
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

10-1-2010

p2pstm: A Peer-to-Peer Software Transactional Memory p2pstm: A Peer-to-Peer Software Transactional Memory

Phil Pratt-Szeliga
Syracuse University, pcpratts@syr.edu

Jim Fawcett
Syracuse University, jfawcett@twcny.rr.com

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Pratt-Szeliga, Phil and Fawcett, Jim, "p2pstm: A Peer-to-Peer Software Transactional Memory" (2010).
Electrical Engineering and Computer Science. 170.
https://surface.syr.edu/eecs/170

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/170?utm_source=surface.syr.edu%2Feecs%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SYR-EECS-2010-03 Oct. 1, 2010

p2pstm: A Peer-to-Peer Software Transactional Memory

Phil Pratt-Szeliga

Dr. Jim Fawcett

pcpratts@syr.edu
jfawcett@twcny.rr.com

ABSTRACT: Peer-to-Peer network topologies are such that there is no centralized server in a distributed
system but rather each peer is part server and part client. This idea was originally popularized with peer-
to-peer file sharing. If one were to distribute computation on a peer-to-peer network topology, consistency
of shared data among peers is a problem. Software Transactional Memory (STM) is a lock free
mechanism of assuring consistency of memory among threads of execution that has favorable
performance over locked methods when the number of threads is large. This paper presents a method to
use STM methods with a peer-to-peer network architecture that doesn't use locks. This is accomplished
by using peer-to-peer search using two keywords: one for the variable name and the other for the most
recent version of the variable. The technique of using Hilbert Space Filling Curves to map from the
keyword space to the identifier space without flooding from Squid [2] is used. Deadlocks are prevented by
executing reads and writes with a defined partial order that is transparent to the developer. As an
example of using the methods presented, a blocking queue is built from the primitives provided.

KEYWORDS: Networks, Peer-to-Peer, Concurrency, Software Transactional Memory

Syracuse University - Department of EECS,
4-206 CST, Syracuse, NY 13244

(P) 315.443.2652 (F) 315.443.2583
http://eecs.syr.edu

p2pstm: A Peer-to-Peer Software Transactional Memory

Phil Pratt-Szeliga

Department of Computer Science and Electrical

Engineering

Syracuse University

Syracuse, NY, USA

pcpratts@syr.edu

Dr. Jim Fawcett

Department of Computer Science and Electrical

Engineering

Syracuse University

Syracuse, NY, USA

jfawcett@twcny.rr.com

Abstract— Peer-to-Peer network topologies are such that there is

no centralized server in a distributed system but rather each peer

is part server and part client. This idea was originally

popularized with peer-to-peer file sharing. If one were to

distribute computation on a peer-to-peer network topology,

consistency of shared data among peers is a problem. Software

Transactional Memory (STM) is a lock free mechanism of

assuring consistency of memory among threads of execution that

has favorable performance over locked methods when the

number of threads is large. This paper presents a method to use

STM methods with a peer-to-peer network architecture that

doesn't use locks. This is accomplished by using peer-to-peer

search using two keywords: one for the variable name and the

other for the most recent version of the variable. The technique

of using Hilbert Space Filling Curves to map from the keyword

space to the identifier space without flooding from Squid [2] is

used. Deadlocks are prevented by executing reads and writes

with a defined partial order that is transparent to the developer.

Liveness is ensured by putting fairness into a truncated

exponential backoff algorithm. As an example of using the

methods presented, a blocking queue is built from the primitives

provided. Lastly, a performance measurement of the system

created is provided.

Keywords - Networks, Peer-to-Peer, Concurrency, Software

Transactional Memory

I. INTRODUCTION

Software transactional memory (STM) is a new approach

to maintaining consistency of shared data without locks. In
STM, updates to shared data are assumed to be executed
mutually exclusive of all other updates to the same shared
data. Then, when all of the updates have been completed,
the mutual exclusion property is checked by the writer and
the updates are restarted if another thread wrote at the same
time. This paper is about an algorithm for a distributed STM
that does not rely on a centralized server. We focus on not
relying on a centralized server because performance
problems arise when scaling to Internet sized distributed
applications.

We build our system on top of the peer-to-peer search
techniques from the Squid [2] paper. Squid uses Hilbert
Space Filling Curves to hierarchically search peer-to-peer

network overlays such as Pastry [3] without the use of
flooding. An important feature of Squid is that numerical
ranges can be searched (again without flooding). We create
a Versioned Variable primitive that is built on top of the
search capabilities of Squid and then build an STM from
there.

The rest of this paper is organized as follows: Section 2
provides background information used to help understand the
contributions, Section 3 shows the architecture of our
system, Section 4 gives an example of using our architecture.
The performance of our system is discussed in Section 5.
Section 6 summarizes the related work and Section 7
provides the references.

II. BACKGROUND INFORMATION

This section describes 1) FreePastry, a peer-to-peer
network overlay that allows network communication without
a centralized server, 2) Squid, a peer-to-peer search
methodology that does not use flooding and 3) The concept
of Software Transactional Memory, a lock free method of
maintaining safety properties in shared memory systems.

A. FreePastry

FreePastry is an open source Java implementation of the
Pastry [3] peer-to-peer network overlay. Peer-to-peer
network overlays allow peers to communicate in, for
instance, a video conferencing application such as Skype,
without the use of a centralized server. Connection to the
network can be achieved by knowing the IP address of any
of the peers in the network. Once connected, messages can
be routed to any peer in the network using information in a
peer-local routing table that is maintained as the network
evolves (i.e. as peers enter and leave the network).

In Pastry, each peer has a 160 bit unique identifier
(hereafter simply identifier) that, according to its creators,
should be created randomly. Communication between peers
is done by routing messages to the closest identifier that is
found. At each hop along the route a path is chosen such that
the message will get numerically closer (in terms of the
identifier) to its destination. The identifier space wraps

around at the lower and upper limits of the 160 bit identifier
to form a ring. Figure 1 below demonstrates this.

0x01A2...

0x32C2...

0x6F27...

0xC035...

0xE421...

Figure 1 – FreePastry Ring

A host joins a ring of peers by sending a message to one

peer that it knows the IP address of. Then the joining host
builds a routing table by sending a message to several
randomly generated identifiers and tracking the identifiers of
each hop on the return route.

B. Squid

Squid [2] is a method of searching a peer-to-peer network
overlay using multiple keywords without flooding (searching
every possible peer). To accomplish this, Squid uses a
Hilbert Space Filling Curve (SFC) to map from the multiple
keyword space to the one-dimensional index space. Figure 2
demonstrates a Hilbert Space Filling curve. The numbers
inside the squares indicate the distance traveled along the
curve. With an alphabetic keyword of “c” and a numeric
keyword of “2” the distance along the curve is 8. With
keywords that have multiple characters and span the whole
alphabet, the curve is refined multiple times.

0 1

2
3

4

5 6

7 8

9 10

11

12
13

14 15a

b

c

d

0 1 2 3

Figure 2 – Hilbert Space Filling Curve

The one-dimensional index space that is the distance

along the SFC is mapped to the one-dimensional identifier

space of the existing network overlay. A hierarchical search
is done by first using the least possible refined space filling
curve and sending a search message there. If the host at that
destination does not have the information, the curve is
successively refined until either the result is found or the
result is not found. This method uses the same underlying
routing technique of Pastry in that it is guaranteed that at
every hop the algorithm proceeds towards a result. Note the
authors of the Squid paper did not specify any efficient
computational methods of refining very large Hilbert Space
Filling Curves. In our implementation we use the methods
from Wang and Shi [6] in two-dimensions.

C. Software Transactional Memory

Software Transactional Memory (STM) [1,4] is a method
of maintaining safety conditions without locks in shared
memory systems with multiple concurrent processes. There
are many variations on the theme. The software transactional
memory variation used in this paper is as follows: A set of
operations is marked atomic (the view from others is that the
entire set is written to memory at once). One method of
doing this is to keep a global version of each variable used in
the commit process. During a commit the version is
incremented and saved for each variable. At the end of a
commit all of the versions are read again, if they are the
same, the commit succeeds, otherwise the commit is
restarted.

An example of an operation that updates a bank account
is below.

1

2

3

4

5

6

7

8

9

10

atomic {

 int balance = readBalance();

 boolean result;

 if (balance – 100 > 0) {

 subtractFromBalance(100);

 result = true;

 } else {

 result = false;

 }

}

Figure 3 – Example Atomic Operation

III. P2PSTM ARCHITECTURE

The Peer-to-Peer Software Transactional Memory
(p2pstm) System is built in two layers. First the Peer-to-peer
Versioned Variable layer is described and then the p2pstm
layer is described.

A. Peer-to-peer Versioned Variable Layer

The public interface to the client-side Peer-to-peer
Versioned Variable Layer is as follows:

 publish(String keyword, int version, String data)
Publish data to the peer that handles the given
keyword and version. If the keyword:version pair
already exists on a peer (including a not validated

pair), then false is returned. Otherwise true is
returned.

 searchLatestVersion(String keyword)
Hierarchically search the ring to find the latest
version of a keyword. If it is not found, zero is
returned, otherwise the version as an integer is
returned.

 getValueQuery(String keyword, int version) Get the
data that was published using a keyword:version
pair. If the keyword:version pair does not exist, the
return value indicates so. If the pair has not been
validated, the return value also indicates so.
Otherwise, the data is returned.

 sendValidation(String keyword, int version,
boolean commit_succeeded) Send a validate
message to the peer corresponding to the
keyword:version pair. A boolean is returned
indicating the success or failure of this operation. If
a validation does not come within an adaptive time
window the keyword:version pair is destroyed on
that host.

 clone(Set<NodeHandle> nodes) Clone the keyword,
versions and data of all keyword:version pairs that
the current node is now closest to. A peer can
become closest to a keyword:value pair after it has
been published in some cases by a peer recently
joining the ring.

With this public interface the client side of the p2pstm

layer can be built.

B. Peer-to-peer Software Transactional Memory Layer

(p2pstm)

The algorithm for a commit in p2pstm is as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

boolean commit_succeeded = false

while (commit_succeeded == false) {

 searchLatestVersion for all reads in the transaction

 getValueQuery for all the latest versions

 execute the transaction that the user has specified

 publish all of the writes in the transaction

 if (a publish returned false) {

 sleep with exponential backoff and restart the loop

 }

 searchLatestVersion for all reads in the transaction

 if (a read version has changed) {

 sleep with exponential backoff and restart the loop

 }

 sendValidation for each write in the transaction

 if (a sendValidation returned false) {

 sleep with exponential backoff and restart the loop

 }

 commit_succeeded = true;

}

Figure 3 - The p2pstm commit algorithm

To avoid deadlocks in the algorithm, a partial order of the
reads and writes must be maintained. This is done by sorting
read and write requests first by keyword and then by version.

When a peer enters the ring, the host that some

keyword:version pairs map to can change. This can cause
problems because a publish for keyword: x, version: 0 may
return true if the new peer handles that identifier, but an old
peer has the history that x:0 exists. This is solved by
requiring a peer to clone its closest left hand side and right
hand neighbors keywords, versions and data that the
keyword:version pair is now closest to the joining peer.

To handle nodes leaving the system, periodically a clone

happens as well. The algorithm is to clone the nearest
neighbor variables that would be numerically closest to the
sender peer if the nearest neighbor peer were not present.

To optimize the commit algorithm, at line 10, if a version

was read and written to and the write succeeded, there is no
need to search for the latest version again.

To make the commit algorithm have a degree of fairness,

the truncated exponential backoff algorithm is modified. A
short version of the commit that highlights the fairness
addition is in Figure 4 below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

int current_retries = 0;
boolean commit_succeeded = false;
int sleep_retries = getPreviousRetries();
while (commit_succeeded == false) {
 if (a part of the transaction failed) {
 sleep_retries++;
 current_retries++;
 num = random number between 0 & sleep_retries
 limit num to MAX_RETRIES
 sleep(num * base_sleep_value)
 continue;
 }
}
setPreviousRetries(MAX_RETRIES – current_retries);

Figure 4 – The fairness addition to truncated exponential
backoff

C. A Developer's Perspective

The programming interface is such that the developer
implements a derived AtomicOperation class that fills in the
details of three methods: 1) transaction (what to do during
the commit), 2) reads (what variables are read from in the
transaction) and 3) writes (what variables are written to in
the transaction. This is demonstrated in lines 8 through 20 of
Figure 5.

1

2

3

4

public class Example {

 public void run(Squid squid){

 int increment = 1;

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

 AtomicOperation op =

 new AtomicOperation(increment){

 public String[] reads() {

 return new String[] {"x"}; }

 public String[] writes() {

 return new String[] {"x"}; }

 public void transaction() {

 StmInteger x = getValue("x");

 x.add((Integer) getArg(1));

 setValue("x", x);

 setResult(0, (Integer) x.get());

 }

 };

 op.commit();

 int result = (Integer) op.getResult(0);

 System.out.println(result);

 }

}

Figure 5 - A User's Perspective of Peer-to-Peer Software
Transactional Memory

There is an StmInteger (line 15) class that represents an

Integer that has peer-to-peer software transactions backing
its value. A write to the integer is kept in a log, that is
applied when the AtomicOperation is committing.

The AtomicOperation also provides the following

methods to manage data within a transaction:

 getValue(String keyword) get an StmInteger

corresponding to a string key

 getArg(Integer argument_number) get a local
argument passed in to the constructor of
AtomicOperation indexed by an integer

 setValue(String keyword, StmInteger value) send
the value of an StmInteger to the peer-to-peer
network

 setResult(Integer index, Object value) save a local
that can be accessed after commit has successfully
completed

Lastly, at line 20 the AtomicOperation.commit call is

shown, this executes the commit algorithm, using the
concrete transaction method.

IV. P2PSTM BLOCKING QUEUE

As a test of the capability of the primitives provided by
p2pstm, a peer-to-peer blocking queue was built. With a
peer-to-peer blocking queue, any peer in the ring can
enqueue tasks and also any peer in the ring can dequeue
tasks. This provides a convenient mechanism for
distributing workload in a peer-to-peer computational

network. Two algorithms are needed, one for enqueue and
one for dequeue.

A. Enqueue

The algorithm for enqueue is listed below

1

2

3

4

5

6

7

void enqueue(String value) {

 atomically {

 read “tail” as an integer

 write to “item”+tail_value

 increment the value of “tail”

 }

}

Figure 6 – Enqueue Algorithm

The mechanics of writing this algorithm in Java code

with the exact interface provided requires that it be broken
into two parts so that the “item”+tail_value can be specified
ahead of time. Also, in a real implementation, the string
variable identifiers are prepended with a queue name in order
to support multiple queues in a ring

B. Dequeue

The algorithm for dequeue is listed below

1

2

3

4

5

6

7

8

9

10

11

12

13

String dequeue() {

 while(true){

 atomically {

 read “tail” as an integer

 read “head” as an integer

 if tail_value == head_value

 restart loop

 read from “item”+head_value

 increment the value of “head”

 }

 return the value read in line 8

 }

}

Figure 7 - Dequeue Algorithm

As with the enqueue algorithm, in implementation, it is

broken into two parts and a queue name is prepended to
identifiers.

V. PERFORMANCE RESULTS

The commit algorithm described in this paper was
implemented in the Java Programming Language and the
elapsed time to complete a commit was measured in a
computer lab with 2 through 24 peers active. The commit
operation executed was to atomically increment four
integers. Originally, failures in the algorithm were detected
if at any point in time outside a commit all four integers did
not have the same value. There are no outstanding failures
known in the algorithm at this time. Figure 8 shows the
average commit time versus the number of peers when
fairness is included in the algorithm. Figure 9 compares the
system with and without fairness. The dashed line is without
fairness. The solid line (bottom) in Figure 9 is the same data
as Figure 8, but scaled differently.

Figure 8 – Performance Results with Fairness Included

Figure 9 – Comparison between a system with and

without fairness

It can be seen from Figures 8 and 9 that fairness is

extremely important to lower the average commit time of
each peer. Figure 8 shows that the average commit time for
up to 17 concurrent peers is less than a second. After that it
is between one and two seconds.

For all performance measurements the peers waited

randomly between 3 and 23 seconds between commits (in
client code outside of the AtomicOperation class). The

AtomicOperation class uses 10 milliseconds as the base
exponential backoff time and the retries where limited to 8
(the MAX_RETRIES value).

VI. RELATED WORK

In the paper titled “A Transactional System for
Structured Overlay Networks” [8] a peer-to-peer software
transactional memory is presented. The system uses two-
phase locking where the first phase is lock acquisition and
the second phase is lock release. Our system uses a more
optimistic approach, a write is made to a version and if that
version exists, a failure is returned. In their work deadlocks
are broken in the lock mechanism by requiring a priority for
each transaction. They state that a simple way to assign
priorities is by using timestamps and give an algorithm for
synchronizing timestamps. Our method requires no
synchronization of time stamps, instead the order of each
keyword:version pair specifies the order of reading and
writing shared state during a commit. In their work they
specify that each object has a unique identifier used to locate
it in the distributed hash table. They do not specify how this
unique identifier is created in such a way that will cause the
group of peers to have a consensus on where that object is
located. Our method uses Hilbert Space Filling Curves to
map from a two dimensional keyword:version pair to a one
dimensional node identifier space to have such a consensus.

VII. ACKNOWLEDGMENTS

We would like to thank Dr. Steven Chapin for suggesting
the use of exponential backoff in the commit algorithm. This
proved to work very well.

REFERENCES

[1] Wikipedia: Software Transactional Memory:

http://en.wikipedia.org/wiki/Software_transactional_me

mory

[2] C. Schmidt and M. Parashar, "Squid: Enabling search in

DHT-based systems," Journal of Parallel and

Distributed Computing, vol. 68, Jul. 2008, pp. 962-975.

[3] A. Rowstron and P. Druschel, "Pastry: Scalable,

decentralized object location and routing for large-scale

peer-to-peer systems". IFIP/ACM International

Conference on Distributed Systems Platforms

(Middleware), Heidelberg, Germany, pages 329-350,

November, 2001.

[4] N. Shavit and D. Touitou, “Software transactional

memory,” - Proceedings of the fourteenth annual ACM

symposium on Principles of distributed computing,

Ottowa, Ontario, Canada: ACM, 1995, pp. 204-213.

[5] Frank Dabek, Emma Brunskill, M. Frans Kaashoek,

David Karger, Robert Morris, Ion Stoica, and Hari

Balakrishnan, Building Peer-to-Peer Systems With

Chord, a Distributed Lookup Service, Proceedings of

the 8th Workshop on Hot Topics in Operating Systems

(HotOS-VIII), May 2001.

[6] N. Chen, N. Wang, and B. Shi, “A new algorithm for

encoding and decoding the Hilbert order,” Softw. Pract.

Exper., vol. 37, 2007, pp. 897-908.

[7] Kim-Thomas Möller, Marc-Florian Müller, Michael

Sonnenfroh and Michael Schöttner, “ A Software

Transactional Memory Service for Grids” Algorithms

and Architectures for Parallel Processing . Lecture

Notes in Computer Science, 2009, Volume 5574/2009,

67-78, DOI: 10.1007/978-3-642-03095-6_7

[8] Valentin Mesaros and Raphaël Collet and Kevin Glynn

and Peter Van Roy, “A Transactional System for

Structured Overlay Networks”. 2005

	p2pstm: A Peer-to-Peer Software Transactional Memory
	Recommended Citation

	TR 2010-3 title page Pratt new
	Pratt TR 2010-3 new report

