
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

10-22-2010

Strong (X)HTML Compliance with Haskell's Flexible Type System Strong (X)HTML Compliance with Haskell's Flexible Type System

Paul G. Talaga
Syracuse University

Steve J. Chapin
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
SYR-EECS-2010-04

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SYR-EECS-2010-04 Oct. 22, 2010

Strong (X)HTML Compliance with Haskell’s Flexible Type System

Paul G. Talaga

Steve J. Chapin

pgtalaga@syr.edu
chapin@syr.edu

ABSTRACT: We report on the embedding of a domain specific language, (X)HTML, into Haskell and
demonstrate how this superficial non-context-free language can be represented and rendered to
guarantee World Wide Web Consortium (W3C) compliance. Compliance of web content is important for
the health of the Internet, accessibility, visibility, and reliable search. While tools exist to verify web
content is compliant according to the W3C, few systems guarantee that all produced content is compliant.
We present CH-(X)HTML, a library for generating compliant (X)HTML content by using Haskell to encode
the nontrivial syntax of (X)HTML set forth by the W3C. Any compliant document can be represented with
this library, while a compilation error will occur if non-compliant markup is attempted. To demonstrate our
library we present examples and performance measurements.

KEYWORDS: W3C Compliance, Haskell, Web Development

Syracuse University - Department of EECS,
4-206 CST, Syracuse, NY 13244

(P) 315.443.2652 (F) 315.443.2583
http://eecs.syr.edu

Strong (X)HTML Compliance with Haskell’s Flexible Type System

Paul G. Talaga
Syracuse University
pgtalaga@syr.edu

Steve J. Chapin
Syracuse University

chapin@syr.edu

Abstract
We report on the embedding of a domain specific lan-
guage, (X)HTML, into Haskell and demonstrate how this
superficial non-context-free language can be represented
and rendered to guarantee World Wide Web Consortium
(W3C) compliance. Compliance of web content is im-
portant for the health of the Internet, accessibility, visi-
bility, and reliable search. While tools exist to verify web
content is compliant according to the W3C, few systems
guarantee that all produced content is compliant. We
present CH-(X)HTML, a library for generating compliant
(X)HTML content by using Haskell to encode the non-
trivial syntax of (X)HTML set forth by the W3C. Any
compliant document can be represented with this library,
while a compilation error will occur if non-compliant
markup is attempted. To demonstrate our library we
present examples and performance measurements.

1 Introduction

Conformity of web content to the World Wide Web Con-
sortium’s (W3C) standards is a goal every web developer
should aspire to meet. Conformity leads to increased
visibility as more browsers can render the markup con-
sistently, increased accessibility for disabled users using
non-typical browsing styles [8], more reliable Internet
search by presenting search engines with consistent page
structures [14], and in some cases compliance with legal
requirements [3, 6, 20, 29].

Unfortunately the majority of web content is non-
compliant, with one study finding 95% of pages online
are not valid [12]. Not surprisingly, the majority of web
frameworks do not guarantee generated content is com-
pliant. Popular internet browsers perpetuate the problem
by creatively parsing and rendering invalid code in an at-
tempt to retain users.

While tools exist to check validity of static content,
few systems exist that claim strong validity of all pro-
duced content. With dynamic web applications, it is

harder to guarantee validity due to the dynamic nature
of their inputs. Assuring compliance for specific in-
puts is possible, but proving compliance for all inputs is
analogous to proof by example. Web frameworks using
Model-View-Controller design practices provide some
assurances based on compliant templates, but it remains
easy for an unknowing developer or specific user input to
break this compliance. Such deficiencies in frameworks
can have security consequences as well [23]. Rather
than make it easy for developers to produce invalid con-
tent, frameworks should make it impossible to be non-
compliant.

We view an (X)HTML page as a tree structure with
HTML tags representing nodes. Tag attributes are prop-
erties of a node. Inner tags are children of parent nodes
and each node can contain any number of children, when
allowed. Any language could represent this structure, but
using Haskell’s multiple parameter and functional depen-
dencies of type classes allows simpler syntax for the de-
veloper while a more complex dependency scheme exists
beneath.

1.1 Contributions

We present CH-(X)HTML, a Haskell library for build-
ing (X)HTML content with strong W3C compliance. By
using Haskell’s recursive types, multiple parameter and
functional dependency of type classes, web content is
built by separating structure from content in a typed tree
data structure way, much like the underlying (X)HTML.
The resulting structure can be stored, manipulated, or se-
rialized to a standard W3C compliant textual representa-
tion.

The remainder of the paper is structured as follows.
We analyze and categorize commonalities between dif-
ferent W3C (X)HTML specifications in Section 2, iden-
tifying requirements a W3C compliant producing sys-
tem must possess. Section 3 provides an overview of
CH-(X)HTML and discusses how it is able to enforce

1

the W3C specifications while being easy to use. Sample
code is provided showing the use of the library, followed
by a performance evaluation in Section 3.3 Related work
and our conclusion are in Sections 4 and 5 respectively.

2 W3C Compliance

The W3C has set forth numerous variants of specifica-
tions of HTML and XHTML, with more on the way
in the form of HTML5. Examples include HTML
3.2, HTML 4.01 Strict, and XHTML 1.00 Transitional.
While conformance to a specific document type defini-
tion (DTD) is our goal, identifying commonalities will
assure easy conversion to any HTML DTD. For example,
the difference between HTML 4.01 Strict and HTML
4.01 Transitional is merely the allowance of certain tags.
Likewise, HTML 4.01 Frameset and XHTML 1.00 dif-
fer in their document type: SGML and XML respec-
tively [16].

We have identified five classes of common require-
ments between the different (X)HTML DTDs based on
Thiemann’s work [25]. A system capable of supporting
all requirement classes should be able to include support
for all requirements in any of the W3C specifications if
fully implemented. These classes include the following:

1. Well-formed

2. Tag-conforming

3. Attribute-conforming

4. Inclusion & Exclusion conforming

5. Tag ordering

Well-Formed: An (X)HTML document is well-
formed if all tags have an appropriate ending
tag when needed. All attributes have the form
attribute="value" inside a tag. All characters
should be in the correct context. For example, all
markup characters should only be used for markup
including <,>,&,".

Tag-conforming: An (X)HTML document is tag-
conforming if all tags are defined and valid within that
DTD. No browser specific tags should be used.

Attribute-conforming: An (X)HTML document is
attribute-conforming if all attributes names are allowed
for that specific tag. For example, the p tag can not con-
tain an href attribute.Similarly, the value type of every
attribute matches its DTD description.

Inclusion & Exclusion: An (X)HTML document
obeys inclusion & exclusion if the nesting of all tags fol-
low the specific DTD. For example, in HTML 4.01 no a
tag can be a descendant of another a tag. Similarly, the
tr tag requires a td tag to be its child. While SGML, of

which HTML is a member, allows deep nesting rules,
XML does not [16]. XML can specify what children
are allowed, but not grandchildren or beyond. Thus, the
XHTML 1.0 specification recommends the inclusion &
exclusion of tags, but can not require it. We feel that
since XHTML is fully based on HTML this requirement
is important and should be enforced. In support, the
W3C online validator marks inclusion & exclusion prob-
lems in XHTML as errors. The draft HTML5 specifica-
tion broadens nesting rules by restricting groups of tags
to be children [5]. For example, an a tag in HTML5 must
not contain any interactive content, of which 15 tags are
members.

Tag ordering: An (X)HTML document obeys tag or-
dering if sibling tags are ordered as described in their
DTD. As an example, the head tag must precede the
body tag as children of the html tag.

3 CH-(X)HTML

Our system is built as an embedded domain-specific lan-
guage, implemented in Haskell, capable of embodying
many requirements set forth by the W3C. The use of a
strongly typed language guarantees compliance of the
application at compile time, while allowing easy rep-
resentation of the embedded language. Any strongly
typed language could be used for such a system, but
Haskell’s multiple parameter and functional dependency
type classes cleans up the syntax for the developer.

CH-(X)HTML is available for download or review at
http://fuzzpault.com/chxhtml Only Xhtml
1.0 Strict [16] is currently supported at this time.

3.1 Implementation Overview & Example

CH-(X)HTML’s design is outlined through a series of re-
finements presented below. Code examples are meant
to convey design methods, not produce fully correct
HTML.

At its core, CH-(X)HTML uses ordinary Haskell types
to implement a recursively defined tree data structure
representing the (X)HTML document. Each node in the
tree represents a tag, with inner tags stored as children
of the parent. Depending on the tag, the node may have
none, or a variable number of children. Tag attributes are
stored with each node. Character data is inserted using
an extra constructor. An example of this scheme is given:

data Ent = Html Attributes [Ent] |
Body Attributes [Ent] |
P Attributes [Ent] |
Br Attributes |
Cdata String | ...

Attributes = [String]

2

When the data structure has been constructed and is
ready to be serialized, a recursive function render tra-
verses the structure, returning a string containing tags
and properly formatted attributes and values. All char-
acter data (CDATA) is HTML escaped before render-
ing preventing embedding of HTML markup. This
approach, thus far, guarantees well-formed and tag-
conforming documents when rendered.

We add tag-specific attribute types to enforce attribute
conformance.

data Ent = Html [Att_html] [Ent] |
Body [Att_body] [Ent] |
P [Att_p] [Ent] |
Br [Att_b] |
Cdata String | ...

--
data Att_html = Lang_html String |

Dir_html String | ...
data Att_body = Lang_body String |

Dir_body String |
Onload_body String | ...

...

Thus far any tag can be a child of any other. For in-
clusion & exclusion conformance we use new data types
representing the context of those tags. The same serial-
ized tag can now be inserted by any number of construc-
tors depending on context. For example the following
code correctly prohibits nesting of the a tag.

data Ent = Html Att_html [Ent2]
data Ent2 = Body Att_body [Ent3]
data Ent3 = A3 Att_p [Ent_no_a] |

P3 Att_p [Ent3] |
Br3 Att_b |
Cdata3 String | ...

data Ent_no_a = P_no_a Att_p [Ent_no_a] |
Br_no_a Att_b |
Cdata_no_a String | ...

-- Attributes same as above

By explicitly describing what type can be a child of an
a tag we prevent any nesting issues no matter what the
depth. A compile-time error will be thrown if an invalid
nesting situation is attempted.

Writing (X)HTML content using these complex con-
structors becomes unwieldy quite quickly. By using
multi-parameter type classes and functional dependen-
cies we can hide this complexity while still retaining the
compile-time guarantees. We construct a type class per
tag such that a function correctly returns a constructor of
the correct type based on context. The following exam-
ple shows the type class for specifying the p tag.

class C_P a b | a -> b where
p :: [Att_p] -> [b] -> a

instance C_P Ent3 Ent3 where
p at r = P_1 at r

instance C_P Ent_no_a Ent_no_a where
p at r = P_2 at r

The class instance used is determined by the context
the function is called in, which determines what type
children it may have provided by the functional depen-
dency of classes. Thus, as long as the root of the re-
cursive structure has a concrete type all children will be
uniquely defined. Nesting errors manifest themselves in
compile-time class instance type errors.

A similar type class system is used to simplify attribute
specification.

The previous design methods produce a library
whose output is well-formed, tag-conforming, attribute-
conforming, and inclusion/exclusion conforming. Tag
ordering is not enforced due to a list representation of
children nodes. While ordering could be enforced using
some other means, in practice tag ordering is not easily
violated, while the list of children nodes allows existing
Haskell functions to be used for easy manipulation.

3.2 Library Usage
Building an (X)HTML document is done by construct-
ing the recursive data structure and serializing it using
the render or render_bs functions. Static or dy-
namic content can be served with any number of Haskell
web servers such as HAppS [4], Happstack [15], Mo-
HWS [19], turbinado [17], SNAP [13], or via executable
with CGI [2] [10] or FastCGI [24] [11] Haskell bindings.
CH-(X)HTML can be used anywhere a String type
containing (X)HTML is needed in Haskell. For speed
and efficiency the render_bs function returns a lazy
ByteString representation suitable for CGI bindings.

All HTML tags are represented in lower case with an
underscore _ before or after the tag text. Before assigns
no attributes, while after allows a list of attributes. Tags
which allow children then take a list of children.

Attributes are represented in lower case as well, but
suffixed with _att. This assures no namespace con-
flicts. Assigning an attribute which does not belong re-
sults in a compile-time class instance error.

Figure 1 exhibits the obligatory Hello World page
where result holds the resulting serialized HTML as
a string.

For a more through description of the CH-(X)HTML’s
usage see the demo.hs included with the library source.

3.3 Library Performance
To gauge our library’s performance against similar dy-
namic HTML creation systems, we implemented a
dynamic page in each of four systems: Text.Html,
Text.XHtml, PHP, and CH-(X)HTML. Text.Html and

3

page name = _html [_head [_title [pcdata "Hello " ++ name]],
_body [_h1 [pcdata "Hello " ++ name ++ "!"],

_hr,
_p [pcdata "Hello " ++ name ++ "!"],
]

]
result :: String
result = render (page "World")

Figure 1: Hello World implementation in CH-(X)HTML

20 30 40 50 60 70 80

10

20

30

40

50

60

HTML Page Size (kb)

La
te

nc
y

(m
s)

Page Latency vs HTML Page Size (506 Tags)

PHP
Text.Html
Xhtml
CH−(X)HTML

50 100 150 200 250 300

5

10

15

20

25

HTML tag count

La
te

nc
y

(m
s)

Page Latency vs HTML Tag Count 36KB

PHP
Text.Html
Xhtml
CH−(X)HTML

Figure 2: Latency comparison between CH-(X)HTML , Text.Html, Text.XHtml, and PHP

Text.XHtml are combinator libraries in Haskell used for
building HTML content while PHP is a popular web
scripting language.

The page consisted of a variable number of nested
div segments containing text and a variable size mul-
tiplication table limited to 10 columns. Both div text
length and table size are controllable via GET parame-
ters. This allows independent control of total page length
and the number of tags used. In addition to general
speed, we were interested in how the underlying tree
structure impacted performance. By finding a relation-
ship between the two parameters it was possible to pro-
duce identical length pages while varying the number of
tags, thereby measuring structure and logic latency while
ignoring any effect page length may have. Conversely
the number of tags could be held constant while the page
size was changed.

Each dynamic page was served from a Fedora Core 11
server with an AMD Athlon 64 X2 processor, 2GB of
RAM, and 1000BaseT Ethernet connection. An Apache
(httpd 2.2) web daemon served all content using PHP
5.2.11 or a FastCGI 2.4.6 interface for Haskell. GHC
6.10.3 was used to compile the Haskell code to executa-
bles used by FastCGI. ApacheBench (ab 2.3) [1] was
used to measure the latency of the dynamic applications
on the same machine.

For a representative sample of real-world perfor-

mance, a collection of random web pages were sampled
from Google searches. 30,000 (X)HTML documents
were obtained with an average size of 36KB and an av-
erage tag count of 506. This drove our testing by varying
page size and tag counts around these values.

Figure 2 presents two latency plots showing the rela-
tion between latency and page size, as well as latency and
tag count. For each set of parameters, 500 requests were
made and their latencies averaged. As can be seen CH-
(X)HTML performs on par with PHP, significantly faster
than the other Haskell libraries.

Text.Html and Text.Xhtml both exhibit similar behav-
ior as page size is increased, most likely due to their use
of the String datatype implemented as a linked list of
characters [21]. CH-(X)HTML uses ByteString type
internally to manipulate text and return the result, in this
case, to FastCGI.

As tag count increases we see a slight slowdown
in both PHP and CH-(X)HTML, unlike Text.Html and
Text.Xhtml which stay consistently slow.

CH-(X)HTML ’s use of ByteString clearly puts it
in a performance category comparable to production dy-
namic web content generators such as PHP, while the
structure representation does not effect latency signifi-
cantly. Existing String based Haskell libraries are at a
clear disadvantage when performance is considered.

4

4 Related Work

Constructing web content by means of a DOM-like data
structure isn’t new, but libraries guaranteeing near or full
HTML validity are scarce. Many HTML libraries use
HTML like syntax, allowing easy construction of pages
for the developer, with little guarantees to the validity
of the output. Peter Thiemann’s work on W3C com-
pliance is the closest in the Haskell WASH/CGI suite
[27] [28] [25], which includes a HTML & XML content
production system using types to enforce some validity.
The use of element-transforming style in the library al-
lows Haskell code to look similar to HTML while still
being valid Haskell source. The author documents dif-
ferent classifications of validity, which our analysis in
Section 2 is based on, followed by a discussion of en-
forcement of those classifications in his system. The In-
clusion & Exclusion issue is raised and discussed briefly
in his 2002 work, concluding the type class system is
unable to handle inclusion & exclusion in their imple-
mentation due to the inability to handle disjunctions of
types. As a result, their library does not support inclusion
or exclusion with the excuse of extreme code size, diffi-
culty in usability, and a lack of strict guidelines for in-
clusion & exclusion in the XHTML specification. They
further mention compilation errors are difficult to under-
stand due to the complex implementation of element-
transforming style and multi-parameter types. By not us-
ing element-transforming style, CH-(X)HTML is simpler
to use, presents simpler compilation error messages, and
can enforce inclusion & exclusion.

Further work explores an alternate way of dealing with
the inclusion & exclusion issue in Haskell [26]by way
of proposed extensions providing functional logic over-
loading, anonymous type functions, and rank-2 polymor-
phism. With these they are able to accurately encode and
enforce the inclusion & exclusion properties specified in
the DTD. A strong symmetry exists between our work
and the suggested extensions. The ability to embed reg-
ular expressions on types is analogous to our generous
use of recursive types. While extending the type system
further may lead to more enhancements, CH-(X)HTML
can be used currently in GHC without any additional ex-
tensions.

HSXML is an XML serialization library for func-
tional languages [18]. It is part of a larger effort to
parse XML into S-expressions in functional languages
such as Scheme and Haskell, with HSXML preform-
ing the reverse. S-expressions are a natural way of
representing nested data with its roots in Lisp, thereby
guaranteeing a well-formed and tag-conforming docu-
ment. The library’s current implementation can handle
Inline vs Block context restrictions, but no other inclu-
sion/exclusion restrictions are enforced.

A common Haskell HTML library is Text.Html
[7] and relative Text.XHtml used above, which uses
element-transforming style to build pages. Produced
content is well-formed and tag-conforming due to their
structured building method and HTML escaping of text
content. Any attribute can be added to any tag, thus not
being attribute-conforming. All tags are of the same type
and can be added in any order leading to tag ordering and
inclusion/exclusion violations.

Element-transforming style present in many of the
previously mentioned libraries can lead to difficulties
when building dynamic pages. Rather than represent
children nodes as a Haskell list, they are represented in
some other hidden form not easily manipulated with nor-
mal Haskell list processing functions. We chose the list
type for ease of implementation, at the cost of tag order-
ing compliance.

Separating structure from content in a web setting is
advantageous for security as well. Robertson & Vigna
[22] explore using a strongly typed system for HTML
generation as well as producing SQL queries in the web
application. Their goal is to increase security by pre-
venting injection attacks targeting the ad-hoc mixing of
content and structure by representing structure in a typed
way and filtering inserted content. Thus, the client or
SQL server’s parser will not be fooled by the attempted
injection attack. Our work similarly mitigates injection
attacks but does not address web application vulnerabili-
ties relating to a database.

XMLC for Java allows an application developer to
manipulate a DOM structure obtained from parsing a
HTML or XML template file [9]. Manipulation of the
DOM is therefore similar to DOM manipulations in
JavaScript. When all transformations are complete the
DOM is serialized and sent to the user. XMLC does not
restrict operations which would result in invalid content
being sent to the user.

5 Conclusion

We have shown how strong (X)HTML W3C compliance
can be achieved by Haskell while performing on par
with more mature dynamic (X)HTML production sys-
tems. We generalize the W3C (X)HTML specifications
into five classes of requirements a web production sys-
tem must be able to enforce to produce compliant output.
The inclusion & exclusion nesting requirement of nearly
all (X)HTML DTD’s has proven difficult to enforce and
thus ignored by web production libraries. Our (X)HTML
library, CH-(X)HTML , is able to enforce four of the five
classes of requirements, including inclusion & exclusion,
by using recursive types. Use of the library is straightfor-
ward due to multi-parameter type classes and functional
dependencies allowing a coding style similar to straight

5

(X)HTML, while guaranteeing strong compliance for all
produced content.

References

[1] Apache http server benchmarking tool, http://

httpd.apache.org/docs/2.0/programs/ab.html.

[2] The common gateway interface, http://hoohoo.

ncsa.illinois.edu/cgi/.

[3] The disability discrimination act (dda), http:

//www.direct.gov.uk/en/DisabledPeople/

RightsAndObligations/DisabilityRights/DG_

4001068.

[4] Happs, http://happs.org/.

[5] Html5, http://dev.w3.org/html5/spec/

Overview.html.

[6] Policies relating to web accessibility, http://www.
w3.org/WAI/Policy/.

[7] Text.html, http://hackage.haskell.org/

package/html.

[8] Web content accessibility guidelines 1.0, http://
www.w3.org/TR/WCAG10/.

[9] Xmlc, http://xmlc.enhydra.org.

[10] B. Bringert. cgi: A library for writing cgi programs,
http://hackage.haskell.org/package/cgi.

[11] B. Bringert and Lemmih. fastcgi: A haskell library
for writing fastcgi programs, http://hackage.

haskell.org/package/fastcgi.

[12] S. Chen, D. Hong, and V. Y. Shen. An experimen-
tal study on validation problems with existing html
webpages. In International Conference on Internet
Computing, pages 373–379, 2005.

[13] G. Collins, D. Beardsley, S. yu Guo, and
J. Sanders. Snap: A haskell web framework, http:
//snapframework.com/.

[14] D. Davies. W3c compliance and seo, http://www.
evolt.org/w3c-compliance-and-seo, oct 2005.

[15] M. Elder and J. Shaw. Happstack, http://

happstack.com/index.html.

[16] W. H. W. Group. Xhtml 1.0: The exten-
sible hypertext markup language (second edi-
tion). http://www.w3.org/TR/xhtml1/, http://

www.w3.org/TR/xhtml1/, aug 2002.

[17] A. Kemp. Turbinado, http://wiki.github.com/
alsonkemp/turbinado.

[18] O. Kiselyov. Hsxml: Typed sxml, http://okmij.
org/ftp/Scheme/xml.html#typed-SXML.

[19] S. Marlow and B. Bringert. Mohws: Modu-
lar haskell web server, http://hackage.haskell.
org/cgi-bin/hackage-scripts/package/mohws.

[20] T. Moss. Disability discrimination act (dda) & web
accessibility, http://www.webcredible.co.uk/

user-friendly-resources/web-accessibility/

uk-website-legal-requirements.shtml.

[21] B. O’Sullivan, J. Goerzen, and D. Stewart. Real
World Haskell. O’Reilly, 1 edition, 2009.

[22] W. Robertson and G. Vigna. Static Enforcement
of Web Application Integrity Through Strong Typ-
ing. In Proceedings of the USENIX Security Sym-
posium, Montreal, Canada, August 2009.

[23] R. H. (RSnake). Xss (cross site scripting) preven-
tion cheat sheet, http://ha.ckers.org/xss.html.

[24] R. Saccoccio et al. Fastcgi, http://www.fastcgi.
com/drupal/.

[25] P. Thiemann. A typed representation for html and
xml documents in haskell. Journal of Functional
Programming, 12:2002, 2001.

[26] P. Thiemann. Programmable type systems for do-
main specific languages, , 2002.

[27] P. Thiemann. Wash/cgi: Server-side web script-
ing with sessions and typed, compositional forms.
In Practical Aspects of Declarative Languages:
4th International Symposium, PADL 2002, volume
2257 of LNCS, pages 192–208. Springer-Verlag,
2002.

[28] P. Thiemann. An embedded domain-specific lan-
guage for type-safe server-side web-scripting. ACM
Transactions on Internet Technology, 5:1533–5399,
2005.

[29] A. Wittersheim. Why comply? the
movement to w3c compliance, http:

//ezinearticles.com/?Why-Comply?

-The-Movement-to-W3C-Compliance&id=162596.

6

	Strong (X)HTML Compliance with Haskell's Flexible Type System
	Recommended Citation

	TR 2010-4 title page Talaga.pdf
	2010 04 Talaga content

