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Abstract 

The goal of the £m project is to make parallel programming easily acces
sible to a broad community of scientists. Previous approaches such as the use 
of general parallel programming languages and parallelizing compilers for se
quential languages have fallen short in this respect. The approach is to design 
a special purpose programming language which is oriented towards a specific 
area of application. The result is a specialized and effective scientific tool. 

£m is a high-level programming system which puts parallelism into the 
hands of scientists who are not sophisticated programmers. By restricting and 
simplifying the programming interface, £m eases both the conceptual task of 
the programmer and the analytical task of the compiler. The model of success 
is the financial spreadsheet, a specialized tool which makes programmers out 
of relatively naive end-users and makes computer technology broadly accessible 
to business. Here the initial prototype is described, motivated by practical 
ecological modelling problems. 
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1 Introduction 

Parallel computing hardware now is affordable to a broad range of scientific users. 
Current parallel programming efforts have focused on application areas where special
ist programmers can extract the maximum possible performance from the hardware. 
The decreasing cost of hardware will allow a much larger class of users to exploit 
parallelism if the programming model can be simplified. The main obstacle to the 
widespread use of parallel computing hardware is the difficulty of the programming 
model. 

The goal of the em 1 project is to put into the hands of knowledgeable scientists 
the ability to program parallel systems. The approach is to design a special purpose 
programming language which is oriented towards a specific area of application. By 
restricting the problem domain the complexity for the programmer is reduced, and 
at the same time compilation is simplified. The result is a specialized and effective 
scientific tool. 

Two examples of specialized programming systems are financial spreadsheets such as 
Lotus and symbolic computation systems such as Mathematica. Each of these tools 
has allowed a community of users to write applications that previously required spe
cialist programmers. Many users simply would be unable to develop such applications 
without the use of these specialized software systems. 

The successes of these tools share three principles: 

1. Each addresses a restricted and well-defined problem domain. 

2. The interface to each tool is designed to be intuitive to the target user commu
nity. 

3. Features from declarative and functional programming are incorporated into 
the language, thereby freeing the user from programming details. 

the need to manage storage and other machine resources. 

The design of em follows these same three principles: 

1. em's problem domain centers on the class of simulation problems which is stat
ically decomposed, has communication localized to a fixed neighborhood, and 
has time incremented synchronously after all cells are updated. 

2. £m provides a high-level interface with a domain-specific library. The library 
can be customized to a specific area of scientific investigation. 

1pronounced em 
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3. Em programs are almost purely functional. This relieves programmer of the 
need to manage storage and other machine resources, a most difficult task when 
writing parallel programs. 

The rest of this paper is organized as follows. Section 2 details the advantages of 
a domain-restricted language. Section 3 gives an overview of Em: first the major 
components of the system are explained; next a wetland ecosystem example is defined, 
along with it's implementation in the Em language. In Section 4 the Em programming 
language is compared to existing parallel program systems, and the specific goals of 
the project are related to design of the language. To better support parallelism, Em 
enforces a set of array access rules. These rules are presented in Section 5. The unique 
features supported by the Em language are explained in detail in Section 6 using the 
wetland example. Section 7 justifies the design decisions made in light of conflicting 
requirements. Section 8 shows how the major paradigms for describing ecosystem 
models map into Em programs. In Section 9 Em is compared and contrasted with 
related work, and finally, plans for future work are discussed. 

2 Domain-Specific Parallel Programming 

In the long run, high-level programming environments incorporating do
main knowledge may well supersede current low level programming tools. 2 

Em is designed to provide scientists with a powerful, convenient, and easily understood 
tool for expressing, understanding, and modifying domain-specific programs. The 
class of problems which Em addresses have been called loosely synchronous [FJL +ss), 
and the type of loop required to solve this class of problems has been called a 
sequentially-iterated parallel loop [HA90]. The iterative structure of such problems 
occurs commonly in in computational science [FJL +ss, HA90]. 

The loop nest required for this domain-restricted problem is one in which the outer 
temporal DO loop is sequential, synchronizing after each time step. The inner spatial 
loops are those which may run in parallel, depending on data dependences, and update 
large data sets. 

The data for the inner spatial loops are partitioned across processors. Each proces
sor executes the same code for different portions of the data, and communication 
is required for processors which must share neighboring data. Such problems are 
computationally intensive, highly structured and amenable to a declarative style of 
programmmg. 

2from [ZC91], p. 4 
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The strengths of £m as a parallel programming language for scientists who are not 
programming specialists derive from the features of the restricted domain. 

1. An £m program is data parallel: the same computational kernel is performed at 
every cell of the grid by different processors at each instant in simulated time. 
The £m language reflects the structure of a specific problem domain, and so is 
architecture-independent. 

2. The computational kernel is specified in a declarative style, enabling the pro
grammer to focus on what the model is to compute, and not how to compute 
it. The ordering of statements, the reuse of memory, and the transformation of 
loops to maximize parallelism are the responsibility of the compiler. 

3. The domain-specific library used by £m is intuitive for scientific programmers 
and is also an efficient implementation of much of the kernel code. Each pro
cedure in the library includes with it a procedure summary which reflects an 
analysis of data accesses made by that procedure. 

3 Overview of £m 

3.1 Components 

A block diagram of the £m programming system is shown in Figure 1. Programming 
using £m is divided between two components: Model Description and Domain-specific 
Programming. The first component contains the code for the model description, i.e., 
code for problems which are loosely sunchronous. It is written in the £m language, 
and consists of a high-level, declarative description of the model: space and time 
bounds, state variables, and the procedures which the model calls. 

All procedures which are called in the £m code are contained in the Domain Library, 
DS-lib. These procedures are written in a source language, e.g. Fortran or C, for which 
there is a compiler on the target architecture. Procedures are written to conform to 
simple rules established by the £m programming system: the procedure's calling 
sequence is standardized; each procedure in the DS-lib has a procedure summary: a 
description of the data accesses performed by that procedure. 

Both the Model Description and the Domain Library are user-written. In order for 
£m to tailor the application program to a specific architecture, £m is bundled with 
an £m Library, £m-lib, which contains data access routines. These routines are used 
by the the programmer to read and write data. 
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Figure 1: Block Diagram of &m Programming System 
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Generating executable code for the target architecture is a two-step process. The 
&m compiler generates the main source code for the target architecture. Next, the 
compiler/linker on the target architecture generates the final executable code, using 
the main source code, the procedure source contained in the DS-lib, and data access 
routines contained in the Em-lib. 

Finally, the simulation code is run within a standardized 1/0 interface. 

The unique features of models written using &m are detailed below. 

3.2 An Example 

£m is explained through the use of an example from ecology. 

The Las Tablas de Daimiel National Park in the La Mancha region of Spain is a 
wetland, and is home to many species of ducks. The region, hot and dry in the 
summer, is known for its wine and cheese. Rainfall in the area has been relatively 
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low for the past 15 years, causing farmers in the surrounding countryside to drill deep 
wells to irrigate their crops. Compounding the lack of inadequate rainfall, the low 
price of grapes has caused many farmers to switch to other crops, such as corn, which 
require more water. 

The pumping of water causes the water table in the park to drop, often to the point 
where the wetland dries up and the ducks are forced to leave. In addition, the risk of 
fire in the dry marshes is high. In order to develop policy for the rationing of water to 
farmers, it is important to model the effect of such policies on the duck populations 
and on the risk of fire. 

This ecosystem is described easily using £m. Each cell in the simulation is defined by 
five state variables: 

1. the fixed geography of the region, 

2. the concentration of water, 

3. the amount of water being pumped, 

4. habitation by ducks, and 

5. the risk of fire. 

The simulated ecosystem has five processes: 

1. randomized determination of rainfall based on historical data, 

2. flow of water at and below the surface, 

3. determination of pumping levels according to the policy being simulated, 

4. the movement of ducks, and 

5. computation of the risk of fire. 

The geographical area is modeled as a three-dimensional grid with the x coordinate 
(corresponding to latitude) ranging from 1 to 100 and they coordinate (corresponding 
to longitude) ranging from 1 to 400. The z coordinate (corresponding to depth) ranges 
from 1 at the surface to 10. 

In this example, an £m-lib is assumed to include procedures which implement the 
basic processes of the simulation. An £m program which describes this model is 
shown in Figure 2. 



model wetland over time: 1 .. 20000; 

space 
x: 1. .100; 
y: 1 .. 400 j 
z: 1. .10 j 

end space 

variables 
int geography; 
int water; 
int pumping; 
int ducks; 
float risk_of_fire; 

end variables 

simulation 

initialize(geography) 
initialize(water) 
initialize(pumping) 
initialize(ducks) 
loop 

flow(water,geography, water) 
extract(water, pumping, water) 
move(ducks, water, ducks) 
estimate_risk(water, risk_of_fire) 
rain(water,water) 

end loop 
save_results(ducks) 
save_results(risk_of_fire) 

end simulation 

Figure 2: em Wetland Model 

6 
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4 Design Features 

4.1 Language Design Philosophies 

The design philosophy for parallel programming systems often includes the struc
ture of the target architecture and requirements for stringent performance. Lan
guages which stress message passing and data parallelism were developed to meet 
the immediate needs of the programmers of new MIMD and SIMD architectures re
spectively [FJL +88, Hil85]. Highly parallel functional languages were embraced by 
designers of dynamic dataflow architectures [N A89, Nik90]. Each of these approaches 
has added to the understanding of parallel programming, achieving high performance 
on problems which match the structure of the corresponding architectures. 

These architecture-independent parallel programming have had limited success: 

1. Data parallel programming model has found the widest application, being ap
plied to vector, SIMD, and MIMD architectures [CFR+92, Thi89, CG89]. How
ever not all algorithms have a natural and efficient expression in a data parallel 
language [F JL + 88]. 

2. Functional languages support increaced parallelism, but have not achieved high 
performance on any parallel execution platform [VB90, CFD90] because of their 
reliance on dynamic data mechanisms and on compilers to map the language to 
the target architecture. 

3. Message passing extensions to sequential programming languages have been 
developed which are portable between a wide variety of MIMD architectures 
and which achieve high performance [GBD+93]. The parallel aspect of this 
programming model is an irregular pattern of communication, and usually is 
too difficult for most non-specialist programmers. Additionally these extensions 
limit the portability of the code. 

In the design of £m, an element is borrowed from each of these successes: 

1. Data parallelism is a natural programming paradigm for many scientific prob
lems, and it allows a parallelizing compiler to reduce the problem of process 
decomposition to that of data distribution. 

2. Functional programming languages reduce data dependences by enforcing a 
restricted storage model, thereby increasing parallelism. 

3. Most parallel algorithms can be expressed in terms of sequential primitives 
which are most naturally and efficiently expressed in a conventional program
ming language. 
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4.2 Expression and Analysis of Parallelism 

Data parallel and functional programming paradigms require the programmer to ex
press algorithms so that parallelism is implicit in the program. In contrast, sequential 
languages augmented with message passing require the programmer to express explic
itly the parallelism in algorithms. 

The programming model for explicit parallel systems directly reflects the placement 
of data and communication between computing elements as specified by the program
mer. But in order for the program to achieve high performance, the programmer must 
perform a sophisticated ad hoc analysis of the program, and also must have a clear 
understanding of the execution model. More implicit systems rely on a compiler or 
some other tool to introduce parallelism automatically. The programmer thus has 
less control over the use of parallelism and the allocation of resources. 

In most current systems, resource allocation is shared between the system and the 
programmer: the programmer specifies the data placement and the system automat
ically inserts the communication implied by the partition [ZBG88, CFR+92]. The 
scientific community continues to use Fortran and its variants as a programming lan
guage, and the compiling systems rely on the fact that the programmer provides the 
data decomposition. Given such a standard imperative language, the compiler must 
perform program analysis in order to transform the sequential program into equiv
alent concurrent code for execution on the parallel machine. In £m, the goal is to 
capture the power of implicit systems without sacrificing the performance of explicit 
parallel programming. 

Compiler technology for vector and parallel computers has advanced both in lan
guage analysis and in the mapping to the target machine. Parallelizing compilers 
for imperative languages have concentrated on nested DO loops, which are of pri
mary importance for scientific programming. The techniques developed for nested 
DO loop optimization rely on subscript analysis, which characterizes the necessary 
order between operations in different iterations of a loop. When dependence analysis 
can be expressed as an integer programming problem, its exact solution is exponen
tial [Pug92]; in the general case it is undecidable. 

Optimizing compilers also must make optimum use of the specialized hardware fea
tures of the target machine. Loop transformations [Wol89, ZC91] performed by the 
compiler must take into account not only the data dependence constraints but also 
the machine architecture. 

Two factors limit the effectiveness of these compilers: the structure of most programs 
is not sufficiently regular, and low level code is hard to analyze. Even a program 
which might be written in a regular style might not be parallelizable by the compiler, 
simply because a general purpose language is used. 
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The design of the £m language addresses the current state of compiler technology in 
several ways: 

1. Programs expressed in £m have regular communication patterns. 

2. £m programs are data parallel and functional, and are expressed in terms of 
calls to a domain-specific library, DS-lib. 

3. The efficient implementation of procedures in the DS-lib is accomplished using 
conventional imperative languages and ad hoc analysis techniques. 

4.3 Domain-Specific Compilation 

£m not only simplifies programming, but also simplifies the task for the compiler. 
The problem of compiling models is divided between two portions: the compilation 
of regular programs consisting of pre-analyzed procedures; and the efficient imple
mentation and accurate analysis of those procedures. The scheduling of regular, fully 
analyzed programs can be performed well using current compiler technology. The use 
of a domain-specific library eliminates the need for the compiler to analyze irregular 
code. 

Because £m leaves the specification of most resources to the compiler, it is a highly 
implicit parallel programming system. The use of conventional programming lan
guages and ad hoc analysis techniques in the development of the DS-lib will provide 
performance close to that of an explicitly parallel programming system. 

The £m language does not deal with resources explicitly. The £m compiler generates 
the decomposition, which is used by the parallelizing compiler on the target machine. 
The user selects the parallel communication package to be used, and the £m com
piler inserts the communication messages. The parallelizing compiler distributes the 
execution of the procedures across processors. 

In the wetland example, as in most £m programs, the structure of the £m program is 
trivial. The kernel of the computation takes place in a sequence of calls to procedures 
in the domain-specific library. This reduces the problem of program analysis to that 
of interprocedural analysis, a problem which is generally more difficult than global 
program analysis. 

The compilation strategy of the £m compiler lies in the fact that data access charac
teristics for the £m procedures are known to the compiler without any compile-time 
analysis. The data access patterns of each DS-lib procedure are described in a proce
dure summary which is entered into the library along with the code which implements 
the procedure. 
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The procedure summary specifies exactly the information needed by the &m compiler 
to perform resource allocation and parallelization. A range of strategies are available 
for deriving the procedure summary: automatic analysis, programmer-aided analysis, 
or explicit specification by the programmer. 

In the current implementation of &m, the information is explicitly provided by the 
programmer. Clearly it is preferable to automate the derivation of program sum
maries, but this is an open area of research. From an engineering point of view, it is 
important that the project does not depend on such solutions. 

The procedure summary is used for two tasks performed by the &m compiler: gener
ating the target source code and generating the data partition. Such information has 
already been used successfully for generating data partitions [HA90]. 

The &m compiler does not generate assembly language, but instead generates source 
code for some standard imperative language supported by the target architecture. 
Currently &m 's high level language may be mapped to Fortran or C( ++ ), thereby 
giving the programmer flexibility in porting application code to other machines. The 
target language must be able to call the procedures in the DS-lib, so the choice of a 
target language is not arbitrary. 

Additionally, the programmer selects a serial model or a parallel model. This facil
itates program debugging. Since parallel programs are difficult to debug, &m will 
generate serial code so that the model can be debugged easily. &m generates parallel 
code for the parallel communication system that resides on the target machines. 

5 £m Array Access Rules 

&m restricts memory reads and writes in order to promote parallelism. These rules 
serve to eliminate resource dependences. 

The following simple rules are enforced: 

1. A read may be to any previous time step. 

2. Any read to the current time step causes textual order of procedure invocation. 

3. All writes must be to the current time step. 

4. Writes may overlap between procedures (causing an output dependence) pro
vided the overlap is at the current cell. In this case the compiler must preserve 
the textual order of procedure invocation. 
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5. If a write is declared a reduction at any location, then procedure invocation 
order is not important. This rule may be superceded by Rule 4. 

6. Any other write is an error. 

6 £m Language Features 

The unique language features of Em are described through the use of the wetland 
program shown in Figure 2. 

Em has two unique data types: coordinate variable and abstract variable. An Em 
program has three main components; coordinate declaration, abstract variable decla
ration, and commands. All computations are performed within procedures from the 
domain-specific library. Procedures are defined implicitly by use. 

6.1 Em Data Types 

6.1.1 Coordinate Variable 

A set of coordinate variables are used to define the Em model space. The model 
space is composed of the spatial coordinates, textually ordered, and the temporal 
coordinate, time, which is the last component of the space. By default coordinate 
variables are incremented by 1. 

time has two properties: a lower bound and an upper bound. A lower bound and 
upper bound specify the minimum and maximum values, respectively, for the coor
dinate in the model space. A spatial coordinate has three properties: lower bound, 
upper bound, and wrapped. 

The keyword wrapped specifies a non-linear coordinate space. If not declared as 
wrapped, the coordinate is in linear space. If it were wished to, say, define the x 
coordinate as wrapped, then x would be defined as wrapped x: 1 .. 1000. Because 
of the difficulty in handling boundary conditions in theoretical models such as forest 
growth, spatial coordinates typically are wrapped [Bel]. But in the wetland example 
a geographic area is being modelled, and wrapped is inappropriate. 

The wetland model has three spatial coordinates, x, y and z, and the temporal coor
dinate time. The compiler generated DO loop nest will consist of the variables x, y, 
z, and time. 

Coordinate variables are read only, and may be referenced (read) in order to influence 
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the computation using a conditional expression. 

6.1.2 Abstract Variable 

The second £m data type is the abstract variable. Abstract variables are declared 
within the delimiters variables . . . end variables. The variables water and 
ducks are two of the abstract variables in this program. 

Notice how these variables look as though they are scalars. In the £m language, pro
grammers use abstract variables instead of explicitly-defined arrays for state variables. 
An abstract variable is an application-specific data type which allows the programmer 
to describe what will be computed, but not how it will be computed. 

Viewed functionally, a simulation calculates an iterated expression for a set of vari
ables which are defined incrementally. Variables in a simulation have spatial com
ponents and a temporal component, and are typically implemented as an array data 
structure in an imperative language. 

Without the ability to avoid implementation details, a programmer must use prevail
ing languages. The syntax and associated semantics of array declaration and array use 
in imperative languages vary significantly. Being tied to a specific source language 
hinders software portability. In addition, increasing the capability of the program 
invariably requires the redefinition of the data structures and those routines which 
access them - a time consuming and error-prone task. £m 's abstract variables allow 
the programmer to abstract away implementation details. 

A concrete variable is a finite and bounded data structure which implements an ab
stract variable using a finite amount of memory. It is the job of the £m compiler 
to generate a concrete variable for each abstract variable. Program summaries, dis
cussed below, provide the means to deduce the concrete representation for an abstract 
variable. 

Abstract variables have two attributes: primitive data type and distribution. The 
primitive data types are integer and real (float). The distribution may be defined 
as either dense or sparse. Distribution directly reflects implementation: state vari
ables which are sparsely distributed may be more efficiently implemented as a linked 
list. The exact implementation is determined by the compiler. The default distri
bution is dense. All variables in the example have dense distribution. Should it be 
desired to model ducks as sparse, the declaration would be int ducks of sparse 
distribution;. 

Reads and writes to abstract variables are performed solely through the £m data 
interface routines, comtained in the £m-lib. These routines are packaged with the £m 
system, and are tailored to the target source language and target machine. 
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6.2 £m Loop Command 

Notice how the loop in the example is defined declaratively: a loop command is simply 
loop . . . end loop. The loop nest level of the variables and the loop bounds are 
left unspecified by the programmer. As before, &m allows the implementation details 
of the loop nest to be abstracted away. The &m compiler determines the optimal 
loop nest. The maximum loop bounds for each level (in this case for x, y, z, and 
time) are also defined declaratively. The actual loop bounds are deduced using the 
declared model space and data access information in the procedure summaries. An 
optimized loop nest is determined based on the target source language and machine 
architecture. 

Typically optimizing compilers perform loops transformations by rewriting the orig
inal loop nest written by the programmer. &m takes a different approach: since the 
&m compiler has facts about the loop variables, it can determine the optimal loop 
nest. The programmer is not burdened with the task of specifying the loop in the 
first place. 

The loop command has restricted use: a loop command appears only once in an &m 
program; a loop commands may not be part of a conditional command. In the event 
that the use of loop commands requires expansion, the language can be modified 
appropriately. 

6.3 £m Procedure Summary 

Each &m library routine has a procedure summary, similar in spirit to [Cal88). As 
stated in Section 3, there is a standardized calling sequence for procedures which 
bears a strong resemblance to procedure invocation in functional languages. Specif
ically, a procedure uses value-result semantics for procedure paramaters, and has no 
access to non-local variables. In essence, then, the procedures appear to act as func
tions, returning one or more values, with no side-effects. Conventional programming 
languages, and Fortran in particular, require extensive interprocedural analysis due 
to the effects of aliasing, and equivalence statements. The restrictions placed on &m 
procedures makes analysis much simpler. 

At the statement level, &m uses standard imperative semantics: variables have values 
which can be modified by assignment statements. This programming paradigm is 
quite natural to programmers familiar with conventional programming languages, 
and makes programming in &m an easy task. 

Figure 3 shows the procedure summaries for all procedures in the example. The 
procedure summary contains data access information as read, write and +reduce 



procedure flow(oldwater, soilmap, newwater) 

read oldwater [0,0,0,-1] [0,0,-1,-1] 
read soilmap [O,O,O,na] [0,0,-1,na] 
write newwater [0,0,0,0] 
+reduce newwater[0,0,-1,0] 

procedure extract(oldwater, pumping, newwater) 

read oldwater [O,O,ub,-1] 
read pumping [O,O,na,na] 
write newwater [O,O,ub,O] 

procedure move(oldducks, water, newducks) 

14 

read oldducks [1,0,na,-1] [1,1,na,-1] [0,1,na,-1] [-1,1,na,-1] 
read oldducks [-1,0,na,-1] [-1,-1,na,-1] [0,-1,na,-1] [O,O,na,-1] 
read water [O,O,lb,-1] 
write newducks [O,O,na,O] 
+reduce newducks [1,0,na,O] [1,1,na,O] [0,1,na,O] [-1,1,na,O] 
+reduce newducks [-1,0,na,O] [-1,-1,na,O] [0,-1,na,O] [O,O,na,O] 

procedure estimate_risk(water, fire) 

read water [O,O,lb,-1] 
write fire [O,O,na,O] 

procedure rain(oldwater, newwater) 
read oldwater [0,0,0,-1] 
write newwater [0,0,0,0] 

Figure 3: Procedure Summaries for Wetland Model 

(sum reduction) and *reduce (product reduction). 

A relative address specifies a cell address in the model space relative to the current 
cell. The textual definition of coordinates in the £m model space specify the order 
of relative address coordinates. In a three-dimensional space, the current cell has 
relative address [0,0,0] and absolute address [x,y,time]; "[1,-1,-1]" refers to 
the the current cell's southeastern neighbor, in the previous time step. Thus the 
absolute address of the southeastern neighbor is (x+1, y-1, time-1) . 

An absolute address is used to isolate a slice of the iteration space. An expression 
"[lblub] [[+I-] INT ]",where lb and ub denote, respectively, the declared lower bound 
and upper bound of the coordinate, and INT denotes an integer. The lower and 
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upper bounds are specified symbolically in the program summary; the actual values 
are determined by the £m compiler. Finally, the string, "na", denotes the coordinate 
is inapplicable or unnecessary. 

All coordinates must be specified, that is, if the £m model defines a 4-dimensional 
space, then a 4-tuple must be specified for each variable. 

The data access patterns are used by the £m compiler to 

1. generate data dependences, 

2. generate the data structures for the concrete variables, 

3. define DO loop bounds, 

4. and generate, if necessary, conditional commands within the DO loop. 

Let's examine a little further just what these data access patterns mean to the pro
gramming model. 

If all variables are read only from previous time steps, then there are no read depen
dences in the current time step. In this case, all data reads can be arbitrarily ordered 
within the current time step. As evidenced in the wetland example, this cannot be 
done. 

Notice that both routines flow and extract write to water at the current cell address. 
This constitutes an output dependence. This dependence imposes sequentiality on 
the order of execution of the two procedures. 

The execution of procedure move is restricted in the x, y, and z coordinates: the 
restriction on x and y are due to non-local reads and writes; the restriction on z is 
due to execution of the procedure only at the "surface" of the grid, as evidenced by 
the lb declaration in the procedure summary. 

Notice that a dependence graph for this program can be generated even when the 
scheduling of the program into loops has not been done. Because of the features of 
the language, £m does not need to do loop normalization. The important aspect to 
realize here is this: the nesting order of the loop is really a scheduling decision rather 
than an inherent dependence relation. 
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6.4 Output Code 

For ease of explanation, Figure 4 shows the generated serial Fortran code optimized 
only for Fortran's column-major array access ordering. Figure 5 shows generated 
serial C code. The procedure summary information induces both the bounds on the 
spatial variables, and the concrete data structures. Array storage is allocated only 
for needed space. 

Procedures move, estimate...risk and extract operate on "slices" of the z-component 
of the iteration space: move and estimate...risk at the surface, and extract at the 
lowest level. Hence the generated conditional execution of these procedures contingent 
on z. 

The conditional execution of flov contingent on z enforces flov to execute within 
bounds. The conditional execution of move and estimate...risk contingent on x and 
y are for similar reasons. rain is the only procedure which has unconditional spatial 
execution. 

The procedure summaries contain reduction statements for variables ducks and vater. 
The variables vater and ducks both require that two states are saved for the simu
lation: the current time, and one time-step back. The generated code calls an £m-lib 
function to initialize the reductions for ducks and vater in the next time step. Be
cause they are declared as sum reductions, the initialization values are integer zero. 
Initialization for reduction is applied to these two variables at the emf of the spacial 
loop nest iteration. Local variables which are required are denoted zem, concatenated 
with a number. 



program wetland 

integer time 
integer x 
integer y 
integer z 
integer geography(100,400,10) 
integer water(100,400,10,2) 
integer pumping(100,400,1,1) 
integer ducks(100,400,2,1) 
real risk_of_fire(100,400,1,1) 
integer zem1 

call initialize(geography,100,400,10,1) 
call initialize(water,100,400,10,1) 
call initialize(pumping,100,400,1,1) 
call initialize(ducks,100,400,1,1) 

do time = 1,20000 
do z = 1,10 

do y = 1, 400 
do x = 1, 100 
if (z .gt. 1) then 
call flow(water, geography, water, x, y, z, time) 

end if 
if (z .eq. 10) then 
call extract(water, pumping, water, x, y, z, time) 

end if 
if (z.eq.1 .and. x.gt.1 .and. x.lt.100 .and. 

t y.gt.1 .and. y.lt.100) then 
call move(ducks, water, ducks, x, y, z, time) 

end if 
if (z .eq. 1) then 
call estimate_risk(water, risk_of_fire, x, y, z, time) 

end if 
rain(water, x, y, z, time) 

enddo 
end do 

end do 
zem1=emcurtime(time) 
do x = 1,100 

call emwrite(water,x,1,1,zem1,0) 
end do 
do y=1,400 

do x=1,100 
call emwrite(ducks,x,y,1,zem1,0) 

end do 
end do 

end do 

call save_results(ducks,100,400,1,1) 
call save_results(risk_of_fire,100,400,1,1) 
end 

Figure 4: Serial Fortran Code Generated by Em for Weiand Example 

17 



#include "emlibc.h" 
#include "wetland.h" 
#include <malloc.h> 

int 
int 
int 
int 
int 
float 
int 

main() { 

time, x, y, z; 
*geography; 
*water; 
*pumping; 
*ducks; 
*risk_of_fire; 
zem1; 

geography= (int*)malloc(100*400*10* sizeof(int)); 
water= (int*)malloc(100*400*10*2* sizeof(int)); 
pumping= (int*)malloc(100*400*1*1* sizeof(int)); 
ducks= (int*)malloc(100*400*2*1* sizeof(int)); 
risk_of_fire = (float*)malloc(100*400*1*1* sizeof(float)); 

initialize(geography,100,400,10,1); 
initialize(water,100,400,10,1); 
initialize(pumping,100,400,10,1); 
initialize(ducks,100,400,1,1); 
initialize(risk_of_fire,100,400,1,1); 

for (time=O; time < 20000; time++) { 
for (x=O; x < 100; x++) { 

for (y=O; y < 400; y++) { 
for (z=O; z <10; z++) { 

if (z > 0) flow(water,geography,water,x,y,z,time); 
if (z == 9) extract(water,pumping,water,x,y,z,time); 
if (z==O tt x>O tt x < 99 tt y>O tt y < 99) { 

move(ducks,water,ducks,x,y,z,time); 
} 
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if (z==O) estimate_risk(water,risk_of_fire,x,y,z,time); 
rain(water,x,y,z,time); 

} 

} 

} 
} 

} 
zem1 = emcurtime(time); 
for (x=O; x<100; x++) { 

emwrite(water,x,1,1,zem1,0); 
} 
for (x=O; x<100; x++) { 

} 

for (y=O; y<400; y++) { 
emwrite(ducks,x,y,1,zem1,0); 

} 

save_results(ducks,100,400,1,1); 
save_results(risk_of_fire,100,400,1,1); 

J 1 1 I"" r "lTT 1 1 T" 
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7 Design Issues 

• &m is a highly implicit system which relies heavily on automatic parallelization, 
mapping, and resource allocation in the compiler. 

This approach is known to generate non-optimal code in many cases. The design 
of &m restricts the problem domain and requires that much program analysis 
be performed by the implementer of the intrinsic library. The performance of 
the compiler on the remaining regular program structure will be close to that 
of hand-coded programs. For example, parallelizing compilers do not generate 
code to do red-black tiling communication [FJL +ss], but due to the restricted 
computational problem domain, this type of communication pattern could be 
generated by &m, thereby increasing performance. 

• The large body of domain-specific code in the DS-lib may not be portable to 
other architectures. 

While programs written in the &m language are architecture-independent, port
ing the library may be a daunting task. Since the library is implemented in 
a standard language, the portability of the library should be no less than the 
portability of those languages. 

• The &m programming language is designed as a restriction on imperative pro
gramming languages. 

Goto statements, concealable side effects, and procedures as parameters are not 
allowed. The result is that £m is a constrained language, which greatly simplifies 
program analysis and enhances the ability to perform program reasoning. As 
will be discussed in Section 6, the most restrictive aspect of functional program
ming is the treatment of aggregate data structures such as arrays. In order to 
eliminate program dependences wherever possible, the model of storage update 
must be constrained. These constraints have been weakened as far as is possible 
without introducing program dependences. as is detailed in Section 8.3. 

The minimization of program dependences allows &m programs to be mapped 
to a wide variety of sequential and parallel architectures, without the need 
for program rewriting. The strongest storage update model is write-once which 
allows synchronization to be combined with reading and writing, and eliminates 
resource dependences. Weaker models preserve this desirable property while 
providing a more convenient programming model. 

• &m is a new programming language, and most new languages have a problem 
with user acceptance. 

Mulitprocessor architectures are becoming increasingly complex, and so too 
is the programming of these archtitectures with explicit message passing lan
guages. If current trends continue, multiprocessing environments will become 
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commonplace, and some form of high level programming environment will be 
essential. The form of this environment is not yet established. Compilers for 
sequential languages to parallel architectures do exist, but compilers cannot do 
everything: programmers must help. Such compilers are used for "dusty decks", 
but as the field matures, more and more code will be written, and rewritten, in 
the newer languages. 

£m will meet with acceptance provided there are benefits to its use. £m's 
compiler optimization is greatly facilitated because of having a restricted lan
guage and a library with procedure summaries: most compilers do not perform 
interprocedural analysis, not even for sequential machines. Interprocedural op
timizations that are missed by such compilers are handled in £m. This, coupled 
with using a restricted language to achieve automatic scheduling will provide 
the base on which to rate performance. 

8 Ecosystem Modelling 

In this section, the computational problem domain and the programming models used 
to implement these problems are discussed. Based on the programming models, the 
required memory models supported by £mare presented. 

Ecosystem models typically specify the simulation space as a 2- or 3-dimensional space 
in time. Each cell in the space has local, internal attributes, such as root density, tree 
type, animal species. The entire space may also have global, external factors, such 
as oxygen, sunlight, rain, climate, pollutants. External factors (also called forcing 
functions, or exogenous variables) usually drive the simulation, but are not affected 
by the simulation. Models may either be theoretical, or based on geographical areas. 

Plant growth models are distinguished by the fact that the cell's attributes are fixed 
in their location throughout the simulation. That is to say, trees grow and die, but 
do not move to another cell; tree growth, by definition, never extends beyond a cell 
boundary. This does not preclude the introduction of seeds for growth: in this case, 
seeds are disbursed over the terrain, yet once planted, they remain fixed. 

Population studies may describe migration, reproduction, and/or competition be
tween species in a particular region. Typically the space is sparsely populated with 
the species, usually one per cell. These models are distinguished by the fact that 
migration of entities across cell boundaries occurs. Population models may or may 
not involve external factors. For models which do not involve external factors, only 
those cells which are occupied require simulation. Models which incorporate both are 
more complex, and require all cells to be updated. 

The calculation performed in each cell, then, is a function of the local and/ or global 
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attributes to which it has been assigned, and whether or not entities are densely or 
sparsely distributed across the space. 

In general the models have synchronous time steps, and each cell is updated at the 
current state based on attributes (variables) contained in a defined neighborhood, 
from previous states. 

8.1 Ecosystem Paradigms 

System Dynamics modelling is used extensively in ecosystem modelling [HJ77] and 
may be considered a simplified version of differential equation modelling. The change 
of each state variable in a cell over time is determined by the input and output 
flows. The change of a state variable in spacial simulations is determined for a cell 
by flows between the cell and its neighboring cells. The rate of transfer of each flow 
is determined by an equation, which expresses the rate of flow as a function of the 
values in neighboring cells. 

Ecological Field Theory (EFT) [WSPW89] is an extension of classic neighborhood 
models. In the models just discussed, each cell reads data from neighborhood cells, 
writes data only in it's own location. EFT models spatial influences between cells 
as influence domains: a cell calculates it's influence(s) on each neighboring cell and 
updates each neighbor's influence domains. In general the spatial composition of 
the influence zone changes dynamically, e.g., with the growth or death of a plant. 
In turn, plant growth calculated by a cell is a function of state variables within its 
neighborhood, and of the accumulated influences ·written by neighboring cells. 

Ecologists have begun to formalize theories [AN90] using the formal specification 
language z. The reasons stated for using such formalism are ease and clarity of 
description, and to provide a mathematical basis for comparison between theories. 

8.2 Programming Models 

Programming models are used to implement ecosystem paradigms. In general, ecosys
tem models solve recurrence equations. The programming model that is selected to 
solve these equations is determined by the programmer. Some choices of program
ming model are better than others; this is a matter of software design and not relevant 
to this discussion. 

The £m language supports three programming models: declarative cellular, impera
tive cellular, and influence. These programming models appear sufficient to handle 
the types of spatial simulations required for ecosystems. 
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A cellular automaton is a simple programming paradigm. For each timet, each cell 
computes the same data, which is based upon simple rules involving variables in 
neighboring cells at time t-1. Cellular automata are inherently parallel. The simplest 
cellular automaton has only one variable to update. 

£m divides cellular automata into two classes: declarative cellular and imperative 
cellular. Declarative cellular computes a value for a variable only once in the cell at 
timet. Imperative cellular computes an accumulated value for a variable in each cell 
at time t. In other words, imperative cellular has successive updates to a variable 
in each cell at timet. Cellang (Eck92] is an example of a system which supports a 
imperative cellular automata. 

A declarative cellular programming model exhibits the most data independence and 
is inherently functional in nature. A variable value may be computed as soon as all 
input values become available. Thus the ordering of statements in the inner loop is 
unimportant because each variable is written at most once. 

An imperative cellular model is restricted in that the order of variable update, espe
cially between different procedure calls, cannot be assumed to be commutative. Still, 
this places a restriction only upon the current loop iteration, and keeps the important 
property of no order between iterations due to reuse. 

The EFT paradigm may be supported with an influence model. In an influence 
model, the current cell at (x, y, z, t) writes to variables outside it's current location. 
This paradigm is inherently different from cellular because these are writes to variables 
outside the current cell location. 

8.3 Memory Models 

Memory Model Programming Model 
write-once declarative cellular 

locally imperative imperative cellular 

reduction influence 

Figure 6: Correspondence Between Memory Models and Programming Models 

There is a memory, or aggregate, model in £m which supports each of the program
ming models. 
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8.3.1 Write-Once Memory 

In the write-once memory model, a memory location is written at most once. After 
the memory location is written, any number of reads my be performed. This type 
of memory model offers the most amount of parallelism [ ANP89]. The only type of 
data dependence which can occur is flow dependence. Write-once memory supports 
a declarative cellular programming model. 

8.3.2 Locally Imperative 

The locally imperative memory model is a relaxation of write-once memory. Consider 
the following assignment statement, which might appear in a £m library procedure. 
The state variable Q is a formal parameter of the procedure. 

Q(x, y, z, t) = Q(x, y, z, t) + (flowl + flow2 + · · · + flowk) 

This assignment is a simple example of a difference equation. It is assumed that the 
flows in this equation are not array values. 

If the memory model were to adhere to the strictly write-once paradigm, this type of 
assignment statement would require not only a new formal parameter name on the 
left-hand side of the assignment statement, e.g., 

R(x, y, z, t) = Q(x, y, z, t) + (flowl + flow2 + · · · + flowk) 

but also a "new" variable name (as an actual parameter of the procedure) to be the 
target of the assignment. Such an assignment maintains referential transparency. 

The advantage of allowing only the write-once model is that the £m program is 
declarative: the textual sequence of statements is irrelevant to state variable update. 
The disadvantage is variable name explosion. 

At the end of each iteration, all temporary variable assignments must be assigned to 
the permanent state variable. Variable renaming can eliminate imperative cellular 
references. However, the cost to the user, presumably an ecologist, with this type of 
restriction is: the need to create several temporary variables; and, the need to name 
the temporary variables in such a way that the compiler generates the correct update 
sequence. It was considered that this programming style is too burdensome, even 
with the potentially increased parallelism. This especially becomes apparent when 
temporary variables are needed for several state variables. 

By permitting locally imperative assignments, i.e., assignment updates which are local 
to the cell, potential parallelism between iterations is not sacrificed. The main cost 
in this case is declarative style: locally imperative variable updates requires that the 
compiler use the textual order of procedure invocation. 
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The end result, from the viewpoint of compilation, is that the order of variable up
date for write-once is determined by the compiler. For locally imperative the order 
of variable update is the same order as the textual order. In one case, the program
mer defines it indirectly through temporary variable use, and in the other case, the 
programmer specifies it directly through textual order. 

It should be stressed that fm does not require locally imperative update over write
once. Locally imperative update issupported to providea more convenient program
ming model. For example, the wetland procedure summaries, Figure 3, are written 
to be general: the input and output formal parameter names are different. However, 
the fm wetland code uses the same names for the for the actual parameters. Another 
programmer may decide to use these procedures more functionally. 

8.3.3 Reduction 

A reduction operator applies a sum or product operator to elements of an array, 
generating a scalar value. On machines which do not support reduction, this is 
implemented in a loop, with imperative update to a scalar variable. An example is 
the sum of an array of values: 

SUM = 0 
DO I = 1, N 

SUM = SUM + A(I) 
END DO 

Arithmetic operators may or may not be associative in the application; non-arithmetic 
functions, such as MAX, are associative. 

fm supports declaration of reductions in the procedure summary. If a variable is 
declared as a reduction, fm assumes that the operation is associative. By declaring 
reduction, fm can implement the reduction efficiently, and it is not necessary to 
save all the data before the reduction, because the fm compiler has access to write
many memory. Use of the reduction operator allows for more parallelism because 
procedure invocation is order independent. The influence model is best supported 
using reduction. 
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9 Conclusions 

£m is distinctive in that it incorporates a restricted language and a library with 
procedure summaries in order to achieve automatic scheduling with high parallel 
performance. Related research in language development and compilation techniques 
will now be addressed. 

Several parallel programming languages have been proposed to support general pur
pose parallel programming. OCCAM [Cok91] is designed for the transputer. Lan
guages such as Fortran [Thi89, CFR+92, CMZ92] and C [RS87], have been extended, 
include new compiler directives, and have library routines to manage processes and 
communication. Typically these languages are difficult to analyze. Pointer code in 
C makes analysis difficult. In both languages code may be written so that subscript 
analysis is difficult, if not impossible, for the compiler. Equivalence statements and 
common blocks in Fortran add to the difficulty of interprocedural analysis. Because 
of the inherent difficulty, interprocedural analysis typically is not performed. 

Languages like £m simplify both compiler transformations needed to extract paral
lelism and interprocedural analysis because of value-result semantics for procedure 
parameters and disallowal of access to non-local variables [MVR85, HC88]. An ad
ditional benefit of £m is the existence of procedure summaries for interprocedural 
analysis, because only the interface to the procedures requires analysis. 

With the exception of FIDIL [HC88] and Cellang [Eck92], £m appears to be the 
only language which is domain-specific. FIDIL has a strongly applicative style and 
requires many users to learn a new style of programming. £m is designed for users 
accustomed to programming imperative languages. Cellang is a declarative and easy 
to learn language, but is limited to integer data and lacks procedure invocation. 

Languages such as BLAZE [MVR85] for shared memory machines, and Kali [MVR90], 
Vienna Fortran [CMZ92], DINO [RSW90], Booster [PvGS90], Fortran D [FHK+91], 
Fortran 90D [WF91], Adaptor [Bra93], SUPERB [ZBG88] for distributed memory 
machines, permit the user to specify the distribution and alignment of data. Adaptor 
has a back end which maps to several communication packages. SUPERB maps to 
SIMD and MIMD machines. 

Crystal [Che86) and ASPAR [IFKF90) perform automatic data distribution based on 
symbolic pattern matching. Crystal requires a loop nest similar to £m, and more 
than one sequential loop may be defined. Neither performs interprocedural analysis. 

Ecological modelling is the application area used herein to present the features of 
£m. As stated before, £m is not restricted to this domain. Any statically decompos
able domain which requires a sequentially iterated parallel loop nest can be modelled 
using this system. Cellular automata, popularized as the game of Life [Gar70), are 
used to model physical systems [Eck92, BH92, Dew84). Other applications include 
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solving partial differential equations using the finite difference method, including re
laxation [FJL +ss, HA90]. 

The ease of developing models using £m as a programming language is due largely 
to its declarative nature. Consider, for example, the automatic deduction of array 
bounds. Suppose a set of domain-specific procedures induces a certain array bound. 
Should the programmer modify the program to incorporate an additional (or merely 
modified) set of procedures which access different portions of the array, the compiler 
automatically adjusts the array declaration, thereby eliminating the need for the 
programmer to modify the program. 

&m also has several characteristics of literate programming [Knu84, Ben86], a style of 
programming which promotes readability and comprehension. Programming details 
are removed in £m, and variable declarations alone specify their semantic meaning in 
the model. Modularity is supported through the use of procedures to perform all com
putations. The standardized procedure interface supports model sharing. Because of 
the declarative nature of &m, it is easily adaptable to graphical programming. 

A further consideration for &m is it's input/output format. It is desriable to have the 
format for both to be identical [Eck92] . This would allow models to be pipelined. 
For ecosystems, however, the existence of various GIS databases does not directly 
support an identical format. It is an area which should be addressed in the future. 

A forthcoming report will discuss compilation of &m programs to a MIMD environ
ment. There, the data partitioning and scheduling strategy is discussed, along with 
the use of PVM [GBD+93] as the parallel communication package. 
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