RE-THINKING THE GREEN BELT: SUSTAINABILITY AND DEVELOPMENT IN GROWING CITIES

Maria Saavedra
Syracuse University

Follow this and additional works at: https://surface.syr.edu/architecture_theses

Part of the Landscape Architecture Commons

Recommended Citation
https://surface.syr.edu/architecture_theses/173

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
RE-THINKING THE GREEN BELT:
SUSTAINABILITY AND DEVELOPMENT IN GROWING CITIES
“Green is undeniably good. After an epoch of individualism, the Green Dream has brought back a collective agenda. Thanks to Green, urbanism is not dead after all. But there’s also a lot of suspicion about Green. Not everyone fighting for Green may be doing it for the right reasons, or with the right information. Sometimes Green is abused. Greenwashing has become the state-of-the-art marketing tool. Architects use bio-mimicry to camouflage their designs. New green laws are not financially backed up yet and therefore absorb budgets for other, spatial qualities. Who can one trust? Are some things wrong with Green...?”

Winy Maas
0. INTRODUCTION

1. LANDSCAPE + URBANISM
 2.1 What is Landscape Urbanism?
 2.2 What is the role of Green Belts in growing cities?
 2.3 Why don’t we create another Green Belt in Santa Cruz?

2. SANTA CRUZ, BOLIVIA
 3.1 What caused development in Santa Cruz?
 3.2 Why did development increase so much in the last 10 years?
 3.3 What are the consequences of the fast developments in Santa Cruz?
 3.4 What is the impact of the Green Belt on development?
 3.5 What is the impact of development on the Green Belt?
 3.6 What are the ecologies affected?

3. PIRAI RIVER
 4.1 What is the relationship between the Green Belt and the River?
 4.2 Quality of the water
 4.3 Topography
 4.4 Current flooding infrastructures

4. RE-THINKING THE GREEN BELT
 5.1 How can the Green Belt be re-thought in order to adapt to the fast developments of the city?
 5.2 How can the Green Belt be used without getting harmed?
 5.3 How can infrastructure help the environment instead of harming it?

5. PROPOSAL
 6.1 Analysis
 6.2 The Site
 6.3 What can be developed on the site?
 6.4 How can it be inhabited?

6. BIBLIOGRAPHY
Green architecture and urbanism are getting almost universal attention, which they deserve. The incorporation of Green Belts as an urban tool has helped stop sprawl and protect farmland around cities. But what happens when the pressure for growth is so big that it surpasses the boundaries of the Green Belt? In Santa Cruz, Bolivia, development pressures have resulted in expansion of the city beyond the Green Belt, with a second city center developing on the city’s hinterlands. This has caused major deforestation and land degradation, challenging the Green Belt’s original function: to protect the city from flooding. Instead of stopping sprawl, the Green Belt has pushed development even further away, threatening the functionality of the city. This project will explore how the Green Belt can be re-thought as an opportunity to integrate the natural landscape and built environment in order to sustainably develop it. By acting as a catalyst between the two city centers, the Green Belt would encourage inhabitation along with preservation. The introduction of new infrastructures that adapt to the fast developments of the city and control water floods would encourage urban society to reconnect with the water and learn from it.
Current components of Santa Cruz: Series of events create a never-ending cycle that created an unsustainable development of the city. The integration of the River, the Green Belt and Development should be reconsidered.
Everybody’s talking about Green these days; sustainable architecture and urbanism are getting almost universal attention. And they deserve it. Thanks to landscape, the abandoned postindustrial centers have been revitalized and growing cities have set up parameters to control their urban expansion. In growing cities, Green Belts have been incorporated as an urban tool that stop sprawl and protect farmland. By establishing a boundary for development, Green Belts encourage the densification of cities, which start to develop vertically rather than horizontally. But, what happens if the city doesn’t remain inside the boundaries of the Green Belt and keeps expanding beyond it?

This is the case in Santa Cruz, Bolivia. Santa Cruz’s Green Belt has become obsolete because instead of containing sprawl it’s pushing it further out. I think that the Green Belt’s inability to adapt to the fast developments of the city has negatively affected the city’s urban expansion. By pushing development away from the river edge with the aim of maintaining it intact, the Green Belt not only increased distances within the urban footprint, but also separated the city from the water. As a reaction, development pushed back on the Green Belt, creating a new city center on the city’s hinterlands. This has created a tension between development and the Green Belt, which presents them as separate entities that threaten the existence of one another. This project will re-think the Green Belt in order to integrate development and nature. By creating a new infrastructure that incentives inhabitation on the site and controls water floods, civilization will integrate with nature and protect it.

As mentioned above, Green Belts act as boundaries that control urban expansion with the aim of protecting the ecologies around it. However, I may argue that isolating the natural and the man-made isn’t necessarily the best way to achieve sustainable development. I think that Green Belts should evolve along with cities. This re-conceptualization of the Green Belt would challenge the conventional notion of ‘Green’ and ‘ecological’ by encouraging its inhabitation. Terms such as ‘Green’ or ‘Eco-friendly’ have started to become part of our lexicons. However, very few persons actually know what these terms stand for. I agree with Winy Maas, who states that Green has been so abused, that it has become a trend. This is not only manipulative, but also dangerous for the environment. Green marketing sells a misconception about nature, and therefore there is a tendency to think that if things look or feel like nature, they are sustainable and good. However, it is important to highlight that sustainability is not the same as nature. Therefore I believe that not every green space is sustainable and that following the Nachhaltigkeitsprinzip of eliminating civilization in order to save nature is not the right method to improve the environment.
It is time to stop thinking of the Green Belt as a physical and moral barrier for development. The Green Belt and the city should support each other instead of stopping each other. Using an interdisciplinary approach, the physical expression of Green Belts during developing process would be re-evaluated. By using infrastructure in order to improve the function of nature, and nature in order to improve the experience of infrastructure, a stronger connection between the natural and the man-made would be established.

The first part of this dissertation will analyze the impact of the Water Front on the morphology of the urban fabric. Santa Cruz started to bloom in the 1950’s after the inclusion of a new highway that connected the East and the West ends of the country. Along with that development, came the introduction of the city’s new master plan. This new plan organizes the city with series of concentric rings that use the historical grid as the city center. However, this plan couldn’t keep up with the fast developments of the city and these rings started to break as they met the major physical barrier for expansion: the River. In 1983, the river flooded. This event caused the loss of 900 people and resulted in the high cost of damages in infrastructure. As a response, the Green Belt was developed in order to create a barrier between the city and the river. The Green Belt was envisioned as a cushion area that would prevent the river from flooding. In this area, forestation is used as a defense against water and private construction is prohibited. However, this method has proved inefficiency by the constant flooding of the area due to land degradation and deforestation.

In the second phase I will study methods that allow the ecological protection, and yet promote development. Lots of attention is given in the infrastructural systems that improve the ecology during flood. I will look into the different typologies of flooding structures and re-think them in order to create an architectural approach that allows a spatial sequence that leads to the inhabitation of the Green Belt. A close study of topography and its relationship to water floods will help to identify location and massing of these infrastructures. The aim is to integrate water, nature and development, using landscape infrastructure and nature as tools to provide both structural support and flexibility in rapidly transforming condition of a growing city.

One of the major goals of this research is to study the relationship between nature and technology as urban generators. I agree with Lisa Tilder and Beth Bostein, who state that instead of using architectural technology to return nature to some impossible, pre-human pristine state, we should consider fully employing the power of architecture to produce new forms of nature. Instead of thinking about the River’s edge as a natural and physical barrier between the water and the city, we should consider it as an opportunity to challenge the image of nature, exploring how it limits or furthers our social desires. A reconceptualization of the River’s edge will help to both establish a more specific control over flooding and create new social spaces that enrich the urban fabric and strive for a sustainable development. This vital realm of the city shouldn’t be ignored during developing process, however, it should be considered a priority equal to that of create the incorporation of new architecture and infrastructure, in order to establish a city that serves all of its inhabitants- both the current residents and those still to come.
How cities grow has changed over the years, resulting in the development of new urban typologies. Cities evolve in relation to their political and economic imperative, which influence the formal organization of the urban print. The form of the city responds to each era and to the revolutions that come with them. Cedric Price describes the different city forms by comparing them with the different representations of the egg. The Boiled egg represents the ancient city, which was organized around a center. The city was surrounded by a wall, which was meant to protect it from military aggression. This isolated cities from each other and kept governance local. The modern industrial revolution turned the boiled egg into a fried egg. It allowed the city to extend beyond the physical boundaries of the city center and increase the urban footprint. The industrial city was designed around cars and mass-production lines, which became the most important clients of this new city typology. The Post Industrial City is represented by the scrambled egg, which moves away from the centralized organization and dissolves itself into the landscape. The Post Industrial City develops multiple miniature centers in order to create a network within the urban footprint.1 Santa Cruz, Bolivia, is a special case because it presents all three city typologies in one. Even though the layering of the different city forms suggests a continuous evolution, the paste in which it evolved caused a collage of the three forms at once. Instead of allowing the city to transform and adapt to the new typologies, it juxtaposed the new models on top of the old ones, resulting in the segregation of the different zones. Due to the fast paste of development, the city hasn’t been able to catch up with the original concentric organization and created an explosive and uncontrolled growth. As the rings lose their gathering force by not being able to keep up with the fast population growth, uneven infrastructural conditions occur. Towards the perimeter, infrastructure is very poor, if not absent at all. This has resulted in the origination of left over spaces. These spaces not only are consequences of the explosive growth, but they are also participants of growth that don’t contribute to the development of a sustainable city. One example of these leftover spaces is the green Belt. The Green Belt was originated as an ecological protective zone that served as a cushion for flooding. However, as the city started to evolve, the Green Belt started to lose its original purpose. During developing process of the city, the Green Belt acted as a physical barrier for expansion that pushed development to only one side of the city. However, development pushed so hard that started to cross the boundaries of the Green Belt. As a new city center arises on the opposite side of the river, a necessity to ‘jump’ the Green Belt was created, which resulted in major deforestations on the Green Belt. This deforestations harmed the ground, increasing flooding, thus challenging the Green Belt’s function and making it obsolete. The questions is how can the Green Belt be rethought in order to adapt the fast developments of the city while keeping its ecologies and protects the city from flooding.

Figure 0.1 showing the different typologies of cities.
LANDSCAPE + URBANISM

- What is landscape urbanism?

- What is the Role of Green Belts in developing cities?

- Why don’t we create another Green Belt in Santa Cruz?
WHAT IS LANDSCAPE URBANISM?

Landscape Urbanism arises as a design strategy that highlights the leftover void spaces of the post-industrial city and turns them into potential commons. The post-modern decentralized city has started to blur the boundaries between the urban footprint and the surrounding landscape, and regions have started to view the qualities of their landscape not only as marketable entities, but also as reserves of public space. Through landscape the industrial context is linked to a pre-modern ecological era that sees nature as the primary medium of city making. Topography, groundcover, light, trees and watersheds become important design tools that allow the creation of flexible spaces. However it is important to highlight that the goal of landscape is not only scenic, but also infrastructural. The aim is to create settings for programmed and unprogrammed activities that are adaptable to various circumstances. These flexible open spaces will create performative social patterns that would be colonized by different groups of people in multiple ways. Even though landscape urbanism arose as a new way of urbanism for post-industrial shrinking cities, it has also played an important role in growing cities. However, it is important to highlight that the way it performs in both scenarios is completely different. While in the post industrial city landscape urbanism focuses on revitalizing the abandoned industrial centers, in growing cities it acts as a method that helps control urban expansion. Through landscape, the boundaries for the perimeter of the urban footprint have been determined.

WHAT IS THE ROLE OF GREEN BELTS IN GROWING CITIES?

Green Belts are urban growth boundaries that have the aim of stopping sprawl and protecting farmland around cities. One of Green Belt’s main functions is to increase density in order to create a more urban atmosphere. By limiting the horizontal growth of an urban footprint, the city is forced to develop vertically rather than horizontally. This helps the revitalization of the city center as well as raised the value of land within the established perimeter. Also, by acting as the line that separates nature and development, the Green Belt aims to protect the ecologies existing around cities. However, I may argue that this sharp boundary isn’t necessary the best solution neither for the city nor for nature. Nature and the city are often seen as antonyms and are presented isolated from each other. This means that where there is nature, development can’t occur; and where there is development, nature has already gone away. Development in the form of gray infrastructure is seen as a threat for cities. It is the main cause for the pollution of air, soil and waterways. At the same time, nature presents itself as the physical and moral boundary for development. This mainly happens because of the lack of dialogue between the natural and the man-made. But, what would happen if we combine them in order to support each other instead of stopping each other? What if infrastructure improves nature and nature improves infrastructure? I believe that nature has the ability to improve the experience of infrastructure, and that infrastructure has the ability to improve the function of nature. By using nature and development as the main design tools, an economically, socially and environmentally sustainable city would be achieved.

4. Sitko Nicki
"Urban Growth Boundaries: Economic Development Tool or unwanted Interference?" (April, 21, 2005), 1-7.
Figure 1.2 Showing the use of Green Belts as growth boundaries for cities in Britain.
PRECEDEENT: TORONTO’S GREEN BELT

Toronto, Ontario is an example where the incorporation of the Green Belt has caused a positive impact in the urbanization of the city. In Toronto, the decentralization of economic activity forced the city to expand into the surrounding suburbs. In order to prevent development outside the urban area, industry, retail and housing were forced to be built on vacant or underused parcels within the established boundary.5

Unlike in Santa Cruz, where the Green Belt functions as a force that pushes development away from the water; in Toronto the Green Belt functions as a force that reinforces the connection between the city and the water. Also, by incorporating hamlets and villages within the Green Belt, a direct flow between the city of Toronto and the surrounding nature is created.

Figure 1.3 Showing Toronto’s Green Belt Plan.

Figure 1.4 Showing Toronto’s footprint.

Figure 1.5 Showing Green Belt and footprint.

Figure 1.6 The Green Belt pushes the city to the water.

Figure 1.7 Showing Santa Cruz’s footprint.

Figure 1.8 Showing Green Belt and footprint.

Figure 1.9 The Green Belt pushes the city away from the water.
Forestitcity is a project that uses reforestation as an urban design strategy for Ethiopia. New settlement provides benefits not only for the inhabitants, but also for the entire ecological system.

When Reforestation occurs in conjunction with the expansion or generation of cities, the growth of those cities acts as a tool for forest generation. Ultimately cities become a means to spread forests throughout the country.
WHY DON’T WE CREATE ANOTHER GREEN BELT IN SANTA CRUZ?

The Role of Green Belts is to act as boundaries for the horizontal expansion of the city. By establishing a physical limit for horizontal development, the city is forced to expand vertically, creating a denser and higher urban mass. The implementation of Green Belts in fast growing cities has helped curbing urban sprawl and protecting green areas. Cities like Portland, Toronto, Seattle, Copenhagen and Vancouver have implemented this urban strategy in order to promote the economic development of existing urban voids as well as enhance the conservation of farmlands on the perimeter. But what happens if the city doesn’t remain inside the boundaries of the Green Belt and keeps expanding beyond it? This is the case in Santa Cruz. In Santa Cruz, the current Green Belt has become obsolete because it isn’t stopping development; it’s just pushing it further away. By creating an adjacent center next to the Green Belt, people have started to create plans to ‘jump’ the Green Belt in order to get to the next center. This not only has challenged the function of the Green Belt, but has also harmed its ecology by causing deforestation and erosion in the ground. Therefore we can say that before creating another Green Belt we have to solve the problems of the current Green Belt. If we create another Green Belt now, we would be duplicating the Problem. Therefore the first step to take is to re-think the Green-Belt in order to adapt it to the current conditions of the city.
Figure 1.10 - As the city evolves into a Post-Modern city, centers beyond the Green Belt would be created, and development would be pushed further away.
SANTA CRUZ, BOLIVIA

- Introduction

- What caused development in Santa Cruz?

- Why did development increase so much in the last 10 years?

- What are the consequences of this fast developments?

- What is the role of the River?

- What is the impact of the Green Belt in the formation of the urban footprint?

- What is the impact of Development on the Green Belt?
Santa Cruz is the largest city in Bolivia. It is the economical center of the country, and contributes with more of 80% of the national agricultural production. Its tropical climate, which has an average annual temperature of 23 C (74 F) and its fertile land support agriculture and cattle, which are 2 of the major economic activities in the region. Some industries that have also contributed to the city’s economic expansion in the last 10 years are oil, gas, iron, forestry companies, and construction. In the last 10 years Santa Cruz has experienced an explosive growth, which has turned it into the 14th fastest growing city in the world.\(^6\)

Even though the city began developing very slowly, since 1960’s it has experienced a non-stopping development phase that keeps increasing. Since the inauguration of the La Paz - Santa Cruz highway in the 1960’s, series of economic events pushed development, which resulted in the uncontrolled expansion of the urban footprint. Due to the fast developments of the city the original centrifugal organization of the urban footprint got lost. Because infrastructure couldn’t keep up with the urban expansion, an explosive and informal growth extended beyond the organizational rings and started to expand the perimeter of the city. However, one edge of the urban form stood still and acted as a barrier for development. The green Belt, which was a created as a protective zone that acted as a response to the 1983’s flood, is the only physical barrier that stops the city from growing to the West. It acts as a pressure that pushes development to only one side of the city. This not only has separated the city from the river, but has also challenged the sustainability of the city’s evolution by increasing distances within the urban footprint.

On the other hand, development has also acted as a pressure that affects the Green Belt negatively. Due to the uncontrolled growth of the city, illegal development has been manifested in different zones of the Green Belt, harming existing ecologies on the site. The city’s pressure for further development has started to take over the Green Belt in an unconscious manner, harming the environment and causing erosion on the floor.

WHAT CAUSED DEVELOPMENT IN SANTA CRUZ?

Even though the city began developing very slowly, since 1960’s it has experienced a non-stopping development phase that keeps increasing. Since the inauguration of the La Paz - Santa Cruz highway in the 1960’s, series of economic events pushed development, which resulted in the explosive expansion of the urban footprint.

Some of these economic events are the agricultural expansion, which resulted in the rise of the sugar, rice and milk industries, and the extraction of oil and gas. As the population started to increase, so did the urban footprint, this showing that the expansion of the city was horizontal rather than vertical.
<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The city was moved to its current location in 1986. The Spanish Conquerors imposed the Colonial grid, defining the current city centre.</td>
</tr>
<tr>
<td>1950</td>
<td>Railroad La Paz – Santa Cruz pushed development, linking Santa Cruz with the rest of the country.</td>
</tr>
<tr>
<td>1960</td>
<td>Milk and Sugar cane Industries arise.</td>
</tr>
<tr>
<td>1970</td>
<td>The Industrial Park was developed.</td>
</tr>
</tbody>
</table>
| 1980 | - Railroad to Puerto Suarez and Yacuiba were developed in order to link Santa Cruz with Brasil and Argentina.
 - Export of sugar, timber and rice.
 - Agricultural expansion.
 - Petroleum extraction.
 - Increase of commerce and services. |
| 1983 | - River Flood: 100 persons died and disappeared. The cost damages was over $37 million. This produced a recession of the urban footprint on the riverside.
 - Export of soy and gas. |
| 1988 | - Agrarian expansion.
 - International companies start investing in Santa Cruz. Foreign direct investment was 36.8% in 2002, second in the nation.
 - National and Foreign migration: 25% of the population is not local.
 - Real Estate Boom. |

The diagram shows the population increase, the evolution of the urban footprint, the economical causes for development and the change in density over time.
The city was moved to its current location in 1986. The Spanish Conquerors imposed the Colonial grid, defining the current city centre.

- Railroad La Paz – Santa Cruz pushed development, linking Santa Cruz with the rest of the country.
- 1956: International Competition to design the city's masterplan. The "Techin Plan" was based on concentric rings as main organizational elements for the city.
- Milk and Sugar cane Industries arise. - The Industrial Park was developed.
- Railroads to Puerto Suarez and Yacuiba were developed in order to link Santa Cruz with Brasil and Argentina.
- Export of sugar, timber and rice.
- Agricultural expansion.
- Petroleum extraction
- Increase of commerce and services.
- Export of soy and gas.
- 1983-> River Flood: 100 persons died and 900 disappeared. The cost damages was over $ 37 million. This produced a recession of the urban footprint on the riverside.
- Export gas to Brasil
- Searpi is founded: The project introduces infrastructure along some areas on the waterfront. Also, new vegetation is introduced. The project only lasted 5 years and stopped working because of lack of money.
- Municipality creates a Law to protect the green zone on the riverside.
- Agrarian expansion
- International companies start investing in Santa Cruz. Foreign direct investment was 36.8% in 2002, second in the nation
- National and Foreign migration: 25% of the population is not local
- Real Estate Boom
- Hydroway Paraguay-Parana
- Mutun, which is one of the largest Iron Deposits in the American Continent.
- Santa Cruz becomes the 14th. fastest growing city in the world
- The Riverside is nominated "Green Protection Zone".
1950

- **1956**: Railroad La Paz - Santa Cruz. The Railroad pushed development in Santa Cruz by linking it with the rest of the country.

- **1956**: International Competition to design the city’s Masterplan. The ‘Techin Plan’ was based on centric rings as the main organizational elements for the city.⁷

- Milk and Sugar Industries arise, developing mostly the northern part of the city.

- Streets around the main Plaza started to get paved.

1970

- The Industrial Park was developed.
- Railroads to Puerto Suarez and Yacuiba were developed in order to link Santa Cruz with Brasil and Argentina.
- Export of sugar, timber and rice.
- Agricultural expansion.
- Petroleum extraction
- Increase of commerce and services.\(^9\)

1980

- Export of soy and gas.

- **1983** - River Flood: 100 persons died and 900 disappeared. The cost damages was over $37 million. This produced a recession of the urban footprint on the riverside.\(^{10}\)
- Export Gas to Brazil.

-Searpi, the foundation in charge of protecting the ecologies on the Green Belt, is founded: The project introduces infrastructure along some areas on the waterfront, as well as new vegetation is introduced. This came along with the implementation of new laws that restricted construction on the area.

- Article 13: The Protected area can not be used for any agricultural or forestal purpose. It can only be used for hydroenergetic, recreational, research or educational purposes. The forestal zone, which are considered State’s territory, are declared as protective forests. All the private property within the green zone has to be reforested and can be used only for ecological purposes. According to the article 35, 100 metres on each side of the waterfront are considered Protective Zones, because they are considered risky areas for flood or erosion.¹¹

- Export Gas to Brazil.

-Searpi, the foundation in charge of protecting the ecologies on the Green Belt, is founded: The project introduces infrastructure along some areas on the waterfront, as well as new vegetation is introduced. This came along with the implementation of new laws that restricted construction on the area.

- Article 13: The Protected area can not be used for any agricultural or forestal purpose. It can only be used for hydroenergetic, recreational, research or educational purposes. The forestal zone, which are considered State’s territory, are declared as protective forests. All the private property within the green zone has to be reforested and can be used only for ecological purposes. According to the article 35, 100 metres on each side of the waterfront are considered Protective Zones, because they are considered risky areas for flood or erosion.

Figure 2.26

Figure 2.27

- Hydroway Paraguay-Parana

- Mutun, which is one of the largest Iron Deposists in the American Continent.

- Construction Boon

- Santa Cruz becomes the 14th. fastest growing city in the world

- Major deforestations on the “Green Protection Zone”. These are caused by the construction of the Urubo, informal settlements and Waste Water Tank. Major legal problems with authorities.\(^{13}\)

Figure 2.30 - Comparing deforestation on the Green Belt in 2006 vs. 2012.

Figure 2.31 - Bridge to the new developments on the opposite side of the river is the major cause for the increase in deforestation.

Figure 2.32 - Informal Settlemens on the river edge are also a major cause for deforestation on the Green Belt.
WHY DID DEVELOPMENT INCREASE SO MUCH DURING THE LAST 10 YEARS?

In the last 10 years Santa Cruz has experienced an explosive growth, which has turned it into the 14th fastest growing city in the world. During the 2000’s, international companies started investing in Santa Cruz and created major headquarters that supported the city’s growth. In 2002, foreign direct investment was 36.8%, which put Santa Cruz second in the nation in international investment. Some industries that have enhanced international investment in the last 10 years are agriculture, oil, gas, and iron.

Also the growth of the manufacturing industry, such as milk, coffee, canned fruits, cigar, beer, plastic, chemicals, medicines, fertilizers and insecticides has enhanced the further economic development on the city. Due to the large immigration present in the city, both international and national, construction has increased notoriously, mostly in the form of real estate. This has manifested itself in the form of gated communities, high rise apartment buildings and informal settlements.

14. Brun Arril, “Santa Cruz de la Sierra, Bolivia – From a tiny Town to Political Pace-setter” (2011)
Figure 2.33 - High rises are getting built on the edge of the Green Belt.
WHAT ARE THE CONSEQUENCES OF THIS FAST DEVELOPMENTS?

Even though the fast paste of development has had a positive impact on the economy of the city, we can see that it hasn’t affected positively the evolution of the urban footprint. Due to the fast developments of the city the original centrifugal organization of the urban footprint got lost. Because infrastructure couldn’t keep up with the urban expansion, an explosive and informal growth extended beyond the organizational rings and started to expand the perimeter of the city. These peripheral zones arose without any previous plan, which means that in most of the cases, they don’t count with basic infrastructure or services. This has also resulted in a socio-economical segregation of the urban footprint, targeting the central portion of the city for the rich, while pushing the poor to the furthest points from the city center.
Figure 2.34 Showing the Evolution of the Urban Footprint since 1956.
WHAT IS THE IMPACT OF THE GREEN BELT ON DEVELOPMENT?

Even though the Green Belt was created as a Protective Zone that kept the urban footprint from flooding, its impact on the evolution of the urban form has been negative. By acting as the only physical boundary for expansion, the Green Belt caused an explosive growth of only one side of the city. This not only has separated the city from the river, but has also challenged the sustainability of the city’s evolution by increasing distances within the urban footprint. By creating larger distances within the urban footprint, the costs on infrastructure and reliance on automobile transportation increase. Due to lack of funds, these infrastructures don’t occur immediately and therefore create poor living conditions on the city’s edge.
Figure 2.35 - Diagram showing the cycle of pressure and urban growth.
WHAT IS THE IMPACT OF DEVELOPMENT ON THE GREEN BELT?

In the last 10 years, the city expanded so much that it exploded and started to push development back into the Green Belt, corrupting it. The fast developments of the city started to break the Green Belt’s boundaries with the aim of inhabiting and going through it. Informal settlements have been originated on the river edge with the aim of expanding the city on the Green Belt. These informal settlements have caused major deforestation on the Green Belt, as well as erosion on the ground. On the other hand, new gated communities on the opposite site of the river have been created as a way to keep expanding the city beyond the Green Belt. This has also created major deforestation by constructing traffic lanes that go through the Green Belt in order to connect the new developments with the city center. By causing deforestation and erosion on the ground, the new manifestations of development have harmed the existing ecologies on the Green Belt, which were the main protective tools against flooding. This situation challenges the Green Belt’s main function: protect the city from flooding. As a result, the Green Belt has the necessity of increasing its size in order to allow more zone for flooding. As we can see, this turns into a never-ending cycle that harms the developing process of the city.
Figure 2.36 - Diagram showing the cycle of pressure of Green Belt on Development and vice-versa.
WHAT ARE THE ECOLOGIES AFFECTED?

The existing ecologies on the Green Belt are composed of large scale trees that are between 10 meters to 30 meters high. There are 10 different species of amazonic trees and and palms, like Alcornoque tree, Cuchi Verde, Chaco, Paradise, Chambas, Cupesi, Cuta, Sucupira, Tajibo, Toborochi and Totai. The vegetation remains green all year long due to the constant temperatures and regular precipitation. The animal species on the Green Belt can be divided into 4 different groups, which are: birds, monkeys, reptiles and rodents. The birds and the monkeys inhabit the top of the trees, while the reptiles and the rodents inhabit the ground.¹⁵

PLANT SPECIES

Figure 2.37 - Diagram showing vegetation and animal species on the Green Belt.

¹⁵ Warren Patrizio, "Ordenamiento Territorial municipal: una experiencia en el Departamento de Santa Cruz, Bolivia" (2000)
PIRAI RIVER

- What is the relationship between the River and the Green Belt?
- Ecologies on the Green Belt
- Quality of the Water
- Topography
- Current infrastructures used to stabilize flooding
WHAT IS THE RELATIONSHIP BETWEEN THE RIVER AND THE GREEN BELT?

The Green Belt was originally created as a cushion for flooding. It is meant to protect the city from the rises in water during high precipitations. However, due to deforestation and erosion on the River Edge, the Green Belt hasn’t been doing its task. A major flood, which resulted in the death of 2 people on September 19th 2012, proves the lack of efficiency of the current infrastructures on the site.16 However, instead of working against water, the Green Belt should work as a support for water. The should rehearse not only as a cushion for flooding, but also as zone that uses flood as an opportunity to improve the quality of the water. That way a stronger relationship -both spatial and functional- would be developed between the Green Belt and the River.

Figure 3.1 showing flood on the Green Belt.

Figure 3.2 showing flood in the city.
QUALITY OF THE WATER

- The Pirai River is an amazonic River. The Pirai is a braided river and it is wider than deeper, subdivided into several branches. The width goes from 50 to 500 metres, the river basin elevation ranges from 2600 m.a.s.l. to 250 m.a.s.l.

- From La Espejos to Santa Cruz, the river loses its geological control and in some places it is prone to avulsion. Flooding in Pirai River obeys entirely to flash floods. Pirai River is highly dynamic but it has individual characteristics in each one of its sub regions. The economic boom of this fertile area in an alluvial plain prone to inundation creates high pressure on the authorities to prevent inundation.

- The measurements of the Service of Channeling and Regulation of the River Pirai (SEARPI) show that the events that have caused the greater disasters in the region have appeared in 1983, 1992, 2006 and 2007.

- The river has freedom of moving and the course is not confined. Upstream the slope of the river varies from 0.3% to 0.1%. The downstream region can be considered as a depositional area for the sediments transported by the river. The downstream portion of the basin of River Pirai thus is a sediment receptor. It therefore forms a large alluvial fan which presents different problems of deposition that affects the economical development of the region.

- The river has a permanent tendency to avulsion
- sudden change of the course of the river – since the river is not confined and the flow overflows over the shores. The slope of the river varies from 0.3% to 0.01%.

- In Santa Cruz the River is not contaminated by industry. However in the adjacent districts (Warnes, Montero, Belgica, Okinawa and Portachuelo) the river is heavily contaminated by industry, agriculture and domestic use. In Santa Cruz, the quality of the water isn’t very good either because the local water plants throw the served waters sewage waters into the river. (mostly fecal).

Figure 3.3 showing sewage water thrown into the River.
TOPOGRAPHY

- The topography is flat. However a minor difference of 1 meter is present on the east-west direction. The highest point is closer to the river, while the lowest point is closer to the city.

- Within the green zone there are no marked changes in level, only some waves caused by the vehicular traffic around the edge.18

- The Water edge presents topographic changes due to the hydrologic cycles of the river.

The Pirai River is an amazonic River. The Piraí is a braided river and it is wider than deeper, subdivided into several branches. The width goes from 50 to 500 metres, the river basin elevation ranges from 2600 m.a.s.l. to 250 m.a.s.l.

From La Espejos to Santa Cruz, the river loses its geological control and in some places it is prone to avulsion.

Flooding in Piraí River obeys entirely to flash floods. Piraí River is highly dynamic but it has individual behavior in each one of its sub regions. The economic boom of this fertile area in an alluvial plain prone to inundation creates high pressure on the authorities to prevent inundation.

The measurements of the Service of Channelling and Regulation of the River Piraí (SEARPI) show that the events that have caused the greater disasters in the region have appeared in 1983, 1992, 2006 and 2007.

The river has freedom of moving and the course is not confined. Upstream the slope of the river varies from 0.3% to 0.1%. The downstream region can be considered as a depositional area for the sediments transported by the river. The downstream portion of the basin of River Piraí thus is a sediment receptor. It therefore forms a large alluvial fan which presents different problems of deposition that affects the economical development of the region.

The river has a permanent tendency to avulsion – sudden change of the course of the river – since the river is not confined and the flow overflows over the shores. The slope of the river varies from 0.3% to 0.01%.

In Santa Cruz the River is not contaminated by industry. However in the adjacent districts (Warnes, Montero, Belgica, Okinawa and Portachuelo) the river is heavily contaminated by industry, agriculture and domestic use. In Santa Cruz, the quality of the water isn't very good either because the local water plants throw the served waters (sewage waters???) into the river. (mostly fecal).

Topography:

The topography is flat. Within the green zone there are no marked changes in level, only some waves caused by the vehicular traffic around the edge.

The Water edge presents topographic changes due to the hydrologic cycles of the river.

Section 1:1600

First Barrier: Gully. It is composed by pressed earth, stone or wood. It covers approximately 8.5 km.

Section 1:400

Second Barrier: Dike. This Barrier is approx. 15 km long. It is composed of pressed earth and is 3 meters higher than the city.

Figure 3.4 Section across the site.
CURRENT INFRASTRUCTURES USED TO STABILIZE FLOODING

The infrastructures currently used to protect the River from flooding are located on the Eastern and Western edges of the Green Belt. On the River edge, the infrastructures used are stone and/or wood. On the side closer to the city, the infrastructures used are dikes and they are composed of pressed earth. Locating the protective infrastructures on both edges and making them very steep reduces costs; however, they impede the inhabitation of both the Green Belt and the River. These infrastructures act as barriers that separate the city from the Green Belt and the Green Belt from the water. Instead of thinking about these infrastructures as barriers, we should think about them as transitions that incorporate the Green Belt and the River as main elements that improve the daily experience of the city.

First Barrier: Gully. It is composed of wood. It cover approximately 8.5. It is located on the edge to the water.

First Barrier: Gully. It is composed of stone. It covers approximately 8.5 km. It is located on the edge to the water.

Second Barrier: Dike. It is composed of pressed earth and is 3 meters higher than the city. It covers approximately 15 km. It is located on the edge to the city.
WHEN DOES IT FLOOD?

The heavy rainy season in Santa Cruz happens in the summer, between December and February. During this time, the appearance of the river changes drastically.

During the dry season (March to September) the River is almost completely dried out. However, during the rainy season it is very mighty.
Figure 3.7 Showing the River in dry Season

Figure 3.8 Showing the River in rainy Season
<table>
<thead>
<tr>
<th>Dike Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Materials</th>
<th>Section</th>
<th>Pictures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dike-Pond</td>
<td>- Good Artifical Ecological System</td>
<td>- The fertilizer, water and soil can be readjusted automatically, and flood and drought calamities can be prevented, so that the inferior land can be made fertile - Increases variety in plants and animal species.</td>
<td>Earth, Sand bags, Rocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthen Dike</td>
<td>- 3 to 1 ratio creates a maintainable slope - Doesn't break the view to the river - The Top is flat, in order to accommodate equipment and additional sandbags - Cheap to create and to maintain.</td>
<td>- Cut the access to water because the slope is too steep. - Can't be inhabited - Water seepage is possible through the dike if it is in poor condition or not built properly.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crest Drainage Dike</td>
<td>- Minimizes erosion on the insides of the dike - Lasts minimum 50 years - They have great buffer capacity to handle larger overtopping volumes per wave - Operates in large scales</td>
<td>- It is a hard structure and will not be able to connect to the clay dike - Costly</td>
<td>Steel, Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubble Dam</td>
<td>- Cheap - This method has the advantage of adjusting the height of the dike easily by pumping or releasing air or water into the rubber bags</td>
<td>- It can go only to 6 m high</td>
<td>Rock, Pre-Cast Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix-Type Dike</td>
<td>- Reduce settlement - High Stability</td>
<td>- It can't be inhabited</td>
<td>Rock, Pre-Cast Concrete, Geotextile bags, Crushed Stones, Hydraulic Fill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Wall Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invisible Flood Wall</td>
<td>- Can be flooded - Uses the weight of water as structure - Temporary Structure: Can be installed when water threatens, and easily taken away when the flood is gone, leaving the riverfront view without obstruction. - Leaves the beauty of the riverfront intact - Easy construction</td>
<td>- Costly</td>
<td>Hollow aluminium planks, Rubber Seals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic I-Wall
- Constructed where space is limited
- Breaks the view and access to the river
- Concrete
- Walls greater than 6 feet in height may not provide complete protection.

Buttress Retaining Wall
- Constructed where space is limited
- It can be lowered to a horizontal position to form a walk, or to fit flush to existing ground or pavement.
- Pre Cast Concrete

Gravity Wall
- Very Stable
- Slope can allow access to the water
- Breaks view to the River
- Concrete
RE-THINKING THE GREEN BELT

-How can the Green Belt be re-thought in order to adapt to the fast developments of the city?

-How can the Green Belt be used as an interface without getting harmed?

-How can infrastructure help the environment instead of harming it?

-How can infrastructure enhance the connection with the River?
“Landscape is not only a formal model for urbanism today, but perhaps more importantly, a model for process.”

- Stan Allen
HOW CAN THE GREEN BELT BE RE-THOUGHT IN ORDER TO ADAPT TO THE FAST DEVELOPMENTS OF THE CITY?

Currently, Green Belts are used in order to control the growth of cities. However, I may argue that being a physical boundary for urban sprawl is not the only function of the Green Belt. The Green Belt should also be a zone of transition between the different city centers in the Modern City. As the city evolves from the Ancient City, to the 19th-Century City, to the Modern City, it changes in form and function. The city goes from a condensed center (Boiled Egg), to a central organization that extended beyond the perimeter of the center (Fried Egg) to a decentralized city with multiple centers (Fried Egg).

As the city reshapes and reorganizes itself through time, so has to do the Green Belt. Therefore I can say that it is impossible that the city of Santa Cruz has gone through so much change in the last 30 years, and yet, the spatial and formal manifestation of the Green Belt remained the same. The Green Belt can’t remain still and ignore what happens in its surroundings; instead, it has to keep up with the current conditions of the city. Therefore we can ask: how can the Green Belt adapt to the new developments of the city? What is the new role of the Green Belt? The Green Belt has to act as an interface among city centers. As Santa Cruz develops into a Modern City typology with multiple centers, new city centers beyond the Green Belt are created. I think that the Green Belt is an opportunity to enhance the network of multiple city centers and yet provide the city with open green space that balances the density of the urban mass. Through the re-development of the Green Belt, a transition between city centers would be created.

Figure 4.1 Diagram comparing Cedric Price's "City as an Egg" with the evolution of Santa Cruz's footprint.
PRECEDENT: MASTERPLAN FOR SHENZHEN

ARCHITECT: TOM VEREBES
CITY: SHENZHEN

Eventhough Tom Verebe’s Masterplan for Shenzhen, China doesn’t necessarily refer to the integration of nature and the man made, I started to use it as an example that explores the way in which densities of patterns influence the inhabitation of a place. Tom Verebe’s Master plan for Shenzhen, China focuses on the adaptability of the urban fabric to development. The urban fabric shouldn’t be seen as a fixated print, instead, it is an evolutionary pattern that changes through time and adapts to the city’s needs. In this case, Verebe and his students created modules that were repeated in order to create various densities. The same module changes in scale and height in order to generate different ways of occupying the same site.²¹ However, Shenzhen’s Masterplan not only explores the evolution of the pattern through time, but also the formal expression of it. Every pattern is designed to relate in different manner to the existing fabric. By exploring different densities, both horizontal and vertical, the pattern starts to dictate how the city is supposed to feel like. Through changes in density, a different speed to the city is given. However, it is important to highlight that both the masses and the voids play an important role in the design. The voids within the patterns start to dictated specific pauses that influence the urban experience of the city. Also, it is important to notice that the volumetric exploration not only influences the experience within the fabric, but also beyond it. Water is seen as an extension of the city and not as a boundary for it. The modules expand through and beyond the water in order to integrate both sides of the river edge.

Figure 4.2 - Masterplan for Shenzhen: Volumetric and Plan exploration of changes in density through time.

Figure 4.3 - Masterplan for Shenzhen: Formal exploration of the pattern in order to create different experience of the urban fabric.
HOW CAN THE GREEN BELT BE USED AS AN INTERFACE BETWEEN CENTERS WITHOUT GETTING HARMED?

By enhancing the inhabitation of the Green Belt a fluid connection between multiple city centers would be provided. This way the Green Belt would be no longer seen as a barrier, but as a transition between the weight of the city and the openess of green spaces. The idea is that by inhabiting the Green Belt people would start to understand it and would see it as an extension of the city rather than a boundary. Through inhabitation people would get aware of it; of its presence, its scale, its aesthetic, its ecology. Otherwise people know that it stands there, but they are not fully aware of what its function is and how that can actually improve the daily experience of the city itself. However, there is the need to set up parameters of development as a way to start inhabiting the Green Belt without harming it. A new plan that sets up rules for development in the site with the aim of protecting the existing ecology is the goal. One strategy to start to think about the interaction of uses on the land is by looking at patterns as organization methods for land. By focusing on patterns as elements of organization we can start to think about lot division, proportion of lot vs. built space, constructed footprint, directionality, access, sequence, public space and height. These elements would start to set up parameters for construction which respond to both the natural and man-made contexts. The main components of the patterns would be natural green spaces, programmed green spaces and infrastructure. The way in which these three elements interact would have the goal of promoting the spatial awareness of the natural, while enhancing the inhabitation of it through programmed spaces. Program would be represented in the form of open green spaces and infrastructures that would be arranged in order to create a promenade down to the river edge. The aim for re-activating the connection between the city and the river is to establish a physical connection to the main natural element: the water. By introducing new types of infrastructures that prevent the city from flooding and support the environment instead of harming it, a conscious interaction between the natural and the man-made will be proposed.
The river, the Green Belt and the city don’t interact in a physical or spatial manner. Instead, they are presented as different layers of space and material that are located next to each other. How can we integrate them spatially to create a physical experience on the River Edge?
PATTERNS AND LAND ORGANIZATION

Series of Pattern Studies that explore the interaction between:

- Water
- Development
- Programmed green spaces
- Natural green spaces

Pattern 1
The pattern continues the current proportions of the blocks in the urban fabric, creating a density towards the river edge. Both architectural infrastructure and programmed green spaces are altered with natural green spaces and start to frame them. This creates a natural green space zone in the middle that allows the continuous interaction with the natural landscape.

Pattern 2
The pattern inverts the current structure of the city and uses programmed green spaces as the blocks. Infrastructure continues the streets’ proportions and direction. The infrastructure is seen as series of inhabitable walls that interact directly with the programmed green spaces, creating a promenade towards the river while serving as protection from flooding.

Pattern 3
The pattern continues the current proportions of the blocks in the urban fabric, creating a density towards the river edge that acts as protection against flooding. The promenade towards the river is created through series of programmed and unprogrammed green spaces.
PATTERNS AND LAND ORGANIZATION

Series of Pattern Studies that explore the interaction between:

- water
- development
- programmed green spaces
- natural green spaces

Pattern 4
This pattern also continues the current proportions of the blocks in the urban fabric, creating a density towards the river edge. Both architectural infrastructure and programmed green spaces are altered in order to create density towards the River edge. Programmed green is pushed to the middle zone in order to allow a continuous promenade to the water.

Pattern 5
The pattern inverts the current structure of the city and uses programmed green spaces as the blocks. Infrastructure frames the programmed green spaces and creates series of barriers against flooding.

Pattern 6
The pattern continues the current proportions of the blocks in the urban fabric, creating a linear axis towards the river edge.
PATTERNS AND LAND ORGANIZATION

The volumetric study of the patterns allows seeing how the landscape can be manipulated in order to achieve the integration of water, nature and infrastructure on the site. Also, the vertical expression of the masses start to speak about the overall massing characteristics and spatial connections established by each pattern.

Pattern 1 establishes a pixelation of the urban fabric that increases in volume and density as it approaches the water. Pattern 2 acts as series of walls, which get taller as they set back from the water edge. This shows that the further back the walls are, the more protective they are. Pattern 3 shows infrastructure as a louver for flooding.
The Frontal view of the patterns show how the manipulation of the landscape and the introduction of the steps allows a spatial and experiential connection between land and water.

It also shows that in each pattern the relationship between infrastructure and water is different.
The percentages show that the differences in poverty levels create a radial separation within the city.
The Green Belt is an opportunity to link the different socio economical groups that are strictly divided by the radial organization of the city. The division lines among the adjacent districts of the Green Belt become crucial and are considered potential sites.
CONNECTING THE CITY

Water is pushed into the Green Belt in order to create direct interaction between the River and the City. These pockets of water will not only contribute to the experience of the sequence, but also will also works as infrastructural support to control flood.
HOW CAN INFRASTRUCTURE HELP THE ENVIRONMENT INSTEAD OF HARMING IT?

It is necessary to go to an architectural scale to resist the forces of the contemporary city. Even though there are lots of lessons to be learned from landscape, landscape by itself doesn’t have the power to counteract the bulk and force of development by itself. It needs planned infrastructure that supports and protects it. One way these infrastructures can do so is by creating parameters of construction in the site that start to influence code and FAR on the area. By going through volumetric exploration of the pattern, we can also start to think about the infrastructures as structures for flooding. By establishing measurements for footprint and height, these infrastructures can start to act as protective structures against flooding. This way, through infrastructure the original purpose of the Green Belt as a cushion for flooding would be enhanced and spatially manifested. Through this new spatial strategy that integrates nature with development, the Green Belt can not only be re-thought as a transitional space instead than as a boundary, but it can also recover its original purpose: protect the city from flooding.

The Project responds to Gowanus Canal’s water contamination. Gowanus Canal presents a similar condition from Pirai’s River because as the city starts to develop, it moves away from the water. This intervention addresses both the ecological and urban issues of the site in order to improve the current conditions and enhance the inhabitation of the site. Wetlands and infrastructures are combined in order to increase density in the area. Towers integrate with the wetland ecosystem and produce on site power and function as vertical stacks of apartments and educational facilities that allow the neighborhood to double its existing population while also maintaining significant areas of open space.

Figure 4.20 - Diagram showing the changes in densities.

Figure 4.21 - Site Plan

Wetlands are composed of series of layers that work in tandem to create an ecosystem. The urban ecosystem includes circulation and programing that operates at the pedestrian level. By peeling up the layers of fertile substrate, new spaces for retail program can be defined beneath, while circulation is elevated above the natural ecosystem. New streets that connect back to the surrounding grid allow for the pedestrian traffic to populate and utilize the space around the canal without compromising its natural functions.⁴
HOW CAN INFRASTRUCTURE ENHANCE THE INHABITATION OF THE RIVER?

Infrastructure serves both the natural and the man-made. Besides protecting the city from flooding, infrastructures help cleaning the water and encourage the human development on the site. By introducing structures that combine ecosystems that purify the water and host program, the community would extend to the water edge, promoting the inhabitation of it. The success of the expansion of the city into the water edge relies on the conscious interaction between the two. The inhabitation of the Green Belt not only responds to the city’s augment in density, but also proposes that the people would reconnect with nature and learn from it. This way the interaction between the natural and the man-made would be conscious and through, and people would start to understand what the role of the Green Belt is and how its ecosystem improves the daily experience of the city. This infrastructures, which are containers of program, would celebrate the existence of the Green Belt by creating a unique experience on the water edge.
CURRENT LANDSCAPE CONDITION

PROPOSED LANDSCAPE

EXPERIENCE OF WATER: THE THEATRICAL SETTING

PROGRAM
While the city uses solid walls as protective structures from the water, these walls break at one specific point in order to celebrate the connection between the city and the water. This break creates a theatrical connection between the city and the water, which makes the experience of the place unique. When the water level raises, the water becomes part of the theatrical setting and the spaces within the city take flooding as part of the play. The steps on the break blur the boundaries between land and water by allowing the water to overflow them. In Belem water is part of the daily lives. It is a medium of transportation, an economic resource and the main component of the landscape. The presence of water gives Belem an amazing experience which makes it unique.
Figure 4.28 - Relationship between water, flooding infrastructures and the landscape

Figure 4.28 - Steps create a setting that allow the inhabitation of the water.

Figure 4.29 - The Tower of Belem marks an axis that reinforces the connection to the water and celebrates inhabitation beyond the landscape.

Figure 4.28 - Belem Top View

Figure 4.29 - Theater Typology plan
PROPOSAL

- Analysis
- The Site
- What can be developed on the site?
- How can it be inhabited?
THE SITE

The site chosen explores future connections between the city and the new city center on the opposite site of the river. Currently, there is a project on the site to develop a second bridge that trespasses the Green Belt in order to get to the opposite side of the river. But, how can the site be used not only as a connecting bridge but also as a destination point? Besides being a key point for the further development of the city, the site offers the unique experience of connecting the city with the water.

Figure 5.1 - Current Plan for new Bridge
THE SITE

Figure 5.2

Figure 5.3
WHAT CAN BE DEVELOPED ON THE SITE?

With a population that could double to reach 5 million within 2 decades, Santa Cruz struggles between two extremes - urban sprawl and urban density. These examples, which express maximum expansion and maximum concentration, challenge the functionality of the city. However, as the migration increases, more densification is implemented. In order to serve the massive urban population influx, a big drastic increase in housing stock would be needed. However, during developing process not only infrastructure in the form of housing should be developed. Public spaces are also key points that should be considered during developing process. The re-consideration of the Green Belt as the major public zone that links the two main areas of development would be a big contribution to the urban experience of the city.

According to the Law, the following programs can be inserted in the site:

Article 13: The Protected area cannot be used for any agricultural or forestall purpose. It can only be used for hydro energetic, recreational, research or educational purposes. The Protective zone is considered State’s territory. All the private property within the green zone has to be reforested and can be used only for ecological purposes.²⁴
The current locations of the flooding infrastructures impede the inhabitation of the Green Belt because they act as physical boundaries that block the access to the area.
POPULATION

The economic stability in Santa Cruz is not only influenced by the agricultural and the construction industries, but it is also influenced by the Educational Institutions. Santa Cruz attracts lots of rural and international students that come to the city for its Educational Facilities. Many students from Peru, Argentina and especially from Brazil go to Santa Cruz because of the low costs in Education. Now, 33% of the city’s inhabitants are students, which are distributed among 1069 Middle and High Schools, and 16 Universities.

These facts turn Santa Cruz into the city with higher number of students in Bolivia. It is also the city with the youngest population. As we can see in the image below, most of the inhabitants are between 0 and 30 years old, all of them seeking for education. Introducing an educational facility to the site would support the Educational Expansion. Offering a new Educational Institution, which promotes the study of the local ecologies, would allow the further growth of the city on the Green Belt while sustaining it.
PROGRAM

The program should not only address the educational expansion to the site, but should also refer to the presence of water and the ecology surrounding it. Throughout the city, water has become a major challenge in terms of accessibility, cleanliness, and management. The intervention should address these issues by creating an infrastructural network in which organization, communication, education, training and maintenance are stressed.

A secondary campus for the local public University would be a program that encompasses the activities mentioned above. It allows increase density on the site while promoting the educational use of the land. The UAGRM (Universidad Autonoma Gabriel Rene Moreno) is the largest public university in Santa Cruz. It counts with 70.000 students coming from all parts from the national territory.

In Santa Cruz, the UAGRM counts with 10 Schools, which offer 42 different Majors. It counts with a Law School, a Medical School, a Theology School, a School of Economics, a Veterinary School, School of Agriculture, an IT School, a Communications School, a School of Environmental Science, Arts and Sciences School and a Graduate School. The UAGRM was founded in 1880, however, due to lack of financial resources it was closed in 1925. It re-opened in 1938 with help of the rising economic sectors. Until now, the UAGRM remains closely tied to the private economic sector, which contributes with funds for the maintenance and development of infrastructure. As we can see that the history of the UAGRM coincides with the development of the city. The UAGRM has been one of the institutions that contributed the most to the development of the city. It always encouraged innovation and public participation. It has been a symbol of democracy and public voice.

The high rural and international immigrations to the city have also had a big impact on the Educational Sector. The UAGRM’s number of students increased from 32,000 to 70,000 in 10 years.

The university has had a hard time making the infrastructure keep up with the fast increase of number of students. There are not enough classrooms for the number of students, and in some occasions, the students have to take classes on the hallways or on the sports field.
HOW CAN IT BE INHABITED?

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatures in °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Precipitation in mm</td>
<td>115</td>
<td>117</td>
<td>115</td>
<td>117</td>
<td>115</td>
<td>117</td>
<td>115</td>
<td>117</td>
<td>115</td>
<td>117</td>
<td>115</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>63</td>
<td>66</td>
<td>48</td>
<td>37</td>
<td>25</td>
<td>25</td>
<td>46</td>
<td>37</td>
<td>25</td>
<td>25</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Water Cleaning</td>
<td></td>
</tr>
<tr>
<td>School Year</td>
<td></td>
</tr>
<tr>
<td>Botanical Garden</td>
<td></td>
</tr>
<tr>
<td>Natural History Museum</td>
<td></td>
</tr>
<tr>
<td>Sports Area</td>
<td></td>
</tr>
<tr>
<td>Flowers</td>
<td></td>
</tr>
<tr>
<td>Orchids</td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td></td>
</tr>
</tbody>
</table>
Site Plan 1:200 m

1. Entry
2. Cafe
3. Kitchen
4. Women's Bathroom
5. Men's Bathroom
6. Changing rooms
7. Storage
8. Parking
9. Permanent Exhibition
10. Offices and Classrooms
11. Student's Exhibition
12. Library
13. Studio
14. Materials and Tools
15. Kiln
16. Student Lounge
17. Auditorium
Site Plan 1:200 m

1. Entry
2. Cafe
3. Kitchen
4. Women's Bathroom
5. Men's Bathroom
6. Changing rooms
7. Storage
8. Parking
9. Permanent Exhibition
10. Offices and Classrooms
11. Student's Exhibition
12. Library
13. Studio
14. Materials and Tools
15. Kiln
16. Student Lounge
17. Auditorium
1. **Entry Point: View from the city.**

As one approaches the site, the dike starts to break and the ground peels to allow for points of entry. The main entrance sinks, leading people into the ground and across the building. The surface of the dike no longer stops people from accessing the site. The steep slopes have become monumental staircases that allow people to go around the dike and onto the riverside. They also operate as a stage that looks into the city and creates a theatrical dialogue between the city and the river's edge.

2. **On top of the Core: View to the River**

As one goes around the dike, one is located on the circulation core, which overlooks the river. The core not only operates as the main circulation on the inside, but also on the outside. The surface of the dike becomes seating area to watch the activities occurring on the site.

3. **On top of the Core: View to the City**

The green roofs operate as an extension of the landscape and function as platforms that overlook the city.

4. **Water Edge**

Steps that allow people to experience the river become the stage that overlooks the water and established visual connection between both sides of the river.

Permanent
Circulation through the site

Sports Field Flooding area/
Temporary programs

Permanent Programs

Green Roof

Wetlands

gabion wall

circulation core

water channel

Temporary Programs: Studio Spaces and Temporary Exhibitions

biking area

leaves that allow passage to the river

green roof

circulation

void that allows flood to get into the building

gation wall

circulation core

Temporary Programs: Studio Spaces and Temporary Exhibitions

Module Axon

UNITS DURING DRY SEASON (WINTER / SPRING / FALL)
Section 1

1m = 1 cm

Water Storage

Area for flood

Library

Waterfall

through the site

Sports Field

Green area

Flooding area

Temporary programs

Permanent Programs

Green Roof

Circulation through the site

Wetlands

Gabion wall

Circulation core

Water channel

Flooding area (temporary program)

Gabion wall

Circulation core

Leaves that allow passage to the river

Green roof

Circulation

Void that allows flood to get into the building

Gabion wall

Circulation core

Flooding area (temporary program)

Water channel
“Maybe it’s time to abandon our romantic ideals about the countryside and embrace what science and innovation can offer our cities. If things look or feel like nature, we tend to think that they are also ecological and good. That is why the term ‘natural’ is so widely used in marketing today, even though it is almost meaningless. And there is also a tendency in architecture to imitate it.”

Winy Maas
BIBLIOGRAPHY
0. INTRODUCTION

Figure 0.1
Cedric Price, “Three Eggs Diagram”, The Landscape Urbanism Reader

1. LANDSCAPE + URBANISM

Figure 1.1
Alberto Francini, “PGT Plan for Milan”, Landscape Urbanism Lecture @MOCA (Kent State University)

Figure 1.2

Figure 1.3
Benfield Kaid, “An Open Letter to the next President on Sustainable Development (part 2) (reposted).”

2. SANTA CRUZ, BOLIVIA

Figure 2

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17
“Canaveral” As Plantas Medicinais Canadeacar Saccharum Officinarum.
3. PIRAÍ RIVER

Figure 2.20

Figure 2.22
“Aumenta a 12.300 El Número De Familias Afectadas Por Las Lluvias En Bolivia | AVN.” <http://www.avn.info.ve/contenido/aumenta-12300-n%C3%BAmero-familias-afectadas-lluvias-bolivia>.

Figure 2.24

Figure 2.26

Figure 2.28

Figure 2.30

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8
Julico. “Cuenca Hidrográfica del Río Pirai”

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

4. RE-THINKING THE GREEN BELT

Figure 4.2

Figure 4.3

Figure 4.21

Figure 4.22

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27

Figure 4.28

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7
“Theater of Marcellus and the Timberl Islandr.” Types of Roman Theaters.

Figure 5.8
“Theater of Marcellus and the Timberl Islandr.” Types of Roman Theaters.

5. PROPOSAL

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.17 and 5.18
Author using precedent “Zeen House” by Polifactory.

Graham Shane,“The Emergence of Landscape”The Landscape Urbanism Reader(New York: Princeton Architectural Press, 2006), 55-68

