~ 1 (7.1) 

or, 

a>O (7.2) 

where, by F(a, -; -; y2 ), we mean F(a, {3; {3; y2 ) ([3 E !R). 

Proof: Since u(·) is hyperbolic, by definition TJ(·)/x is described by a GH series with at most three 
parameters. There are then four major possibilities: 

TJ(x) = x 3Fo(a11a2,a3; ;x2) +-- Case1 (7.3) 

TJ(x) = x 2F1(al!a2i'Y1ix2) +-- Case2 (7.4) 

TJ(X) = X 1F2(a1; 'Y1, 'Y2i x2) +-- Case3 (7.5) 

TJ(X) =X oFg(i'Yll'Y2,'Y3iX2) +-- Case 4 (7.6) 

(7.7) 

The following proposition shows why there is no need to consider cases 1, 3 and 4, as possible forms 
for hyperbolic sigmoids. 

Proposition A: [32, pp. 155) Let pFq(a1 , ... ,ap;-y1, ... ,-yq;z), be a GH series in z, with p + 
q parameters. If none of the numeratorial parameters are non-positive integers, i.e. Y i : ai =/: 
0, -1, -2, · · · , then convergence behavior of pFq is as follows: 

p < q + 1 pFqnecessarily converges for all finite z. 

p = q + 1 convergence of pFq is limited to -1 < z < 1, 

and depends on the parameters ai 's and 'Yi 's. 

p > q + 1 pFqnecessarily diverges for all nonzero z. 

(7.8) 

Since lim .. -+±l TJ(z) -+ ±oo, but is finite in the interval ( -1, 1), it follows that if a GH series is 
to represent TJ(·), then it has to converge in the interval (-1,1), but diverge at z = ±1. 

This rules out non-positive integral values for the numeratorial parameters; otherwise, the series 
would converge for all z E R (and not just in the interval (-1, 1)). Yet, even if the numeratorial 
parameters do not have non-positive integral values, in three of the above cases, the number of 
numeratorial parameters to denominatorial ones is such that either series again converges for all z 
(case 1), or diverges for all z (case 3, 4). That leaves just one case to consider, viz . the classical 
series, 2F1 (a1,a2;'Y17 z) = F(a,{3;-y;z), i.e. we may take TJ(x) = xF(a,{3;-y;x2 ). 
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Since 'TJO has to be a GH series with at most three parameters, some of the parameters are 
allowed to be "missing". In other words, Case 2 spawns in turn, the following possibilities: 

7J(x) = xF(a,/3;1;x2) 

7J(x) = xF(a,{3;-;x2) 

7J(x) = x F(a, -; ri x2 ) 

7J(x) = x F(a, -; -; x2 ) 

7J(x) = xF(-,-;,;x2) 

'TJ(x) = x F( -, -; -; x2 ) 

f- Case 2(a) 

f- Case 2(b) 

f- Case 2(c) 

f- Case 2(d) 

f- Case 2(e) 

f- Case 2(f) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

Proposition A can be used once again to weed out all but two of the above set, viz. Cases 2(a) 
and 2(d). The rest lead to inappropriate divergence or convergence behavior in the interval. The 
following property of GH functions will be needed. 

Proposition B: [32, pp. 606] If y = F(a, {3; ri x), then ddy = a/3 F(a + 1, {3 + 1; r + 1; x). I 
X T 

(i) 3-parameter GH series: 

'TJ(x) = xF(a,f3;1;x2 ) 

= x L (a)k(f3)k x2k 
k?:O (r)k k! 

Let A: (-1,1)--+ ?R+, with .X(x) = d:~)· Then, 

.X(x) = 'TJ(x) = .!:.._ {xF(a,f3;1;x2)} 
dx dx 

= F(a, {3; li x2) + 2x dF(a, {3; li x2) 
dx 

= F(a, {3; ri x2) + 2x2 a/3 F(a + 1, f3 + 1; r + 1; x2 ) f- Prop. B 

' 

(7.16) 

= { L (a)k(f3)k x2k + 2 L (a)k(f3)k x2k } (7.17) 
k?:o (rh k! k?:l (rh (k - 1)! 

= {1 + L (a)k(f3)k (.!. + 2) x2k} = { L (a)k(f3)k (2k + 1) x2k } 
n?:l (k - 1)! (rh k k?:O (rh k! 

= { L (a)k(f3)k (3/2)k x2k } 
k?:o (rh (1/2h k! 

From the definition of hyperbolic sigmoids, .X(x), is to representable by a GH function with at most 
three parameters; we must make therefore make the identification, f3 = 1/2 and 1 = 3/2. From the 
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symmetry properties of the GH function, we need not consider the case when a = 1/2, 'Y = 3/2. It 
follows that, 

y = x F(a, 1/2; 3/2; x2 ) 

d~(x) 2 1 
A.= -d- = F(a,-;-;x) = ( 2 ) 

X 1- X "' 

(7.18) 

The parameter a cannot take any arbitrary real value. The behavior of ~(x) at the endpoints of its 
interval, requires that, 

lim ~(x) ~ ±oo => lim A.(x) ~ ±oo 
X-> ±1 X---> ±1 

(7.19) 

Equation (7.18) and Equation (7.19) taken together imply that a > 0. This is a necessary but not 
sufficient condition. The following two propositions allow us to pin down a's value more precisely. 

Proposition C : [9, pp. 57-61] If a and {3 are different from 0, -1, · · · then F(a, {3; 'Yi z) converges 
absolutely for z < 1. For z = 1: 

F( a, {3; 'Yi z )converges absolutely 

F(a, {3; 'Yi z)converges conditionally 

F(a, {3; 'Yi z)diverges 

if (a + {3 - -y) < 0 

if 0 ::; (a + {3 - -y) < 1 

if 1 < (a + {3 - -y) I 

(7.20) 

(7.21) 

(7.22) 

Proposition D: [9, pp. 57-61] If ( 'Y - a - {3) > 0 then F( a, {3; 'Yi 1) 
r('Y )r('Y - a - {3) 
r('Y - a )r( 'Y - {3), where 

r(x) =leo exp(-t)tx- 1 is Euler's Gamma function. I 

If a< 1, from Proposition C we see that the series converges absolutely at z = x2 = 1. From 
Proposition D, this in turn implies that, ~(x)fx will have a finite value at the endpoint of its domain 
intervaL Therefore, a 2: 1. The final form for the three parameter GH representation for ~(x) is 
therefore, x F(a, 1/2; 3/2; x 2 ) where a 2: 1. 

(ii) 1-parameter GH series: 
2k 

In this case, ~(x) = x F(a, -; -; x2 ) = x I: (ah xk' = ( x 2 ) • The situation is much simpler, 
k;:::o • 1 - X "' 

since we have to place bounds on the value of one parameter alone. An argument almost identical to 
the one above, allow us to conclude that for ~(x)fx to satisfy the properties of a hyperbolic sigmoid, 
it is both necessary and sufficient that we take a > 0. I 

Theorem 4.2 Let u : ~ ~ ( -1, 1) be a real analytic, odd, strictly increasing sigmoid, such that 
its inverse rJ: ( -1, 1) ~ ~has a GH series expansion in some injective, odd, increasing C1 function 
g(·), with at most three parameters, convergent in (-1,1). Also let rJ1 have a GH series expansion 
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in g(·), with at most one parameter. Then, either 

1 3 2 oo (ah (g(y))2k 
ry(y) = g(y)F(a, 2; 2; (g(y)) ) = g(y) {; 2k + 1 k! ' 

or, - • • 2 - g(y) 
ry(y) - g(y)F(a, -, -, (g(y)) ) - (1 - (g(y))2)"'' 

provided limy-+1 ( g'(y)2) ---+ oo, where g'(-) is the first derivative of g(-). 
1- y "' 

for a 2: 1 
(7.23) 

for a > 0 
(7.24) 

Proof: The proof for Theorem 4.2 is very similar to that for Theorem 4.1. If we start with 
ry(x) = g(x) F(a; 1/2; 3/2; (g(x)) 2), then we can show that: 

ry'(x) = dry = g'(x) 
dx (1 - x2)"' 

(7.25) 

where g'(x) is the first derivative of g(x). Since g'(x) > 0 for all x E Dom(g), and a > 0, it follows 
that ry'(x) > 0 for all x E Dom(ry), i.e. ry(x) is a strictly increasing function. The analyticity, conti
nuity and oddness of ry(·) follow from the respective properties of the GH function. We assure that 
lim.,___, 1 ry(x) ---+ oo, by forcing its derivative ry' (x) to go to infinity at the endpoints of its interval. I 

Theorem 5.1 If the inverse sigmoid is given by y/(1- y2 )"', a > 0, then in some neighborhood of 

the origin, we have the valid expansion o-(x) = x 2:~= 0 ( ~2k+ 1 )' x2k where, 
2 + 1. 

k ((2k + 1)a) 
b2k+1 = (-1) (2k + 1)! k (7.26) 

Proof: We will need the Lagrange inversion formula, stated below [39, pp. 138-141]. 

Consider the functional equation: u = t¢(u). Suppose f(u) and ¢(u) are analytic in some neighbor
hood of the origin (u-plane), with ¢(0) = 1. Then there is a neighborhood of the origin (in the t
plane) in which the equation u = t¢(u) has exactly one root for u. Let Lk>o aktk be the Maclaurin 
expansion of f(u(t)) in t, and Lk>o cktk be the Maclaurin expansion of the function f'(u)[</J(u)]n. 

1 -
Then: an = -en -1 

n 

Here, y = u, x = t, and ¢(u) = (1 - y2)"'. Take f(u) = u = y, and the theorem follows from the 
Lagrange inversion formula. 

b 
Theorem 5.3: Let o-(x) = L~=o (2k2k:11)! x2k be an expansion for a hyperbolic sigmoid, with an 

inverse of the form yF(a, 1/2; 3/2; y2), valid in some neighborhood of the origin. Then, b2k = 0 and, 
b2k+ 1 = C(2k + 1,k). where we define the sequence C(n,k) as follows: 

0(1, 0) = 1 

C(n,k)=O \:fk2:n,k<O (7.27) 

C(n + 1, k) = (2k - n + 1)C(n, k) - 2(na - k + 1)C(n, k - 1) n 2: 1 
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nand k are natural numbers, Dn(u(x)), the nth derivatives of u, are given by: 

n-1 
Dn(y) = Dn(u(x)) = L C(n,k)y2k-n+1(1 - y2)na-k (7.28) 

k=O 

Proof: This theorem was obtained by a process almost identical to that described in Minai and 
Williams' work on the derivatives of the logistic sigmoid [26]. We therefore restrict ourselves to an 
outline. 

It is given that y = 71(x) = xF(a.,1/2;3/2;x2), and x = u(y). It can be shown that, D(x) = 

d~u(y) = 1/77'(x) = (1- x2)a. Consider the derivatives of the polynomial !k, 1(x) = xk(1- x2)1, 

D(fk,t(x)) = .!!:_fk ,(x) = kxk-1(1- x2)a+l + -2lxk+1(1- x2)a+l-1 
dy ' 

= (k)fk-1,a+1(x) + (-2l)fk+1,a+l-1(x) 

= L(fk,t(x)) + R(fk,t(x)) 

(7.29) 

In Equation (7.29) we have split the effect of the operator D = ~ into the sum of the actions 

of two operators L and R (Minai and Williams refer to them as A0 and AI). With respect to the 
polynomials !k,, these operators are defined by: 

L(Afk, ,(x)) 

R(Afk,t(x)) 
- Akfk-1,a+t(X) 

-2lAfk+ 1,a+l-1(x) 

(7.30) 

(7.31) 

where A is a constant. The main advantage of introducing these operators is that they give a 
systematic way of visualizing the production of Dn+l(x) from D"'(x). Land R may be thought of 
as being applied to a binary tree of expressions, where each node is some polynomial /A:, 1(x), and the 
root is the polynomial / 0 , a = (1 - x2)a. The action of Lon each node of this tree is to produce a left 
child, given by Equation (7.30), and that of R is to produce a right child, given by Equation (7.31). 
L acting upon /k,1(x) does three things: multiplies it by k (=the degree of x), reduce the degree of 
x by 1, and increase the degree of (1 - x2) by a.. On the other hand, R increases the degree of x by 
1, that of (1 - x2) by (a. - 1), and multiplies the operand by -2l, where lis the degree of (1 - x2). 
Figure 7 depicts the process for the first four levels. By a detailed study of this "derivative" tree the 
following observations may be proved: 

1. The nth level of the tree corresponds to the nth derivative of u(y), Dn(x) = vn- 1(u(y)) 
= L(Dn- 1(x)) + R(Dn- 1(x)), (the root of the tree is designated n = 1, and D0 (fk, 1(x)) -
!k,t(x)). 

2. At the nth level, the tree has n nodes, and the kth node (k runs from 0 through n -
1), is a polynomial in x, given by C(n,k)f2k-n+ 1,na-k = C(n,k)x2k-n+ 1(1 - x2)na-k, 
where C(n, k) is a constant. It can be seen that the nth derivatives of u satisfy: Dn(k) = 
L~=~ C(n,k)J2k-n+l,na-k· 

3. There are two sources contributing to the value of C(n, k). One is the action of R on the 
( k - 1 )th term, and the other is that of L on the kth term on the ( n - 1 )th level. 
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C(l, O)fo,a(x) n=l 

C(2, O)f-1, 2a(x) C(2, l)h,2a -l(x) n=2 

C(3,0)f-2,3a(x) C(3, l)fo,3a-l(x) C(3, 2)h,aa- 2(x) n=3 

C(4, O)f-3,4a(x) C(4, l)f-1,4a -l(x) C(4,2)h,4a-2(x) C(4, 3)la,4a- a(x) n=4 

Figure 2: Binary "Derivation" tree for Hyperbolic Sigmoids 

Induction arguments in conjunction with the above arguments then give: 

C(1,0) = 1 

C(n, k) = 0 V k ~ n, k < 0 (7.32) 

C(n + 1,k) = (2k- n + 1)C(n,k)- 2(na- k + 1)C(n,k- 1) n ~ 1 

Now, all terms in nn(x), with ax term having positive degree will vanish, when evaluated at x = 0. 
For even n, all the nodes have an x term with an odd degree, and hence Dn(x) vanishes identically 
at x = 0. For odd n, all terms, excepting the term corresponding to k = (n + 1)/2, vanish at 
X= 0. Since bn = nn(x) lx=O• it follows that b2k = 0 and b2k+l = C(2k + 1,k). 
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