
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

11-23-2010 

A Bit Serial Approach to Massively Parallel Floating Point A Bit Serial Approach to Massively Parallel Floating Point 

Operations on an FPGA Operations on an FPGA 

Duane Marcy 
Syracuse University, dlmarcy@syr.edu 

Fred Schlereth 
Syracuse University, schleret@syr.edu 

Parija Kshirsagar 
Syracuse University, pkshirsa@syr.edu 

Anvith Katte Mahabalagiri 
Syracuse University, akattema@syr.edu 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
SYR-EECS-2010-07 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


  

SYR-EECS-2010-07 Nov. 23, 2010 

 
A Bit Serial Approach to Massively Parallel Floating Point Operations on an FPGA 

  
 

 
Duane Marcy 

Fred Schlereth 
Parija Kshirsagar 

Anvith Katte Mahabalagiri 
 
   

 

 
 

 
dlmarcy@syr.edu 
schleret@syr.edu 
pkshirsa@syr.edu 
akattema@syr.edu 
 

ABSTRACT:   In this paper we discuss the pros and cons of bit serial arithmetic for performing mathematical 
operations for signal processing and scientific computations on an FPGA.  We describe our formulation of the 
architecture for such massively parallel systems, the advantage being that it requires no parallel programming in 
the traditional sense. We describe a pseudo floating point bit serial circuit which is less complex than full precision 
floating point and show that it is suitable for many applications. We conclude with several application examples and 
show that a bit serial implementation can be competitive with a high speed parallel implementation.  
 
 
KEYWORDS:    Bit Serial, Floating Point, FPGA, Parallelism, State Space Formulation 
 
 
 
 
 
 

Syracuse University - Department of EECS, 
4-206 CST, Syracuse, NY 13244 

(P) 315.443.2652 (F) 315.443.2583 
http://eecs.syr.edu 



A Bit Serial Approach to Massively Parallel Floating Point 

Operations on an FPGA 
 

Duane Marcy, Fred Schlereth, Parija Kshirsagar, Anvith Katte Mahabalagiri 
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Abstract - In this paper we discuss the pros and cons of bit serial 

arithmetic for performing mathematical operations for signal 

processing and scientific computations on an FPGA.  We describe 

our formulation of the architecture for such massively parallel 

systems, the advantage being that it requires no parallel 

programming in the traditional sense. We describe a pseudo 

floating point bit serial circuit which is less complex than full 

precision floating point circuit and show that it is suitable for 

many applications. We conclude with several application 

examples and show that a bit serial implementation can be 

competitive with a high speed parallel implementation.  

 

Index Terms - Bit Serial, Floating Point, FPGA, Parallelism, State 

Space Formulation. 

 

 
I. INTRODUCTION 

 

IGNAL processing involves operations such as FIR and 

IIR filtering, modulation/demodulation, each of which has 

a well defined data flow and can be easily programmed on an 

FPGA. Major advantages of FPGA implementations are 

highly parallel operations and data memory that is local to the 

processors eliminating the power and time needed for data 

transfers to and from external memory. Many such signal 

processing operations are well suited for the use of fixed point 

data types. Scientific computing, on the other hand, requires 
full precision floating point for tasks such as the inversion of 

large matrices, solution of boundary value problems requiring 

many iterations, and signal processing tasks in which it is 

difficult to predict the dynamic range of the variables. 

However there is a set of signal processing applications 

(described below), where partial (pseudo) floating point (pFP) 

can be very effective.  The advantage is that pFP has much 

lower cost than full precision floating point.  However, pFP is 

suitable only for a subset of the scientific computations. 

Our interest in bit-serial processing arises from a desire to 

construct massively parallel processors (thousands of 
elements). We demonstrate that this is feasible and cost  
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effective with current FPGA technology using a parallel 
architecture modeled after analog computers.  

In this paper we give some general background showing 

our approach to the design of FPGA-based computing circuits 

and systems, a design of a pFP processor and a plan for the 

design of a full floating point processor.  A non-linear 

pendulum example is described showing our approach to the 

discretization of such systems. We also describe the problems 

involving matrix operations, and finally discuss the pros and 

cons of high speed processing using our FPGA approach to 

that based on the NVIDIA approach [1], as well as other 

approaches [2,3,4,6]. 
 

II. GENERAL BACKGROUND 

 
In our signal processing work we model the circuits in 

terms of a Signal Processing Object, SPO, as shown in Fig.1.  

This object is analogous to an analog operational amplifier, 

and we build parallel systems using SPOs in the same way that 

analog OPAMPS are interconnected to realize signal 

processors.[7] E.g., SPOs can be interconnected to solve 

difference equations in the same way that OPAMPS can be 

interconnected to solve differential equations.  In the case of 

the former we add a delay to form a multiplier accumulator 
circuit, and in the case of the latter we add a capacitor to form 

an integrator.  A major advantage is that this approach requires 

no parallel programming in the traditional sense. 

Fig.1 shows a digital circuit (SPO) with enough structure 

to permit it to be interconnected in large arrays where the 

interconnections among SPOs are determined by the 

difference equations for the desired operation. If the goal were 

to limit the design to standard FPGA cells, then the structure 

of the SPO would not be so important, because it would be an 

easy matter to modify the structure to still be useful in a wide 

range of applications.  However as will be seen below, we are 
also interested in defining an SPO structure that can be 

committed to a hard IP core.  Our experience has shown that 

the SPO shown in Fig.1 is able to meet virtually all common 

signal processing applications. .   

Some of the features of a fixed point SPO implementation 

are that all operations are performed in full precision, with 

rounding just prior to the multiplication. The internal summers 

provide interconnect for larger arrays of SPOs and a single 

word memory is provided for data storage.  The multiplier 

provides additional storage because, on an FPGA, a multiplier 

must have a delay. Another important advantage is that 

S 



memory is local to the processor eliminating the need for 

extensive data transfers during processing. 

 

 
Fig.1 Signal Processing Object (SPO) 

 

The figure below shows an implementation of a second 

order filter. From this figure it should be clear that large 
parallel systems can be “programmed” by just “wiring up” 

groups of SPOs according to the dictates of the difference 

equation.  With this approach to parallelism, there is no 

traditional programming step, as is required in the 

implementation of such circuits using DSPs.             

 
 

Fig. 2 Second Order Filter 

y(n) = a*x(n-1) + b*y(n-1) + c*y(n-2) 

 

Thinking of the implementation of standard filters in this 

manner provides a convenient and economical way to 

characterize large systems.  It also suggests that for the 
implementation of very large systems, it would be 

advantageous to build a hard IP core for SPO, using custom 

integrated circuits. Of course the SPO could be realized in 

fixed or floating point.  Fig. 3 shows a block diagram of an 

FPGA with a SPO core. 

 

 
 

Fig.3 SPO on an FPGA 

As mentioned above, our interest in bit serial arises out of 

the desire to build systems with number of processors which 

are an order of magnitude greater than possible with present 

implementations; i.e., thousands rather than hundreds of 

processors. One particular application of interest is the 

simulation of large transmission lines on integrated circuits 
which can include resistance, inductance and capacitance in 

the model. Another application of interest is modeling a 

transistor. Using a simple state space formulation we can 

perform simulations with the accuracy of SPICE [8], but at 

much higher speed. 

In many signal processing applications it is advantageous 

to treat the data word differently than the coefficient word. For 

example, in a filter, the coefficients determine the location of 

the poles and zeros, and the data determines the dynamic 

range.  A bit serial implementation allows us to take advantage 

of this by designing a pFP circuit, where the timing of the 

multiplier coefficient, relative to the data is used to scale the 
coefficient.  This permits us wide latitude in the values of the 

coefficients without the need to store leading zeros.  This 

circuit, a pFP, is described next.  An estimate of the resources 

used indicates that several hundreds of such circuits would fit 

onto a small FPGA. 

 

 
III. PSEUDO FLOATING POINT BIT SERIAL MULTIPLIER 

ACCUMULATOR 

 

In applications which require large numbers of multiplier 

accumulators (MAs) and at the same time can tolerate low 

speed for each of the MAs, a viable option is to use bit serial 

arithmetic. This is easily implemented on an FPGA and has 
the advantage of small size. The slower speed of a bit serial 

MA is mitigated by smaller area requirements so that in 

applications requiring large numbers of MAs, tradeoff studies 

are needed to find the best combination time-area-power 

product. These studies should consider bit serial MAs using 

the FPGA cells or a hard IP core for a „Bit Serial Multiplier 

Accumulator SPO‟. 

As a step in that direction, we have implemented a Pseudo 

Floating Point Bit Serial MA which treats the data and 

coefficient differently. E.g., if the data word is set to 64 bits, to 

provide good dynamic range, while the coefficient is limited 
to 16 bits.  Then as the data is passing through the SPO the 

coefficient is scaled by shifting its bit position relative to the 

data.  

 

 
 

Fig.4 Pseudo Floating Point Bit Serial Multiplier 
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The advantage is that the dynamic range of the coefficient 

can be greatly extended without having to store large number 

of leading zeros in the case of small coefficient values. Fig.4 

shows a block diagram of this MA.  It uses minimal resources, 

and preliminary estimates indicate that the number of such 

circuits that could be available on Vertex-II FPGA if it were 
realized as hard IP core would be at least several hundred. 

 
IV. EXAMPLES 

  
In the following sections we present examples of our 

work in the application of bit serial approach to large 

problems using FPGA implementation.  One is the simulation 

of a simple driven pendulum, another is circuit simulation and 

the third is GORDIAN.   

 

A. Simple Driven Pendulum - State Space Formulation 

 

MATLAB provides a number of tools to convert among 

various representations of systems.  In our work we have 

focused on the formulation of standard differential equations, 

and their implementation on an FPGA.   In the following 
example we use a state space formulation to derive the block 

diagram for computations on an FPGA [5].   

The forced pendulum is one of many examples of chaotic 

[9] behavior and it is of interest to perform simulations for 

long periods of time. It is here that the parallel implementation 

on the FPGA shows its efficacy.  Using parallelism, coupled 

with floating point arithmetic and discrete approximations 

with guaranteed stability, it is possible to study very long term 

events. 

Consider the differential equation for the forced 

pendulum: 

  
   

   
           

  

  
           

 

Where, 

y = angle with respect to the vertical 

m = mass of pendulum 

L = length of pendulum 

γ = damping  

g = acceleration due to gravity 
A = driving force amplitude 

b = driving force frequency 

By choosing the scaled units, the equation is simplified to, 
   

   
         

  

  
           

 

let, x1 = y, x2 = 
  

  
  

 

   

  
 = x2 ,  

   

  
 = – sin(x1) – ax2 + cos(bt)  

 

 

   

  
   

  

    
  

         

  
   

  

  
    

 
             

 

 

Where, 

A =  
  

         

  
  , B =  

 
 
 , u =             

 

Here, the „A‟ matrix contains a term sin() which 

illustrates the manner in which the equations will be 

programmed on the FPGA. A discrete version of this equation 

is as follows, 

 

 
       
       

      
     
     

               
 

 
  

 

        
     

 

 

 
 

      

 
    

 

 
       
       

      
     
     

          

 

The choice of the approximation for eAT has several 

important considerations.  (1+AT), the forward Euler method, 

leads to a realizable FPGA implementation in which all state 

variables depend only on values in the previous time step.  

However this approximation is unstable for stiff systems of 

equations.  The approximation (1-AT )-1 is unconditionally 

stable but not realizable unless the inversion is performed 

prior to the simulation. Herein lye several interesting 
implementation issues. 

If the inversion is performed prior to the simulation, then 

FPGAs can be easily programmed to provide the simulation.  

However the A matrix becomes dense and the coefficients will 

have a large dynamic range. It is here that the pFP circuit is 

useful. 

If, however, the system of equations is nonlinear, then the 

inversion must be performed at every time step.  In this case 

an iterative solution to the inversion using the following 

formulation would be feasible. I.e., the A matrix is a function 

of the dependent variables.  In this case A‟ needs to be 
computed at every time step.  We use an iterative procedure to 

update A‟, 

 

A’(k) = A’(k-1) * c * [I – Anew
*A’(k-1)]  

 

Where, A‟ = (1 – AT) -1  and Anew
 is the modified value of A 

due to the action of the nonlinearities.  The iteration should 

take only a few steps since the changes in A will be small 

from one time step to the next.  However in this operation, it is 

necessary to use full precision floating point because A‟(k) 

(coefficient) is changing every time step. 

Fig.5 shows a Simulink (Xilinx Blockset) model of the 
pendulum using the state space formulation.  Note the use of a 

ROM to provide sine of the state variable. It is estimated that a 

table in the order of 256x 8 bit will be  sufficient. 

 

 

 



 
 

Fig.5  Simulink Model of a Driven Pendulum 

 
B. Integrated Circuit Simulation 

 

Another example is Integrated Circuit Simulation. The 

transmission line is a good model for data lines on sub micron 

integrated circuits, where RC models for transmission lines are 

no longer accurate enough. Using this technology we are able 

to simulate very long lines with high accuracy in a fraction of 
the time required by a SPICE simulation.              

Here we also use a state space formulation and are able to 

perform SPICE-like simulations in a fraction of the time 

needed for simulation on a workstation. We have simulated 

both linear and nonlinear circuits with good results. This is a 

very important problem in IC design because it is necessary to 

have accurate estimates of a pulse waveform at the end of long 

lines [4, 10].  Fig.6 shows a simplified model. 

 
Fig.6 Transmission Line Model 

 

The state space equations are as follows. Inductor currents 

and capacitor voltages, I1, I3, V0, V2, respectively, are the state 

variables. 

 
 
 
 
 
   

  
 

   

  
  
 
 
 
 

  

          
        
            
      

  

  
  

  
  

   

   
 
 
 

      

 

Based on the state equations, the Simulink (Xilinx 

Blockset) model of the above transmission line can be created 

following the SPO architecture, as shown in Fig.7. This model 
can be implemented using bit serial pFP MA, however, if 

there is any nonlinearity in the circuit, then a full precision 

floating point MA is needed for its implementation. 

 
 

Fig.7 Simulink model of the Transmission Line 
 

C. GORDIAN Algorithm for VLSI Placement 

 

Finally we describe GORDIAN algorithm as another 

application involving large matrix computations, where true 

floating point is an absolute requirement.   

GORDIAN is a widely used algorithm for optimized 

VLSI module placement [11]. Most of the CAD tools in the 

VLSI industry are based on this algorithm.  The GORDIAN 

algorithm deals with placement of VLSI modules such that the 

wire length is minimized. It involves two stages namely 
Global Optimization and Rectangular Dissection. Our interest 

lies in the Global Optimization part of the algorithm which 

involves solving equations with matrices of massive sizes.  

 The core computation involved in the Global 

Optimization step is in iteratively solving the equation, 

 

      
       

 

Where,   and     are constraint matrices,   is the matrix 

containing distance between movable modules.   

At every iteration, a global minimum is calculated for   
 .   

With the current VLSI technology moving to 12 nm and 

below, it is evident that the module count on a chip is of the 
order of tens of thousands.  Thus along with the increase in the 

size of the matrices, the requirement of floating point 

operation also comes into the picture. Keeping these factors in 

mind, the computation of the above matrix equation on 

general purpose microprocessors would require several days 

of execution.   Using the techniques proposed in this paper, 

such massive amounts of floating point operations can be 

performed in parallel using an FPGA. However, data flow 

poses as the major bottleneck in such applications. If proper 

data flow techniques are designed to assist the architecture 

proposed in this paper, an exponential decrease in the 

computation time can be visualized. 

 
 



V. CONCLUSION 

 
It is interesting to compare the speed of a massively 

parallel bit serial processor using FPGA technology with a 

processor based on NVIDIA chips [1].  It is clear that the 

NVIDIA system will be faster than our FPGA based system.  
However there are other considerations which, for many 

applications, may tip the balance in favor of our approach. 

1. Cost: Tens of thousands vs. hundreds of dollars. 

2. Programming: Our approach was conceived from the 

ground up as requiring no special programming to make 

effective use of massive parallelism.  Each of our 

processors is “wired” into the proper configuration 

according to the mathematical description provided by the 

underlying difference equations or state equations.  This 

has the obvious advantage of saving lots of time but there 

are other advantages.  Debugging is more of a 

mathematics problem as opposed to a coding problem.  
Another is that designs based on our approach have the 

advantage of being provably correct [12]. Again, this is 

because there is no step between the mathematical 

formulation and the implementation.  In fact in circuit 

simulation it is feasible to go directly from a netlist to a 

FPGA simulation. 

3. Speed:  The speed of a processor based on a bit serial 

FPGA implementation can be estimated as follows.  

Assume 1000 hard IP-core MAs running at a clock speed 

of 500 MHz with a 100 bit word.  The rate in this case is 5 

GFlop/sec. 
4. Reconfigurability: This is a breeze with our FPGA 

implementation, and with the latest advances in 

technology, can even be done “on the fly”.  The bit serial 

implementation is particularly advantageous in this 

regard. 

At the present time we are working on the implementation 

of the double precision floating point circuit and continuing 

with applications to a variety of problems. 
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