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ABSTRACT 

The integration of the finite-difference time-domain (FDTD) method into the 

iterative multi-region (IMR) technique, an iterative approach used to solve large-scale 

electromagnetic scattering and radiation problems, is presented in this dissertation. The 

idea of the IMR technique is to divide a large problem domain into smaller subregions, 

solve each subregion separately, and combine the solutions of subregions after introducing 

the effect of interaction to obtain solutions at multiple frequencies for the large domain. 

Solution of the subregions using the frequency domain solvers has been the preferred 

approach as such solutions using time domain solvers require computationally expensive 

bookkeeping of time signals between subregions. In this contribution we present an 

algorithm that makes it feasible to use the FDTD method, a time domain numerical 

technique, in the IMR technique to obtain solutions at a pre-specified number of 

frequencies in a single simulation. As a result, a considerable reduction in memory storage 

requirements and computation time is achieved.  

A hybrid method integrated into the IMR technique is also presented in this work. 

This hybrid method combines the desirable features of the method of moments (MoM) and 

the FDTD method to solve large-scale radiation problems more efficiently. The idea of this 

hybrid method based on the IMR technique is to divide an original problem domain into 

unconnected subregions and use the more appropriate method in each domain.  

The most prominent feature of this proposed method is to obtain solutions at 

multiple frequencies in a single IMR simulation by constructing time-limited waveforms. 

The performance of the proposed method is investigated numerically using different 

configurations composed of two, three, and four objects.  
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1 INTRODUCTION 

Solution of large-scale electromagnetic scattering and radiation problems has been 

one of the major challenges of computational electromagnetics because the solution of such 

problems requires long computation time and large computer memory. One approach to 

this problem is to develop a time and memory efficient algorithms by dividing a large 

problem domain into smaller unconnected subregions, to solve each subregion separately, 

and to combine the solutions of subregions after introducing the effect of interactions 

between them to obtain solutions for the large domain. Solutions of the subregions using 

the frequency domain solvers has been the preferred approach as such solutions using time 

domain solvers require computationally expensive bookkeeping of time signals between 

subregions. In this contribution, we present an algorithm that makes it feasible to use the 

finite-difference time-domain (FDTD) method in the iterative multi-region (IMR) 

technique, a divide and conquer algorithm, to obtain solutions at a pre-specified number of 

frequencies. 

The decomposition of a problem domain into smaller domains is known as the 

domain decomposition method (DDM) [1–28], which in general requires either common 

boundaries or overlapping regions between subregions. It is possible to solve each 

subregion with the same method such as finite element method (FEM) [3–16] or finite-

difference frequency-domain (FDFD) method [17–23]. IMR is one of such methods that 

divides a problem space into smaller subregions. In the case of IMR, a problem space 

contains multiple objects with separations from each other, and each subregion contains 

one and more of the objects. The subregions do not need to have common boundaries or 

overlapping regions. 
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IMR, as originally introduced by Al Sharkawy et al. [19–22], uses the FDFD 

method to solve Maxwell equations in subregions to calculate the scattering from many 

objects. This technique requires the solution of the fields in the subregions a number of 

times instead of one solution of the complete computational domain at a single frequency. 

In this contribution, we adapt the use of the FDTD method instead of the FDFD method; 

as a consequence a problem can be solved at a number of frequencies instead of a single 

frequency in a single simulation. In the IMR technique, the scattered fields from subregions 

that lead to interactions between the subregions are evaluated in the frequency domain, 

thus a frequency-domain to time-domain transformation is needed to convert the scattered 

fields into excitation fields as time-limited waveforms in order to excite the FDTD problem 

spaces. A key contribution in this research is a time-limited waveform construction (TWC) 

algorithm for the iterative interactions between subregions. The TWC algorithm is used to 

construct time-limited waveforms which include the desired frequencies of solution with 

the required magnitudes and phases in their frequency spectrums. 

The iterative procedure in [19–22] is similar to the procedure denoted as the 

iterative field bouncing (IFB) method and described briefly by [24]. In [25] and [26], the 

iterative method is used to calculate the scattered field from a large perfectly conducting 

cavity using integral equations and physical optics, respectively. The DDM using the 

FDTD method [27] and using the fast multi-pole method [28] was used to solve a two-

dimensional sparse multi-cylinder scattering problem. Multiple-Region FDTD 

(MR/FDTD) proposed in [29] was introduced to solve a sparse modeling problem. In [27], 

[28], and [29], the interaction and coupling effects between the objects are not considered 

very much because the separation distances between the objects are much larger than the 
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largest dimension of one object which means that the coupling between the objects is small 

enough. Furthermore, some hybrid techniques based on combinations of the method of 

moments (MoM), FDFD, and FEM, proposed in [24], [30], and [31], have been used to 

calculate scattering from multiple objects achieving a time and memory efficient 

algorithms. 

In this dissertation, the FDTD method is integrated into the IMR technique to obtain 

solutions at multiple frequencies in a single IMR simulation by using the TWC algorithm. 

This technique is based on decomposing a large-scale scattering problem into smaller 

separated subregions and each subregion is solved using the FDTD method independently. 

In each subregion, the scattered electromagnetic fields due to the same original incident 

plane wave are captured on the imaginary surface. Then fictitious electric and magnetic 

currents are calculated from the scattered fields over the imaginary surface in each 

subregion, using the surface equivalence principle [32] in the frequency domain at a finite 

number of frequencies. Radiated fields generated by these currents are imposed as the new 

excitation fields on the opposing subregions in a new iteration. Since the new excitation 

fields are in the frequency domain at a number of frequencies, these fields must be 

converted into time-limited waveforms which include the desired frequencies with the right 

magnitudes and phases in their frequency spectrum before exciting the FDTD problem 

spaces. This procedure between subregions is repeated iteratively until the difference 

between two successive steps is less than a convergence criterion value. The most 

prominent feature of this technique is to obtain solutions at multiple frequencies in a single 

IMR simulation by constructing time-limited waveforms to use in FDTD solutions. 
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The procedure of the presented technique is also used to analyze large-scale 

radiation problems which are difficult to handle using the conventional FDTD method. 

This procedure is based on dividing the original problem domain into multiple subregions: 

one of them is the source subregion including an antenna, and the others are the scatterer 

subregions including scatterer objects. First, the antenna is driven in isolation so that, in 

what will be called the 0th iteration, there is no incident field in the subregion containing 

the driven antenna, and the incident fields in all the other subregions consist of the field of 

the driven antenna in isolation. Then the solutions of the subregions are combined, after 

multiple interactions between subregions, to obtain the solutions for the original problem. 

This iterative procedure between subregions is repeated until the difference between two 

successive steps is less than a convergence criterion value. 

Initially, the scattered field (SF) formulation [33] has been used to excite the FDTD 

domains. The SF formulation requires the computation of new excitation fields at all field 

points in the problem space.  It has been realized that a considerable amount of computation 

time is spent for the calculation of the new excitation fields due to the fictitious currents. 

Therefore, total-field scattered-field (TF/SF) formulation [34] is used to speed up the 

calculation of the new excitation fields. Thus these fields are calculated on the TF/SF 

boundary rather than the entire computational domain in subregions. Then an interpolation 

process is applied to current points on the imaginary surface and field points on the TF/SF 

boundary in subregions. These two techniques provide remarkable reduction in the 

computation time of the new excitation fields.   

Another contribution presented in this dissertation is the utilization of the IMR 

technique as a hybrid procedure which combines the desirable features of the MoM and 
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the FDTD method. Such a hybrid method has been extensively studied in [35–39] to 

simulate the interaction between a linear antenna and a scatterer object. In [35] and [36], 

the coupling between subregions is simulated by employing the equivalence principle on 

the boundary surface surrounding each subregion. In [37–39], the proposed hybrid method 

does not use the equivalence principle on the surface of a subregion which includes an 

antenna solved using the MoM. Their iterative approach of a hybrid method provides 

solution at a single frequency in a single simulation.  In our work, however we integrate 

the MoM and the FDTD method into the IMR technique to obtain solutions at multiple 

frequencies using the TWC algorithm in a single IMR simulation. The idea of the proposed 

hybrid method based on the IMR technique is to divide an original problem domain into 

multiple unconnected subregions and use the more appropriate method in each domain. 

The interactions between subregions continue until the difference between two successive 

iterations is less than a convergence criterion value. 

The IMR technique based on FDTD method requires solutions of the fields in the 

subregions a number of times instead of one solution of the original complete domain. This 

technique effectively reduces the size of the memory requirements. Furthermore, reduction 

in the computation time is also achieved if the separation between some subregions is large 

and/or coarser grids are used in some of the subregions, which may not be possible to use 

if only one domain is used for the solution of the problem. Another feature of the IMR 

technique is that it can provide solutions at multiple frequencies to large-scale radiation 

and scattering problems that are difficult or impossible to solve in a single domain due to 

the large size using the conventional FDTD method.  
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As a summary the main contribution of the dissertation is the integration of the 

FDTD method into the IMR technique by using the TWC algorithm to analyze large-scale 

scattering and radiation problems. Thus the solutions of the IMR technique at multiple 

frequencies can be obtained by exciting the FDTD problem space with constructed time-

limited waveforms. The second contribution is the hybrid use of the MoM and FDTD 

method to obtain solutions at multiple frequencies using the TWC algorithm in a single 

IMR run. To prove the validity of the proposed procedures, some scattering and radiation 

problems are simulated and good agreements between the IMR solutions and the full 

domain solutions are achieved.  

In Chapter 2, the integration of FDTD method into the IMR technique is presented 

to solve large-scale electromagnetic scattering and radiation problems by using the TWC 

algorithm. Chapter 3 and Chapter 4 present numerical results for scattering and radiation 

problems using the proposed technique, respectively. Chapter 5 presents the solution of the 

hybrid (MoM/FDTD) method integrated into the IMR technique. Chapter 6 concludes the 

dissertation. 
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2 IMR TECHNIQUE USING THE FDTD METHOD 

In this chapter, we present the integration of the FDTD method into the iterative 

multi-region (IMR) technique. IMR is an iterative approach used to solve large-scale 

electromagnetic scattering and radiation problems. The idea of the IMR technique is based 

on dividing a large computation domain into smaller unconnected subregions and solving 

each subregion separately. Then the solutions of subregions are combined through an 

iterative procedure to obtain the solutions for the large domain. Since dividing the original 

problem into smaller separated sub-problems reduces the corresponding computational 

domain sizes and minimizes the complexity of the problem, a huge saving in memory 

requirements is achieved. Furthermore, the computational time reduction is achieved if the 

separation between the subregions is large and/or coarser grids are used in some of the 

subregions, which may not be possible to use if a single domain is used for the solution of 

the original large problem. 

IMR is essentially a frequency domain procedure as it uses the frequency domain 

analysis methods such as FDFD, FEM or MoM to calculate scattered electromagnetic fields 

in subregions. A similar procedure that uses a time domain method for subregions field 

calculations can be developed. However, it would require computationally expensive 

bookkeeping of time signals between subregions and it would not be feasible. In this 

contribution we present an algorithm that allows to use the FDTD method, a time domain 

numerical technique, in the IMR technique to achieve solutions at a pre-specified number 

of frequencies.  

The most prominent feature of this presented technique is a time-limited waveform 

construction (TWC) algorithm that is used to synthesize a time-limited waveform. The 
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synthesized waveforms are used to excite the subregions as incident fields, thus enabling 

the use of a time domain method, i.e. the FDTD method in this contribution, to calculate 

the scattered fields in the subregions.  

Once it is possible to use the FDTD method to solve subregions, a single run of 

FDTD solution is sufficient for each subregion to calculate the scattered fields at all 

frequencies of interest as opposed to running multiple FDFD or MoM solutions. Together 

with other benefits of the IMR procedure, the presented algorithm can lead to considerable 

reduction in the memory storage requirements and computation time especially when there 

is a larger distance between the subregions.  

In this chapter, first, we present a summary of the IMR procedure as it utilizes the 

FDFD method. Next we introduce the integration of the FDTD method into the IMR 

technique for scattering and radiation problems. The details of the TWC algorithm and 

speeding up techniques are also presented here.   

2.1 Iterative Procedure Using the FDFD method 

The IMR technique was first presented as a frequency domain method where the 

FDFD method is employed to calculate scattered fields in the subregions of an original 

large scattering problem. In the procedure of the IMR technique, the original problem 

domain, as shown in Figure 2.1, is divided into several unconnected subregions, each 

subregion including a scatterer object. The subregion boundaries are terminated by 

absorbing boundaries to simulate an open space problem. In this contribution an absorbing 

boundary formulation known as perfectly matched layers (PML) [33] is used to terminate 

subregion boundaries as illustrated by solid lines in Figure 2.1.  
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Figure 2.1: Scattering from multiple objects: a) original problem and b) subregions. 
(dotted line: imaginary surface and dashed line: TF/SF boundary) 

The iterative procedure between 𝐷𝐷 numbers of subregions is shown in Figure 2.2. 

The iterations consist of iteration # 0, iteration # 1, and as many repetitions of iteration # 1 

as are necessary. The set of operations described in each iteration is performed 𝐷𝐷 times, 

first for 𝑑𝑑 = 1, then for 𝑑𝑑 = 2, and so forth, up to 𝑑𝑑 = 𝐷𝐷. 
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Figure 2.2: Iterative procedure between subregions. 

In the iteration # 0, the scatterer in each subregion is excited by a same incident 

plane wave (Einc). A method known as the total-field/scattered-field (TF/SF) formulation 

[34] is used to impose the incident plane wave on the problem space. The dashed lines 

indicate the TF/SF boundary in Figure 2.1. The TF/SF formulation divides the problem 

space into two regions. The electromagnetic fields inside the TF/SF boundary are total 

fields and the fields outside are scattered fields. The incident plane wave is imposed on the 

TF/SF boundary itself. The scattered fields (𝐸𝐸𝑑𝑑0, 𝐻𝐻𝑑𝑑0) due to the incident plane wave are 

captured over the imaginary surface in subregion-𝑑𝑑. In 𝐸𝐸 and 𝐻𝐻, the superscript 0 indicates 

iteration # 0, the subscript 𝑑𝑑 indicates the 𝑑𝑑th subregion. Then fictitious electric and 
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magnetic currents (𝐽𝐽𝑑𝑑0, 𝑀𝑀𝑑𝑑
0) in (2.1), shown in Figure 2.3, due to the scattered fields are 

calculated on the imaginary surface in subregion-𝑑𝑑, using the equivalence principle [32].  

𝐽𝐽𝑑𝑑0(𝜔𝜔) = n� × 𝐻𝐻𝑑𝑑0(𝜔𝜔) and 𝑀𝑀𝑑𝑑
0(𝜔𝜔) = −n� × 𝐸𝐸𝑑𝑑0(𝜔𝜔).                   (2.1) 

where n� is the unit normal vector that points outward from the surface. The existence of 

the fictitious currents of all subregions obtained in iteration # 0 is denied until iteration # 1 

is started. 

 

 

 

 

 
 

Figure 2.3: Imaginary surface in subregion-𝑑𝑑. 

At the beginning of the iteration # 1, radiated electromagnetic fields 

�𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔),𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑

1 (𝜔𝜔)� which are the sum of the fields generated by the fictitious currents 

in other subregions are calculated on each field point of the TF/SF boundary in subregion-

𝑑𝑑, using near-field to near-field (NF/NF) transformation [32]. Details of NF/NF 

transformation are provided in Appendix A.  

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔) = ∑ 𝐸𝐸𝑑𝑑′ �𝐽𝐽𝑑𝑑′

0 (𝜔𝜔),𝑀𝑀𝑑𝑑′
0 (𝜔𝜔)�𝐷𝐷

𝑑𝑑′=1
𝑑𝑑′≠𝑑𝑑

,                  (2.2a) 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
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0 (𝜔𝜔)�𝐷𝐷

𝑑𝑑′=1
𝑑𝑑′≠𝑑𝑑

,                              (2.2b) 

where 𝐸𝐸𝑑𝑑′ and 𝐻𝐻𝑑𝑑′ are the electromagnetic fields radiated by the combination of the 

fictitious currents obtained on the imaginary surface in subregion-𝑑𝑑′ in iteration # 0. The 

𝐽𝐽𝑑𝑑0 𝑀𝑀𝑑𝑑
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𝐸𝐸𝑑𝑑0,  𝐻𝐻𝑑𝑑0 
 

Imaginary 
surface scatterer 

object 

11 
 



term for which 𝑑𝑑 = 𝑑𝑑′ is omitted from the summation because the scatterer in subregion-

𝑑𝑑 is inside the imaginary surface in subregion-𝑑𝑑 where �𝐽𝐽𝑑𝑑0(𝜔𝜔),𝑀𝑀𝑑𝑑
0(𝜔𝜔)� radiates no field. 

Then these radiated fields in (2.2) are used as the new excitation fields for the subregion-

𝑑𝑑. The new excitation fields on the TF/SF boundary in subregion-𝑑𝑑 start a FDFD procedure 

whose solution on the imaginary surface in subregion-𝑑𝑑 is used to obtain the scattered 

electromagnetic fields. This cycle of iterations is processed until a convergence (stopping) 

criterion is achieved. 

In the IMR technique using the FDFD method, all fields and fictitious currents are 

defined in the frequency domain at a single frequency. Here we propose to use FDTD 

method instead of the FDFD method for the solutions in the subregions. Still the fictitious 

currents on the imaginary surfaces can be obtained in the frequency domain and NF/NF 

transformation can be performed in the frequency domain to calculate the excitation fields. 

When the FDTD method is used instead of the FDFD method, the new excitation fields 

can be in the frequency domain at a number of frequencies instead of a single frequency.  

2.2 Iterative Procedure Using the FDTD method 

In this contribution, we adapt the use of the FDTD method to solve each subregion 

independently; as a consequence a problem can be solved at a number of frequencies 

instead of a single frequency. As in the IMR technique based on the FDFD method the 

excitation fields are calculated in the frequency domain, thus a frequency-domain to time-

domain transformation is needed to convert the calculated excitation fields into time-

limited waveforms in order to use these waveforms to excite the FDTD problem spaces. A 

key contribution in this research is a TWC mechanism for the iterative interactions between 
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subregions. Therefore, an algorithm is developed to construct time-limited waveforms. The 

TWC algorithm is presented in the next section. In this section, we discuss the integration 

of the FDTD method into IMR to solve large-scale scattering problems. 

The scattering problem illustrated in Figure 2.1 is divided into 𝐷𝐷 number of 

unconnected subregions. There is a scattering object in each subregion. The subregion 

boundaries are terminated by convolution perfectly matched layers (CPML) [33] indicated 

by solid lines in Figure 2.1. The iterative procedure between subregions, solved using the 

FDTD method, is shown in Figure 2.4. The iterations consist of iteration # 0 and iteration 

# k for {k=1, 2, ⋯, 𝐾𝐾} where 𝐾𝐾 is an integer depending on how many iterations are 

necessary. In the rest of this chapter, fields in the time domain are indicated by lowercase 

letters, whereas fields in the frequency domain are indicated by capital letters.   

 At the beginning of the iteration # 0, the scatterer in each subregion, isolated from 

the scatterers in all other subregions, is illuminated by the same incident plane wave whose 

electric field, 𝐞𝐞inc(𝐫𝐫, 𝑡𝑡), can be expressed as  

   𝐞𝐞inc(𝐫𝐫, 𝑡𝑡) = �𝐸𝐸𝜃𝜃𝜃𝜃� + 𝐸𝐸𝜙𝜙𝜙𝜙��𝑔𝑔 �(𝑡𝑡 − 𝑡𝑡0) − 1
𝑐𝑐
�k� ∙ 𝐫𝐫 − 𝐫𝐫0��,        (2.3) 

where 𝐸𝐸𝜃𝜃 and 𝐸𝐸𝜙𝜙 are the components of the incident electric fields, 𝑡𝑡0 and 𝐫𝐫0are the time 

and spatial shift, 𝑔𝑔 is a Gaussian waveform, c is the speed of light, k� is a unit vector that is 

constant and is in the direction of propagation, and 𝐫𝐫 is a position vector for a given point 

in the problem space. 

In iteration # 0, the set of operations described in the remainder of this paragraph 

is performed 𝐷𝐷 times, first for 𝑑𝑑=1, then for 𝑑𝑑 =2, and so forth, up to 𝑑𝑑=𝐷𝐷. The incident 

plane wave in (2.3) imposed on the TF/SF boundary in subregion-𝑑𝑑 starts a FDTD 

procedure whose solution on the imaginary surface is used to obtain the scattered fields. 
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The scattered electric and magnetic fields �(𝐞𝐞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑
0 )𝑛𝑛, (𝐡𝐡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑

0 )𝑛𝑛� at every point of the 

imaginary surface are captured at every time step of the FDTD time-marching loop. 

 

 

 

 

 

 

 

 

 

 

                                  

                                         

 

 

 

 

 

 

Figure 2.4: a) Iterative procedure between subregions and b) NF/NF–TWC algorithm.  

𝐞𝐞inc(𝐫𝐫, 𝑡𝑡) 𝐞𝐞inc(𝐫𝐫, 𝑡𝑡) 

Subregion-1 
Induced  

𝐽𝐽10(𝜔𝜔𝑖𝑖), 𝑀𝑀1
0(𝜔𝜔𝑖𝑖) 

due to 𝐞𝐞inc 

 

Subregion-2 
Induced 

 𝐽𝐽20(𝜔𝜔𝑖𝑖), 𝑀𝑀2
0(𝜔𝜔𝑖𝑖) 

due to 𝐞𝐞inc 

 

Subregion-𝐷𝐷 
Induced 

 𝐽𝐽𝐷𝐷0(𝜔𝜔𝑖𝑖), 𝑀𝑀𝐷𝐷
0(𝜔𝜔𝑖𝑖) 

due to 𝐞𝐞inc 

 

Iteration # 0 

Iteration # 1 

Iteration # k 

𝐞𝐞inc(𝐫𝐫, 𝑡𝑡) 

Subregion-1 
Induced 

 𝐽𝐽11(𝜔𝜔𝑖𝑖), 𝑀𝑀1
1(𝜔𝜔𝑖𝑖) 

due to 𝐜𝐜11(𝑡𝑡) 
 

Subregion-2 
Induced 

 𝐽𝐽21(𝜔𝜔𝑖𝑖), 𝑀𝑀2
1(𝜔𝜔𝑖𝑖) 

due to  𝐜𝐜21(𝑡𝑡) 

 

Subregion-𝐷𝐷 
Induced 

 𝐽𝐽𝐷𝐷1(𝜔𝜔𝑖𝑖), 𝑀𝑀𝐷𝐷
1(𝜔𝜔𝑖𝑖) 

due to  𝐜𝐜𝐷𝐷1 (𝑡𝑡) 

 

Subregion-1 
Induced 

 𝐽𝐽1𝑘𝑘(𝜔𝜔𝑖𝑖), 𝑀𝑀1
𝑘𝑘(𝜔𝜔𝑖𝑖) 

due to 𝐜𝐜1𝑘𝑘(𝑡𝑡) 
 

Subregion-2 
Induced 

 𝐽𝐽2𝑘𝑘(𝜔𝜔𝑖𝑖), 𝑀𝑀2
𝑘𝑘(𝜔𝜔𝑖𝑖) 

due to 𝐜𝐜2𝑘𝑘(𝑡𝑡) 

 

Subregion-𝐷𝐷 
Induced 

 𝐽𝐽𝐷𝐷𝑘𝑘(𝜔𝜔𝑖𝑖), 𝑀𝑀𝐷𝐷
𝑘𝑘(𝜔𝜔𝑖𝑖) 

due to  𝐜𝐜𝐷𝐷𝑘𝑘(𝑡𝑡) 

 
(a) 

TWC 
Construct time-limited waveforms, 𝐜𝐜𝑑𝑑𝑘𝑘(𝑡𝑡), in (2.7) from 

the radiated electromagnetic fields in (2.6).   
 

NF/NF 
Calculate the radiated electromagnetic fields in (2.6) 

from the fictitious currents in (2.5) of other subregions 
for all frequencies of interest. 

 
 

(b) 

 

 NF/NF–TWC  NF/NF–TWC  NF/NF–TWC 

 NF/NF–TWC  NF/NF–TWC  NF/NF–TWC 
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In each 𝐞𝐞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐡𝐡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 the superscript 0 indicates iteration # 0 and the subscript 𝑑𝑑 indicates 

the 𝑑𝑑th subregion. During each time step of the FDTD time-marching loop, the equivalence 

principle is used to obtain the fictitious electric and magnetic currents in (2.4) from the 

scattered electric and magnetic fields captured over the imaginary surface. 

        (𝒋𝒋𝑑𝑑0)𝑛𝑛 = n� × (𝐡𝐡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑
0 )𝑛𝑛 and (𝒎𝒎𝑑𝑑

0)𝑛𝑛 = −n� × (𝐞𝐞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑
0 )𝑛𝑛,       (2.4)  

where n� is the unit normal vector that points outward from the surface, 𝑛𝑛 is the current time 

step, (𝒋𝒋𝑑𝑑0)𝑛𝑛and (𝒎𝒎𝑑𝑑
0)𝑛𝑛 are the fictitious currents calculated on the imaginary surface of the 

subregion-𝑑𝑑 in iteration # 0 at 𝑛𝑛th time step. These current values in the time domain are 

then converted into currents in the frequency domain using the “on-the-fly” Numerical 

Fourier Transform (NFT) [33] while the FDTD time-marching loop is running such that 

  𝐽𝐽𝑑𝑑0(𝜔𝜔𝑖𝑖) = 𝐽𝐽𝑑𝑑0(𝜔𝜔𝑖𝑖) + ∆𝑡𝑡(𝒋𝒋𝑑𝑑0)𝑛𝑛𝑒𝑒−𝑗𝑗𝜔𝜔𝑖𝑖𝑛𝑛∆𝑡𝑡,                  (2.5a)          

𝑀𝑀𝑑𝑑
0(𝜔𝜔𝑖𝑖) = 𝑀𝑀𝑑𝑑

0(𝜔𝜔𝑖𝑖) + ∆𝑡𝑡(𝒎𝒎𝑑𝑑
0)𝑛𝑛𝑒𝑒−𝑗𝑗𝜔𝜔𝑖𝑖𝑛𝑛∆𝑡𝑡,                  (2.5b) 

where 𝜔𝜔𝑖𝑖 is one of the frequencies of interest, ∆𝑡𝑡 is the duration of a time step, and 𝐽𝐽𝑑𝑑0(𝜔𝜔𝑖𝑖) 

and 𝑀𝑀𝑑𝑑
0(𝜔𝜔𝑖𝑖) are the fictitious currents obtained in the frequency domain at the frequency 

𝜔𝜔𝑖𝑖. At the start of the first time step, 𝐽𝐽𝑑𝑑0(𝜔𝜔𝑖𝑖) = 𝑀𝑀𝑑𝑑
0(𝜔𝜔𝑖𝑖) =0 in (2.5). For each frequency of 

interest, the NFT in (2.5) is performed for all frequencies of interest. The existence of all 

the fictitious currents obtained in iteration # 0 is denied until iteration # 1 is started. 

In iteration # 1, the set of operations described in the remainder of this paragraph 

is performed 𝐷𝐷 times, first for 𝑑𝑑=1, then for 𝑑𝑑=2, and so forth, up to 𝑑𝑑=𝐷𝐷. At the beginning 

of the iteration # 1, radiated electromagnetic fields �𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔𝑖𝑖),𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑

1 (𝜔𝜔𝑖𝑖)� in (2.6) which 

are the sum of the radiated fields generated by the fictitious currents in other subregions 

are calculated on each field point of the TF/SF boundary in subregion-𝑑𝑑, using the NF/NF 
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transformation presented in Appendix A. For each frequency of interest, the NF/NF 

transformation is performed with the corresponding frequency value. 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔𝑖𝑖) = ∑ 𝐸𝐸𝑑𝑑′ �𝐽𝐽𝑑𝑑′

0 (𝜔𝜔𝑖𝑖),𝑀𝑀𝑑𝑑′
0 (𝜔𝜔𝑖𝑖)�𝐷𝐷

𝑑𝑑′=1
𝑑𝑑′≠𝑑𝑑

,             (2.6a) 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔𝑖𝑖) = ∑ 𝐻𝐻𝑑𝑑′ �𝐽𝐽𝑑𝑑′

0 (𝜔𝜔𝑖𝑖),𝑀𝑀𝑑𝑑′
0 (𝜔𝜔𝑖𝑖)�𝐷𝐷

𝑑𝑑′=1
𝑑𝑑′≠𝑑𝑑

,                          (2.6b) 

where 𝐸𝐸𝑑𝑑′ and 𝐻𝐻𝑑𝑑′ are the electromagnetic fields radiated by the combination of the 

fictitious electric and magnetic currents obtained on the imaginary surface in subregion-𝑑𝑑′ 

in iteration # 0. The term for which 𝑑𝑑 = 𝑑𝑑′ is omitted from the summation because the 

scatterer in subregion-𝑑𝑑 is inside the imaginary surface in subregion-𝑑𝑑 where 

�𝐽𝐽𝑑𝑑0(𝜔𝜔𝑖𝑖),𝑀𝑀𝑑𝑑
0(𝜔𝜔𝑖𝑖)� radiates no field. Then these radiated fields in (2.6) are used as the new 

excitation fields for the subregion-𝑑𝑑. Since the new excitation fields are in the frequency 

domain at a number of frequencies and cannot be used to start a FDTD procedure in 

subregions, these fields must be converted into time-limited waveforms, 𝐜𝐜𝑑𝑑1(𝑡𝑡) in (2.7), 

before exciting the subregion-𝑑𝑑. Therefore, TWC algorithm is used to construct time-

limited waveforms from the new excitation fields. 

    𝐜𝐜𝑑𝑑1(𝑡𝑡) = TWC�∑ �𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔𝑖𝑖)𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑖𝑖),𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑

1 (𝜔𝜔𝑖𝑖)𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 �,           (2.7) 

where 𝑁𝑁 is the number of frequencies of interest and 𝛿𝛿 is the Dirac delta function. Then 

the constructed time-limited waveforms in (2.7) imposed on the TF/SF boundary in 

subregion-𝑑𝑑 start a FDTD procedure whose solution on the imaginary surface in subregion-

𝑑𝑑 is used to obtain the scattered electromagnetic fields. The scattered electric and magnetic 

fields �(𝐞𝐞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑
1 )𝑛𝑛, (𝐡𝐡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑

1 )𝑛𝑛� at every point of the imaginary surface in subregion-𝑑𝑑 are 

captured at every time step of the FDTD time-marching loop. Finally in iteration # 1, during 
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each time step of the FDTD time-marching loop, the fictitious electric and magnetic 

currents are calculated from the scattered fields on the imaginary surface as 

     (𝒋𝒋𝑑𝑑1)𝑛𝑛 = n� × (𝐡𝐡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑
1 )𝑛𝑛 and (𝒎𝒎𝑑𝑑

1)𝑛𝑛 = −n� × �𝐞𝐞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑
1 �

𝑛𝑛
.        (2.8)  

These time domain current values are then used in “on-the-fly” NFT such that 

  𝐽𝐽𝑑𝑑1(𝜔𝜔𝑖𝑖) = 𝐽𝐽𝑑𝑑1(𝜔𝜔𝑖𝑖) + ∆𝑡𝑡(𝒋𝒋𝑑𝑑1)𝑛𝑛𝑒𝑒−𝑗𝑗𝜔𝜔𝑖𝑖𝑛𝑛∆𝑡𝑡,                  (2.9a)          

𝑀𝑀𝑑𝑑
1(𝜔𝜔𝑖𝑖) = 𝑀𝑀𝑑𝑑

1(𝜔𝜔𝑖𝑖) + ∆𝑡𝑡(𝒎𝒎𝑑𝑑
1)𝑛𝑛𝑒𝑒−𝑗𝑗𝜔𝜔𝑖𝑖𝑛𝑛∆𝑡𝑡.                  (2.9b) 

The NFT in (2.9) is performed for each frequency of interest. The existence of all the 

fictitious currents obtained in iteration # 0 is denied until the first repetition of iteration # 

1 is started. 

Iteration # 1 is repeated 𝐾𝐾–1 times until a convergence (stopping) criterion is 

achieved. The iterations are terminated when the Euclidean norm of the difference in the 

fictitious electric and magnetic currents from one iteration to the next iteration is small 

over the imaginary surface in each subregion at each frequency of interest. 

In order to check the convergence of the IMR solutions, the Euclidean norm �𝜀𝜀𝐽𝐽𝑥𝑥𝑘𝑘
𝑑𝑑 � 

of the difference between the kth and (k–1)th iterations in the x-component of the fictitious 

electric current (𝐽𝐽𝑥𝑥𝑘𝑘
𝑑𝑑 (𝜔𝜔𝑖𝑖)) over the imaginary surface of the subregion-d is defined as 

follows; 

𝜀𝜀𝐽𝐽𝑥𝑥𝑘𝑘
𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1,2,⋯,𝑁𝑁 �

�𝐽𝐽𝑥𝑥𝑘𝑘
𝑑𝑑 (𝜔𝜔𝑖𝑖) − 𝐽𝐽𝑥𝑥(𝑘𝑘−1)

𝑑𝑑 (𝜔𝜔𝑖𝑖)�

�𝐽𝐽𝑥𝑥(𝑘𝑘−1)
𝑑𝑑 (𝜔𝜔𝑖𝑖)�

�  × 100 %,              (2.10) 

where N is the number of desired frequencies, and d is the subregion number. In this 

expression, ‖∙‖ refers to the 𝑙𝑙2-norm and also known as the Euclidean norm [40]. The 

average of 𝜀𝜀𝐽𝐽𝑥𝑥𝑘𝑘
𝑑𝑑  in (2.10) over all subregions is given by  

𝜀𝜀𝐽𝐽𝑥𝑥𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜀𝜀𝐽𝐽𝑥𝑥𝑘𝑘
𝑑𝑑 �,   𝑑𝑑 = 1,2,⋯ ,𝐷𝐷.                                  (2.11) 
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Similarly, the Euclidean norm of difference for other J and M currents 

�𝜀𝜀𝐽𝐽𝑦𝑦𝑘𝑘 , 𝜀𝜀𝐽𝐽𝑧𝑧𝑘𝑘 , 𝜀𝜀𝑀𝑀𝑥𝑥𝑘𝑘
, 𝜀𝜀𝑀𝑀𝑦𝑦𝑘𝑘

, 𝜀𝜀𝑀𝑀𝑧𝑧𝑘𝑘
� are calculated from (2.10) and (2.11). The average norm of 

difference of the fictitious currents is the convergence 𝜀𝜀𝑘𝑘 for the kth iteration and defined 

as follows; 

𝜀𝜀𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜀𝜀𝐽𝐽𝑥𝑥𝑘𝑘 , 𝜀𝜀𝐽𝐽𝑦𝑦𝑘𝑘 , 𝜀𝜀𝐽𝐽𝑧𝑧𝑘𝑘 , 𝜀𝜀𝑀𝑀𝑥𝑥𝑘𝑘
, 𝜀𝜀𝑀𝑀𝑦𝑦𝑘𝑘

, 𝜀𝜀𝑀𝑀𝑧𝑧𝑘𝑘
�.               (2.12) 

Based on the numerical experiments, 5 % is found sufficient to indicate that 

convergence 𝜀𝜀𝑘𝑘 is achieved since RCS values at desired frequencies do not change 

significantly for smaller values.  

Once the convergence (𝜀𝜀𝑘𝑘) in (2.12) reaches the convergence criterion value, the 

IMR iterations are completed and the total fictitious currents coming from all iterations are 

calculated in (2.13) for each subregion. 

      𝐽𝐽𝑑𝑑(𝜔𝜔𝑖𝑖) = ∑ 𝐽𝐽𝑑𝑑𝑘𝑘(𝜔𝜔𝑖𝑖)𝐾𝐾−1
𝑘𝑘=0 , and 𝑀𝑀𝑑𝑑(𝜔𝜔𝑖𝑖) = ∑ 𝑀𝑀𝑑𝑑

𝑘𝑘(𝜔𝜔𝑖𝑖)𝐾𝐾−1
𝑘𝑘=0 ,                  (2.13)          

where 𝐽𝐽𝑑𝑑(𝜔𝜔𝑖𝑖) and 𝑀𝑀𝑑𝑑(𝜔𝜔𝑖𝑖) are the total fictitious currents at frequency 𝜔𝜔𝑖𝑖 in subregion-𝑑𝑑, 

and 𝐾𝐾 is the total number of iterations. The far-field terms (𝐿𝐿𝜃𝜃𝑑𝑑(𝜔𝜔𝑖𝑖), 𝐿𝐿𝜙𝜙𝑑𝑑 (𝜔𝜔𝑖𝑖), 𝑁𝑁𝜃𝜃𝑑𝑑(𝜔𝜔𝑖𝑖), and 

𝑁𝑁𝜙𝜙𝑑𝑑(𝜔𝜔𝑖𝑖)) from the total fictitious currents in (2.13) are calculated for subregion-𝑑𝑑, using 

the near-field to far-field transformation [33]. Then the total far-field terms 

(𝐿𝐿𝜃𝜃(𝜔𝜔𝑖𝑖), 𝐿𝐿𝜙𝜙(𝜔𝜔𝑖𝑖), 𝑁𝑁𝜃𝜃(𝜔𝜔𝑖𝑖), and 𝑁𝑁𝜙𝜙(𝜔𝜔𝑖𝑖)) in (2.14) are the sum of the far-field terms from all 

subregions.  

𝐿𝐿𝜃𝜃(𝜔𝜔𝑖𝑖) = ∑ 𝐿𝐿𝜃𝜃𝑑𝑑(𝜔𝜔𝑖𝑖)𝐷𝐷
𝑑𝑑=1  and 𝐿𝐿𝜙𝜙(𝜔𝜔𝑖𝑖) = ∑ 𝐿𝐿𝜙𝜙𝑑𝑑 (𝜔𝜔𝑖𝑖)𝐷𝐷

𝑑𝑑=1 .     (2.14a) 

𝑁𝑁𝜃𝜃(𝜔𝜔𝑖𝑖) = ∑ 𝑁𝑁𝜃𝜃𝑑𝑑(𝜔𝜔𝑖𝑖)𝐷𝐷
𝑑𝑑=1  and 𝑁𝑁𝜙𝜙(𝜔𝜔𝑖𝑖) = ∑ 𝑁𝑁𝜙𝜙𝑑𝑑(𝜔𝜔𝑖𝑖)𝐷𝐷

𝑑𝑑=1 .             (2.14b) 
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At the end of the algorithm, these total far-field terms in (2.14) are used to obtain 

the components of the bistatic radar cross-section (RCSθ and RCSϕ) which are expressed 

at each frequency of interest in the following form;     

RCSθ(𝜔𝜔𝑖𝑖) = 𝑘𝑘𝑖𝑖2

8𝜋𝜋𝜂𝜂0𝑃𝑃inc(𝜔𝜔𝑖𝑖)
�𝐿𝐿𝜙𝜙(𝜔𝜔𝑖𝑖) + 𝜂𝜂0𝑁𝑁𝜃𝜃(𝜔𝜔𝑖𝑖)�

2
,                  (2.15a) 

RCSϕ(𝜔𝜔𝑖𝑖) = 𝑘𝑘𝑖𝑖2

8𝜋𝜋𝜂𝜂0𝑃𝑃inc(𝜔𝜔𝑖𝑖)
�𝐿𝐿𝜃𝜃(𝜔𝜔𝑖𝑖) − 𝜂𝜂0𝑁𝑁𝜙𝜙(𝜔𝜔𝑖𝑖)�

2
,                  (2.15b) 

where  𝜂𝜂0 is the intrinsic impedance of the free space, 𝑘𝑘𝑖𝑖 = 𝜔𝜔𝑖𝑖�𝜇𝜇0𝜖𝜖0 is the propagation 

constant in free space, and 𝑃𝑃inc(𝜔𝜔𝑖𝑖) is the power per unit area carried by the incident plane 

wave. The 𝑃𝑃inc(𝜔𝜔𝑖𝑖) can be calculated as  

𝑃𝑃inc(𝜔𝜔𝑖𝑖) = 1
2𝜂𝜂0

�𝐸𝐸inc(𝜔𝜔𝑖𝑖)�
2
,       (2.16) 

where 𝐸𝐸inc(𝜔𝜔𝑖𝑖) is the NFT of the incident electric field waveform (𝐞𝐞inc) of (2.3) at 

frequency 𝜔𝜔𝑖𝑖 for which the RCS is sought. 

To prove the convergence of the solutions for the problem, a normalized average 

error is calculated at each iteration to provide more information related to the convergence 

of the full domain solution. Once the number of iterations used within the IMR technique 

increases, the error decreases and the solution of the IMR technique converges to that of 

the full domain. The level of the final error depends on the simulated problem. The 

normalized average error at each iteration is defined as 

    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜔𝜔𝑖𝑖) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ��RCS
𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔𝑖𝑖)−RCS𝐹𝐹𝐹𝐹(𝜔𝜔𝑖𝑖)�
max��RCS𝐹𝐹𝐹𝐹(𝜔𝜔𝑖𝑖)��

� × 100 %,  FD: Full Domain.      (2.17)  

Since a single run of the IMR technique using the FDTD method provides solutions 

at multiple frequencies, numerical results at multiple frequencies are presented to prove the 

validity of the IMR technique based on the FDTD method in Chapter 3. 
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2.3 Time-Limited Waveform Construction (TWC) Algorithm 

As discussed before, when proceeding to a new IMR iteration, radiated 

electromagnetic fields in (2.6) are calculated at every field point on the TF/SF boundary of 

each subregion due to the fictitious currents calculated in the previous iteration on the 

imaginary surface of other subregions. These fields are considered as the new excitation 

fields for subregion-𝑑𝑑 and there are 𝑁𝑁 number of field components for each field point in 

the frequency domain, where 𝑁𝑁 is the number of frequencies in consideration. These 

excitation field components need to be combined and transformed into the time domain to 

excite the FDTD problem. Here we propose an algorithm to construct time-limited 

waveform, i.e. 𝐜𝐜𝑑𝑑1(𝑡𝑡) in (2.7), which includes the required magnitudes and phases of time-

harmonic signals of the solution in its frequency spectrum. Then 𝐜𝐜𝑑𝑑1(𝑡𝑡) is used to excite the 

FDTD problem space during the current iteration of IMR technique. In this section, the 

following operations are performed for all subregions {𝑑𝑑=1, 2, ⋯,𝐷𝐷} and in all iterations 

except iteration # 0. 

The constructed time-limited waveform, 𝐜𝐜𝑑𝑑1(𝑡𝑡), is a Gaussian waveform that is 

modulated by a series of cosine waveforms. Each of the cosine terms in the series is related 

to one of the desired solution frequencies. The constructed time-limited waveform is then 

expressed as  

         𝐜𝐜𝑑𝑑1(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) × ∑ (𝐵𝐵𝑖𝑖)𝑑𝑑1 cos(𝜔𝜔𝑖𝑖𝑡𝑡 + (𝜃𝜃𝑖𝑖)𝑑𝑑1)𝑁𝑁
𝑖𝑖=1 ,                             (2.18)  

where 𝑔𝑔(𝑡𝑡) is a Gaussian waveform, 𝜔𝜔𝑖𝑖 is the desired frequency, 𝑁𝑁 is the pre-specified 

number of frequencies, and (𝐵𝐵𝑖𝑖)𝑑𝑑1  and (𝜃𝜃𝑖𝑖)𝑑𝑑1  are the unknown coefficients and phases of 

the cosine waveform in subregion-𝑑𝑑, respectively. The unknown coefficients and phases 

of the cosine waveforms, i.e. (𝐵𝐵𝑖𝑖)𝑑𝑑1  and (𝜃𝜃𝑖𝑖)𝑑𝑑1 , are to be determined using the known 
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magnitudes and phases of the radiated electromagnetic fields in (2.6) at the desired solution 

frequencies.  

The Gaussian waveform, 𝑔𝑔(𝑡𝑡), and its Fourier transform, 𝐺𝐺(𝜔𝜔), are given 

respectively as follows: 

                                                          𝑔𝑔(𝑡𝑡) = 𝑒𝑒(−(𝑡𝑡−𝑡𝑡0)2/𝜏𝜏2),                                                 (2.19) 

                                                        𝐺𝐺(𝜔𝜔) = 𝜏𝜏√𝜋𝜋𝑒𝑒−(𝜏𝜏𝜔𝜔)2/4𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑜𝑜,                                     (2.20) 

where 𝜏𝜏 is a parameter that determines the width of the Gaussian waveform, and 𝑡𝑡𝑜𝑜 is the 

time at which 𝑔𝑔(𝑡𝑡) is maximum.  

The Fourier transform of the constructed time-limited waveform, 𝐶𝐶𝑑𝑑1(𝜔𝜔), which 

equals to radiated electromagnetic fields in (2.6) can be expressed as 

       𝐶𝐶𝑑𝑑1(𝜔𝜔) = �∑ �𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑
1 (𝜔𝜔𝑖𝑖)𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑖𝑖),𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑

1 (𝜔𝜔𝑖𝑖)𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 �.            (2.21)  

The Fourier transform of the constructed time-limited waveform, 𝐶𝐶𝑑𝑑1(𝜔𝜔), can also be 

expressed as the Fourier transform of a Gaussian waveform modulated by a series of cosine 

waveforms in (2.18). 

𝐶𝐶𝑑𝑑1(𝜔𝜔) = ℱ{𝐜𝐜𝑑𝑑1(𝑡𝑡)} = ℱ[𝑔𝑔(𝑡𝑡) × ∑ (𝐵𝐵𝑖𝑖)𝑑𝑑1 cos(𝜔𝜔𝑖𝑖𝑡𝑡 + (𝜃𝜃𝑖𝑖)𝑑𝑑1)𝑁𝑁
𝑖𝑖=1 ]  

                           = 0.5 �∑ (𝐵𝐵𝑖𝑖)𝑑𝑑1𝑁𝑁
𝑖𝑖=1 �𝐺𝐺(𝜔𝜔 − 𝜔𝜔𝑖𝑖)𝑒𝑒𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑

1
+ 𝐺𝐺(𝜔𝜔 + 𝜔𝜔𝑖𝑖)𝑒𝑒−𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑

1
��.            (2.22) 

The time-limited waveform, 𝐜𝐜𝑑𝑑1(𝑡𝑡), is constructed from knowledge of the magnitude and 

phase of radiated electromagnetic fields in (2.6) at each of  𝜔𝜔1, 𝜔𝜔2, ⋯ , 𝜔𝜔𝑁𝑁 and −𝜔𝜔1, −𝜔𝜔2, 

⋯ , −𝜔𝜔𝑁𝑁. From this knowledge, a linear set of equations is constructed using (2.22). This 

linear set of equations is then solved for the unknowns (𝐵𝐵𝑖𝑖)𝑑𝑑1  and (𝜃𝜃𝑖𝑖)𝑑𝑑1  in (2.18). 

Setting 𝜔𝜔 = 𝜔𝜔𝑚𝑚 in (2.22) and, in the resulting equation, taking 𝐶𝐶𝑑𝑑1(𝜔𝜔𝑚𝑚) to be 

𝐶𝐶𝑑𝑑,𝑚𝑚
1 𝑒𝑒𝑗𝑗𝜙𝜙𝑑𝑑,𝑚𝑚

1
,  where 𝐶𝐶𝑑𝑑1(𝜔𝜔𝑚𝑚) is a known complex number, we obtain 
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      𝐶𝐶𝑑𝑑,𝑚𝑚
1 𝑒𝑒𝑗𝑗𝜙𝜙𝑑𝑑,𝑚𝑚

1
= 0.5 �∑ (𝐵𝐵𝑖𝑖)𝑑𝑑1𝑁𝑁

𝑖𝑖=1 �𝐺𝐺(𝜔𝜔𝑚𝑚 − 𝜔𝜔𝑖𝑖)𝑒𝑒𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑
1

+ 𝐺𝐺(𝜔𝜔𝑚𝑚 + 𝜔𝜔𝑖𝑖)𝑒𝑒−𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑
1
��.     (2.23)     

We also obtain 

 𝐶𝐶𝑑𝑑,𝑚𝑚
1 𝑒𝑒−𝑗𝑗𝜙𝜙𝑑𝑑,𝑚𝑚

1
= 0.5 �∑ (𝐵𝐵𝑖𝑖)𝑑𝑑1𝑁𝑁

𝑖𝑖=1 �𝐺𝐺(−𝜔𝜔𝑚𝑚 − 𝜔𝜔𝑖𝑖)𝑒𝑒𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑
1

+ 𝐺𝐺(−𝜔𝜔𝑚𝑚 + 𝜔𝜔𝑖𝑖)𝑒𝑒−𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑
1
��.  (2.24) 

Taking {m=1, 2, ⋯, N} in (2.23) and (2.24), we obtain a set of 2N linear equations in the 

2N complex unknowns (𝐵𝐵1)𝑑𝑑1𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑
1
, (𝐵𝐵2)𝑑𝑑1𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
, ⋯ , (𝐵𝐵𝑁𝑁)𝑑𝑑1𝑒𝑒𝑗𝑗(𝜃𝜃𝑁𝑁)𝑑𝑑

1
 and (𝐵𝐵1)𝑑𝑑1𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
, 

(𝐵𝐵2)𝑑𝑑1𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑
1
, ⋯ , (𝐵𝐵𝑁𝑁)𝑑𝑑1𝑒𝑒−𝑗𝑗(𝜃𝜃𝑁𝑁)𝑑𝑑

1
 which are assumed to be independent of each other. 

This set of 2N linear equations can then be solved for the 2N complex unknowns. 

Once the coefficients and phases of the cosine waveforms in (2.22) are known, the 

constructed time-limited waveform can be expressed as 

       𝐜𝐜𝑑𝑑1(𝑡𝑡) = 𝑒𝑒�−
(𝑡𝑡−𝑡𝑡𝑜𝑜)2

𝜏𝜏2
� × �

(𝐵𝐵1)𝑑𝑑1 cos(𝜔𝜔1𝑡𝑡 + (𝜃𝜃1)𝑑𝑑1) + (𝐵𝐵2)𝑑𝑑1 cos(𝜔𝜔2𝑡𝑡 + (𝜃𝜃2)𝑑𝑑1)
+⋯+ (𝐵𝐵𝑁𝑁)𝑑𝑑1 cos(𝜔𝜔𝑁𝑁𝑡𝑡 + (𝜃𝜃𝑁𝑁)𝑑𝑑1)

�.     (2.25) 

As an example, let’s construct a time-limited waveform which includes the two 

desired frequencies (𝜔𝜔1 and 𝜔𝜔2) in its frequency spectrum. The time-limited waveform 

which includes two desired frequencies can be written as a function of frequency as  

𝐶𝐶𝑑𝑑1(𝜔𝜔) = 0.5 × �∑ (𝐵𝐵𝑖𝑖)𝑑𝑑12
𝑖𝑖=1 �𝐺𝐺(𝜔𝜔 − 𝜔𝜔𝑖𝑖)𝑒𝑒𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑

1
+ 𝐺𝐺(𝜔𝜔 + 𝜔𝜔𝑖𝑖)𝑒𝑒−𝑗𝑗(𝜃𝜃𝑖𝑖)𝑑𝑑

1
��,       

                        = (𝐵𝐵1)𝑑𝑑
1

2
× �𝐺𝐺(𝜔𝜔 − 𝜔𝜔1)𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
+ 𝐺𝐺(𝜔𝜔 + 𝜔𝜔1)𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
�  

                              + (𝐵𝐵2)𝑑𝑑
1

2
× �𝐺𝐺(𝜔𝜔 − 𝜔𝜔2)𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
+ 𝐺𝐺(𝜔𝜔 + 𝜔𝜔2)𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
�.       (2.26)  

Then, evaluating 𝜔𝜔 at 𝜔𝜔1,  𝜔𝜔2,−𝜔𝜔1, and −𝜔𝜔2 in (2.26), one can obtain the following four 

equations; 

𝐶𝐶𝑑𝑑1(𝜔𝜔 = 𝜔𝜔1) = 𝐶𝐶𝑑𝑑,1
1 𝑒𝑒𝑗𝑗𝜙𝜙𝑑𝑑,1

1
= (𝐵𝐵1)𝑑𝑑

1

2
�𝐺𝐺(0)𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
+ 𝐺𝐺(2𝜔𝜔1)𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
�  

   + (𝐵𝐵2)𝑑𝑑
1

2
�𝐺𝐺(𝜔𝜔1 − 𝜔𝜔2)𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
+ 𝐺𝐺(𝜔𝜔1 + 𝜔𝜔2)𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
�,         (2.27a) 
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𝐶𝐶𝑑𝑑1(𝜔𝜔 = 𝜔𝜔2) = 𝐶𝐶𝑑𝑑,2
1 𝑒𝑒𝑗𝑗𝜙𝜙𝑑𝑑,2

1
= (𝐵𝐵1)𝑑𝑑

1

2
�𝐺𝐺(𝜔𝜔2 − 𝜔𝜔1)𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
+ 𝐺𝐺(𝜔𝜔2 + 𝜔𝜔1)𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
�  

   + (𝐵𝐵2)𝑑𝑑
1

2
�𝐺𝐺(0)𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
+ 𝐺𝐺(2𝜔𝜔2)𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
�,               (2.27b) 

𝐶𝐶𝑑𝑑1(𝜔𝜔 = −𝜔𝜔1) = 𝐶𝐶𝑑𝑑,1
1 𝑒𝑒−𝑗𝑗𝜙𝜙𝑑𝑑,1

1
= (𝐵𝐵1)𝑑𝑑

1

2
�𝐺𝐺(−2𝜔𝜔1)𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
+ 𝐺𝐺(0)𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
�  

   + (𝐵𝐵2)𝑑𝑑
1

2
�𝐺𝐺(−𝜔𝜔1 − 𝜔𝜔2)𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
+ 𝐺𝐺(−𝜔𝜔1 + 𝜔𝜔2)𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
�,   (2.27c)                  

𝐶𝐶𝑑𝑑1(𝜔𝜔 = −𝜔𝜔2) = 𝐶𝐶𝑑𝑑,2
1 𝑒𝑒−𝑗𝑗𝜙𝜙𝑑𝑑,2

1
= (𝐵𝐵1)𝑑𝑑

1

2
�𝐺𝐺(−𝜔𝜔2 − 𝜔𝜔1)𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
+ 𝐺𝐺(−𝜔𝜔2 + 𝜔𝜔1)𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑

1
�  

   + (𝐵𝐵2)𝑑𝑑
1

2
�𝐺𝐺(−2𝜔𝜔2)𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
+ 𝐺𝐺(0)𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑

1
�,                         (2.27d) 

where 𝐶𝐶𝑑𝑑,1
1 , 𝐶𝐶𝑑𝑑,2

1 , and 𝜙𝜙𝑑𝑑,1
1 , 𝜙𝜙𝑑𝑑,2

1  are the magnitudes and phases of 𝐶𝐶𝑑𝑑1(𝜔𝜔) at 

𝜔𝜔1 and 𝜔𝜔2 frequencies, respectively, and Gaussian waveform, 𝐺𝐺(𝜔𝜔), at the 

corresponding frequencies is calculated in (2.20). This set of four linear equations (2.27) 

can be expressed in a matrix form as 

  
�
�
𝐶𝐶𝑑𝑑,1
1 𝑒𝑒𝑗𝑗𝜙𝜙𝑑𝑑,1

1
  

𝐶𝐶𝑑𝑑,2
1 𝑒𝑒𝑗𝑗𝜙𝜙𝑑𝑑,2

1

𝐶𝐶𝑑𝑑,1
1 𝑒𝑒−𝑗𝑗𝜙𝜙𝑑𝑑,1

1
 

𝐶𝐶𝑑𝑑,2
1 𝑒𝑒−𝑗𝑗𝜙𝜙𝑑𝑑,2

1

�
�

=  0.5 ��

𝐺𝐺(0)   𝐺𝐺(𝜔𝜔1 − 𝜔𝜔2)
𝐺𝐺(𝜔𝜔2 − 𝜔𝜔1)   𝐺𝐺(0)   𝐺𝐺(2𝜔𝜔1)    𝐺𝐺(𝜔𝜔1 + 𝜔𝜔2)

 𝐺𝐺(𝜔𝜔2 + 𝜔𝜔1)     𝐺𝐺(2𝜔𝜔2)
𝐺𝐺(−2𝜔𝜔1) 𝐺𝐺(−𝜔𝜔1 − 𝜔𝜔2)

𝐺𝐺(−𝜔𝜔2 − 𝜔𝜔1) 𝐺𝐺(−2𝜔𝜔2)
𝐺𝐺(0) 𝐺𝐺(−𝜔𝜔1 + 𝜔𝜔2)

     𝐺𝐺(−𝜔𝜔2 + 𝜔𝜔1) 𝐺𝐺(0)

�� �
�

(𝐵𝐵1)𝑑𝑑1 𝑒𝑒𝑗𝑗(𝜃𝜃1)𝑑𝑑
1

(𝐵𝐵2)𝑑𝑑1 𝑒𝑒𝑗𝑗(𝜃𝜃2)𝑑𝑑
1

(𝐵𝐵1)𝑑𝑑1 𝑒𝑒−𝑗𝑗(𝜃𝜃1)𝑑𝑑
1

(𝐵𝐵2)𝑑𝑑1 𝑒𝑒−𝑗𝑗(𝜃𝜃2)𝑑𝑑
1

�
�.     (2.28) 

Solution of (2.28) yields the coefficients and phases, (𝐵𝐵1)𝑑𝑑1 , (𝐵𝐵2)𝑑𝑑1 , (𝜃𝜃1)𝑑𝑑1 , and (𝜃𝜃2)𝑑𝑑1 , of 

the cosine waveforms. Then the constructed time-limited waveform is expressed as 

   𝐜𝐜𝑑𝑑1(𝑡𝑡) = 𝑒𝑒(−(𝑡𝑡−𝑡𝑡𝑜𝑜)2/𝜏𝜏2) × [(𝐵𝐵1)𝑑𝑑1 cos(𝜔𝜔1𝑡𝑡 + (𝜃𝜃1)𝑑𝑑1) + (𝐵𝐵2)𝑑𝑑1 cos(𝜔𝜔2𝑡𝑡 + (𝜃𝜃2)𝑑𝑑1)].   (2.29) 

The presented approach can be extended to construct time-limited waveforms 

which include the components with the required magnitudes and phases theoretically at 

any number of frequencies. Then these waveforms are used to excite the FDTD problem 

spaces to obtain solutions at the frequencies of interest. 
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2.4 IMR Procedure for Radiation Problems 

In Section 2.2 we show the integration of FDTD method into the IMR technique 

for scattering problems. In this section we extend this approach for radiation problems. In 

this case the radiation problem domain is divided into multiple subregions: one of them is 

the source subregion including an antenna, and the others are the scatterer subregions 

including scatterer objects. First, the antenna is driven in isolation so that, in what will be 

called the 0th iteration, there is no incident field in the subregion containing the driven 

antenna, and the incident fields in all the other subregions consist of the field of the driven 

antenna in isolation. Then the solutions of the subregions are combined, after multiple 

interactions between the subregions, to obtain the solutions at all frequencies of interest for 

the original problem.  

For the sake of demonstration, the radiation problem illustrated in Figure 2.5a is 

divided into unconnected subregions: a source subregion and scatterer subregions, where 

each scatterer subregion contains a scatterer object, as shown in Figure 2.5b. The subregion 

boundaries are terminated by CPML indicated by solid lines in Figure 2.5. The dashed and 

dotted lines indicate the TF/SF boundary and imaginary surface in Figure 2.5, respectively. 

The iterative procedure between subregions of a radiation problem, shown in Figure 2.6, 

is similar to the iterative procedure between subregions of a scattering problem, shown in 

Figure 2.4, but the only difference is that the antenna in the source subregion is excited by 

the near zone source excitation. Radiated fields from the antenna are considered as the 

excitation fields for the other subregions including scatterer objects. The iterative 

procedure between subregions consists of iteration # 0, iteration # 1, and as many 

repetitions of iteration # 1 as are necessary. 
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Figure 2.5: Radiation from multiple objects: a) original problem and b) source and 

scatterer subregions. (dotted line: imaginary surface and dashed line: TF/SF boundary) 

At the beginning of the iteration # 0, first, the source subregion is simulated by the 

near zone source excitation. The scattered electromagnetic fields are captured at every 

point of the imaginary surface at every time step of the FDTD time-marching loop. Then 

the fictitious currents in (2.4) are calculated from the scattered fields over the imaginary 

surface in the source subregion. The fictitious currents in the time domain are transformed 

to the frequency domain data in (2.5) at the frequencies of interest, using the NFT. The 
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radiated electromagnetic fields in (2.6) due to these currents are calculated on the TF/SF 

boundaries of the scatterer subregions, using the NF/NF transformation. These radiated 

fields are considered as the excitation fields for the scatterer subregions. Since the NF/NF 

transformation is carried out in the frequency domain for each frequency of interest, the 

excitation fields are in the frequency domain. In order to excite the FDTD problem space, 

these fields are converted into time-limited waveforms, 𝐜𝐜(𝑡𝑡), by using the TWC algorithm. 

Then the constructed time-limited waveforms in (2.7) from the radiated fields imposed on 

the TF/SF boundary of the scatterer subregions start a FDTD procedure whose solution on 

the imaginary surface is used to obtain the fictitious currents in the frequency domain from 

the calculated scattered electromagnetic fields. The existence of all the fictitious currents 

obtained in iteration # 0 is denied until iteration # 1 is started. 

At the beginning of iteration # 1, radiated fields due to the fictitious currents 

generated by two scatterer subregions in iteration # 0 are considered as the excitation fields 

for the source subregion after converting these fields into time-limited waveforms by using 

the TWC algorithm, but now the dipole antenna in the source subregion is inactive because 

it behaves like a scatterer. Therefore, a resistor which is equal to internal impedance of the 

voltage source is placed at the terminal of the antenna. Then fictitious currents calculated 

in the source subregion and those calculated in the scatterer subregions obtained in iteration 

# 0 are used to calculate the radiated fields on the field points of the TF/SF boundary in the 

scatterer subregions, using the NF/NF transformation. The time-limited waveforms from 

these fields are imposed on the TF/SF boundary of the source subregion to start the FDTD 

simulation. After iteration # 1 is done, the procedure for the subsequent iterations is the 

same.  
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Figure 2.6: Iterative procedure between source subregion and scatterer subregions. 

This cycle of iterations is processed until a convergence (stopping) criterion is 

achieved. Once the convergence (𝜀𝜀𝑘𝑘) in (2.12) reaches the convergence criterion value, the 

IMR iterations are completed and the total far-field terms, 𝐿𝐿𝜃𝜃(𝜔𝜔𝑖𝑖), 𝐿𝐿𝜙𝜙(𝜔𝜔𝑖𝑖), 𝑁𝑁𝜃𝜃(𝜔𝜔𝑖𝑖), and 

𝑁𝑁𝜙𝜙(𝜔𝜔𝑖𝑖), are calculated in (2.14) at all frequencies of interest. At the end of the algorithm, 

these total far-field terms are used to obtain the components of the radiation patterns [33] 

(Gain𝜃𝜃 and Gain𝜙𝜙) at all frequencies of interest expressed as  

        Gain𝜃𝜃(𝜔𝜔𝑖𝑖) = 𝑘𝑘𝑖𝑖2

8𝜋𝜋𝜂𝜂0𝑃𝑃del(𝜔𝜔𝑖𝑖)
�𝐿𝐿𝜙𝜙(𝜔𝜔𝑖𝑖) +  𝜂𝜂0𝑁𝑁𝜃𝜃(𝜔𝜔𝑖𝑖)�

2
,                  (2.30a) 

        Gain𝜙𝜙(𝜔𝜔𝑖𝑖) = 𝑘𝑘𝑖𝑖2

8𝜋𝜋𝜂𝜂0𝑃𝑃del(𝜔𝜔𝑖𝑖)
�𝐿𝐿𝜃𝜃(𝜔𝜔𝑖𝑖) −  𝜂𝜂0𝑁𝑁𝜙𝜙(𝜔𝜔𝑖𝑖)�

2
,                    (2.30b) 
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where 𝑃𝑃del(𝜔𝜔𝑖𝑖) is delivered power to an antenna determined by the product of the sample 

voltage and current provided from the voltage source and can be expressed as  

𝑃𝑃del(𝜔𝜔𝑖𝑖) =  1
2
𝑅𝑅𝑅𝑅{𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜔𝜔𝑖𝑖)𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗ (𝜔𝜔𝑖𝑖)},                           (2.31) 

where the asterisk ‘∗’ denotes the complex conjugate, and 

               𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜔𝜔𝑖𝑖) = ∑ 𝑉𝑉𝑠𝑠𝑘𝑘(𝜔𝜔𝑖𝑖)𝑘𝑘 ,   𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜔𝜔𝑖𝑖) = ∑ 𝐼𝐼𝑠𝑠𝑘𝑘(𝜔𝜔𝑖𝑖)𝑘𝑘 .                  (2.32) 

In (2.32), 𝑉𝑉𝑠𝑠𝑘𝑘(𝜔𝜔𝑖𝑖)and 𝐼𝐼𝑠𝑠𝑘𝑘(𝜔𝜔𝑖𝑖) represent the Fourier transform values of the source voltage 

and current at the kth iteration. After each iteration, the total delivered power is calculated 

according to the total source voltage and current . Once the convergence criterion is 

achieved, the radiation patterns in (2.30) are calculated. 

To prove the convergence of the solutions for the problems, a normalized average 

error is calculated to provide more information related to the convergence of the full 

domain solution. The normalized average error is defined at each iteration as 

     𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜔𝜔𝑖𝑖) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ��Gain
𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔𝑖𝑖)−Gain𝐹𝐹𝐹𝐹(𝜔𝜔𝑖𝑖)�

𝑚𝑚𝑚𝑚𝑚𝑚��Gain𝐹𝐹𝐹𝐹(𝜔𝜔𝑖𝑖)��
� × 100%.  FD: Full Domain.    (2.33)       

The numerical results at multiple frequencies are presented to prove the validity of 

the IMR technique based on the FDTD method in Chapter 4. 

2.5 Speeding up Techniques 

It has been realized that a considerable amount of the computation time is spent for 

the calculation of the excitation fields of the subregions. Therefore, two approaches are 

proposed in this work to improve the timing issue: TF/SF formulation, and interpolation 

process at current points on the imaginary surface and field points on the TF/SF boundary. 
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These two speeding up techniques provide remarkable reduction in the computation time 

of the excitation fields. These improvements are discussed in this section.  

 Total-Field Scattered-Field (TF/SF) Formulation 

Initially, we have used the scattered field (SF) formulation [33] to excite the FDTD 

problem domains. Since the SF formulation requires the computation of the excitation 

fields at all field points in the problem space, a considerable amount of computation time 

is spent for the calculation of these fields. Therefore, the TF/SF formulation [34] is used to 

speed up the calculation of them. They are calculated on the TF/SF boundary rather than 

the entire computational domain in the subregions. 

 Interpolation Process 

An interpolation process can be simply described as an averaging process. The 

interpolation process has been applied to the current points on the imaginary surface and 

the field points on the TF/SF boundary in each subregion. This process provides 90 % 

reduction in the computation time of the excitation fields.  

In the interpolation process at the current points on the imaginary surface, the 

average of four neighboring original current points is considered as a new current point for 

the calculation of the excitation fields. In Figure 2.7, the small dots on the imaginary 

surface are the original current points, whereas the big dots on the surface are the new 

current points.  

In the interpolation process at the field points on the TF/SF boundary, radiated 

fields in all directions (x, y, and z) are calculated at the odd field points, whereas each of 

fields at the even field points is simply an average of fields on two successive odd field 
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points. Figure 2.8 describes the interpolation process at the field points, for the x direction, 

which is to be applied also for the y and z directions on the TF/SF boundary. In Figure 2.8, 

the red dots on the boundary are the odd field points where the fields are actually calculated 

based on the fictitious currents generated from other subregions, whereas the blue squares 

on the boundary show the even field points where each field is the average of the fields on 

two successive odd field points.  

 

Figure 2.7: Configuration for the averaging process of current points on the imaginary 
surface. 

 

 

 

 

 

 

Figure 2.8: Configuration for the averaging process of field points along the x direction 
on the TF/SF boundary. 
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3 NUMERICAL RESULTS FOR SCATTERING 

PROBLEMS 

In this chapter, numerical results of scattering problems are provided to prove the 

validity of the FDTD method integrated into the IMR technique. The problems are 

simulated to obtain solutions at a number of frequencies. In all simulations, the incident 

plane waves are both 𝜃𝜃 and ϕ polarized Gaussian waves with arbitrary incident angles (𝜃𝜃𝑖𝑖 

and 𝜙𝜙𝑖𝑖). The incident electric field (𝐞𝐞inc) [33] can be expressed as 

𝐞𝐞inc = �𝐸𝐸𝜃𝜃𝜃𝜃� + 𝐸𝐸𝜙𝜙𝜙𝜙�� 𝑔𝑔𝑤𝑤,                                               (3.1) 

where 𝑔𝑔𝑤𝑤 is a Gaussian waveform function, 𝐸𝐸𝜃𝜃 and 𝐸𝐸𝜙𝜙 are the magnitudes of the incident 

electric field components, and indicating the polarization types. The incident plane waves 

are both 𝜃𝜃 and ϕ polarized by assigning 𝐸𝐸𝜃𝜃=1 and 𝐸𝐸𝜙𝜙=1.  

FDTD problem spaces are terminated by eight CPML layers with CPML 

parameters [33] of CPML_order: 3, CPML_sigma_factor: 1.5, CPML_kappa: 7, 

CPML_alpha_min: 0, and CPML_alpha_max: 0.05. In addition to the eight CPML layers, 

ten air buffer layers are introduced between the inner CPML boundary and the object. The 

specifications of the computer used for the simulations are given in Appendix B. 

An algorithm is developed to stop the FDTD time-marching loop and define the 

necessary number of time steps for the full domain and IMR simulations. In this algorithm, 

the excitation fields are applied to a problem space until the magnitudes of the scattered 

electric fields at certain points in the computation domain reach to values less than a 

threshold value. In our analysis, the threshold is defined as 5×10-4 (Volts/meter). Thus the 

FDTD time-marching loop is stopped when the scattered fields reach below the threshold.  
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3.1 Electromagnetic Scattering from Two Objects-1 

The geometry of the first problem illustrated in Figure 3.1 is excited by a ϕ and θ 

polarized plane wave with 𝜃𝜃inc=90o and 𝜙𝜙inc=0o to obtain bistatic RCS for the xy, xz, and 

yz plane cuts at 200 MHz, 225 MHz, 250 MHz, 275 MHz and 300 MHz. The separation 

between the dielectric ellipsoid and sphere is 0.5 m. The semi-axes of the dielectric 

ellipsoid are 0.2 m, 0.2 m, and 1 m along the x, y, and z axes, respectively. The radius of 

the dielectric sphere is 0.4 m. The relative permittivity of the dielectric ellipsoid is 2.2, 

whereas that of the dielectric sphere is 3. The relative permeability of dielectric objects is 

1. The problem space is composed of cells with size 0.02 m in the x, y, and z directions for 

the full domain simulation. As for the IMR simulation, a cell size 0.02 m is used in the 

subregion containing the ellipsoid, whereas a cell size 0.04 m is used in the subregion 

containing the sphere. One of the main features of the IMR technique is the flexibility. It 

provides for choosing different cell sizes in each subregion. Figure 3.2 shows the 

convergence of the IMR iteration calculated by (2.12). It can be seen that the IMR 

algorithm reaches the convergence criterion (εk<5%) after iteration # 2. Figures 3.3-3.8 

show the bistatic RCSθ and RCSϕ for the xy, xz, and yz plane cuts at 200 MHz, 225 MHz, 

250 MHz, 275 MHz and 300 MHz. To prove the convergence of the full domain and IMR 

technique results, the normalized average errors for RCSθ and RCSϕ in the three plane cuts 

are calculated using (2.17) and shown in Figures 3.9-3.10. Simulation parameters and 

computer resources used are summarized in Table 3-1 for the full domain solution and the 

IMR solution. Comparison shows a considerable reduction in the memory storage 

requirements and computation time.  
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Figure 3.1: Geometry of the first problem. 

 

Figure 3.2: Convergence (εk) between iteration steps for the first problem. 

Table 3-1: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 1,250,656 39 − 926 
IMR-FDTD 2 602,112 25 2 425 
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Figure 3.3: Bistatic RCSθ for xy-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.4: Bistatic RCSθ for xz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.5: Bistatic RCSθ for yz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.6: Bistatic RCSϕ for xy-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.7: Bistatic RCSϕ for xz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 

 

 

 

0 60 120 180 120 60 0
-30

-20

-10

0

10

20

θ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-20

-15

-10

-5

0

θ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-20

-15

-10

-5

0

5

θ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

(e) 

(a) 

(b) 

42 
 



 

 

 

Figure 3.8: Bistatic RCSϕ for yz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 

0 60 120 180 120 60 0
-20

-15

-10

-5

0

5

θ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-20

-15

-10

-5

0

5

θ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-25

-20

-15

-10

-5

0

θ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

(c) 

(d) 

(e) 

43 
 



 

 

 

Figure 3.9: Normalized average errors for RCSθ in the three plane cuts: a) xy-plane, b) xz-
plane, and c) yz-plane. 
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Figure 3.10: Normalized average errors for RCSϕ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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3.2 Electromagnetic Scattering from Two Objects-2 

The geometry of the second problem illustrated in Figure 3.11 is excited by a ϕ and 

θ polarized plane wave with 𝜃𝜃inc=90o and 𝜙𝜙inc=90o to obtain RCS at 200, 225, 250, 275, 

and 300 MHz. The separation between the dielectric ellipsoid and conducting rod is 0.5 m. 

The semi-axes of the dielectric ellipsoid are 0.6 m, 0.4 m, and 0.4 m along the x, y, and z 

axes, respectively. The relative permittivity and permeability of the dielectric ellipsoid are 

3 and 1, respectively. The dimensions of the conducting rod are 0.4 m, 0.4 m, and 2 m 

along the x, y, and z directions, respectively. The problem space is composed of cells with 

size 0.02 m in the x, y, and z directions for the full domain simulation. As for the IMR 

simulation, a cell size 0.02 m is used in the subregion of the rod, whereas a cell size 0.04 

m is used in the subregion of the ellipsoid. It can be seen from Figure 3.12 that the IMR 

technique results converge to the full domain results after iteration # 2. Figures 3.13-3.18 

show the bistatic RCSθ and RCSϕ for the xy, xz, and yz plane cuts at each frequency. Good 

agreement between the IMR solution and the full domain solution is achieved. To prove 

the convergence of the full domain and IMR technique results, the normalized average 

errors for RCSθ and RCSϕ in the three plane cuts are shown in Figures 3.19-3.20. 

Simulation parameters and computer resources used are summarized in Table 3-2 for the 

full domain solution and the IMR solution. Results show a considerable reduction in the 

memory storage requirements, but there is no significant change in the computation time. 

The computation time would be less and the memory gain would be more for problems 

that have large separation between the objects. 
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Figure 3.11: Geometry of the second problem. 

 

Figure 3.12: Convergence (εk) between iteration steps for the second problem. 

Table 3-2: Simulation parameters and computer resources used by the IMR and full 
domain simulation. 

 Number of 
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Iteration 
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Memory 
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Full FDTD − 1,457,376 39 − 995 
IMR-FDTD 2 633,472 42 2 420 
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Figure 3.13: Bistatic RCSθ for xy-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.14: Bistatic RCSθ for xz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.15: Bistatic RCSθ for yz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.16: Bistatic RCSϕ for xy-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.17: Bistatic RCSϕ for xz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.18: Bistatic RCSϕ for yz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.19: Normalized average errors for RCSθ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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Figure 3.20: Normalized average errors for RCSϕ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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3.3 Electromagnetic Scattering from Three Objects-1 

The geometry of the third problem illustrated in Figure 3.21 is analyzed to prove 

the validity of the proposed technique for more than two scatterer objects where more 

interaction processes are required between them. Two identical dielectric spheres and a 

conducting ellipsoid are placed along the x-axis with 0.5 m separation. The radius of the 

dielectric spheres is 0.4 m. The relative permittivity and permeability of the dielectric 

spheres are 3 and 1, respectively. The semi-axes of the conducting ellipsoid are 0.2 m, 0.2 

m, and 1 m along the x, y, and z axes, respectively. This problem space is excited by a 𝜃𝜃 

and ϕ polarized plane wave with 𝜃𝜃inc=90o and 𝜙𝜙inc=90o. The problem space is composed 

of cells with size 0.02 m in the x, y, and z directions for the full domain simulation. As for 

the IMR simulation, a cell size 0.02 m is used in ellipsoid subregion, whereas a cell size 

0.04 m is used in other subregions. It can be seen from Figure 3.22 that the IMR algorithm 

reaches the convergence criterion after iteration # 2. Figures 3.23-3.28 show the bistatic 

RCSθ and RCSϕ for the xy, xz, and yz plane cuts at 200, 225, 250, 275, and 300 MHz. To 

prove the convergence of the full domain and IMR technique results, the normalized 

average errors RCSθ and RCSϕ in the three plane cuts are shown in Figures 3.29-3.30. 

Simulation parameters and computer resources used are summarized in Table 3-3 for the 

full domain solution and the IMR solution. Results show a considerable reduction in the 

memory storage requirements and computation time. 

Table 3-3: Simulation parameters and computer resources used by the IMR and full 
domain simulation. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 1,922,496 58 − 1,190 
IMR-FDTD 3 777,728 51 2 400 
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Figure 3.21: Geometry of the third problem. 

 

Figure 3.22: Convergence (εk) between iteration steps for the third problem. 
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Figure 3.23: Bistatic RCSθ for xy-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.24: Bistatic RCSθ for xz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 

0 60 120 180 120 60 0
-25

-20

-15

-10

-5

0

5

10

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-20

-15

-10

-5

0

5

10

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-25

-20

-15

-10

-5

0

5

10

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

(e) 

(d) 

(c) 

64 
 



 

 

 

 

0 60 120 180 120 60 0
-15

-10

-5

0

5

10

15

20

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-5

0

5

10

15

20

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
0

5

10

15

20

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter(c) 

(a) 

(b) 

65 
 



 

 

Figure 3.25: Bistatic RCSθ for yz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.26: Bistatic RCSϕ for xy-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.27: Bistatic RCSϕ for xz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.28: Bistatic RCSϕ for yz-plane cuts at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.29: Normalized average errors for RCSθ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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Figure 3.30: Normalized average errors for RCSϕ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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The same geometry of third problem illustrated in Figure 3.21 is simulated as the 

fourth problem, but instead of using a conducting ellipsoid, a dielectric ellipsoid with the 

relative permittivity of 2.2 is used for a θ and ϕ polarized excitation with 𝜃𝜃inc=90o 

and 𝜙𝜙inc=90o. It can be seen from Figure 3.31 that the IMR algorithm reaches the 

convergence criterion after iteration # 2. Figures 3.32-3.37 show the bistatic RCSθ and 
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RCSϕ for the xy, xz, and yz plane cuts at 200 MHz, 225 MHz, 250 MHz, 275 MHz, and 300 

MHz. A good agreement is achieved between the results generated using the IMR 

technique with those generated using the full domain simulation. To prove the convergence 

of the full domain and IMR technique results, the normalized average errors for RCSθ and 

RCSϕ in the three plane cuts are shown in Figures 3.38-3.39. Simulation parameters and 

computer resources used are summarized in Table 3-4 for the full domain solution and the 

IMR solution.  

 

Figure 3.31: Convergence (εk) between iteration steps for the fourth problem. 
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Figure 3.32: Bistatic RCSθ for xy-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.33: Bistatic RCSθ for xz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.34: Bistatic RCSθ for yz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 

0 60 120 180 120 60 0
-5

0

5

10

15

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
-5

0

5

10

15

20

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 120 60 0
0

5

10

15

20

θ (degrees)

R
C

S
θ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

(c) 

(d) 

(e) 

79 
 



 

 

 
 

 

0 60 120 180 240 300 360
-20

-15

-10

-5

0

5

10

15

φ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 240 300 360
-20

-15

-10

-5

0

5

10

15

φ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

0 60 120 180 240 300 360
-20

-15

-10

-5

0

5

10

15

φ (degrees)

R
C

S
φ (d

B
)

 

 

Full FDTD
0. iter
1. iter
2. iter

(a) 

(b) 

(c) 

80 
 



 

 

Figure 3.35: Bistatic RCSϕ for xy-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.36: Bistatic RCSϕ for xz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.37: Bistatic RCSϕ for yz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.38: Normalized average errors for RCSθ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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Figure 3.39: Normalized average errors for RCSϕ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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3.5 Electromagnetic Scattering from Four Objects 

The geometry of the fifth problem illustrated in Figure 3.40 is analyzed to prove 

the validity of the proposed technique for four scatterer objects where more interaction 

processes are required between them. Two identical dielectric spheres with the relative 

permittivity of 3 are placed along the x-axis with 1.2 m separation and two identical 

conducting ellipsoids are placed along the y-axis with 1.2 m separation. The radius of the 

dielectric spheres is 0.4 m. The semi-axes of the conducting ellipsoids are 0.2 m, 0.2 m, 

and 1 m along the x, y, and z axes, respectively.  This problem space is excited by a 𝜃𝜃 and 

ϕ polarized plane wave with 𝜃𝜃inc=90o and 𝜙𝜙inc=0o. The problem space is composed of cells 

with size 0.02 m in the x, y, and z directions for the full domain simulation. As for the IMR 

simulation, a cell size 0.02 m is used in ellipsoid subregions, whereas a cell size 0.04 m is 

used in sphere subregions. It can be seen from Figure 3.41 that the IMR algorithm reaches 

the convergence criterion after iteration # 3. Figures 3.42-3.47 show the bistatic RCSθ and 

RCSϕ for the three plane cuts at 200 MHz, 225 MHz, 250 MHz, 275 MHz and 300 MHz. 

To prove the convergence of the full domain and IMR technique results, the normalized 

average errors for RCSθ and RCSϕ in the three plane cuts are shown in Figures 3.48-3.49. 

Simulation parameters and computer resources used are summarized in Table 3-5. Results 

in the table show a considerable reduction in the memory storage requirements, but the 

computation time of the IMR algorithm is more than that of the full domain solution 

because the objects are close to each other. The computation time would be less and the 

memory gain would be more for problems that have large separation between the objects. 
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Figure 3.40: Geometry of the fifth problem. 

Table 3-5: Simulation parameters and computer resources used by the IMR and full 
domain simulation. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 3,345,556 132 − 1,780 
IMR-FDTD 4 1,078,784 164 3 425 
 

 

Figure 3.41: Convergence (εk) between iteration steps for the fifth problem. 
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Figure 3.42: Bistatic RCSθ for xy-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.43: Bistatic RCSθ for xz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.44: Bistatic RCSθ for yz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.45: Bistatic RCSϕ for xy-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.46: Bistatic RCSϕ for xz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.47: Bistatic RCSϕ for yz-plane cut at frequencies: a) 200 MHz, b) 225 MHz, c) 
250 MHz, d) 275 MHz, and e) 300 MHz. 
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Figure 3.48: Normalized average errors for RCSθ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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Figure 3.49: Normalized average errors for RCSϕ in the three plane cuts: a) xy-plane, b) 
xz-plane, and c) yz-plane. 
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4 NUMERICAL RESULTS FOR RADIATION 

PROBLEMS 

In this chapter, numerical results of radiation problems including an antenna and 

scatterer objects are analyzed to prove the validity of the FDTD method integrated into the 

IMR technique. In all simulations, the problems include a 0.5 m dipole antenna. First, the 

dipole antenna is driven in isolation so that, in what will be called the 0th iteration, there is 

no incident field in the subregion containing the driven antenna, and the incident fields in 

all the other subregions consist of the field of the driven antenna in isolation. The driven 

antenna is active for the simulation of original problem and that of the IMR algorithm in 

iteration # 0, whereas the driven antenna is inactive in the IMR algorithm for other 

iterations. The active and inactive dipole antenna shown in Figure 4.1 are configured as 

two rectangular rods with square base of side length equal to 31.25 mm. The thickness of 

the dipole is four cells in both x and y direction. A voltage source with 50 Ω internal 

impedance and 1 Volt (V) magnitude is placed along four cells between the rods. A cell 

size of 7.8125 mm is used for the antenna.  

The antenna is simulated alone using the FDTD method to determine the frequency 

bands in which it radiates well. The frequencies 230 MHz, 240 MHz, 250 MHz, 260 MHz, 

and 270 MHz are found to be in the band of operation. Figure 4.2 shows the magnitude of 

the reflection coefficient of the dipole antenna. 

For all of the examples presented in this chapter the FDTD problem spaces are 

terminated by eight CPML layers with the CPML parameters [33] CPML_order: 3, 

CPML_sigma_factor: 1.5, CPML_kappa: 7, CPML_alpha_min: 0, and 
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CPML_alpha_max: 0.05. In addition to the eight CPML layers, ten air buffer layers are 

introduced between the inner CPML boundary and the objects inside the problem spaces. 

A cell size of 7.8125 mm is used for the full domain simulations and the subregion 

containing the antenna in the IMR simulations, whereas a cell size of 15.625 mm is used 

for the scatterer subregions in the IMR simulations. The specifications of the computer 

used for the simulations are given in Appendix B.  

 

 

 

 

 

 

Figure 4.1: a) Configuration of the 0.5 m active dipole antenna and b) Configuration of 
the 0.5 m inactive dipole antenna. 

An algorithm is developed to stop the FDTD time-marching loop and define the 

necessary number of time steps for the full domain and IMR simulations. In this algorithm, 

the excitation fields are applied to a problem space until the magnitudes of the scattered 

electric fields at certain points in the computation domain reach to values less than a 

threshold value. In our analysis, the threshold is defined as 5×10-4 (Volts/meter). Thus the 

FDTD time-marching loop is stopped when the scattered fields reach below the threshold.  

 + 
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Figure 4.2: Magnitude of the reflection coefficient of a single 0.5 m dipole antenna. 

4.1 Radiation from a Dipole Antenna in the Presence of an 

Object 

The geometry of the first problem, as illustrated in Figure 4.3, consists of two 

objects; a 0.5 m dipole antenna placed a distance of 0.2 m away from a conducting L-

shaped box along the x direction. The dimensions of the conducting L-shaped box are given 

in Figure 4.3. Figure 4.4 shows the convergence of the IMR iteration calculated by (2.12). 

It can be seen that the IMR algorithm reaches the convergence criterion (εk<5%) after 

iteration # 2. Figures 4.5-4.7 show the radiation patterns (Gainθ) of the configuration for 

the three plane cuts, i.e xy, xz, and yz planes, respectively. Figures 4.8-4.10 show the 

radiation patterns (Gainϕ) of the problem for the three plane cuts. The radiation patterns 

show a good agreement between the results generated using the IMR technique with those 

generated using the full domain simulation after iteration # 2. To prove the convergence of 
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errors for Gainθ and Gainϕ in the three plane cuts at each frequency of interest are calculated 

using (2.33) and shown in Figures 4.11-4.12, respectively. Simulation parameters and 

computer resources are summarized in Table 4-1. Results in the table show a considerable 

reduction in the memory storage requirements, but the computation time of the IMR 

algorithm is more than that of the full domain solution because the objects are close to each 

other. The computation time would be less and the memory gain would be more for 

problems that have large separation between the objects.  

 

 

 

 

 

 

 
 

Figure 4.3: Geometry of the first problem. 

Table 4-1: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 10,389,504 143 − 3,850 
IMR-FDTD 2 1,919,296 171 2 700 
 

v 

y 

Dipole Antenna 
(0.5 m) 

Conducting  
L-shaped box 

Separation  
(0.2 m) 

z 

x 

0.75 m  

1 m  

1.5 m  

0.75 m  

1.5 m  
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Figure 4.4: Convergence (εk) between iteration steps for the first problem. 
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Figure 4.5: Radiation pattern (Gainθ) for xy-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.6: Radiation pattern (Gainθ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.7: Radiation pattern (Gainθ) for yz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.8:  Radiation pattern (Gainϕ) for xy-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.9: Radiation pattern (Gainϕ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.10: Radiation pattern (Gainϕ) for yz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.11: Normalized average errors for Gainθ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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Figure 4.12: Normalized average errors for Gainϕ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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after iteration # 4. To prove the convergence of the results of the IMR and the full domain, 
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the normalized average errors for Gainθ and Gainϕ in the three plane cuts at the frequencies 

of interest are shown in Figures 4.21-4.22, respectively. Simulation parameters and 

computer resources are summarized in Table 4-2. Results in the table show a considerable 

reduction in the memory storage requirements, but the computation time of the IMR 

algorithm is more than that of the full domain because of small separation between the 

objects. The computation time would be less and the memory gain would be more for 

problems that have large separation between the objects.  

 

 

 

 

 

 

Figure 4.13: a) Geometry of the second problem and b) Geometry of the conducting box-
B on the yz-plane. 

 

Dipole antenna 
(0.5 m) 

(b) 

y 
 

Conducting box-A 
(Dx=0.25 m, Dy=1 m, Dz=1 m) 

x 

z 
Conducting box-B 

155 cm 

40 cm 

40 cm 

115 cm 

20 cm 

40 cm 

50 cm 

75 cm 

20 cm 

20 cm 75 cm 

50 cm 

(a) 

y 

z 

25 cm 

30 cm 

118 
 



Table 4-2: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 13,311,552 345 − 4807 
IMR-FDTD 3 1,699,200 456 4 705 
 

 

Figure 4.14: Convergence (εk) between iteration steps for the second problem. 
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Figure 4.15: Radiation pattern (Gainθ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.16: Radiation pattern (Gainθ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.17: Radiation pattern (Gainθ) for yz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.18: Radiation pattern (Gainϕ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.19: Radiation pattern (Gainϕ) for xz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.20: Radiation pattern (Gainϕ) for yz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.21: Normalized average errors for Gainθ components in the three plane cuts: a) 

xy-plane, b) xz-plane, and c) yz-plane. 
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Figure 4.22: Normalized average errors for Gainϕ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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The same geometry of the second problem illustrated in Figure 4.13 is simulated as 
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after iteration # 3. Figures 4.24-4.29 show the radiation patterns (Gainθ and Gainϕ) of the 

configuration for the three plane cuts. Good agreement with the full domain results is 

achieved after iteration # 3. To prove the convergence of the results of the IMR and the full 

domain, the normalized average errors for Gainθ and Gainϕ in the three plane cuts at the 

frequencies of interest are shown in Figures 4.30-4.31, respectively. Simulation parameters 

and computer resources used are summarized in Table 4-3. The results in the table show a 

considerable reduction in the memory storage requirements and also computation time. 

 

Figure 4.23: Convergence (εk) between iteration steps for the third problem. 

Table 4-3: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 
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Number 
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Full FDTD − 24,521,280 651 − 8,375 
IMR-FDTD 3 1,699,200 360 3 700 
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Figure 4.24: Radiation pattern (Gainθ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.25: Radiation pattern (Gainθ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.26: Radiation pattern (Gainθ) for yz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.27: Radiation pattern (Gainϕ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.28: Radiation pattern (Gainϕ) for xz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.29: Radiation pattern (Gainϕ) for yz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.30: Normalized average errors for Gainθ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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Figure 4.31: Normalized average errors for Gainϕ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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4.4 Radiation from a Dipole Antenna in the Presence of Two 

Objects-3 

The geometry of the fourth problem is presented in Figure 4.32. This problem 

consists of a 0.5 m dipole antenna and two scatterer boxes. The dielectric box and 

conducting L-shaped box are placed a distance of 0.5 m and 3 m away from the dipole 

antenna on the x-axis, respectively. The dimensions of the dielectric box are 0.5 m, 2.5 m, 

and 1 m along the x, y, and z directions, respectively. The relative permittivity of the 

dielectric box is 2.2. The dimensions of the conducting L-shaped box are given in Figure 

4.32. It can be seen from Figure 4.33 that the IMR algorithm reaches the convergence 

criterion after iteration # 3. Figures 4.34-4.39 show the radiation patterns (Gainθ and Gainϕ) 

of the problem for the three plane cuts. Good agreement with the full domain results is 

achieved after iteration # 3. To prove the convergence of the results of the IMR and the full 

domain, the normalized average errors for Gainθ and Gainϕ in the three plane cuts at the 

frequencies of interest are shown in Figures 4.40-4.41, respectively. Simulation parameters 

and computer resources are summarized in Table 4-4. The results in the table show a 

considerable reduction in the memory storage requirements and also computation time. 

Table 4-4: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 18,172,512 390 − 6,700 
IMR-FDTD 3 1,737,600 267 3 632 
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Figure 4.32: Geometry of the fourth problem. 

 

Figure 4.33: Convergence (εk) between iteration steps for the fourth problem. 
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Figure 4.34: Radiation pattern (Gainθ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.35: Radiation pattern (Gainθ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.36: Radiation pattern (Gainθ) for yz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.37: Radiation pattern (Gainϕ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.38: Radiation pattern (Gainϕ) for xz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.39: Radiation pattern (Gainϕ) for yz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.40: Normalized average errors for Gainθ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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Figure 4.41: Normalized average errors for Gainϕ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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4.5 Radiation from a Dipole Antenna in the Presence of 

Three Objects 

The geometry of a more complex radiation problem is shown as the fifth example 

in Figure 4.42 to prove the idea of the IMR technique based on the FDTD method for three 

scatterer subregions, where more coupling is involved between subregions. The problem 

includes a 0.5 m dipole antenna and three scatterer objects which are a dielectric ellipsoid 

with relative permittivity of 2.2, a conducting ellipsoid, and a conducting L-shaped box. 

The semi-axes of the dielectric ellipsoid are 0.25 m, 0.5 m, and 0.25 m along the x, y, and 

z directions, respectively. The dielectric ellipsoid is placed 0.5 m away from the antenna 

on the x-axis and 0.5 m away from the antenna on the y-axis. The semi-axes of the 

conducting ellipsoid are 0.25 m, 0.25 m, and 1 m along the x, y, and z directions, 

respectively. The conducting ellipsoid is placed 0.5 m away from the antenna on the x-axis 

and 0.5 m away from the antenna on the negative y-axis. The conducting L-shaped box is 

placed 0.5 m away from the antenna on the negative x-axis and its dimensions are given in 

Figure 4.42. It can be seen from Figure 4.43 that the IMR algorithm reaches the 

convergence criterion after iteration # 3. Figures 4.44-4.49 show the radiation patterns 

(Gainθ and Gainϕ) of the configuration for the three plane cuts. Good agreement with the 

full domain results is achieved after iteration # 3. The normalized average errors for Gainθ 

and Gainϕ in the three plane cuts at each frequency of interest are shown in Figures 4.50-

4.51, respectively. Simulation parameters and computer resources are summarized in Table 

4-5. Results in the table show a considerable reduction in the memory storage requirements 

and computation time. 
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Figure 4.42: Geometry of the fifth problem. 

 
Figure 4.43: Convergence (εk) between iteration steps for the fifth problem. 

Table 4-5: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 27,027,520 437 − 9,390 
IMR-FDTD 4   1,900,736 357 3    800 
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Figure 4.44: Radiation pattern (Gainθ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.45: Radiation pattern (Gainθ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.46: Radiation pattern (Gainθ) for yz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.47: Radiation pattern (Gainϕ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.48: Radiation pattern (Gainϕ) for xz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.49: Radiation pattern (Gainϕ) for yz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.50: Normalized average errors for Gainθ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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Figure 4.51: Normalized average errors for Gainϕ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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4.6 Radiation from a Dipole Antenna in the Presence of Four 

Objects 

The geometry of another more complex radiation problem is shown as the sixth 

example in Figure 4.52. The problem includes a 0.5 m dipole antenna and four scatterer 

objects which are a conducting ellipsoid and sphere, a dielectric box with the relative 

permittivity of 2.2, and a conducting box. The conducting ellipsoid is placed 1.5 m away 

from the antenna on the x-axis. The semi-axes of conducting ellipsoid are 0.25 m, 0.25 m, 

and 1 m along the x, y, and z directions, respectively. The conducting sphere with a radius 

of 0.25 m is placed 0.5 m away from the antenna on the x-axis and 0.75 m away from the 

antenna on the y-axis. The dielectric box is placed 0.5 m away from the antenna on the x-

axis and 0.25 m away from the antenna on the negative y-axis. The dimensions of the 

dielectric box are 0.25 m, 1 m, and 1 m along the x, y, and z directions, respectively. The 

conducting box is placed 0.5 m away from the antenna on the negative x-axis. The 

dimensions of the conducting box are the same as those of the box-B in Figure 4.13b. It 

can be seen from Figure 4.53 that the IMR algorithm reaches the convergence criterion 

after iteration # 3. Figures 4.54-4.59 show the gain patterns (Gainθ and Gainϕ) of the 

configuration for the three plane cuts. Good agreement with the full domain results is 

achieved after iteration # 3. To prove the convergence of the results of the IMR and the full 

domain, the normalized average errors for Gainθ and Gainϕ in the three plane cuts at each 

frequency are shown in Figures 4.60-4.61, respectively. Simulation parameters and 

computer resources are summarized in Table 4-6. Results in the table show a considerable 

reduction in the memory storage requirements and computation time. 
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Figure 4.52: Geometry of the sixth problem. 

Table 4-6: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Number of 
Domains 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

Full FDTD − 40,333,376 1,065 − 14,750 
IMR-FDTD 5 2,771,968 747 3 1,650 

 

 

Figure 4.53: Convergence (εk) between iteration steps for the sixth problem. 
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Figure 4.54: Radiation pattern (Gainθ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.55: Radiation pattern (Gainθ) for xz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.56: Radiation pattern (Gainθ) for yz-plane cut at frequencies: a) 230 MHz, b) 240 
MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.57: Radiation pattern (Gainϕ) for xy-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.58: Radiation pattern (Gainϕ) for xz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.59: Radiation pattern (Gainϕ) for yz-plane cut at frequencies: a) 230 MHz, b) 
240 MHz, c) 250 MHz, d) 260 MHz, and e) 270 MHz. 
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Figure 4.60: Normalized average errors for Gainθ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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Figure 4.61: Normalized average errors for Gainϕ components in the three plane cuts: a) 
xy-plane, b) xz-plane, and c) yz-plane. 
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5 IMR ALGORITHM AS HYBRID TECHNIQUE 

In this chapter, integration of the method of moments (MoM) and the finite-

difference time-domain (FDTD) method into the iterative multi-region (IMR) technique is 

presented. This hybrid method combines the desirable features of the MoM and the FDTD 

method to solve large-scale radiation problems more efficiently. The idea of this hybrid 

method based on the IMR technique is to divide an original problem domain into multiple 

unconnected subregions and use the more appropriate method in each subregion. For 

instance, if a problem domain is composed of a thin wire antenna and an arbitrary shaped 

inhomogeneous scatterer, each of these objects can be placed in a separate subregion, the 

thin wire antenna can be solved using the MoM while the other region can be solved using 

the FDTD method, and their solutions can be combined in an iterative algorithm to achieve 

the combined subregions solution. The interaction between the subregions is based on the 

radiated fields due to current distribution on the antenna from the MoM region and 

equivalent currents on the surface of a Huygens’ box from FDTD region. Since the FDTD 

method is a time domain solver, the fields originated from the MoM region that excite the 

FDTD region need to be converted into time-limited waveforms, which are achieved by 

the aforementioned time-limited waveform construction (TWC) algorithm. The steady-

state solution for the interaction between the MoM and FDTD regions is obtained through 

an iterative procedure by solving each region due to the excitations from the opposing 

regions in each iteration until a convergence criterion, that indicates the convergence of the 

global solution, is achieved. It is observed that convergence is achieved after several 

iterations. The most prominent feature of this technique is the combination of MoM 

simulations at multiple frequencies with single FDTD simulations by constructing time-
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limited waveforms. Furthermore, considerable reduction in the memory storage 

requirements and computation time can be achieved especially with larger separation 

between subregions. After developing the analytical background of this method, we present 

some numerical results related to the three dimensional electrically large radiation 

problems. 

5.1 Hybrid (MoM/FDTD) Method 

A hybrid method, which combines the MoM and FDTD method, has been 

developed previously to analyze the radiation problems [35–39], where the solution is 

achieved at a single frequency. In this chapter, we present a hybrid MoM/FDTD approach 

to obtain solutions at multiple frequencies in a single hybrid simulation by taking the 

advantage of the capability of the FDTD to analyze inhomogeneous bodies with arbitrary 

material properties, and that of the MoM to model a thin wire antenna with less memory 

storage requirements.  

As an example, a problem domain as shown in Figure 5.1 is divided into two 

subregions: one is the MoM subregion including a thin wire antenna, and the other is the 

FDTD subregion including a dielectric object. The iterative procedure between subregions, 

as shown in Figure 5.2, consists of iteration # 0 and iteration # k for {k=1, 2, ⋯, 𝐾𝐾} where 

𝐾𝐾 is an integer depending on how many iterations are necessary. 

In iteration # 0, the thin wire antenna in the MoM subregion is analyzed to obtain 

the current distributions at all frequencies of interest on the antenna surface, using the well-

known matrix equation [41] of MoM: 

�𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 (𝜔𝜔𝑖𝑖)� = [𝑍𝑍−1(𝜔𝜔𝑖𝑖)][𝑉𝑉𝑘𝑘(𝜔𝜔𝑖𝑖)], {𝑘𝑘 = 0, 1,⋯𝐾𝐾 − 1},                      (5.1) 
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where 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘  is the current distribution in iteration # k, 𝑍𝑍−1 is the inverse of the moment 

matrix, and 𝑉𝑉𝑘𝑘(𝜔𝜔𝑖𝑖) is the total voltage vector in iteration # k. The details of the moment 

matrix [42] and voltage vector, 𝑉𝑉0(𝜔𝜔𝑖𝑖), used for the current distributions calculation are 

given in Appendix C. The current distributions at all frequencies of interest obtained in 

iteration # 0 are used to start the iteration # 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Radiation from multiple objects: a) original problem and b) MoM and FDTD 
subregions. (dotted line: imaginary surface, dashed line: TF/SF boundary) 
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Figure 5.2: Iterative procedure between subregions using the hybrid method.  
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the NFT is performed with the corresponding frequency value. After the FDTD procedure 

is completed, the induced voltages at all frequencies of interest on each segment of the 

antenna are calculated from these fictitious currents, using the NF/NF transformation 

provided in Appendix A. These voltages are considered as additional feeding voltages, 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 (𝜔𝜔𝑖𝑖), and expressed as 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 (𝜔𝜔𝑖𝑖) = 〈𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 �𝐫𝐫� 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
1 (𝜔𝜔𝑖𝑖)
𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
1 (𝜔𝜔𝑖𝑖)

� , 𝑡𝑡(𝐫𝐫 − 𝐫𝐫𝑚𝑚)〉.                     (5.2)  

where 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 (𝐫𝐫|𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 (𝜔𝜔𝑖𝑖),𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
1 (𝜔𝜔𝑖𝑖)) is the electric field generated by the fictitious 

electric and magnetic currents on the imaginary surface in the FDTD subregion, 𝑡𝑡(𝐫𝐫 − 𝐫𝐫𝑚𝑚) 

is the mth testing function of the MoM, and (𝐫𝐫 − 𝐫𝐫𝑚𝑚) is the distance from each segment on 

the antenna to the gap where the voltage source is placed. 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 (𝜔𝜔𝑖𝑖) at each frequency 

of interest is calculated by using the inner product of the electric field, 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 (𝜔𝜔𝑖𝑖), and the 

testing function, 𝑡𝑡(𝐫𝐫 − 𝐫𝐫𝑚𝑚).  

In general, the additional voltages 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝜔𝜔𝑖𝑖) in iteration # k are added to the 

voltage vector, 𝑉𝑉𝑘𝑘−1(𝜔𝜔𝑖𝑖), used in the previous iteration to calculate the current 

distributions.  The total voltage vector, expressed in (5.3), is used for the next MoM 

calculation. After the new current distributions at all frequencies of interest on the antenna 

are calculated using (5.1), the iteration # 1 is completed. The procedure for the subsequent 

iterations is the same as iteration # 1.  

𝑉𝑉𝑘𝑘(𝜔𝜔𝑖𝑖) = 𝑉𝑉𝑘𝑘−1(𝜔𝜔𝑖𝑖) + 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 (𝜔𝜔𝑖𝑖).  {𝑘𝑘 = 1, 2,⋯𝐾𝐾 − 1}.       (5.3) 

Iteration # 1 is repeated 𝐾𝐾–1 times until a convergence (stopping) criterion is 

achieved. The iterations are terminated when the Euclidean norm of the difference in the 

current distributions at all frequencies of interest from one iteration to the next iteration is 
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smaller than the convergence criterion. The calculation of convergence is defined as 

follows: 

  ε𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖=1,⋯,𝑁𝑁 ��
�𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘 (𝜔𝜔𝑖𝑖) − 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀

𝑘𝑘−1 (𝜔𝜔𝑖𝑖)�
�𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀
𝑘𝑘−1 (𝜔𝜔𝑖𝑖)�

��  × 100 %,                    (5.4) 

where  𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 (𝜔𝜔𝑖𝑖) is the current distribution at kth iteration for 𝜔𝜔𝑖𝑖 frequency, and N is the 

number of frequencies. Based on the numerical experiments, 1 % is found sufficient to 

indicate that convergence is achieved since the current distributions at desired frequencies 

do not change significantly for smaller values.  

5.2 Numerical Results 

In this section we demonstrate some examples to show the validity of the proposed 

hybrid method. The problems presented here have been simulated in [37–38] to obtain 

solution at a single frequency, whereas our proposed hybrid method provides solutions at 

multiple frequencies instead of a single frequency in a single simulation. In all simulation 

of the radiation problems, a 16.65 cm thin wire antenna with a radius of 0.27 mm is used. 

The single thin wire antenna is performed to determine the frequency band in which it 

radiates well. The frequencies 840, 860, and 880 MHz are found to be in the band of 

operation. Figure 5.3 shows the magnitude of the reflection coefficient of the antenna. The 

specifications of the computer used for the simulations are given in Appendix B. 

In order to show the difference between the results generated by the MoM and the 

FDTD method, the input impedances of the antenna at frequencies of interest are shown in 

Table 5-1. The thin wire antenna is divided into 51 segments for the MoM simulation, and 

the discretization of the thin wire antenna is 1.665 mm in all Cartesian directions for the 

FDTD simulation. 
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Table 5-1: Antenna input impedances at frequencies of interest of a single thin wire. 

Method\Frequency 840 MHz 860 MHz 880 MHz 
FDTD    66.97 –j 21.19 72.14 +j 0.96 77.73 +j 23.17 
MoM   67.63 –j 19.15 72.56 +j 3.03 77.82 +j 25.12 

 

 

Figure 5.3: Magnitude of the reflection coefficient of a single thin wire antenna. 

 Current Distributions on an Antenna in the Presence of an 

Obstacle-1 

Figure 5.4 shows the first problem that is used to validate the proposed hybrid 

method. A thin wire antenna is placed a distance of 2 cm away from a dielectric sphere. 

The dielectric sphere has a radius of 10 cm, relative permittivity of 43, and conductivity of 

0.83 S/m. A cell size of the FDTD subregion that contains the dielectric sphere is 2.5 mm 

in all directions in hybrid simulation, whereas a cell size is 1.665 mm for the full domain 

FDTD simulation. Figure 5.5 shows the convergence of the IMR iteration calculated by 

(5.4). It can be seen that the IMR algorithm reaches the convergence criterion (εk <1%) 

after iteration # 4. The current distributions obtained using the hybrid method over the 
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antenna surface at frequencies of interest are shown in Figure 5.6. The antenna input 

impedances at frequencies of interest after four iterations using the hybrid method and the 

conventional FDTD method are listed in Table 5-2. Comparison shows that the proposed 

hybrid results are in good agreement with the conventional FDTD method results. 

Simulation parameters and computer resources are summarized in Table 5-3. Results in the 

table show a considerable reduction in the memory requirements and computation time. 

                                 

 

 

 

Figure 5.4: The geometry of the first problem. 

 
Figure 5.5: Convergence (εk) between iteration steps. 

Table 5-2: Antenna input impedances at the frequencies of interest. 

Method\Frequency 840 MHz 860 MHz 880 MHz 
FDTD (Full Domain)   40.44 –j 28.58 43.15 –j 6.74 46.09 +j 15.21 
Hybrid (MoM/FDTD)   40.15 –j 24.04 43.05 –j 5.29 44.00 +j 14.02 
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Figure 5.6: Convergence of current distribution versus segment number at frequencies: a) 
840, b) 860, and c) 880 MHz. (0-4): represents the iteration number. 
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Table 5-3: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

FDTD (Full Domain) 4,403,200 113 − 1765 
Hybrid (MoM/FDTD) 1,560,896 87 4 540 

 

The same geometry of the first problem illustrated in Figure 5.4 is simulated with 

different separations (6, 8, 10 and 12 cm) between the antenna and the dielectric sphere. 

The idea of this problem is to prove that the hybrid-IMR algorithm convergences fast when 

the separation between the antenna and object is large. The antenna input impedances at 

all frequencies of interest using the hybrid method and the conventional FDTD method are 

listed for different separations in Table 5-4. Results in the table show that the hybrid 

method results are in good agreement with the conventional FDTD method results. 

Simulation parameters and computer resources are summarized in Table 5-5. Results in the 

table show that a considerable reduction in the memory storage requirements and 

computation time are achieved especially with larger separation between the antenna and 

the dielectric sphere.  

Table 5-4: Antenna input impedances at the frequencies of interest for different 
separations. 

Separation Method\Frequency 840 MHz 860 MHz 880 MHz 
6 cm FDTD (Full Domain) 58.16 –j 7.48 63.64 +j 16.25 69.71 +j 40.04 

Hybrid (MoM/FDTD) 57.45 –j 7.68 61.20 +j 16.83 66.92 +j 43.00 
     

8 cm FDTD (Full Domain) 67.51 –j 8.81  73.84 +j 14.19 80.77 +j 37.10 
Hybrid (MoM/FDTD) 67.28 –j 7.23  72.56 +j 16.40 79.30 +j 40.43 

     
10 cm FDTD (Full Domain) 72.91 –j 13.68 79.35 +j  8.39 86.28 +j 30.25 

Hybrid (MoM/FDTD) 73.08 –j 11.49 78.93 +j 11.10 85.87 +j 33.50 
     

12  cm FDTD (Full Domain) 74.25 –j 19.21 80.24 +j 2.18 86.56 +j 23.36 
Hybrid (MoM/FDTD)  74.87 –j 16.97 80.40 +j 4.78 86.64 +j 26.29 
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Table 5-5: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 
Separation 

 
Method 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

 
6 cm 

FDTD  
(Full Domain) 

5,171,200 132 – 1995 

 Hybrid 
(MoM/FDTD) 

1,560,896 87 4 540 

      
 

8 cm 
FDTD  

(Full Domain) 
5,324,800 133 – 2100 

 Hybrid 
(MoM/FDTD) 

1,560,896 68 3 540 

      
 

10 cm 
FDTD  

(Full Domain) 
5,632,000 142 – 2210 

 Hybrid 
(MoM/FDTD) 

1,560,896 68 3 540 

      
 

12 cm 
FDTD  

(Full Domain) 
5,939,200 152 – 2330 

Hybrid 
(MoM/FDTD) 

1,560,896 49 2 540 

 Current Distributions on an Antenna in the Presence of an 

Obstacle-2 

The geometry of the second problem illustrated in Figure 5.7 includes the thin wire 

antenna and a dielectric cube. The thin wire antenna is placed a distance of 2 cm away from 

the dielectric cube. The dimension of the dielectric cube is 20 cm on a side. It can be seen 

from Figure 5.8 that the results of the hybrid method converges after iteration # 4. The 

current distributions over the antenna surface at frequencies of interest obtained using the 

hybrid method are shown in Figure 5.9. The antenna input impedances at the frequencies 

of interest after four iterations using the hybrid method and the conventional FDTD method 

are listed in Table 5-6. Comparison shows that the hybrid method results are in good 

agreement with the conventional FDTD method results. Simulation parameters and 

197 
 



computer resources are summarized in Table 5-7. Results in the table show a considerable 

reduction in the memory storage requirements and computation time. 

 

 

 

 

Figure 5.7: The geometry of the second problem. 

 

Figure 5.8: Convergence (εk) between iteration steps. 

Table 5-6: Antenna input impedances at the frequencies of interest. 

Method\Frequency 840 MHz 860 MHz 880 MHz 
FDTD (Full Domain) 39.37 –j 15.71 41.68 +j 5.74 44.18 +j 27.32 
Hybrid (MoM/FDTD) 42.47 –j 13.87 44.31 +j 5.46 44.70 +j 25.33 
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Figure 5.9: Convergence of current distribution versus segment number at frequencies: a) 
840, b) 860, and c) 880 MHz. (0-4): represents the iteration number. 
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Table 5-7: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

FDTD (Full Domain) 4,403,200 109 − 1740 
Hybrid (MoM/FDTD) 1,560,896 88 4 585 

 

The same geometry of the second problem, as illustrated in Figure 5.7, is simulated 

with different separations (6, 8, 10, and 12 cm) between the antenna and the dielectric cube. 

The antenna input impedances at frequencies of interest using the hybrid method and the 

conventional FDTD method are listed for different separations in Table 5-8. Results in the 

table show that the hybrid method results are in good agreement with the conventional 

FDTD method results. Simulation parameters and computer resources are summarized in 

Table 5-9.  

Table 5-8: Antenna input impedances at the frequencies of interest for different 
separations. 

Separation Method\Frequency 840 MHz 860 MHz 880 MHz 
6 cm FDTD (Full Domain) 53.89 +j 4.76 59.74 +j 29.31 66.21 +j 53.99 

 Hybrid (MoM/FDTD) 54.16 +j 3.86  57.06 +j 29.06 63.68 +j 57.23 
     

8 cm FDTD (Full Domain) 69.02 +j 3.76 76.36 +j 27.23 84.36 +j 50.60 
 Hybrid (MoM/FDTD) 69.54 +j 5.12 75.28 +j 28.52 82.43 +j 53.28 
     

10 cm FDTD (Full Domain) 79.86 –j 4.28 87.47 +j 17.51 95.60 +j 39.02 
 Hybrid (MoM/FDTD)   79.98 –j 2.43 86.86 +j 19.97 94.86 +j 42.10 
     

12 cm FDTD (Full Domain) 83.97 –j 15.26 90.75 +j 5.18 97.80 +j 25.33 
 Hybrid (MoM/FDTD) 84.60 –j 13.07 90.70 +j 7.59 97.54 +j 28.31 
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Table 5-9: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 
Separation 

 
Method 

Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

 
6 cm 

FDTD  
(Full Domain) 

5,171,200 132 – 1995 

 Hybrid 
(MoM/FDTD) 

1,560,896 88 4 540 

      
 

8 cm 
FDTD  

(Full Domain) 
5,324,800 141 – 2140 

 Hybrid 
(MoM/FDTD) 

1,560,896 88 4 540 

      
 

10 cm 
FDTD  

(Full Domain) 
5,632,000 149 – 2310 

 Hybrid 
(MoM/FDTD) 

1,560,896 87 4 540 

      
 

12 cm 
FDTD  

(Full Domain) 
5,939,200 157 – 2480 

Hybrid 
(MoM/FDTD) 

1,560,896 67 3 540 

 Antenna Input Impedance in the Presence of Two Obstacles 

A more complex configuration is presented as the third problem in Figure 5.10 to 

prove the validity of the proposed hybrid method for a problem which has multiple 

scattering objects near to the thin wire antenna. A conducting box and dielectric sphere are 

placed a distance of 5 cm and 15 cm away from the thin wire antenna on the x-axis, 

respectively. The dimensions of conducting box are 5 cm in the x-axis and 10 cm in the y 

and z-axis. The dielectric sphere has a radius of 10 cm with relative permittivity of 43 and 

conductivity of 0.83 S/m. A cell size of the FDTD subregion that contains the dielectric 

sphere is 2.5 mm in all directions in hybrid simulation, whereas a cell size is 1.665 mm for 

the full domain FDTD simulation. Figure 5.11 shows the convergence of the IMR iteration. 

It can be seen that the IMR algorithm reaches the convergence criterion (εk <1%) after 
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iteration # 8. The antenna input impedances at the frequencies of interest after eight 

iterations using the hybrid method and conventional FDTD method are listed in Table 5-

10. Comparison shows that the proposed hybrid results are in good agreement with the 

conventional FDTD method results. Simulation parameters and computer resources are 

summarized in Table 5-11. Results in the table show that a considerable reduction in the 

memory storage requirements is achieved, but the computation time of the IMR algorithm 

is more than that of the full domain because of small separation between the objects. The 

computation time would be less and the memory gain would be more for problems that 

have large separation between the objects and antenna. 

 

 

 

 

 
Figure 5.10: The geometry of the third problem. 

Table 5-10: Antenna input impedances at the frequencies of interest. 

Method\Frequency 840 MHz 860 MHz 880 MHz 
FDTD (Full Domain) 25.01 –j 18.74 26.68 +j 7.51 29.11 +j 34.55 
Hybrid (MoM/FDTD) 24.13 –j 20.10 25.87 +j 5.88 27.24 +j 33.67 

 

Table 5-11: Simulation parameters and computer resources used by the IMR and full 
domain simulations. 

 Total Number 
of Cells 

Computation 
Time (min.) 

Iteration 
Number 

Memory 
(MB) 

FDTD (Full Domain) 6,400,000 176 − 2660 
Hybrid (MoM/FDTD) 1,884,352 269 8 1140 
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Figure 5.11: Convergence (εk) between iteration steps. 
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6 CONCLUSION 

In this dissertation, the integration of the FDTD method into the IMR technique is 

presented to solve large-scale electromagnetic scattering and radiation problems. The IMR 

technique procedure is based on dividing the original computational domain into smaller 

subregions, and analyzing each subregion separately, using the FDTD method. Then the 

solutions of subregions, after following the iterative interaction process between 

subregions, are combined to obtain solutions at multiple frequencies for the complete 

domain. To prove the validity of the IMR technique integrated into the FDTD method, 

numerical results of the scattering and radiation problems are presented. Two techniques 

are proposed to speed up the calculation of the excitation fields between interacting 

domains; the use of TF/SF formulation, and interpolation process at current points on the 

imaginary surface and field points on the TF/SF boundary in each domain.  

The most distinguished feature of this technique is to obtain solutions at multiple 

frequencies in a single IMR simulation by constructing time-limited waveforms, using the 

TWC algorithm. Furthermore, the considerable reduction in the memory storage 

requirements and computation time is achieved especially if the separation between 

subregions is large and coarser grids are used in some subregions.  

To provide efficient and desirable solution to large-scale electromagnetic radiation 

problems, a hybrid method is integrated into the IMR procedure by combining the desirable 

features of the two different numerical methods: MoM and FDTD method. This procedure 

starts by dividing the original computational domain into separated subregions where the 

solution is easily performed using either the MoM or the FDTD method in each subregion 

followed by an iterative interaction process between the subregions. The most prominent 
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feature of this proposed technique is the combination of MoM simulations with single 

FDTD simulations to obtain solutions at multiple frequencies by constructing time-limited 

waveforms. Furthermore, considerable reduction in the memory storage requirements and 

computation time can be achieved especially with larger separation between regions.  

Finally, we believe that the integration of the FDTD method and hybrid method 

into the IMR technique in this research will provide as efficient solutions at a number of 

frequencies for the large-scale electromagnetic scattering and radiation problems.   
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Appendix A        

 Near-Field to Near-Field (NF/NF) Transformation  

The formulation for the NF/NF transformation [32] is derived here. A vector 

potential approach is developed to compute the unknown near electric and magnetic fields 

from the known fictitious electric and magnetic currents obtained by the scattered fields on 

the imaginary surface. The expression for the radiated fields is obtained at a field point on 

TF/SF boundary, as illustrated in Figure A.1, close to fictitious currents at all current points 

on the imaginary surface.  

 

 

 

 

 

 

Figure A.1: NF/NF transformation between two subregions. 

The magnetic vector potential A can be written in (A.1) in terms of the fictitious 

electric current J and the Green’s function G(𝒓𝒓, 𝒓𝒓′). 

𝑨𝑨(𝒓𝒓) = 𝜇𝜇∭ 𝑱𝑱(𝒓𝒓′)𝑉𝑉 𝐺𝐺(𝒓𝒓, 𝒓𝒓′)𝑑𝑑𝒓𝒓′ = 𝜇𝜇∭ 𝐽𝐽(𝑟𝑟′)𝑉𝑉
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where 𝒓𝒓 and 𝒓𝒓′ represent the coordinates of a field point on the TF/SF boundary and a 

current point on the imaginary surface, respectively. Here, the magnetic field (H) that is 

due to potential of (A.1) can be written 

 𝑯𝑯(𝒓𝒓) = 1
𝜇𝜇
∇ × 𝑨𝑨(𝒓𝒓) = ∇ × ∭ 𝑱𝑱(𝒓𝒓′)𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
𝑑𝑑𝒓𝒓′,                      (A.2) 

where  𝑅𝑅 = |𝒓𝒓 − 𝒓𝒓′|. Moving the curl operator under the integral sign and using the vector 

identity  

∇ × [𝑔𝑔𝑔𝑔] = (∇𝑔𝑔) × 𝐹𝐹 + 𝑔𝑔(∇ × 𝐹𝐹),                               (A.3) 

we can write 

𝑯𝑯(𝒓𝒓) = −∭ 𝑱𝑱(𝒓𝒓′)𝑉𝑉 × ∇ �𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
� 𝑑𝑑𝒓𝒓′,                           (A.4) 

where  ∇ × 𝑱𝑱(𝒓𝒓′) = 0. Taking the gradient of the Green’s function yields 

∇ �𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
� = −(𝒓𝒓 − 𝒓𝒓′) �1+𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝑅𝑅3
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗.                                       (A.5) 

Using (A.5), we can write (A.4) as 

𝑯𝑯(𝒓𝒓) = −∭ [(𝒓𝒓 − 𝒓𝒓′) × 𝑱𝑱(𝒓𝒓′)]𝑉𝑉 �1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝒓𝒓′,                           (A.6) 

which can be expanded into its rectangular coordinates. (A.6) can be written as 

𝐻𝐻𝑥𝑥(𝒓𝒓) = ∭ �(𝑧𝑧 − 𝑧𝑧′)𝐽𝐽𝑦𝑦 − (𝑦𝑦 − 𝑦𝑦′)𝐽𝐽𝑧𝑧�𝑉𝑉
1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                    (A.7a) 

𝐻𝐻𝑦𝑦(𝒓𝒓) = ∭ [(𝑥𝑥 − 𝑥𝑥′)𝐽𝐽𝑧𝑧 − (𝑧𝑧 − 𝑧𝑧′)𝐽𝐽𝑥𝑥]𝑉𝑉
1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                    (A.7b) 

𝐻𝐻𝑧𝑧(𝒓𝒓) = ∭ �(𝑦𝑦 − 𝑦𝑦′)𝐽𝐽𝑥𝑥 − (𝑥𝑥 − 𝑥𝑥′)𝐽𝐽𝑦𝑦�𝑉𝑉
1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                   (A.7c) 

and using (A.8) the corresponding electric fields can written in (A.9) 

𝑬𝑬 = 1
𝑗𝑗𝑗𝑗𝑗𝑗

∇ × 𝑯𝑯,        (A.8) 

𝐸𝐸𝑥𝑥(𝒓𝒓) = 1
𝑗𝑗𝑗𝑗𝑗𝑗∭ �𝐺𝐺1 𝐽𝐽𝑥𝑥 + 𝑃𝑃𝑗𝑗(𝑥𝑥 − 𝑥𝑥′)𝐺𝐺2�𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                   (A.9a) 
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𝐸𝐸𝑦𝑦(𝒓𝒓) = 1
𝑗𝑗𝑗𝑗𝑗𝑗∭ �𝐺𝐺1 𝐽𝐽𝑦𝑦 + 𝑃𝑃𝑗𝑗(𝑦𝑦 − 𝑦𝑦′)𝐺𝐺2�𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,           (A.9b) 

𝐸𝐸𝑧𝑧(𝒓𝒓) = 1
𝑗𝑗𝑗𝑗𝑗𝑗∭ �𝐺𝐺1 𝐽𝐽𝑧𝑧 + 𝑃𝑃𝑗𝑗(𝑧𝑧 − 𝑧𝑧′)𝐺𝐺2�𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,              (A.9c) 

where  

𝑃𝑃𝑗𝑗 = (𝑥𝑥 − 𝑥𝑥′)𝐽𝐽𝑥𝑥 + (𝑦𝑦 − 𝑦𝑦′)𝐽𝐽𝑦𝑦 + (𝑧𝑧 − 𝑧𝑧′)𝐽𝐽𝑧𝑧,             (A.10) 

𝐺𝐺1 = −1−𝑗𝑗𝑗𝑗𝑗𝑗+𝑘𝑘2𝑅𝑅2

𝑅𝑅3
,         (A.11) 

𝐺𝐺2 = 3+𝑗𝑗3𝑘𝑘𝑘𝑘−𝑘𝑘2𝑅𝑅2

𝑅𝑅5
,                                                        (A.12) 

In the same manner, we can write the electric vector potential F in terms of the 

fictitious magnetic current M and the Green’s function G(𝒓𝒓, 𝒓𝒓′) in (A.13). 

𝑭𝑭(𝒓𝒓) = 𝜖𝜖∭ 𝑴𝑴(𝒓𝒓′)𝑉𝑉 𝐺𝐺(𝒓𝒓, 𝒓𝒓′)𝑑𝑑𝒓𝒓′ = 𝜖𝜖∭ 𝑀𝑀(𝑟𝑟′)𝑉𝑉
𝑒𝑒−𝑗𝑗𝑗𝑗�𝒓𝒓−𝒓𝒓

′�

4𝜋𝜋|𝒓𝒓−𝒓𝒓′|
𝑑𝑑𝒓𝒓′,     (A.13) 

The electric field (E) that is due to potential of (A.13) can be written as 

𝑬𝑬(𝒓𝒓) = −1
𝜖𝜖
∇ × 𝑭𝑭(𝒓𝒓) = −∇ × ∭ 𝑴𝑴(𝒓𝒓′)𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
𝑑𝑑𝒓𝒓′,   (A.14) 

Then we can write (A.15) by moving the curl operator under the integral sign and using 

the vector identity in (A.3).  

𝑬𝑬(𝒓𝒓) = ∭ 𝑴𝑴(𝒓𝒓′)𝑉𝑉 × ∇ �𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋
� 𝑑𝑑𝒓𝒓′,                           (A.15) 

where  ∇ × 𝑴𝑴(𝒓𝒓′) = 0. We can write (A.16) by taking the gradient of the Green’s function.  

𝑬𝑬(𝒓𝒓) = ∭ [(𝒓𝒓 − 𝒓𝒓′) × 𝑴𝑴(𝒓𝒓′)]𝑉𝑉 �1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝒓𝒓′,               (A.16) 

which can be expanded into its rectangular coordinates. (A.16) can be written as 

𝐸𝐸𝑥𝑥(𝒓𝒓) = −∭ �(𝑧𝑧 − 𝑧𝑧′)𝑀𝑀𝑦𝑦 − (𝑦𝑦 − 𝑦𝑦′)𝑀𝑀𝑧𝑧�𝑉𝑉
1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,           (A.17a) 

𝐸𝐸𝑦𝑦(𝒓𝒓) = −∭ [(𝑥𝑥 − 𝑥𝑥′)𝑀𝑀𝑧𝑧 − (𝑧𝑧 − 𝑧𝑧′)𝑀𝑀𝑥𝑥]𝑉𝑉
1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,           (A.17b) 

𝐸𝐸𝑧𝑧(𝒓𝒓) = −∭ �(𝑦𝑦 − 𝑦𝑦′)𝑀𝑀𝑥𝑥 − (𝑥𝑥 − 𝑥𝑥′)𝑀𝑀𝑦𝑦�𝑉𝑉
1+𝑗𝑗𝑗𝑗𝑗𝑗
4𝜋𝜋𝑅𝑅3

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,          (A.17c) 
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and using (A.18) the corresponding magnetic fields can be written in (A.19) 

𝑯𝑯 = − 1
𝑗𝑗𝑗𝑗𝑗𝑗

∇ × 𝑬𝑬,        (A.18) 

𝐻𝐻𝑥𝑥(𝒓𝒓) = 1
𝑗𝑗𝑗𝑗𝑗𝑗∭ [𝐺𝐺1𝑀𝑀𝑥𝑥 + 𝑃𝑃𝑚𝑚(𝑥𝑥 − 𝑥𝑥′)𝐺𝐺2]𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                        (A.19a) 

𝐻𝐻𝑦𝑦(𝒓𝒓) = 1
𝑗𝑗𝑗𝑗𝑗𝑗∭ �𝐺𝐺1𝑀𝑀𝑦𝑦 + 𝑃𝑃𝑚𝑚(𝑦𝑦 − 𝑦𝑦′)𝐺𝐺2�𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                     (A.19b) 

𝐻𝐻𝑧𝑧(𝒓𝒓) = 1
𝑗𝑗𝑗𝑗𝑗𝑗∭ [𝐺𝐺1𝑀𝑀𝑧𝑧 + 𝑃𝑃𝑚𝑚(𝑧𝑧 − 𝑧𝑧′)𝐺𝐺2]𝑉𝑉

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋
𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′,                        (A.19c) 

where 𝐺𝐺1 and 𝐺𝐺2 are given by (A.11) and (A.12), and   

𝑃𝑃𝑚𝑚 = (𝑥𝑥 − 𝑥𝑥′)𝑀𝑀𝑥𝑥 + (𝑦𝑦 − 𝑦𝑦′)𝑀𝑀𝑦𝑦 + (𝑧𝑧 − 𝑧𝑧′)𝑀𝑀𝑧𝑧.            (A.20) 

Therefore, the radiated fields at any field point close to fictitious electric and 

magnetic currents can be calculated numerically using (A.7), (A.9), (A.17), and (A.19).  
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Appendix B         

 The Computing System Information 

All of the simulations presented in this dissertation are done with a system whose 

specifications are given in Table B-1 below.  

Table B-1: The computer specifications. 

Memory Intel(R) Core (TM) i7-4770 CPU @ 3.40 GHz  

Processor 32.00 GB 

System Type 64-bit Operating System, x64-based processor 

Operating System Windows 8 

Programing Language Matlab Version 7.5.0.342 (R2007b) 
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Appendix C        

 Moment Matrix of a Thin Wire Antenna 

In this appendix, the moment matrix and the voltage vector used in the calculation 

of the current distribution over a thin wire antenna are expressed. The antenna is divided 

into 51 segments. When piecewise sinusoids are chosen as expansion functions and point 

matching is used for testing function, the moment matrix and the voltage vector can be 

found analytically given in [42].  

The moment matrix is expressed as follows: 

       𝑍𝑍𝑚𝑚𝑚𝑚 = −𝑗𝑗30
sin (𝑘𝑘𝑘𝑘)

�𝑒𝑒
−𝑗𝑗𝑗𝑗𝑅𝑅1

𝑅𝑅1
+ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑅𝑅2

𝑅𝑅2
− 2cos (𝑘𝑘𝑘𝑘) 𝑒𝑒

−𝑗𝑗𝑗𝑗𝑗𝑗

𝑟𝑟
�,                       (C.1) 

where 

𝑟𝑟 = √𝑎𝑎2 + ℎ2, 𝑅𝑅1 = �𝑎𝑎2 + (ℎ − 𝑑𝑑)2, and 𝑅𝑅2 = �𝑎𝑎2 + (ℎ + 𝑑𝑑)2, 

where 𝑅𝑅1, 𝑅𝑅2, and 𝑟𝑟 are defined for each segment of the thin wire antenna as illustrated in 

Figure C.1, d is the length of a segment of the wire, a is the radius of the wire, and 𝑘𝑘 is the 

wave number. 

The delta gap source model used as thin wire excitation assumes that the impressed 

electric field in the gap between the antenna terminals can be expressed as 

𝐸𝐸𝑖𝑖 = 𝑧̂𝑧 𝑉𝑉
∆𝑧𝑧

,                                                            (C.2) 

where ∆𝑧𝑧 is the width of the gap, and 𝑉𝑉 is set to unity. This is shown in Figure C.2. For the 

thin wire excited in the ith interval, the voltage vector (𝑉𝑉0) used for iteration # 0 in (5.1) is 

defined as 
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𝑉𝑉0 =

⎣
⎢
⎢
⎡

0
⋮
𝐸𝐸𝑖𝑖
⋮
0 ⎦
⎥
⎥
⎤
,                                                          (C.3) 

that is, all elements zero except the ith, which is equal to source voltage.  

Once the moment matrix in (C.1) and voltage vector in (C.3) are calculated, the 

current distribution (𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀) is determined using the matrix equation of MoM in (5.1). 

 

 

 

 

 

 

 

Figure C.1: Geometry of a thin wire antenna for the moment matrix calculation. 

 

 

 

 

 

 

 

 

Figure C.2: The delta gap source model with impressed field. 
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Appendix D        

 Near Fields of a Thin Wire Antenna 

A thin wire antenna can be considered many wire segments connected end-to-end. 

A single wire segment with current (𝐼𝐼0), as illustrated in Figure D.1, is considered as an 

electric dipole (ideal dipole) that is electrically small (𝑑𝑑𝑑𝑑 ≪ 𝜆𝜆) and very thin (radius≪ 𝜆𝜆). 

The amplitude of the current is assumed to be constant and given by  

   𝐼𝐼(𝑧𝑧′) = 𝑎𝑎�𝑧𝑧𝐼𝐼0,                       (D.1) 

where 𝐼𝐼0 = constant.  

 

 

 

 

 

Figure D.1: The electric dipole (ideal dipole). 

The near electric and magnetic fields at point P generated by a single electric dipole 

are expressed in [43] and [44] as follows 

𝐸𝐸𝑟𝑟 = 𝐼𝐼0𝑑𝑑𝑑𝑑 
2𝜋𝜋

𝜂𝜂0𝑘𝑘2 cos(𝜃𝜃) � 1
𝑘𝑘2𝑟𝑟02

− 𝑗𝑗
𝑘𝑘3𝑟𝑟0

3� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑟𝑟0,                            (D.2a) 

𝐸𝐸𝜃𝜃 = 𝐼𝐼0𝑑𝑑𝑑𝑑 
4𝜋𝜋

𝜂𝜂0𝑘𝑘2 sin(𝜃𝜃) � 𝑗𝑗
𝑘𝑘𝑟𝑟0

+ 1
𝑘𝑘2𝑟𝑟02

− 𝑗𝑗
𝑘𝑘3𝑟𝑟0

3� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑟𝑟0,                   (D.2b) 

𝐸𝐸𝜙𝜙 = 0, 𝐻𝐻𝑟𝑟 = 0, 𝐻𝐻𝜃𝜃 = 0,                                                         (D.2c) 

P 

𝑑𝑑𝑑𝑑 
𝐼𝐼0 

𝑧𝑧 

𝑦𝑦 

𝑥𝑥 

𝑟𝑟0 

ϕ 

𝜃𝜃 
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𝐻𝐻𝜙𝜙 = 𝐼𝐼0𝑑𝑑𝑑𝑑 
4𝜋𝜋

𝑘𝑘2 sin(𝜃𝜃) � 𝑗𝑗
𝑘𝑘𝑟𝑟0

+ 1
𝑘𝑘2𝑟𝑟02

� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑟𝑟0,                                  (D.2d) 

where  𝜂𝜂0 = �𝜇𝜇0 𝜀𝜀0⁄  is the intrinsic impedance of the free space, 𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄  is the wave 

number, and dz is the length of the electric dipole. The components of electric and magnetic 

fields are valid under the conditions, 

𝑑𝑑𝑑𝑑 ≪ 𝑟𝑟0 and 𝑑𝑑𝑑𝑑 ≪ 𝜆𝜆.                                                     (D.3) 

Similarly, the total near electric and magnetic fields at point P generated by the thin 

wire antenna can be expressed as follows 

𝐸𝐸𝑟𝑟,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟̂𝑟 ∙ 𝐸𝐸�⃗ 𝑖𝑖 and 𝐸𝐸𝜃𝜃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜃𝜃� ∙ 𝐸𝐸�⃗ 𝑖𝑖,         (D.4a) 

𝐸𝐸𝜙𝜙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0, 𝐻𝐻𝑟𝑟,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0, and 𝐻𝐻𝜃𝜃,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0,        (D.4b) 

𝐻𝐻𝜙𝜙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝐼𝐼𝑖𝑖𝑑𝑑𝑑𝑑 
4𝜋𝜋

𝑘𝑘2 sin(𝜃𝜃𝑖𝑖) �
𝑗𝑗
𝑘𝑘𝑟𝑟𝑖𝑖

+ 1
𝑘𝑘2𝑟𝑟𝑖𝑖

2� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑟𝑟𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,    (D.4c) 

where N is the number of  the segments on the thin wire antenna and 

𝐸𝐸�⃗ 𝑖𝑖 = ∑ 𝐼𝐼𝑖𝑖𝑑𝑑𝑑𝑑 𝜂𝜂0𝑘𝑘2 �
𝑟̂𝑟𝑖𝑖
2𝜋𝜋
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 �

1
𝑘𝑘2𝑟𝑟𝑖𝑖

2 −
𝑗𝑗

𝑘𝑘3𝑟𝑟𝑖𝑖
3� + 𝜃𝜃�𝑖𝑖

4𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 �

𝑗𝑗
𝑘𝑘𝑟𝑟𝑖𝑖

+ 1
𝑘𝑘2𝑟𝑟𝑖𝑖

2 −
𝑗𝑗

𝑘𝑘3𝑟𝑟𝑖𝑖
3�� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑟𝑟𝑖𝑖𝑁𝑁

𝑖𝑖=1 , (D.5a) 

𝑟𝑟𝑖𝑖 = �(𝑧𝑧 − 𝑧𝑧𝑖𝑖)2 + 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃, 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 = 𝑧𝑧−𝑧𝑧𝑖𝑖
𝑟𝑟𝑖𝑖

, and 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃
𝑟𝑟𝑖𝑖

,       (D.5b) 

𝑟̂𝑟𝑖𝑖 = 𝑧̂𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 + 𝑒̂𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖, and 𝜃𝜃�𝑖𝑖 = 𝑒̂𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 − 𝑧̂𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖,     (D.5c) 

where 𝑧𝑧𝑖𝑖 is the 𝑧𝑧 coordinate of the location of the 𝑖𝑖th electrical dipole and 𝑒̂𝑒 = 𝑟𝑟−𝑧̂𝑧𝑧𝑧
|𝑟𝑟−𝑧̂𝑧𝑧𝑧|. 
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