
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

11-23-2010

A Bit Serial Approach to Massively Parallel Floating Point A Bit Serial Approach to Massively Parallel Floating Point

Operations on an FPGA Operations on an FPGA

Duane Marcy
Syracuse University, dlmarcy@syr.edu

Fred Schlereth
Syracuse University, schleret@syr.edu

Parija Kshirsagar
Syracuse University, pkshirsa@syr.edu

Anvith Katte Mahabalagiri
Syracuse University, akattema@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
SYR-EECS-2010-07

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SYR-EECS-2010-07 Nov. 23, 2010

A Bit Serial Approach to Massively Parallel Floating Point Operations on an FPGA

Duane Marcy

Fred Schlereth
Parija Kshirsagar

Anvith Katte Mahabalagiri

dlmarcy@syr.edu
schleret@syr.edu
pkshirsa@syr.edu
akattema@syr.edu

ABSTRACT: In this paper we discuss the pros and cons of bit serial arithmetic for performing mathematical
operations for signal processing and scientific computations on an FPGA. We describe our formulation of the
architecture for such massively parallel systems, the advantage being that it requires no parallel programming in
the traditional sense. We describe a pseudo floating point bit serial circuit which is less complex than full precision
floating point and show that it is suitable for many applications. We conclude with several application examples and
show that a bit serial implementation can be competitive with a high speed parallel implementation.

KEYWORDS: Bit Serial, Floating Point, FPGA, Parallelism, State Space Formulation

Syracuse University - Department of EECS,
4-206 CST, Syracuse, NY 13244

(P) 315.443.2652 (F) 315.443.2583
http://eecs.syr.edu

A Bit Serial Approach to Massively Parallel Floating Point

Operations on an FPGA

Duane Marcy, Fred Schlereth, Parija Kshirsagar, Anvith Katte Mahabalagiri

 EECS Department, Syracuse University

Abstract - In this paper we discuss the pros and cons of bit serial

arithmetic for performing mathematical operations for signal

processing and scientific computations on an FPGA. We describe

our formulation of the architecture for such massively parallel

systems, the advantage being that it requires no parallel

programming in the traditional sense. We describe a pseudo

floating point bit serial circuit which is less complex than full

precision floating point circuit and show that it is suitable for

many applications. We conclude with several application

examples and show that a bit serial implementation can be

competitive with a high speed parallel implementation.

Index Terms - Bit Serial, Floating Point, FPGA, Parallelism, State

Space Formulation.

I. INTRODUCTION

IGNAL processing involves operations such as FIR and

IIR filtering, modulation/demodulation, each of which has

a well defined data flow and can be easily programmed on an

FPGA. Major advantages of FPGA implementations are

highly parallel operations and data memory that is local to the

processors eliminating the power and time needed for data

transfers to and from external memory. Many such signal

processing operations are well suited for the use of fixed point

data types. Scientific computing, on the other hand, requires
full precision floating point for tasks such as the inversion of

large matrices, solution of boundary value problems requiring

many iterations, and signal processing tasks in which it is

difficult to predict the dynamic range of the variables.

However there is a set of signal processing applications

(described below), where partial (pseudo) floating point (pFP)

can be very effective. The advantage is that pFP has much

lower cost than full precision floating point. However, pFP is

suitable only for a subset of the scientific computations.

Our interest in bit-serial processing arises from a desire to

construct massively parallel processors (thousands of
elements). We demonstrate that this is feasible and cost

Manuscript received November 22, 2010.

Dr. Duane Marcy is with the Department of Electrical Engineering and

Computer Science at Syracuse University, Syracuse, NY 13244 USA (e-mail:

dlmarcy@syr.edu).

Dr. Fred Schlereth is with the Department of Electrical Egineering and

computer Science at Syracuse University, Syracuse, NY 13244 USA (e-mail:

schleret@syr.edu).

effective with current FPGA technology using a parallel
architecture modeled after analog computers.

In this paper we give some general background showing

our approach to the design of FPGA-based computing circuits

and systems, a design of a pFP processor and a plan for the

design of a full floating point processor. A non-linear

pendulum example is described showing our approach to the

discretization of such systems. We also describe the problems

involving matrix operations, and finally discuss the pros and

cons of high speed processing using our FPGA approach to

that based on the NVIDIA approach [1], as well as other

approaches [2,3,4,6].

II. GENERAL BACKGROUND

In our signal processing work we model the circuits in

terms of a Signal Processing Object, SPO, as shown in Fig.1.

This object is analogous to an analog operational amplifier,

and we build parallel systems using SPOs in the same way that

analog OPAMPS are interconnected to realize signal

processors.[7] E.g., SPOs can be interconnected to solve

difference equations in the same way that OPAMPS can be

interconnected to solve differential equations. In the case of

the former we add a delay to form a multiplier accumulator
circuit, and in the case of the latter we add a capacitor to form

an integrator. A major advantage is that this approach requires

no parallel programming in the traditional sense.

Fig.1 shows a digital circuit (SPO) with enough structure

to permit it to be interconnected in large arrays where the

interconnections among SPOs are determined by the

difference equations for the desired operation. If the goal were

to limit the design to standard FPGA cells, then the structure

of the SPO would not be so important, because it would be an

easy matter to modify the structure to still be useful in a wide

range of applications. However as will be seen below, we are
also interested in defining an SPO structure that can be

committed to a hard IP core. Our experience has shown that

the SPO shown in Fig.1 is able to meet virtually all common

signal processing applications. .

Some of the features of a fixed point SPO implementation

are that all operations are performed in full precision, with

rounding just prior to the multiplication. The internal summers

provide interconnect for larger arrays of SPOs and a single

word memory is provided for data storage. The multiplier

provides additional storage because, on an FPGA, a multiplier

must have a delay. Another important advantage is that

S

memory is local to the processor eliminating the need for

extensive data transfers during processing.

Fig.1 Signal Processing Object (SPO)

The figure below shows an implementation of a second

order filter. From this figure it should be clear that large
parallel systems can be “programmed” by just “wiring up”

groups of SPOs according to the dictates of the difference

equation. With this approach to parallelism, there is no

traditional programming step, as is required in the

implementation of such circuits using DSPs.

Fig. 2 Second Order Filter

y(n) = a*x(n-1) + b*y(n-1) + c*y(n-2)

Thinking of the implementation of standard filters in this

manner provides a convenient and economical way to

characterize large systems. It also suggests that for the
implementation of very large systems, it would be

advantageous to build a hard IP core for SPO, using custom

integrated circuits. Of course the SPO could be realized in

fixed or floating point. Fig. 3 shows a block diagram of an

FPGA with a SPO core.

Fig.3 SPO on an FPGA

As mentioned above, our interest in bit serial arises out of

the desire to build systems with number of processors which

are an order of magnitude greater than possible with present

implementations; i.e., thousands rather than hundreds of

processors. One particular application of interest is the

simulation of large transmission lines on integrated circuits
which can include resistance, inductance and capacitance in

the model. Another application of interest is modeling a

transistor. Using a simple state space formulation we can

perform simulations with the accuracy of SPICE [8], but at

much higher speed.

In many signal processing applications it is advantageous

to treat the data word differently than the coefficient word. For

example, in a filter, the coefficients determine the location of

the poles and zeros, and the data determines the dynamic

range. A bit serial implementation allows us to take advantage

of this by designing a pFP circuit, where the timing of the

multiplier coefficient, relative to the data is used to scale the
coefficient. This permits us wide latitude in the values of the

coefficients without the need to store leading zeros. This

circuit, a pFP, is described next. An estimate of the resources

used indicates that several hundreds of such circuits would fit

onto a small FPGA.

III. PSEUDO FLOATING POINT BIT SERIAL MULTIPLIER

ACCUMULATOR

In applications which require large numbers of multiplier

accumulators (MAs) and at the same time can tolerate low

speed for each of the MAs, a viable option is to use bit serial

arithmetic. This is easily implemented on an FPGA and has
the advantage of small size. The slower speed of a bit serial

MA is mitigated by smaller area requirements so that in

applications requiring large numbers of MAs, tradeoff studies

are needed to find the best combination time-area-power

product. These studies should consider bit serial MAs using

the FPGA cells or a hard IP core for a „Bit Serial Multiplier

Accumulator SPO‟.

As a step in that direction, we have implemented a Pseudo

Floating Point Bit Serial MA which treats the data and

coefficient differently. E.g., if the data word is set to 64 bits, to

provide good dynamic range, while the coefficient is limited
to 16 bits. Then as the data is passing through the SPO the

coefficient is scaled by shifting its bit position relative to the

data.

Fig.4 Pseudo Floating Point Bit Serial Multiplier

z

1

Unit Delay1

z

1

Unit DelayProduct

A

Constan

Add2
Add1

Add/Round

z

1

Unit Delay3

z

1

Unit Delay2

z

1

Unit Delay1

z

1

Unit Delay

Product2 Product1

Product

b

Constant2

c

Constant1

A

Constan

Add2
Add1

Add

y (n)

y (n)

y (n-1)

x(n)

The advantage is that the dynamic range of the coefficient

can be greatly extended without having to store large number

of leading zeros in the case of small coefficient values. Fig.4

shows a block diagram of this MA. It uses minimal resources,

and preliminary estimates indicate that the number of such

circuits that could be available on Vertex-II FPGA if it were
realized as hard IP core would be at least several hundred.

IV. EXAMPLES

In the following sections we present examples of our

work in the application of bit serial approach to large

problems using FPGA implementation. One is the simulation

of a simple driven pendulum, another is circuit simulation and

the third is GORDIAN.

A. Simple Driven Pendulum - State Space Formulation

MATLAB provides a number of tools to convert among

various representations of systems. In our work we have

focused on the formulation of standard differential equations,

and their implementation on an FPGA. In the following
example we use a state space formulation to derive the block

diagram for computations on an FPGA [5].

The forced pendulum is one of many examples of chaotic

[9] behavior and it is of interest to perform simulations for

long periods of time. It is here that the parallel implementation

on the FPGA shows its efficacy. Using parallelism, coupled

with floating point arithmetic and discrete approximations

with guaranteed stability, it is possible to study very long term

events.

Consider the differential equation for the forced

pendulum:

Where,

y = angle with respect to the vertical

m = mass of pendulum

L = length of pendulum

γ = damping

g = acceleration due to gravity
A = driving force amplitude

b = driving force frequency

By choosing the scaled units, the equation is simplified to,

let, x1 = y, x2 =

 = x2 ,

 = – sin(x1) – ax2 + cos(bt)

Where,

A =

 , B =

 , u =

Here, the „A‟ matrix contains a term sin() which

illustrates the manner in which the equations will be

programmed on the FPGA. A discrete version of this equation

is as follows,

The choice of the approximation for eAT has several

important considerations. (1+AT), the forward Euler method,

leads to a realizable FPGA implementation in which all state

variables depend only on values in the previous time step.

However this approximation is unstable for stiff systems of

equations. The approximation (1-AT)-1 is unconditionally

stable but not realizable unless the inversion is performed

prior to the simulation. Herein lye several interesting
implementation issues.

If the inversion is performed prior to the simulation, then

FPGAs can be easily programmed to provide the simulation.

However the A matrix becomes dense and the coefficients will

have a large dynamic range. It is here that the pFP circuit is

useful.

If, however, the system of equations is nonlinear, then the

inversion must be performed at every time step. In this case

an iterative solution to the inversion using the following

formulation would be feasible. I.e., the A matrix is a function

of the dependent variables. In this case A‟ needs to be
computed at every time step. We use an iterative procedure to

update A‟,

A’(k) = A’(k-1) * c * [I – Anew
*A’(k-1)]

Where, A‟ = (1 – AT) -1 and Anew
 is the modified value of A

due to the action of the nonlinearities. The iteration should

take only a few steps since the changes in A will be small

from one time step to the next. However in this operation, it is

necessary to use full precision floating point because A‟(k)

(coefficient) is changing every time step.

Fig.5 shows a Simulink (Xilinx Blockset) model of the
pendulum using the state space formulation. Note the use of a

ROM to provide sine of the state variable. It is estimated that a

table in the order of 256x 8 bit will be sufficient.

Fig.5 Simulink Model of a Driven Pendulum

B. Integrated Circuit Simulation

Another example is Integrated Circuit Simulation. The

transmission line is a good model for data lines on sub micron

integrated circuits, where RC models for transmission lines are

no longer accurate enough. Using this technology we are able

to simulate very long lines with high accuracy in a fraction of
the time required by a SPICE simulation.

Here we also use a state space formulation and are able to

perform SPICE-like simulations in a fraction of the time

needed for simulation on a workstation. We have simulated

both linear and nonlinear circuits with good results. This is a

very important problem in IC design because it is necessary to

have accurate estimates of a pulse waveform at the end of long

lines [4, 10]. Fig.6 shows a simplified model.

Fig.6 Transmission Line Model

The state space equations are as follows. Inductor currents

and capacitor voltages, I1, I3, V0, V2, respectively, are the state

variables.

Based on the state equations, the Simulink (Xilinx

Blockset) model of the above transmission line can be created

following the SPO architecture, as shown in Fig.7. This model
can be implemented using bit serial pFP MA, however, if

there is any nonlinearity in the circuit, then a full precision

floating point MA is needed for its implementation.

Fig.7 Simulink model of the Transmission Line

C. GORDIAN Algorithm for VLSI Placement

Finally we describe GORDIAN algorithm as another

application involving large matrix computations, where true

floating point is an absolute requirement.

GORDIAN is a widely used algorithm for optimized

VLSI module placement [11]. Most of the CAD tools in the

VLSI industry are based on this algorithm. The GORDIAN

algorithm deals with placement of VLSI modules such that the

wire length is minimized. It involves two stages namely
Global Optimization and Rectangular Dissection. Our interest

lies in the Global Optimization part of the algorithm which

involves solving equations with matrices of massive sizes.

 The core computation involved in the Global

Optimization step is in iteratively solving the equation,

Where, and are constraint matrices, is the matrix

containing distance between movable modules.

At every iteration, a global minimum is calculated for
 .

With the current VLSI technology moving to 12 nm and

below, it is evident that the module count on a chip is of the
order of tens of thousands. Thus along with the increase in the

size of the matrices, the requirement of floating point

operation also comes into the picture. Keeping these factors in

mind, the computation of the above matrix equation on

general purpose microprocessors would require several days

of execution. Using the techniques proposed in this paper,

such massive amounts of floating point operations can be

performed in parallel using an FPGA. However, data flow

poses as the major bottleneck in such applications. If proper

data flow techniques are designed to assist the architecture

proposed in this paper, an exponential decrease in the

computation time can be visualized.

V. CONCLUSION

It is interesting to compare the speed of a massively

parallel bit serial processor using FPGA technology with a

processor based on NVIDIA chips [1]. It is clear that the

NVIDIA system will be faster than our FPGA based system.
However there are other considerations which, for many

applications, may tip the balance in favor of our approach.

1. Cost: Tens of thousands vs. hundreds of dollars.

2. Programming: Our approach was conceived from the

ground up as requiring no special programming to make

effective use of massive parallelism. Each of our

processors is “wired” into the proper configuration

according to the mathematical description provided by the

underlying difference equations or state equations. This

has the obvious advantage of saving lots of time but there

are other advantages. Debugging is more of a

mathematics problem as opposed to a coding problem.
Another is that designs based on our approach have the

advantage of being provably correct [12]. Again, this is

because there is no step between the mathematical

formulation and the implementation. In fact in circuit

simulation it is feasible to go directly from a netlist to a

FPGA simulation.

3. Speed: The speed of a processor based on a bit serial

FPGA implementation can be estimated as follows.

Assume 1000 hard IP-core MAs running at a clock speed

of 500 MHz with a 100 bit word. The rate in this case is 5

GFlop/sec.
4. Reconfigurability: This is a breeze with our FPGA

implementation, and with the latest advances in

technology, can even be done “on the fly”. The bit serial

implementation is particularly advantageous in this

regard.

At the present time we are working on the implementation

of the double precision floating point circuit and continuing

with applications to a variety of problems.

VI. REFERENCES

[1] NVIDIA: A white paper on “NVIDIA‟s Next

Generation CUDATM Architecture: FermiTM”

[2] “Floating-Point FPGA: Architecture and Modeling”,

C.H. Ho, C.W. Yu, et al, IEEE Transactions on Very

Large Scale Integration Systems, Vol 17 No 12 Dec

2009.

[3] “Digital Signal Processing with Field Programmable

Gate Arrays”, U. Meyer-Baese, Springer 2007

[4] “Advanced FPGA Design” Steve Kilts, Wiley, 2007

[5] “Digital Control – A State Space Approach”, R.J.

Vaccaro, McGraw Hill, 1995

[6] “Floating-Point FPGA: Architecture and Modeling”,
C.H. Ho, C.W. Yu, et al, IEEE Transactions on Very

Large Scale Integration Systems, Vol 17 No 12 Dec

2009.

[7] Jackson, Albert S., "Analog Computation". London &

New York: McGraw-Hill, 1960. OCLC 230146450

[8] L. W. Nagel and D. O. Pederson, “SPICE (Simulation

Program with Integrated Circuit Emphasis)”,

Memorandum No. ERL-M382, University of

California, Berkeley, Apr. 1973.
[9] “Chaotic Dynamics – an introduction”, G.L. Baker,

J.P Golub, Cambridge, 1990.

[10] “Analysis of On-Chip Inductance Effects for

Distributed RLC Interconnects, K. Banerjee, A.

Mehrotra, IEEE Tranasaction on Computer-Aded

design of Integrated Circuits, Vol 21, No 8, August

2002.

[11] “GORDIAN: VLSI Placement by Quadratic

Programming and Slicing Optimization‟, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 10, Issue 3, pg. 356-365.

[12] “Access Control, Security and Trust” Shui Kai Chin,
Susan Older, CRC Press 2010.

	A Bit Serial Approach to Massively Parallel Floating Point Operations on an FPGA
	Recommended Citation

	TR 2010-7 title page Marcy
	A Bit Serial Approach to Massively Parallel Floating Point Operations on an FPGA

