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ABSTRACT 
This paper reports measured heat transfer coefficient of a double skin façade (DSF) window 
measured 1.1 m by 0.7 m at varied depth in the absence of solar radiation using a calorimeter 
box. The results showed that the DSF had better insulation than the double glazing especially 
with cavity closed. All the studied factors (ventilation, cavity width, and outdoor temperature) 
had influence on the heat transfer coefficient and such influence could be season specific. 
Measurements confirmed the existence of an optimal width in winter for best insulation.  
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INTRODUCTION 
Double skin façades (DSFs) have received increasing attention in research and in practice 
since their first appearance in northern Europe (Poirazis 2006). In addition to its freedom in 
aesthetic expression, the cavity between the two layers offers potential energy savings 
(Ghaffarianhoseini et al., 2016) and even carbon reduction in a life cycle (Pomponi and 
D'Amico, 2017). Recent studies explored the performance of varied forms of DSFs, such as 
phase change material attached blinds (Li et al., 2017), photovoltaic (PV) panel attached 
blinds (Kapsis and Athienitis, 2015; Luo et al., 2017), fan-coil combined DSF design (Bueno 
et al., 2017), and pipe-embedded DSF design (Shen and Li, 2016). These studies attempted to 
make the best of the double layers, which protect solar shading devices and other materials 
from the outdoor environment while keeping the heat absorbed in the cavity outdoors.  

What makes the DSF unique is thought to be the double layers and various ventilation 
schemes to meet different needs in different seasons, i.e., one design that can work in both 
cooling and heating seasons, suitable for regions such as the hot summer and cold winter zone 
in China. Such capability requires the DSF to have good insulation, good shading 
performance in summer, and good solar heat gain in winter. The installation of blinds and its 
combination with other new materials aim to meet the later two needs. The double layer 
structure typically consisting of a double glazing and a single pane presumably provide better 
insulation than a normal double glazing, whose U values are typically around 2.80 W/m2/K. 
There are limited studies on the U values of DSFs. Recent studies have defined the U value of 
a DSF window based on total heat transferred through inner surface excluding the direct solar 
transmittance (here referred as heat transfer based U value, or UHT). Luo et al. (2017) reported 
experimental data of UHT as 2.2 to 2.8 W/m2/K for naturally ventilated DSFs, lower than 3.8 
W/m2/K reported by Peng (Peng and Lu et al., 2015) for a naturally ventilated DSF with a 
semi-transparent PV film attached to the outer pane. Note that UHT is not comparable to the 
conventional U value defined based on steady state heat transfer without solar radiation 
because the former includes part of the absorbed solar irradiation on the inner pane of the 
window which then enters into the room as heat gain by convection or irradiative heat transfer. 
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Chow et al. (2010) and He et al. (2016) used a different approach where total room heat gain 
of a window is expressed as a linear function of solar irradiation and the temperature 
difference between the room and the outside, which is confirmed by experiment in the case of 
DSF (He et al., 2016). The coefficient of the temperature term is defined as the U value (room 
heat gain based U value, or UHG), which is difficult to measure directly. For common double 
glazing, Chow et al. (2010) showed that the calculated values of UHG are close to the typical U 
values. For DSF, He et al. (2016) determined the UHG value of a DSF window together with 
the solar shading coefficient by fitting the experimental data. However, the contribution of 
heat transfer through the DSF was shadowed by the solar radiation, making it difficult to 
obtain a U value with meaningful certainty. Nevertheless, their simulations indicated that the 
U value of DSF windows could be significantly lower than that of the corresponding double 
glazing indicating improved insulation by the addition of an extra layer.   

Previously discussed U values of DSFs reflects the overall heating transfer coefficient in the 
present of solar radiation. To our best knowledge, there have not been any studies on the U 
value of DSF in the absence of solar radiation (conventional U values). Given the amount of 
non-solar time in a day, the conventional U value of the DSF is critical to the performance of 
DSF. This paper attempts to fill this gap by studying the conventional U value of a DSF 
window experimentally.  

METHODS  
Experiment setup 
Experiments were carried out indoors with the same DSF model and calorimeter described in 
He et al. (2016). The model box was 1.3 m × 1.1 m × 0.88 m (Figure 1) and consisted of a 
small version of DSF window on one wall. All other three walls, floor and ceiling were 0.1 m 
thick extruded polystyrene (XPS) panels, each covered by a thin (0.005 m) aluminum sheet 
outside. The outer layer of the DSF window was a single-pane glazing and the inner layer was 
a double glazing. All glazing panes were clear float glasses. There were two openings of equal 
height (0.02 m) at the top and the bottom of the single pane glazing. The double glazing 
separates the box into two spaces: the cavity of the DSF and the test chamber. By moving the 
double glazing, the distance between the single pane and the double glazing can be changed. 
An aluminum micro-channel heat exchanger was used as the heating source with the water 
flowed in from the bottom and out from the top. Inflow temperature was maintained constant 
at a desired value by a water bath. The pipe for connection is PPR (Polypropylene-Random, 
ɸ20mm) tube insulated using rubber foam. A rotameter (±2.5%) was used to measure the flow 
rate and its accuracy was checked by measuring the volume of the water at a given time.  

In total, T-type thermocouples were used to measure temperatures of the aluminum plate (5 
sets), double glazing (3 sets), single pane (1 set), room air (1 set), cavity air (3 sets), and test 
chamber air (6 sets), inflow water (1 set), and outflow water(1 set). For room air temperature 
measurement, a cup-shaped aluminum foil surrounded the thermocouple to reduce the 
radiative heat transfer from indoor environment. All thermocouples were calibrated against a 
platinum resistance thermometer (previously calibrated to 0.1 °C accuracy by the Center of 
Cryogenic Metrology in Chinese Academy of Sciences) in the range of -20 to 100 °C. The 
calibration results were used to correct the measured temperature to an accuracy of 0.2 K. 
Temperatures were recorded every 10 seconds using two data acquisition modules (NI 9213 
and NI 9219). 

Air velocity was measured at three positions (A, B, C) using thermal anemometers (Swema 03, 
0.05~ 10 m/s, ±0.04 m/s or ±4%). Position A is 30cm above the top surface of the test 
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chamber. Position B was 10 cm away from the center
used to measure the air speed inside

Figure 1. Sketches and photos of the DSF system and the location of measuring point

Determination of heat transfer coefficients
The energy change in the water
transfers through the DSF and the envelope.

𝑐(𝑇 − 𝑇௨௧)𝑞 = 𝑢ௌி𝐴ௌி(

where 𝑐is the specific heat of the
respectively. 𝑞  is the mass flow rate.
window and 𝑢  is the heat transfer coefficient of
separately. 𝐴ௌி is the area of the DSF and
𝑇 is the temperature of the chamber air

th International Building Ph

10 cm away from the center of the front glazing pane
inside the cavity at the bottom but 10cm from the opening.

ure 1. Sketches and photos of the DSF system and the location of measuring point

heat transfer coefficients 
energy change in the water flow from the inlet to the outlet is balanced by the heat

through the DSF and the envelope. 

(𝑇 − 𝑇) + 𝑢𝐴(𝑇 − 𝑇) 

is the specific heat of the water. 𝑇 and 𝑇௨௧ are the inlet and outlet
flow rate. 𝑢ௌி  is the overall heat transfer coefficient of DSF

is the heat transfer coefficient of the XPS walls and needs to determined
is the area of the DSF and 𝐴 is the inner surface area of the envelope.

chamber air and the room air, respectively. 

glazing pane. Point C was 
10cm from the opening. 

ure 1. Sketches and photos of the DSF system and the location of measuring point 

is balanced by the heat 

(1) 

inlet and outlet temperatures, 
transfer coefficient of DSF 

and needs to determined 
the envelope. 𝑇 and 

297

7th International Building Physics Conference, IBPC2018



The last term in Equation 1 is the heat loss through the XPS walls of the envelope. To 
determine 𝑢, the single glaze pane was removed and the double glazing was covered by two 
50 mm thick XPS plates on both sides. With this modification, the heat input by the water is 
assumed to be balanced by the heat loss through the XPS walls only. 𝑢  is determined by Eq. 
(1) with 𝑢ௌி being replaced by 𝑢 .

RESULTS AND DISCUSSION  
Heat transfer coefficient of the XPS walls 
The heat transfer coefficient of the XPS walls ( 𝑢 ) was measured at three different 
temperature differences (Tr -Ta), each repeated at least 12 times (Figure 2). The standard 
deviations were less than 10% of the heat transfer coefficients indicating good repeatability. 
𝑢  increased with the temperature difference. This is reasonable as larger temperature 
difference means stronger buoyancy force and convection on both sides of the walls. For the 
range of temperature considered, the heat transfer coefficient 𝑢 could be correlated to the 
temperature difference using the following formula:  

3391.0)ln(0193.00  ar TTu  (2) 

Figure 2. Plot of means and standard deviations of measured heat transfer coefficient of the 
XPS walls(𝑢) at three temperature difference. 

Although 𝑢 was determined in the heating mode, i.e., chamber air is hotter than the outside, 
it is assumed that it applies to the cooling mode as well, where chamber air is colder than the 
outside.  𝑢 can be converted to the conventional U value of the XPS walls if the convection 
coefficients on both sides of the wall can be determined. However this is irrelevant to the 
objective of this study.  

Impact of cavity ventilation 
In the non-ventilation mode, the upper and bottom openings of the outer pane were sealed 
using duct tape. Experiments were carried out under positive temperature difference and 
negative temperature difference, corresponding to the winter mode and summer mode, 
respectively. The range of the temperature difference covers the typical weather conditions in 
the hot summer and cold winter region of China. At least five repeat tests were conducted at 
each temperature difference and the results are shown in Figure 3. The repeat points are more 
clustered at higher temperature difference. In order to reach small temperature difference, the 
water flow rate had to be increased which resulted a small temperature drop from the inlet to 
the outlet. At 4 oC difference, the water temperature drop reduced to within 0.5 oC 
approaching to the uncertainty range of the temperature measurements, resulting greater 
uncertainties. 

In either heating or cooling mode, the non–vented DSF had smaller 𝑢ௌி  than the naturally 
ventilated DSF indicating better insulation. The measured uDSF for the ventilated DSF window 
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ranged from 2 to 2.4 W/m2/K in summer condition and 1.5 to 2.1 W/m2/K in winter condition. 
When the opening was closed, the 𝑢ௌி value decreased by an average of 27% and 24% in 
summer and winter conditions, respectively. 

(a) (b) 

Figure 3. Heat transfer coefficient of the DSF window (𝑢ௌி) at varied temperature difference 
with cavity ventilated or not (cavity width = 40 cm). a) winter mode; b) summer mode 

Note that the averaged 𝑢ௌி  under positive temperature difference (winter case, Figure 3a) 
was 16% smaller than the averaged 𝑢ௌி under negative temperature difference (summer case, 
Figure 3b) regardless the ventilation status. Similar phenomena could also be observed in 
other experiments. This indicates that downward draft along the double glazing in the cavity 
in summer is stronger than the upward buoyancy flow along the double glazing in summer. It 
might be explained by the direction of airflow and gravity. The upward draft in summer was 
against gravity and thus could be weakened while the downward draft could be strengthened 
by the gravity. 

Impact of cavity width 
Four cavity sizes were studied being 0cm, 10cm, 20 cm, and 40 cm with DSF operation in a 
ventilated mode and the 𝑢ௌி at cavity size of 0cm (pure double glazing) was measured as 
reference . Each case was repeated at least 3 times (Figure 4).  

Figure 4. Heat transfer coefficient of the DSF window (𝑢ௌி) at four cavity width and varied 
temperature difference. (left: winter mode; right: summer mode) 

In the winter mode, 𝑢ௌி  was lowest at cavity width = 20 cm indicating the existence of an 
optimal cavity width between 10 cm and 40 cm for the lowest heat transfer coefficient given 
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the range of the temperature difference. A similar phenomenon, however, was not observed in 
the summer case. The DSF had better insulation when the cavity was wider at high outdoor 
temperature while it had better insulation when the cavity was narrower at low outdoor 
temperature. Although 𝑢ௌி  decreased in general with the decrease of the temperature, the 
decreasing rates varied for different cavity width and different season. In the summer mode, 
the impact of temperature difference tended to disappear as the width decreased while in the 
winter mode the impact of temperature difference was stronger for the narrower cavity. The 
results indicate that the cavity width is an important factor to the insulation performance but 
its influence is dependent on the operation season and the outdoor temperature.  

CONCLUSION 
The heat transfer coefficient of a DSF window was measured at different cavity width and at 
varied temperature in the absence of solar radiation. The results showed that DSF has better 
insulation than the double glazing especially with closed cavity. All the studied factors 
(ventilation mode, cavity width, and outdoor temperature) had influence on the heat transfer 
coefficient of the DSF window and such influence could be season related. Measurements 
confirmed the existence of optimal width in winter for the best insulation.  
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