
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

2-1993

A Generalization of the Trie Data Structure A Generalization of the Trie Data Structure

Richard H. Connelly

F. Lockwood Morris
Syracuse University, lockwood@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Connelly, Richard H. and Morris, F. Lockwood, "A Generalization of the Trie Data Structure" (1993).
Electrical Engineering and Computer Science - Technical Reports. 162.
https://surface.syr.edu/eecs_techreports/162

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/162?utm_source=surface.syr.edu%2Feecs_techreports%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-93-23

A Generalization of the Trie Data Structure

Richard H. Connelly and F. Lockwood Morris

February 1993

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

A GENERALIZATION OF THE TRIE DATA STRUCTURE

RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

ABSTRACT. Tries, a form of string-indexed look-up structure, are generalized to per­
mit indexing by terms built according to an arbitrary signature. The construction
is parametric with respect to the type of data to be stored as values; this is essen­
tial, because the recursion which defines tries appeals from one value type to others.
"Trie" (for any fixed signature) is then a functor, and the corresponding look-up
function is a natural isomorphism.

The trie functor is in principle definable by the "initial fixed point" semantics
of Smyth and Plotkin. We simplify the construction, however, by introducing the
"category-cpo", a class of category within which calculations can retain some domain­
theoretic flavor. Our construction of tries extends easily to many-sorted signatures.

Section 1. Introduction.

A look-up table-a finite data structure intended for the retrieval of values which
have been stored corresponding to "keys"-is naturally regarded as a concrete im­
plementation of what abstractly is a function from keys to values, but just what
sort of function deserves some consideration. If the value type is A, which for
convenience we shall think of as always containing a distinguished element or base
point *A-we call such a type a pointed set-and the key type is Y, we may say
that a table models a function from Y to A whose value is *A (representing the
absence of a genuine value) for all but finitely many arguments; we introduce the
notation A[Y] for the set of all such functions.

Tries [4,6] are a form of look-up table suited to the situation where keys are
strings over a finite alphabet. Our innovation here will be to extend the possible
sets of keys from "strings over any finite alphabet" to "terms built with any finite
signature of operators". We begin by giving a description of ordinary string-indexed
tries (omitting optimizations found in more practically-oriented treatments) in such
a way as to make the generalization to indexing by terms as obvious as possible.

Let H be the set of finite strings over a finite alphabet { c1 , ... , Cm-l} for any
m 2::: 1. (To be sure, if m is one, H contains only the empty string, but there is
no reason to forbid that case.) An H-indexed, A-valued trie is a finite (m -1)-ary
tree, its nodes labelled by elements of A. (We shall be wanting to consider tree
nodes as m-tuples, with the label as mth component; this accounts for our taking
the size of the alphabet to be m - 1.) A trie is searched by the evident recursive
principle: the empty (m - 1)-ary tree, which we denote by • (pronounced "spot"),
represents that function in A[H] whose value is *A for every string, while an m-tuple

Early stages of the second author's research were supported by the SERC "IPSE 2.5" grant to
Manchester University.

Typeset by A,MS-TEX

2 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

(r1, ... , r rn- 1, a) represents the function whose value at the empty string is a and
whose value at a non-empty string cih is the value at h of the function represented
by Ti·

To put this more formally, we may regard H as a term algebra: the set of all
terms which can be built with m- 1 unary operators ("prefix ci'') and one nullary
operator ("empty string"). [This is more often called a "word algebra"; we go
against convention because we shall be wanting "word" in a distinct technical sense
in Section 4.] To make a specific construction, we may, following Reynolds [9],
define H as the least solution of the set equation

rn

H = L; (if i < m then H else { ()})
i=1

where by the summation notation we intend the following specific disjoint union of
sets:

fzi ~f {(i,z) 11 :S i :S m and z E Zi}.
i=1

Here { ()} is a convenient one-element set-we take the zero-tuple for its element
in the same spirit that we say the empty string is a nullary operator. Then, as is
well known, H is explicitly given by H = Un Hn, where Ho = 0, and for n 2: 0,

rn

H n+ 1 = L (if i < m then H n else { () }) .
i=1

(A remark on notation: We will be doing a lot of indexing from zero to infinity;
we therefore will write things like Un Hn as shorthand for Un>o Hn.) Given this
construction of H, we can write an explicit recursive program -for the look-up or
"apply" function:

ap • h =*A

ap (r1, ... , r rn-b a) (m, ()) = a

ap (r1, ... , rrn-1, a)(i, h)= apri h for 1 :S i < m.

Before leaving the case of strings as keys, we give a more rigorous, and also
slightly more restrictive, definition of the set of H-indexed, A-valued tries. Note
that our first description, that a trie was any A-labelled (m- 1)-ary tree, allowed
the everywhere-* A function to be represented not only by •, the empty tree, but
also by any tree all of whose node labels were *A· We now decide to require that
• be the only allowed representation for this function, so as to get a one-to-one
correspondence between the functions in A[H] and their representing tries. To this
end we introduce a modified Cartesian product TI. (called "spot product", if this
is not too cutesy) defined for any m pointed sets by

with • taken to be the base point of the resulting set.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 3

Now we can say that our set of tries is the least solution to the set equation

rn
R = fi.(if i < m then R else A)

i=l

and is given explicitly by

Ro = { •}
rn

Rn+l = fl.(if i < m then Rn else A)
i=l

n

The reader will have noticed the parallelism between the constructions of R and
H, and may foresee that the one-to-one correspondence between R and A[HJ will
prove to be a consequence of a "law of exponents" which we give as:

Proposition 1.1. If X1, ... , Xrn are sets, m 2: 0, and A is a pointed set, then
there is a one-to-one correspondence

given by

1-lrn : (gl, ... '9rn) ~)..(i, z).gi z,

Proof. We know that the formula for 1-lrn gives a one-to-one correspondence for
unrestricted functions, 1-lrn : Ax1 x · · · x Ax= ~ Ax1 +··+X=; this is the coprod­
uct property of the m-ary disjoint union in Set. We have only to notice that
this correspondence cuts down to the almost-everywhere-* A functions: we have
(gl, ... , grn) E A[Xl] X · · · X A[Xm] if and only if, fori= 1, ... , m, each 9i Xi-=/= *A
just for some finite set of values of Xi, say for Xi E { Xi 1 , ... , Xin; }; this is the same as
to say that J-lrn (gb ... , grn) (i, z) = ()..(i, z) ·9i z) (i, z) is different from* A just for (i, z)
one of the finite set of values { (1, xu), ... , (1, XIn 1), •.• , (m, Xrni), ... , (m, Xrnn=) },
. th t () A[Xl +···+X l D Le., a 1-lrn 91, · · ·, 9rn E = .

For any set Y and pointed set A we take * AIYJ to be the constant function)..y. *A.
We may then observe further that the correspondence J-lrn is base point preserving.
Also, there is an evident base-point-preserving, one-to-one correspondence between
the modified and the ordinary Cartesian products of A[X1 l, ... , A[Xml. Composing
these correspondences, we may record for later reference:

m
Definition 1.2. Denote by p,:n : fl. A[X;] ~ A[E~l X;] the base-point-preserving,

i=l
one-to-one correspondence

• ~)..(i, z).*A

(gb · · ·, 9m) ~)..(i, z).gi Z.

4 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

We have just seen string-indexed tries presented with strings taken to be the
elements of a particular term algebra. We now generalize to keys which are the
elements of an arbitrary term algebra, first one-sorted and then, in Section 4, many­
sorted. A term algebra is characterized by its operators, say m of them; the only
significant property of each operator is the number of operands it expects (its arity),
a non-negative integer ki for i = 1, ... , m. Thus, following Reynolds [9], we may
take our generic one-sorted term algebra to be the least set T solving the equation

namely
rn

where To = 0 and Tn+l = '£ T~i.
n i=l

The key to generalizing the trie idea, still obtaining a set in one-to-one corre­
spondence with A[Tl, in the presence of operations of unrestricted arity is another
law of exponents.

Proposition 1.3. If X1, ... , Xk are sets and A is a pointed set, then there is a
one-to-one correspondence

given by

Proof. We treat first the case k = 2, that is v 2 : A[Y][X] ~ A[XxYJ. For functions
without restriction, this is the "uncurrying" isomorphism, part of the Cartesian
closed structure of Set. Again, we have only to check that it cuts down to the
almost-everywhere-* functions. Suppose f = v2 g, and suppose that f E A[XxYJ,

i.e., that for some N we have f(x, y) =J. *A only for (x, y) E { (xb YI), ... , (xN, YN)}.
Then g x =J. * A[YJ only for x in the finite set (possibly with fewer than N elements)
{ X1, ... , XN }, and even when xis one of these, g x y =J. *A only for (x, y) in the set of

N pairs, so that g x E A [Y] in all cases, and g E A [Y] [X]. Conversely, if g E A [Y] [X],

then gx =J. *A[YJ only for x in some finite set {x1, ... xM}, and fori= 1, ... , M,
g Xi y =J. *A only for, say, y E {Yib ... , YinJ, which is to say that v2 g(x, y) =J. *A
only for the n1 + · · · +nM pairs (xbyu), ... , (xM,YMnM), so that v2g E A[XxYJ.

Now we may treat general k ~ 0 by induction. For k = 0, it is immediate that
vo: A"' A[{(}}l, where vo a= A().a, and v01 f = f(). Then supposing inductively
that any Vk has been shown to be a one-to-one correspondence, we may observe
that vk+l is the composition

A GENERALIZATION OF THE TRIE DATA STRUCTURE 5

of which each step is a one-to-one correspondence (the instance of v2 in the middle

step is with X- XI, y = x2 X ... X xk+l) since following any g E A[Xk+I]"· [XI]

from left to right we find

g ~----+ A.x1A.(x2, ... , Xk+I).g x1 · · · Xk+l ~----+ A.(x1, (x2, ... , Xk+l)).g x1 · · · Xk+l

1---+ A(xl, · · ·, Xk+l).g X1 · · · Xk+l = llk+19· 0

A generalized trie has to represent a function whose values are functions. That
is, an ordinary trie and its sub-tries all represent elements of A [H], whereas a gen-

eralized trie and its parts have to represent elements of A [T], A [T] [T] :::' A [TxT],

etc. But we can think of A[T][T], for example, as two iterations of "_[T]" at the
set A; so if we can abstract on the type A, and regard the generalized trie idea as
a scheme for representing functions from T to any type, then we should be able to

iterate this scheme twice at A to get a representation of A [T] [T]. This motivates
the following definition of the set ofT-indexed, A-valued (generalized) tries, where
now A is an explicit parameter ranging over pointed sets:

Ro(A) = { •}

Tn (ki)
Rn+l(A) = IT.Rn (A),

i=l

here R~ki) (A) denotes Rn (... (Rn (A)) ...) with ki iterations of Rn, and

R(A) = U Rn(A),
n

with *R(A) = • independent of A. When ki = 1 for i < m and km = 0, R(A)
reproduces the string-indexed tries as previously defined (that is, R(A) = R).

As an example term algebra let us take binary trees. We simulate a one-bit
label on each node by providing two binary constructors; that is, we take m = 3,
k1 = 0 (to construct the empty binary tree), k2 = k3 = 2; we may express this
more comprehensibly as the recursive set definition

Then the TB-indexed, A-valued tries have the corresponding recursive definition

To actually make an example of a trie, let Z* ~f Z U { * }, that is the inte­
gers extended with a base point; then the function from TB to z* that maps
the one-node binary tree (2, ((1, 0), (1, 0))) to 7 and the two-node binary tree
(2, ((1, ()), (3, ((1, ()), (1, 0))))) to 8, everything else to*, is represented by the trie

(*, ((7, ., ((8, ., •), ., •)), •, •), •).

6 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

Returning to the general treatment, it seems intuitively reasonable to suppose
that the following equations define a family of look-up functions, also parameterized
by the pointed set of possible values, and similar to what we had in the string­
indexed case but more recursion-intensive:

apA • t =*A

apA (rb ... , rrn)(i, (tb ... , tk.))

= apA(aPR(A)(· · · (apR(ki -ll(A) Ti t1) · · ·) tki-I) tki.

Note that values of i for which ki = 0 correspond to nullary operators, that is
constants, of the term algebra; for such i we have

It is by encountering a nullary subterm that ap is able to take a step towards
escaping from its apparently ever-more-deeply-nesting recursion.

It may be easier to make sense of ap specialized to our binary-tree-indexed
example, which comes out as

B-apA • b =*A

B-apA (rb r2, r3) (1, ()) = r1

B-apA (rb r2, r3)(2, (bb b2)) = B-apA (B-apRB(A) r2 b1) b2

B-apA (rb r2, r3)(3, (bb b2)) = B-apA(B-apRB(A) T3 b1) b2.

The reader may care to verify that B-apz* actually will return 7 and 8 from the
example trie for the appropriate two binary trees as keys, and * for other keys.

We will prove, by the end of Section 3, that this ap actually is well defined.
(In reality, of course, one wants to implement ap as a single subroutine, not an
infinite family. Apparently, all ap really needs to know about the type at which
it is supposedly working is the relevant base point which it might have to return.
Thus a practical program might be

ap' (bp, •) t = bp

ap'(bp, (rb ... , rrn))(i, (t~, ... , tk.)) = ap'(bp, ap'(•, · · · (ap'(•, ri) t1) · · ·) tki-1) tki·

In situations where it can be arranged that • and *A are identical, even the pa­
rameter bp would be unnecessary. We shall, however, not pursue this line further,
preferring to keep the value type as a parameter.)

Stated in terms of sets, what we hope to establish, in order to show that the
generalized tries really do represent finite functions, is a one-to-one correspondence
R(A) "' A[TJ for every pointed set A. In outline, the proof goes as follows: For
any set Z, write Fz for the set-to-set mapping A~---+ A[ZJ; then Proposition 1.1 and
Proposition 1.3 will yield

TI.F~k;) (A) "' FcE:,1 zk;) (A)
i=l

for all A.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 7

Then we may hope to prove by induction that for all n 2: 0,

For n = 0, { •} ~ A[0l; as an inductive step, calculate

R (A) = Tim R(k;) (A) C>:! Tim -r(k;) (A) ~ -r (A) = -r: (A) = A[Tn+Il
n+l - i=t n - i=l•.rTn - .r CL~l r::;) - .rrn+l - .

One would then like to conclude that, in the limit,

n

Making this calculation rigorous, and showing that the family of one-to-one corre­
spondences R(A) ~ A[T] it yields is in a suitable sense the least fixed point of the
recursion equations for ap, will be the purpose of the following two sections, with
assistance from the appendix, where we have segregated such necessary definitions
and theorems as belong entirely to category theory.

Not surprisingly, we are able to view the F introduced above as a (Curried) two­
argument functor, having its second argument and its result in the category Set*
of pointed sets and base-point-preserving functions, but taking its first argument
(the Z in A[Z]) from the partial order of sets and set inclusions. By this choice
for its domain, we are able to define F so as to be covariant in both arguments,
and are spared the difficulties which led Smythe and Plotkin in [11], needing a
covariant arrow bifunctor within a category of domains, to introduce a subcategory
with "embeddings" as morphisms. Nevertheless, F bears some resemblance to an
exponential functor, and the isomorphism of Proposition 1.3 is much the same as
that which gives Set* with smash product as a tensor product-or equivalently the
category of sets and partial functions with Cartesian product as tensor product-its
monoidal closed structure (see, for example, Poigne [8]).

The function R which constructs for any A the T-indexed, A-valued tries is in
fact an endofunctor of Set*. Moreover, ap is a natural isomorphism from R to the
functor - [T], as we shall show. The formula given above for the construction of
each Rn+l from Rn amounts to the definition of an endofunctor R of Set~et., of
which R is an "initial fixed point" as defined by Smyth and Plotkin [11].

It is because the definition of apA appeals to apR(A), etc.-in other words, be­
cause ap must be polymorphic to work at all-that we are compelled to look for a
whole functor, rather than a single data type, to be an initial fixed point.

It was originally our intention to carry out the rigorous construction of R and the
natural isomorphism ap as a straightforward application of the Smyth and Plotkin
method, which generalizes the familiar "least fixed point of a continuous function"
construction from domain theory to a categorical setting. However, it has turned
out that, despite the presence of categories and functors, the trie construction re­
tains a very domain-theoretical flavor, because the sets R(A) are unions of inclusion
towers, as is also the set T of terms. It therefore has seemed to us worthwhile to
make a preparatory digression, introducing in Section 2 a kind of domain-category
hybrid, the "category-cpo". This will allow our desired natural isomorphism of

8 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

functors to be constructed (in Section 3) as the least upper bound of an ascending
chain rather than, as would be done by a more general category-theoretic treatment,
as the colimit of a general w-sequence of objects and morphisms.

There seems to be a growing recognition that category theory is relevant not
only to semantics, but to the more mundane algorithms-and-data-structures side of
computer science. Spivey [12], for example, uncovers natural transformations and
adjunctions in familiar list-processing functions. It may not, however, be generally
appreciated that the construction of even a first-order data type can, as here, call
for categorical methods. The present paper uses rather a lot of mathematics to
arrive at a modest algorithmic result, but we hope that some of the tools developed
here will be reusable in other applications.

Section 2. The notion "Category-cpo".

It is a commonplace observation (see for example [7, p. 11]) that a partial or­
der may be regarded as a category in which each hom-set contains at most one
morphism, and which moreover is skeletal: isomorphic objects are identical (this,
together with the uniqueness of morphisms, entails that the only isomorphisms are
the identities). For a category which in this way "is" a partial order, ~' on its
objects, we will, when a and b are objects such that a ~ b, write (a ~ b) as a
notation for the (unique) morphism.

Definition 2.1. A category-partial order (category-po for short) is a pair (K, ~)
where K is a category and ~ is a subcategory of K which is a partial order on all
the objects of K, and such that the identities are the only morphisms of~ that are
isomorphisms in K.

The morphisms of the subcategory~ will be called the "inequalities" of K. Note
that this usage of "inequalities" includes also "equalities", i.e., identity morphisms.
The last condition in the definition is equivalent to requiring that the insertion
functor i : ~ ~ K reflect isomorphisms [7, p. 150], since no non-identity is an
isomorphism in ~. We will never have occasion to consider more than a single
partial-order subcategory of any one category K; hence, by abuse of notation, we
will generally write just K and not (K, ~) as our name for the category-po.

In any category-po (K, ~) a partial order is induced on all the morphisms of
K, as follows: if f : a ~ b and g : c ~ d, we write f ~ g (using the same
partial order symbol as between objects) just in case a ~ c, b ~ d, and we have
the commutative square

a C c

(1)

b c d.

Verification that ~between morphisms is a partial order is immediate. This partial
order is identical with the comma category ili. Since i reflects isomorphisms, so
does the insertion from ili to IK 1IK. Consequently, IK liK is also a category-po.

It is also immediate, for any objects a and b, that a ~ b if and only if la ~ h.
Composition in a category-po is monotone where defined: if a ~ b ~ c and

A GENERALIZATION OF THE TRIE DATA STRUCTURE 9

f' I

a' ----+ b' _.!!___., c' are such that f ~ f' and g ~ g', then g o f ~ g' o f', as one sees by
pasting the squares together.

A noteworthy elementary fact is the following:

Fact 2.2. In a category-po, if J, g : a----+ b with f ~ g, then f =g.

This is because the commuting square by virtue of which it holds that f ~ g
must have la and lb for sides. (This observation makes it clear that category­
pas are very unlike typical categories of domains and continuous functions: in a
category-po, all the non-trivial instances of "approximation" of one morphism by
another must be between morphisms from different hom-sets. A motivation for the
development of category-pas may be taken from the familiar observation that iff
and g are (graphs of) two total functions with the same domain, then f s;;; g implies
f =g.)

We now introduce the principal notion with which we intend to work.

Definition 2.3. A category-po (K, ~) is a category-complete partial order (for
short, a category-cpa) if~ is w-complete (that is, every ascending w-chain of objects
has a 1. u. b.) and each such 1. u. b. is an w-colimit in K.

The requirement that each w-l.u.b. be a colimit is identical to requiring that the
insertion functor i : ~ ----+ K preserve w-l.u.b.s as colimits. (We should remark
that a category-cpa is a special case of a "double category" as defined by MacLane
[7, p. 44], since the instances of ~ between morphisms are certain commutative
squares inK; however, we do not know how to apply this observation.)

Notational remark: We use the tuple brackets (-)n, with a binding occurrence
of n indicating as with U and the like that n runs from zero to infinity, as a notation
for infinite sequences and especially ascending chains. For example, as a synonym
for "sequence ko ~ k1 ~ k2 ~ ... of objects" we may write "w-chain of objects
(kn)n" ·

The next lemma shows that the insertion functor i: ~ ----+ K reflects [7, p. 150]
colimits of w-chains.

Lemma 2.4. Given a category-cpa K, let k be an upper bound of an w-chain
ko ~ k1 ~ · · · of objects of K. If ((kn ~ k))n is a co limit cone, then k = Un kn.

Proof. Since (Un kn ~ k) mediates from colimit cone ((kn ~ Un kn))n to cone
((kn ~ k))n, it must be the unique mediating morphism (u.m.m. for short). Since

((kn ~ k))n is also a colimit cone, (Un kn ~ k) is an isomorphism and so must be
an identity. D

The product category of a family of category-cpos is a category-cpa using the
componentwise ordering and l. u. b. The following proposition shows that the mor­
phisms in a category-cpa are w-complete.

Proposition 2.5. Let K be any category-cpa. The morphisms of K are w­
complete using the ordering defined by Diagram 1. Specifically, for any w-chain
(fn :an ----+ bn)n, there is a I.u.b. Un !n : Un an ----+ Un bn.

Proof. Consider (fn)n as a sequence ((an, bn, fn))n in ili. Theorem A.4 gives that
P: ili ----+ K x K creates a colimit object (Un an, Un bn, f). The morphism f is an

10 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

upper bound of (fn)n, because the created colimit cone is (((an ~ Urn arn), (bn ~
Urn brn)))n. To see that f is the l.u.b., let g: c---+ d be any upper bound of (fn)n.
Since (c, d, g) is a vertex of ((an, bn, fn))n, Fact A.l applied to the functor P gives
that ((Un an ~ c), (Un bn ~ d)) is the u.m.m. from (Un an, Un bn, f) to (c, d, g).
That is, f ~g. 0

Fact 2.2 gives the following useful fact.

Fact 2.6. If g : Un an ---+ Un bn is an upper bound of an w-chain of morphisms
(in :an ---+ bn)n, then g = Un fn·

It follows from Fact 2.6 that lun an = Un Ian for ao ~ al ~ a2 ~ It also
follows that composition of morphisms is w-continuous: by monotonicity, Un gn o

Un fn ~ gn 0 fn for each n; therefore, by Fact 2.6, Un gn 0 Un fn = Un(gn 0 fn)·
For any category-cpos L and K, we say that a functor F : L ---+ K is continuous

if and only ifF preserves inequalities [F(a ~a) = (Fa~ Fa)] and is w-continuous
onobjects [F(Unan) = UnF(an)]. ("Continuous" seemstheonlyreasonableword
to use in our context. Note, however, that this is not w-continuity of functors as
ordinarily defined, that is preservation of all w-colimits.)

Any continuous functor F is w-continuous on morphisms: First, F is monotone
on morphisms: an instance of ~ between morphisms, say

a c a

is sent by F to

Fa
F(~)=~

Fa

FJ 1 1Ff

Fb F(~)=~
Fb.

Then, for any w-chain of morphisms (fn : an ---+ bn)n, monotonicity gives that

F(Un fn) ~ F(fn) for each n. Since F(Un fn) : F(Un an) = Un F(an) ---+
F(Un bn) = Un F(bn), Fact 2.6 gives F(Un fn) = Un F(fn)·

For any continuous functors F, F' : L ---+ K, let T : F ~ F' be any natural
transformation. For any a ~ a in L, we have the commutative diagram

Fa

F(~)=~ 1
Fa To.

F'a

1 F'(~)=~
F'a.

That is, a~ a implies Ta ~ Ta,. For an w-chain (an)n in L, it follows that 'TUn an ~
Tan for each n. Since the domain of run an is F(Un an) = Un F(an) and the
codomain is F'(Unan) = UnF'(an), Fact 2.6 gives TUn an= Un Tan· That is, any

A GENERALIZATION OF THE TRIE DATA STRUCTURE 11

natural transformation between continuous functors is a w-continuous map from
objects to morphisms.

Clearly, functor composition preserves continuity.
Let L be any (index) category and K be any category-cpa. Define a partial order

~ between functors from L to K by

F C F {::} Fl r;;;; Fl for every object l and F f r;;;; F f for every morphism f.

This is the same as to say that the assignment l f---+ (Fl r;;;; Fl) is a natural transfor­

mation from F to F. If (F ~F) is an isomorphism, then each component (Fl C Fl)
must be an identity, making (F ~ F) an identity transformation. Thus the trans­
formations ~ as inequalities make KL into a category-po. The next proposition
shows that K L is a category-cpa.

Proposition 2. 7. Let L be any category and let K be any category-cpa. The
category K L is a category-cpa using the ~ ordering. Speciflcally, for any w-chain
(Fn : L --+ K)n, the 1. u.b. is (Un Fn) (l) = Un Fn(l) for each object l and
(Un Fn) (h) = Un Fn(h) for each morphism h. Further, if L is a category-cpa
and each Fn is continuous, then Un Fn is continuous.

Proof. By Fact A.3, the functor i* : KL --+ KILl creates a colimit object F

with colimit cone ((Fn ~ F))n where F(l) = Un Fn (l) for each object l. For any
morphism h, since F(h):;) Fn(h) for each n, Fact 2.6 gives that F(h) = Un Fn(h).
Let G be any upper bound of (Fn)n. Since ~ : i*(F) --+ i*(G) is the u.m.m. in

KILl, Fact A.l gives that it is also the u.m.m. in KL. That is, F ~ G and F is the
l.u.b. Un Fn.

Now let L be a category-cpa as well and suppose that each Fn in the w-chain
(Fn: L--+ K)n is continuous. It needs to be shown that Un Fn is continuous. To
show that Un Fn preserves inequalities, let l r;;;; f, and calculate

(U Fn) (l r;;;; f) = U Fn (l r;;;; f) = U (Fnl r;;;; Fn 0 ·
n n n

Since ((Un Fn) (l) r;;;; (Un Fn) (f)) is an upper bound of the sequence of inequalities
(F0 lr;;;;F0 f) r;;;; (F1lr;;;;F1 f) r;;;; · · ·, Fact 2.6 gives us that also

((UFn)(z) r;;;; (UFn)(f)) = U(Fnl r;;;; Fn0·
n n n

To show w-continuity on objects, let l0 r;;;; l1 r;;;; · · · be an w-chain in L; then

(UFn)(Uzm) = UFn(Uzm) = UUFn(lm) = UUFn(lm) = U(UFn)(lm)·
n m n m nm mn mn

0

If K and L are both category-cpos, we henceforth denote by K L not the cat­
egory of all functors from L to K but the full subcategory thereof whose objects

12 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

are the continuous functors. Exponential objects given by this definition of KL,
together with the products noted above, may be shown to make the category of
small category-cpos and continuous functors Cartesian closed.

Let K, L, M be any category-cpos. The composition functor o: ML x LK -t

MK [7, Exercise II.6.3, p. 45] is continuous. To see this, again treating preservation
of inequalities first, calculate, for any k E K (see [7, p. 43 eqn. 2] for the horizontal
composition of natural transformations):

[(H ~ fi) o (G ~ G)]k = fi(Gk ~ Gk) o (H(Gk) ~ fi(Gk))

= (H(Gk) ~ fi(Gk)) o (H(Gk) ~ fi(Gk))

= (H(Gk) ~ fi(Gk))

=(HoG~ fi o G)k.

Then for w-continuity on objects (functors):

(U Hn 0 U Gn) (k) = U Hn (U Gm(k)) = U U Hn(Gm(k)) = U(Hn 0 Gn(k))
n n n m mn n

for every object k, and

(U Hn 0 U Gn) (f)= U Hn (U Gm(f)) = U U Hn(Gm(f)) = U(Hn 0 Gn(f))
n n n m mn n

for every morphism f.
Of particular use will be the n-fold composition functor on (KKr -t KK

which by induction is continuous. (Zero-fold composition picks out the identity
functor on K.) If we write ~n for the diagonal functor, defined for both objects
and morphisms by ~n(x) = (x, ... , x), with the result an n-tuple-this notation
leaves the domain and codomain of ~n, in every particular use of it, to be inferred
from context-then it follows that n-fold iteration,

_(n) ~f A
- On 0 "-l.n,

is, for each n 2: 0, a continuous endofunctor of K K.

It has been noted that IK liK is a category-po when K is, and the reader may
have surmised that the same holds with "category-cpa" replacing "category-po".
Here is a proposition that gives a more general condition under which a comma
category is a category-cpa. First, for any category-cpos L and M, any category
K, and any functors T : L -t K and S : M -t K, the comma category T lS
is a category-po, where we take the inequalities ((l, m, f) ~ (f, m, f)) to be the
morphisms of the form ((l ~f), (m!;;;; m)).

Proposition 2.8. Let L and M be any category-cpos and let T : L -t K and
S : M -t K any functors where T preserves 1. u. b.s as colimits. Then the comma
category T lS is a category-cpa. Specifically, for any w-chain ((ln, mn, fn))n, and
letting l = Un ln and m = Un mn for conciseness, the morphism f in the 1. u. b.
(l, m, f) is the u.m.m. inK from (T(ln ~ l))n to (S(mn ~ m) o fn)n. Additionally,

A GENERALIZATION OF THE TRIE DATA STRUCTURE 13

if S preserves 1. u. b.s as colimits and f n is an isomorphism for each n, then f is an
isomorphism.

Proof. Theorem A.4 gives that the forgetful functor P : T lS -----+ L x M creates
a colimit object (l, m, f) with colimit cone (((ln ~ l), (mn ~ m)))n. Theorem A.4
also gives that f is the u.m.m. from (T(ln ~ l))n to (S(mn ~ m) o fn)n and that
f inherits the isomorphism property when S preserves l.u.b.s as colimits.

To see that (l, m, f) is the l.u.b., let (c, d, g) be any upper bound of ((ln, mn, fn))n.
Since ((l ~c), (m ~d)) is the u.m.m. in L x M, Fact A.l gives that it is also the
u.m.m. in T lS. That is, (l, m, f) ~ (c, d, g). 0

Here is an analog to Fact 2.2 for comma category-pas.

Fact 2.9. In any comma category-poT lS, if (l, m, f) ~ (l, m, g), then f =g.

This fact may be seen by realizing that the morphism ((l, m, f) ~ (l, m, g)) is the
identity (1 1, lrn). From Fact 2.9 follows also an analog for comma category-cpos of
Fact 2.6: If an object of the form (Un ln, Un mn, g) is an upper bound of the chain
((ln, mn, fn))n in T lS, then it is the least upper bound.

The next proposition uses Lemma 2.4 to give a condition under which a functor
whose codomain is a comma category-cpa is continuous.

Proposition 2.10. Given a comma category-cpa T lS where T : L -----+ K and
S : M -----+ K, let Q be any category-cpa and let F : Q -----+ T lS be any functor.
If P o F is continuous, where P : T lS -----+ L x M is the forgetful functor, and T
preserves 1. u. b.s as colimits, then F is continuous.

Proof. F preserves inequalities, because P o F does and P does not modify mor­
phisms. Let q0 ~ q1 ~ · · · be any w-chain in Q. Since P o F is continu­
ous, P(F(Unqn)) is the vertex of a colimit cone ((P(F(qn)) ~ P(F(Unqn))))n.
Since, by Theorem A.4, P creates colimits, Corollary A.4.1 gives that ((F(qn) ~
F(Un qn)))n is a colimit cone. Lemma 2.4 then gives that F(Un Qn) = Un F(qn)· 0

When K in Proposition 2.8 is a category-cpa, we may regenerate the partial
order on morphisms by taking T = S = i : ~ -----+ K, the insertion functor. We
chose to introduce~ on morphisms beforehand in order to be able to partially order
functors.

Section 3. One-sorted Tries.

We will need four particular category-cpos for our application to tries, three
which we introduce now, and a comma category-cpa to be named later. The first
is the category-cpa (trivially one, because it is a cpo) whose objects are sets and
whose morphisms are only the inclusions between sets; we denote it by Set~. The
second is (Set*,~), the category-cpa of pointed sets, with an inequality taken to
be any set inclusion A ~ A (provided this actually is a morphism of Set*, that is,
provided A and A have the same base point). We will invariably call this category­
cpa simply Set*. The third is Set~et., the category-cpa of continuous endofunctors
of Set* with their natural transformations; it is here that we hope to find the trie
functor R. For now we identify one object of Set~et.: we denote by ..l. the constant
functor that maps every object of Set* to { •} and every morphism to 1{•}·

14 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

We define the mapping of sets

m
T(Z) = l:Zk;,

i=l

so that our word algebra T is given by T = Un T(n)(0). The monotonicity and
continuity with respect to~ of disjoint union (finitary or not) and finitary Cartesian
product of sets are elementary facts-but for a proof of the latter, remove the spots
in the proof of Proposition 3.3 below-hence these constructions are continuous
endofunctors of Sets;. It follows, by composition of functors, that T : Sets; -----+

Setc is a continuous functor.
We have to show that :F, defined in Section 1 as the mapping Z f---+ _[z], is a

functor from Setc to Set~et. which preserves l.u.b.s as colimits, that there is a
continuous functo~ R : Set~et. --+ Set~et. such that Rn = R(n) (_i,) and conse-

quently R = Un R(n)(_i,), that for every n 2: 0 there is a natural isomorphism
"fn : R(n)(_i,) ~ :F(T(n)(0)), and finally that the "'n are the morphism parts of
an ascending w-chain of objects in a suitable comma category-cpo. We may then
conclude that the morphism part of the l.u.b. is a natural isomorphism

n

and verify that "(satisfies the equations given for ap in Section 1.

The ''finite functions" functor :F

For Z a fixed set, we may define what we will show is a continuous functor
from Set* to Set* by the formulas, where A and B are any objects of Set* and
h : A -----+ B is any morphism, A f---+ A[Z] (taking the base point of A[Z] to be
AZ.*A) and h f---+ (.Af.h of), which we correspondingly denote by h[ZJ. We may see
that this is a functor by noting that its action on morphisms is that of a covariant
hom-functor, or we may verify in detail

lA [Z] = Aj.lA of= _Af.f = lA[ZJ

(h 0 g)[Z] = .Af.h 0 g 0 f = (.Af.h 0 f) 0 (.Af.g 0 f)= MZJ 0 g[ZJ.

For continuity, we verify that _[Z] is w-continuous on objects, i.e. that

(u)(Z]- u (Z]
An - An '

n n

because first, all terms and the l.u.b. of any w-chain A 0 ~ A1 ~ ... Un An must
share a common base point* in order for the inclusions to be base-point-preserving;
second, if A ~ A', then an almost-everywhere-* function from Z to A is also such
a function from Z to A', making _(Z] monotone on objects, whence Un An[Z] ~

(Un An) [Z], and third, if f E (Un An) [Z], then the finitely many non-* values of f

A GENERALIZATION OF THE TRIE DATA STRUCTURE 15

must already lie in some An, whence (Un An)[Z] ~ Un An[ZJ. To show that _[Z]
preserves inclusions, calculate

(A~ A')[Z] =)..j.(A ~A') of=)..j E A[Zl.j = (A[Z] ~ A,[ZJ).

This shows that the functor - [Z] is an object of Set~et •.
We next show that the mapping Z ~ _[Z] is the object part of a functor :F :

Set~ ---+Set* Set., and that :F preserves l.u.b.s as colimits. Note that :F preserves
a l.u.b as a colimit, but not as a l.u.b. Also, restricting its domain to Set~ allows
:F to be covariant instead of contravariant.

We first introduce some compact notation. Let Z ~ Z ~ Z be sets and let f E
A[Z] be any function. We denote by fJ Z the function)..z E Z.f(z) in AL£1, that is the
restriction of f to Z, and by !1 Z the function ()..z E Z. if z E Z then f (z) else *A)
in A[.ZJ. The following facts are immediate:

(1)
(2)

f1ZJZ = fJZ;

If {z E Z I f(z) =j:. *A}~ Z, then JJZ1Z =f.

For any h: A---+ A' in Set*,

(3a)

(3b)

(h o f)JZ = h o (JJZ),

(h o !)12 = h o (!12)
and

[because h: *A~ *A']·

Let Zo ~ Z1 ~ Z2 ~ ... be any sequence in Setc. For any f E A[Un Znl, let
nf denote the minimum index for which fJZn 1 1 Un Zn = j, that is, the minimum
index such that f(z) = *A for all z E (Un Zn) - Znr Then we may note the
following facts:

(4)

and

(5) For any h : A ---+ A',

We may now define the functor :F: Set~ ---+ Set~et. by

:F(Z) = _[ZJ,

:F(Z ~ Z) =A~)..j E A[Zl.J1Z.

To show that :F(Z<;;;_Z) is a natural transformation is to show that the following
diagram commutes for any h : A -----+ A':

A[Z] >.f.f1 z A[.ZJ

>.j.hof 1 1 >.j.hof

A,[Z] A'[.ZJ.
>.f.f1 z

16 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

But this is just Fact 3b: (h o !)1Z = h o (!1Z), for each f E A[zJ.
We must check that F is a functor. It is immediate that F(Z=Z) = 1_[zJ, the

identity natural transformation. For a composite inclusion Z ~ Z ~ Z of sets, we
have F(Z~Z) = F(Z~Z) · F(Z~Z) because f1Z1Z = f1Z for any f E A[zJ.

It remains to prove that F preserves any l.u.b. as a colimit. Let Z0 ~ Z1 ~ · · ·

be any w-chain in Set~ with Z ~fUn Zn. Fact A.3 gives that i* : Set~et. ~
Set~Set.i creates colimits, and so by Lemma A.2 it will be sufficient to prove that
i* o F preserves Z as a colimit. That is, for each A E Set*, we shall prove that
A[Z] with cone (A.f E A[Znl.J1Z)n is a colimiting cone on the base A[Zo] >.f.f1Z1

A[Zl] >..f.f1Z2 •••• To this end, let cr = (crn : A[Zn] ~ X)n be any cone on the

same base with vertex X. Let J.L(CJ) denote the morphism A.f.cr n 1 (! J Zn 1) : A [Z] ~
X. We claim that J.L(cr) is the unique mediating morphism to the cone cr, showing
that A[Z] and its cone are a colimit.

First we must show that J.L(cr) mediates: For any n and any f E A[Znl, let n'
denote n !1 z. By its definition, n' :::::; n. Since cr is a cone, the following equation
holds for f J Zn':

(6)

By Fact 2, f = f J Zn' 1 Zn. By Fact 1, !1 Z J Zn' = f J Zn' . Consequently, Equation 6
is the required mediating equation as follows:

(7) CTn(f) = CTn 1 (!1 ZJ Zn').

Now to show uniqueness of J.L(cr): Let g : A[Z] ---+X be any mediating morphism.
For any f E A[ZJ, since g mediates and since f = fj Zn1 1 Z, the following equations
hold:

(8) g(f) = g(fJZn1 1Z) =(go (A.J.J1Z))(fJZn1) = CTn1 (fJZn1) = J.L(cr)(f),

that is, g = J.L(cr).
It will be useful to spell out the effect of composite functors F Z1 o · · · o F Zk

on morphisms of Set* and of composite natural transformations F(Z1 ~Z1) o · · · o

F(Zk~Zk) on objects. Restating the definition of F somewhat redundantly, we
may write, for any one set Z E Set~, for h: A~ Bin Set*, for f E A[Zl, and
for z E Z,

FZhfz = h(fz).

This is the case k = 1 of the following generalization to composites:

Proposition 3.1. For Z 1 , ... , Zk E Setc, for h : A ~ B in Set*, for f E

A [Z J ... [ZI] d c Z Z -
k , an 10r z1 E 1, ... Zk E k,

(9)

Proof. By induction on k. For k = 0 we have f E A, the composite functor is the
identity I set., and (9) is simply

I set. hf = hf.

A GENERALIZATION OF THE TRIE DATA STRUCTURE

For k > 1 we have

[FZ1 o · · · o FZk]h!z1 · · · Zk = [FZ1 o · · · o FZk-1](FZkh)!z1 · · · Zk-1Zk

= FZkh(fz1 · · · Zk-1)zk

=h(fz1···zk)· 0

17

Formula 9 should be familiar from the theory of combinators: it gives the effect
of k-fold iteration of the composition combinator B.

We may similarly write out the definition of F(Z~Z), for Z ~ Z E Setc, for
A E Set*, for f E A[ZJ, and for z E .Z: -

F(Z~Z)Af z = (!1 Z)z.

Again, this is the case k = 1 of a generalization to composites:

P · · 3 2 D z z- · - 1 k r A s r f Arz J·· · rzlJ ropos1tion .. ror i ~ i, 'l - , ... , , 10r E et*, 10r E k ,

and for Z1 E Zb ... , Zk E Zk,

Proof. For k = 0, whence f E A, the composite natural transformation is the
(horizontal) identity, 1set. : I set. ~ I set., and the asserted equation is merely

Fork> 1, write as a shorthandS for FZ1 o · · · o FZk_ 1, S for FZ1 o · · · o FZk_ 1,
and rJ for F(Z1~Z1) o · · · o F(Zk-1~Zk-1) : S ~ S. Then

[CJ o F(Zk~Zk)]Afz1 · · · Zk = [S(F(Zk~Zk)A) o CJ.r(Zk)A]fz1 · · · Zk

= S(F(Zk~Zk)A)(CJ.r(zk)Af)z1 · · · Zk

= F(Zk~Zk)A(CJ.r(Zk)Af Z1 · · · Zk_I)zk

= ((CJ.r(Zk)Afz1 · · · Zk-1)1Zk)Zk

= ((· · · (!1 Z1)z1 · · ·1 Zk-1)zk-11 Zk)zk

respectively by definition of horizontal composition [7, p. 43 eqn. (2)], by definition
of function composition, by Proposition 3.1, by definition of F(Zk~Zk)A, and by
induction. 0

Products and the functor R
m

We recall from Section 1 the definition of the modified Cartesian product, IJ.,
of m sets with base points, for any m ~ 0:

m m

IJ. Ai = f1 Ai- { (*AJ~d U { •}.
i=1 i=1

18 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

m m

We take it to be so clear as not to need a written-out proof that IT and IT. are the
object parts of two m-ary product functors on Set*, naturally isomorphic via the
evident

m m

• . IT Ai ~ IT. Ai
i=l i=l

: (*AJ~l f---t •

: (ai)~l f---t (ai)~l otherwise,

m

and that the action of IT. on morphisms of Set:;.n is given by

m
(IT. hi) (all ... , am)• = (h1 (a1), ... , hm(am))•.
i=l

m m

Note that IT. hi is a base-point-preserving map, as is IT hi (same definition without
i=l i=l

m

the spots); also that we have defined exactly one value of IT. hi for every element
i=l

m
of IT. Ai, because -• is a one-to-one correspondence. We will similarly take the

i=l
liberty of writing .A-abstractions, when convenient, in the form .A(a1, ... , am)•

m

We give the proof of continuity of IT. as a reminder that the restriction to finitary
products is essential:

m

Proposition 3.3. IT. : Set:;.n ~ Set* is a continuous functor.

Proof. We prove first w-continuity on objects. Fori = 1, ... , m, let AiD ~ Ail ~ · · ·
be an ascending w-chain in Set* (necessarily sharing a common base point). Then

m
IT.UAin={(all ... ,am)•[aiEUAin, i=1, ... ,m}
i=l n n

= {(all ... , am)• [::ln1 · · · ::lnm · a1 E A1n1 /\···/\am E Amkm}

= {(all ... ,am)•[::ln.ai E Ain, i = 1, ... ,m}

Then, to show preservation of inequalities, suppose that Ai ~ Ai, i = 1, ... , m,
and recall that as a function, an inclusion sends any element of Ai to itself as an
element of Ai; hence we may calculate

0

m

The finite products in Set* given by TI. yield-see, for example, [7, III.5 ex. 5]-
a "pointwise" product of any m functors G1, ... , Gm E Set~et* which we denote

A GENERALIZATION OF THE TRIE DATA STRUCTURE 19

m

m

(tr. Gi)A = IT.(GiA),
i=l i=l

m

(tr. Gi)h = IT.(Gih).
i=l i=l

m
. m

Moreover, it is immediate that rr. Gi is continuous because IT. is and the Gi are;
i=l

thus Set~et* has finite products.
m

Now it follows, by [7, III.5 Proposition 1), that ll. is (the object function of)
an m-ary product functor in Set~et*; the arrow function also works "pointwise": if
Ti: Gi ~Hi, i = 1, ... ,m, then

for each A E Set*.

Finally as to products, we have

m

Proposition 3.4. IT. : (Set~et*) m ---+ Set~et* is continuous.

Proof. Continuity on objects: For i = 1, ... , m, let GiO ~ Gil ~ · · · be an w-chain
in Set~et*. Then for each object A of Set*,

(.rt. U Gin) A = .IT. (LJ Gin) A = .IT. (U GinA)
l=l n l=l n l=l n

m . m

= U .IT. GinA = U (.IT. GinA) = (U .IT. Gin) A,
n l=l n l=l n l=l

and for each morphism h : A ---+ B of Set*, we may make an identical calculation
rn

with h replacing A throughout. (For the central equality, recall that Il., as a
continuous functor, preserves l.u.b.s of w-chains of morphisms as well as of objects.)

Preservation of inequalities: If Gi ~ Gi, i = 1, ... , m, then for each object
A E Set*,

m

(IT.(Gi~Gi))A = IT.(Gi~Gi)A = IT.(GiA~GiA)
i=l i=l i=l

20 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

We are now in a position to observe that the functor R : Set~et* ---+ Set~et*,
although most perspicuously defined pointwise:

rn

(RG)A = IT. Q(k;) A,
i=1 rn

(RT)A =IT. T(k;)A,
rn

(RG)h = IT. Q(k;) h; i=1
i=1

rn

may in fact be built by composition from the continuous functors IT. and ki-fold
iteration:

rn

RG = IT. Q(k;)

i=1

rn

RT = Ii. T(k;)
i=1

and is therefore itself continuous.

Laws of exponents as natural isomorphisms

We turn next to the reinforcement of Propositions 1.1 and 1.3 with categorical
sinews.

rn

Proposition 3.5. The one-to-one correspondence p,:n : IT. A[X;] ~ A[I::;:l X;] of
i=1

Definition 1.2 is natural in A (regarded as an object of Set*) and in X 1 , ... , Xrn
(regarded as objects of Set~).

Proof. We show naturality in A first; that is, for fixed sets X 1, ... , Xrn and any
morphism h : A --> B in Set*, that the diagram

rn

IT. A[X;]

i=1

i~l• h[X;] 1
rn
IT. B[X;]

i=1

• !Lrn

1 hr:L:::l x;J

Bl:L:::l X;]

commutes. (For compactness, we shall omit writing object arguments such as A
and (Xb ... , Xrn) for p,:n).

rn

We may write out the definition of p,:n : IT. A[X;] ---+ Al:L:;:l X;] explicitly:
i=1

J.-t:n(fl, ... ,frn)• = >..(i,x).fix.

Then, for any 91 E A[X1 l, ... , 9m E A[Xml,

and

rn

[p,:n 0 IT. hfX;J] (91, · · ·, 9m)• = J.-t:n (h O 91, · · ·, h O 9m)•
i=1

= >..(i, x).[h o 9i](x),

[kfL:;: 1 X;] o p,:n] (91, ... , 9rn) • = h[L:;:1 X;] (>..(i, x) ·9iX)

= h o (>..(i, x).9iX),

A GENERALIZATION OF THE TRIE DATA STRUCTURE 21

which is the same function.
This has shown naturality in A, that is, for fixed X 1 , ... , Xm, that

Now for naturality in X1, ... , Xm we need, supposing Xi ~ Xi fori = 1, ... , m,
commutativity of

m
IT. A[X;]

i=l

m -IT. A[X;]

i=l

ForgiE A[X;J, i = 1, ... , m, we find

m

[J.L~ 0 IT • .Af.f1Xi](gl,•••,gm)• = J.L:n(g11X1,···,9m1Xm)• = ..\(i,x).(gi1Xi)X
i=l

Proposition 3.6. The one-to-one correspondence vk : A[Zk]"· [Z1] ~ AlTI~=l Z;] of
Proposition 1.3 is natural in A and in Z1, ... , Zk for any k 2:: 0; that is, vk is a
natural isomorphism of functors from Set~ to Set~et •.

Proof. Recall that for g E A[Zk]"· [Z1] we have

We first show naturality in A, that is, that for fixed Z1, ... , Zk E Set~, and
h : A -----+ B in Set*, the diagram

)..j AZl ... AZk .h(f Zl"'Zk) 1
B[Zk]"' [Zl]

A[Z1 x .. ·xZk]

1 >.j>.z.h(f z)

B[ZlX"·XZk]

commutes. (As with J.L:n in Proposition 3.5, we have not written object parameters
for vk. The label on the left side arrow comes from Proposition 3.1.) For any

f A[z]"· [Zl] h' k h . E k , t 1s wor s out to t e true equatiOn

Thus llk : FZ1 o · · · o FZk ~ F(Z1 x · · · x Zk) is natural.

22 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

Now for naturality in Z1, ... , Zk, suppose Zi ~ Zi for i = 1, ... , k, and for
any A E Set* consider the diagram (the label on the left side arrow comes from
Proposition 3.2):

A[ZlX···XZk]

>.j>.zl···>.zk·(··· {!1Zl)z1···1ZA:)ZA: 1
A[.ZA:]··· [.Zl]

1 >.g.g1(Zl X···XZk)

A[Zl X···XZA:].

To show commutativity of this diagram is to show, for any f E A[ZA:]··· [Z1], that

For any k-tuple (zb ... 'Zk) E zl X ... X zk, both sides of this equation yield
f Zl ... Zk. On the other hand, if (zl, ... 'Zk) E zl X ••• xzk- Zlx ... xzk, then
the right-hand side of the equation yields *A. Let j be the smallest index such that
Zj E Zj - Zj; then the left-hand side also is

(· .. ((* A[ZA:]···[Z;+d)1 Zj+l)Zj+l .. ·1 Zk)Zk

= (· .. ((AZj+l ... AZk·* A)1 Zj+l)Zj+l .. ·1 Zk)Zk

=*A· 0

Combining the results of Proposition 3.5 and Proposition 3.6, we obtain:

P • • 7 T'h • n/, • r. A[Z]··· [Zil] (·) ropos1tlon 3. • e mappmg 'f'k1 ···k..,., giVen 10r gi E iki 1. = 1, ... , m

by

is an isomorp'hism

natural in the k1 + · · · + km sets Zij and in A.

Proof. When natural isomorphism JJ.':n (Proposition 3.5) is written without parame­
ters, we have the following explicit expression giving functors from Set'2 to Set~et*
as its domain and codomain: -

m
. m

JJ.:n : TI. o ;::m "' :F o 2:: .
m

Here ;:m denotes :F x · · · x :F with m factors, and L denotes the m-ary coproduct
ki

functor in Set~. Consequently, writing TI for ki-ary Cartesian product in Set~,

A GENERALIZATION OF THE TRIE DATA STRUCTURE 23

is a natural isomorphism of functors from Set~1 x · · · x Set~m to Set~et ..
Similarly Proposition 3.6 gives, for i = 1, .. -:-, m, -

displaying two functors from Set~; to Set~et. as explicit domain and codomain for
vk;, and so we have by composition and m-ary product the natural isomorphism

~ ~ ~ k1 km n. o(vkl X ..• X lJkm) : n. 0 (okl o:.Fk1 X". X okm o:.Fkm) ~ n. 0 (:.Fo I1 X ... X :.Fo TI)

again of functors from Set~1 x · · · x Set~m to Set~et .. Here the natural isomorphism
Vk 1 X · · · X Vkm is defined to be the componentwise mapping

where each Yi is a ki-tuple of sets.
But

so the above two natural isomorphisms are composable, yielding

(10)

Reverting to consideration of arbitrary objects Zij, j = 1, ... , ki, i = 1, ... , m
of Set~ and A of Set*, we may work out the effect of 'l/Jk 1 ... km (((Zij);~ 1)~1)A
on any element (gb ... , 9m)• of TI. A[Z;k;] ... [Z; 1] (as usual we suppress the object
arguments): i=l

'l/Jk 1 "'k= (gb · · · '9m)• = 1-L:n (vki 9b · · · 'Vk= 9m)•
= f..L:n(>.(zl, · · ·, ZkJ·91 Zl'' 'Zk1 , • • ·, ..\(z1, · · ·, Zkm).gm Z1'' 'Zkm)•

= ..\(i, (zll ... , Zk;}).gi Z1'' 'Zk; . 0

Construction of 1 as a least fixed point

In developing 'l/Jk 1 ... k=, we deliberately made provision for k1 + · · · + km separate
sets Zij; this was with an eye to facilitating the treatment of many-sorted term
algebras in Section 4. Our need at the moment, however, is to come down to one
set Z. We note the following fact about diagonal functors. For any functor F and
any k;::: 0,

(11)

24 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

Now observe that we may express our term-algebra functor T: Set~ ~ Set~
as

m k1 km
T = L 0 (IT X··· X IT) 0 (Llk1 X • · • X Llk=) 0 Llm

and the trie-building functor R: Set~et. ~ Set~et. as

m

Using Equation 11, we may express the composite R oF as

m

R 0 F = Ii. 0 (okl X ... X okm) 0 (J=kl X ... X ;=k=) 0 (.Llkl X ... X Llkm) 0 Llm
m

If we define the composite

then Proposition 3. 7 and the explicit expression for the type of '¢k1 ... k= given by
Formula 10 yield

Proposition 3.8. We have the natural isomorphism of functors from Set~ to
Set Set.

* w: RoF~ FoT.

For Z E Set~ and A E Set., the effect ofWzA: IT.F~k;)(A) ~FEr::.... zk;(A) is
i=l •-l given by

W ZA (gb ... , Ym)• = .A(i, (zi, ... , Zk;)).gi Z1 · · · Zk; . D

We may now begin the construction of 1 : R ~ F(T). For brevity write I for
the identity functor Iset~et •. Define what we will show in a moment is a continuous
endofunctor of I lF by

C :IlF~IlF

: (G, Z, T: G ~ FZ) f---+ (R(G), T(Z), Wz · R(T))

: (a: G ~ G', (Z ~ Z)) f---+ (R(a), (T(Z) ~ T(Z))).

Note that w z · R(T) is an isomorphism if T is.
By Lemma A.5, Cis a well-defined functor, taking D =I, E = F, G = R = R,

p = 1 n, H = T, and a = W in the statement of the lemma.
Recall (from Proposition 2.10) the forgetful functor P: IlF ~ Set~et. x Set~.

Since R and T are continuous, P o C = R x T is continuous. Consequently,
Proposition 2.10 gives that C is continuous.

Now we will construct a least fixed point (R, T, 1) of C. The functor ..l. is initial
in Set~et.: for any G E Set~et. we have the unique

(A f---+ (• f-t *G(A))): ..l. ~G.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 25

:F(0) is also initial, as shown by the natural isomorphism

'Yo ~f (A f------7 (• f--+ .AxE 0. *A)): j_. ~ F(0).

By initiality, and the fact that every R(G)(A) is a spot product, and so contains
•, we have the commutative diagram

(12)

c

----t :F(T(0)).
:F(0c;;_T(0))

Let R 0 = j_. and T0 = 0. For brevity, write ~for the inequalities (~, ~) of Il:F.
Then (12) is

(Ro, To, 'Yo) ~ C(Ro, To, 'Yo)

drawn as a diagram in Set~et •. It allows us to generate the ascending w-chain in
Il:F:

(13)

Then Proposition 2.8 gives that (13) has a l.u.b. (R, T, 1) where R = Un Rn,
T = Un Tn, and (since, by induction, each In is an isomorphism) 1: R ~ :F(T).

Considering C merely as an w-continuous mapping on the objects of I l:F, we
have found

n

We pause to note the following fact about cpos, useful for finding least fixed
points when there is no least element.

Fact 3.9. In any cpa K, if a function F: K ----t K is w-continuous, and if k E K
is such that F(k') ~ k for all k', then Un p(n)(k) is the least B.xed point of F.

To see this, recall the familiar fact that Un p(n)(k) is the least fixed point ofF
above k; the hypothesis ensures that every fixed point ofF is above k.

Now we may observe that .1. ~ R(G) for every G E Set~et. and 0 ~ T(Z)
for every Z E Setc;;_, so the initiality of .1. gives that (.1., 0, 'Yo) ~ C(G, Z, 7) for
every (G, Z, 7) E Il:F. Hence, by Fact 3.9, (R, T, 1) is the least fixed point of C.
Moreover, if (R, T, 'Y') is any fixed point of C connecting R toT, then Fact 2.9 gives
that 1' = 1. In other words, 1 is the unique natural transformation from R to
:F(T) satisfying

26 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

(The uniqueness of "! can be proved using only the initiality of (R0, T0 , 'Yo) [3,
Proposition 2.31], but the partial order in I l:F simplifies the proof here. Reynolds
noted a similar uniqueness for the relational functor which he constructed in [10].)

Recovering the look-up algorithm

We may now unpack the fixed-point equation characterizing "! to recover the
look-up algorithm "ap" which was written down but not justified in Section 1.
Let A E Set* be any pointed set and let (r1, ... , rrn)• E R(A) be any T-indexed,
A-valued generalized trie. We have

rn

()• _ ('T' . n· (ki)) ()• "/A ri, ... ,rrn - 'i!T e"f A ri, ... ,rrn
i=1

rn
= (\llr A o IJ. ("!(ki))A) (r1, · · ·, rrn)•

i=1

= (.X(gb · · ·, 9rn)• · -X(i, (t1, · · ·, tkJ) · gi h · · · tkJ

(("!(kl))Arb ... , ("!(k,))Arrn)•

(14) = .X(i, (t1, ... , tki)) . ('Y(ki))Ari t1 · · · tk; .

Recall that for any functors F, G : M -------+ L and F', G' : L -------+ K and any natural
transformations T : F ~ G and r' : F' ~ G', the horizontal composition
r' o T: F' oF~ G' o G is given [7, p. 43 Formula 3] by

r' o T = (G' o T) · (r' o F) .

For endofunctors F, G : L -------+ L, T : F ~ G, and any k 2 0, this yields by an
easy induction the formula for r(k) : F(k) ~ G(k)

(15) r(k) = (G(k- 1) or)· (G(k- 2) o To F)· ... · (GoT o F(k-2)) · (r o F(k- 1)).

So for any k 2 0 and r E R(k) (A), we have, since 'Y(k) : R(k) ~ :F~k),

("!(k))A r = [(:F~k-1) o "!). (:F~k-2) o "!oR) (:Fro"! o R(k-2)). ("! o R(k-l))]A r

= [(:F~k- 1)("/A)) o (:F~k- 2)("/R(A))) 0 · · · O (:Fr("/RCk-2l(A))) o 'YRCk-ll(A)J r

= :F~k-l)("/A)(:F~k- 2)("/R(A))(· · · (:Fr("/R(k-2)(A))("fR(k-l)(A)r)) ...)) ·

From Proposition 3.1 we have, for any j 2 0, for an appropriately typed morphism
h of Set* and function f, and for t1 , ... , ti E T,

Let t 1 , ... , tk be any terms, and apply this in turn for j = k- 1, k- 2, ... , 1,

yielding

A GENERALIZATION OF THE TRIE DATA STRUCTURE

= /A(/'R(A)(· · · (Fr('YR(k-2)(A))('YR(k-l)(A)r)tlt2) · · ·)tk-l)tk

= /A(/'R(A)(· · '/R(k-2)(A)('YR(k-l)(A)rtl)t2 · · ·)tk-l)tk.

So Equation 14 becomes

Since /A is base-point preserving, we may expand this as

I A • = * A[TJ =).t . *A

!A(rb ... , rrn) = A.(i, (h, ... , tk,)) ·!A(/'R(A)(· · · ('YR(k-ll(A)rtl) · · ·)tk;-l)tk;.

This is precisely the recursive definition proposed in Section 1 for ap.

A more realistic set of terms

27

In a typical application of generalized tries, such as to a table of common sub­
expressions in a compiler, one would be likely to find that the "terms" to be looked
up were not quite an instance of the term algebra T we have been discussing, but
rather were defined by an equation like

with V being a large, possibly infinite, set of unstructured elements such as iden­
tifiers or numerals. We sketch here how any reasonable (that is, functorial) data
structure for V-indexed look-up tables can be incorporated with the trie idea.

Suppose then that T' is as just described, that is, the least fixed point of a
functor T' : Set~ ---+ Set~ defined by

T' (Z) = zk1 + · · · + zkm + V.

We suppose that a functor B : Set* ---+ Set* encapsulates some data structure for
V-indexed tables, its look-up function being a natural transformation f3 : B ~
F(V). (For example, B might assign to each pointed set A the set of all V­
indexed, A-valued binary search trees. With such possibilities in mind, we refrain
from supposing that f3 is an isomorphism, which would be to suppose a unique
representing data structure for each finite function.)

28 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

The elements of R'(A), the T'-indexed, A-valued tries, will correspondingly have
an m + 1st field in each tuple, containing an element of B(A) or of B(R'(A)) or

That is, we define

R'(G) = G(kl) x. · · · x. cCk=) x. B,

R'(T) = T(kl) x •... x. T(k,.,.,) x. lB.

Suitable adjustments to the constructions used for Propositions 3. 7 and 3.8 above
will then produce a natural transformation (not an isomorphism unless {3 is)

w' : R' o :F ~ :F o T',

with the effect of

w~A: IT. Fik;)(A) x. B(A)---+ :FE~ 1 zk;+v(A)

given by

that is,

i=l

w~A (Yll· .. 'Ym, b)•(i, (zll ... ' Zk.)) = Yi Zl ... Zk;

W~A (Yll· .. , Ym, bt(m + 1, v) = f3Abv.

if i:::; m,

The construction of C' : Il:F ---+ Il:F and its least fixed point (R', T', 'Y'), with
'Y' : R' ~ :F(T') and 'Y' = \11~, · R' ('Y'), may then proceed as before.

Section 4. Many-sorted Tries.

In extending the result of Section 3 to many-sorted term algebras the greatest
difficulties are notational. For many-sorted algebras we follow Goguen, Thatcher,
Wagner, and Wright [5] in substance, although our notion of signature is arranged
differently from theirs in order to follow our treatment of the one-sorted case more
closely.

Let S be a set of "sorts". We call a finite sequence of sorts, that is an element w of
S*, the free monoid overS, a "word" on S; we denote its length as lwl. A signature
for an S-sorted algebra should provide for each operator a result sort and a finite
sequence, that is a word, of argument sorts. It is necessary to our trie construction
that for each s E S, only finitely many operators have result sort s (this is our only
substantial departure from the notion of S-sorted algebra in [5]). Accordingly we
suppose that an S-sorted signature is a pair (m, K) where m is an S-indexed family
of non-negative integers and, for each s E S, K(s) : { 1, ... , m(s)} ---+ S*. For
s E S, m(s) is the number of operators having result sorts, and for 1 :::; i:::; m(s),
K(s)i gives the arity (a word on S) of the ith operator of result sort s.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 29

To give as familiar an example as possible of a two-sorted term algebra, we take
ordered trees and ordered forests, with the tree nodes again labeled by a single bit;
the mutually recursive definition is

TT = Tp +Tp,

Tp = { ()} + TT X Tp .

We would like the TT- and Tp-indexed tries to come out satisfying the corresponding
equations

RT(A) = Rp(A) X Rp(A),

Rp(A) =Ax RT(Rp(A)).

As is well known, ordered forests are in one-to-one correspondence with binary
trees. Following the example may be facilitated by observing that a Tp-indexed
trie comes out as a reformatting, via the template (, ,) t---t (, (,)) , of a
TB-indexed one-sorted trie.

The same two-sorted syntax of terms may be expressed more opaquely according
to our definition of many-sorted signature by the choices S = { T, F} (for "tree" and
"forest", not the truth values), m(T) = m(F) = 2, 11:(T)I = 11:(T)2 = F, 11:(F)I = E

(the empty word), and 11:(F)2 = TF.
We follow [5] in a convenient generalization of the exponential notation: if X is

an S-indexed family of sets and w E S* is a word, w = w 1 w 2 ... Wk say, then xw
denotes X(w1) x · · · x X(wk)·

Fixing now on any arbitrarily chosen S, m, and 11:, we may make the construction
of the term algebra look very much like the one-sorted case. Define the functor
T : Set~ ---+ Set~ by, for each s E S and Z E Set~,

rn(s)
T(Z)(s) = L z~(s);.

i=l

Then letT E Set~ be given by

- u-(n) T = T (>.s E S . 0) .
n

(Slightly abusing notation, we write plain~ and U for the componentwise extension
of inclusion and union to S-indexed families of sets. In particular Z ~ Z', where
Z and Z' are S-indexed families of sets, if and only if Z(s) ~ Z'(s) for all s E S.
Analogously we extend ~ and U to S-indexed families of functors.)

Similarly generalize the notation for n-fold composition: if G is an S-indexed
family of endofunctors of Set*, that is an object of (Set~et.)8 , and w is a word
on S with lwl = k, let G(w) denote G(w1) o · · · o G(wk)· Likewise, if T is an S­
indexed family of natural transformations of such functors, that is a morphism of
(Set~et.)8 , let T(w) denote T(w1) o · · · o T(wk)·

30 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

Now we may define R, the T-indexed trie functor, much as before:

n

where R: (Set~et.)5 --+ (Set~et.)5 is given, for objects and morphisms G and r
s

of (Set~et.) and for s E S, by

rn(s) rn(s)

R(G)(s) = IT.G(K(s);), R(r)(s) = IT.r(~<:(s)i).
i=l i=l

There is nothing new in the verification that T and R are continuous endofunctors
of Set~ and (Set~et.)5 respectively.

The-sets of terms and of tries which for readability we called TT, etc. have official
designations T(T), etc.

Using the notation of [7, p. 45], we have the continuous functor

:F5 : Set~ --+ (Set~et.) 5 ,

:F5 (Z)(s) = :F(Z(s)),

:F5 (Z ~ Z')(s) = :F(Z(s) ~ Z'(s)),

for S-indexed families of sets Z, Z' and for s E S.
Applying once more the notational idea from [5] of generalizing from non-negative

integers to words, we may, for any category Land wE S* with lwl = k, define

~w: Ls--+ Lk,

~w(x) = (x(wl), ... ,x(wk))

for both objects and morphisms of L 5 . As earlier with ~n, we shall leave the
category L to be determined by context.

Now, combining for each result sort its own version of the natural isomorphism
'¢k1 ... k= introduced in Proposition 3. 7, we may define a natural isomorphism \[! of

functors from Set~ to (Set~et.)5 ,

\[! : R o :F5 ~ :F5 o T,

by, for any Z E Set~ and s E S,

Wz(s) = ['¢1~<:(s)rl .. ·l~<:(s);ncs)l 0 (~~<:(s)r X··· X ~~<:(s)m(s)) 0 ~m(s)]Z

: R(:F5 Z)(s) ~ :F5 (TZ)(s) = :F(TZ(s)).

For A E Set*, the effect of \[! z (s) A is given by

m(s) m(s) [Z((()))]
Wz(s)A: igl.(Fi)(~<:(s);)A = igtA[Z((~<:(s);)l~<(s);l)]"' K s i 1 --+FE~(;) Z"'(s); (A),

\[! z(s)A (gl,. · ·, 9m(s))• = .A(i, (z1, · · ·, zl~<:(s);!)) . 9i Z1 · · · zl~<:(s);l.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 31

Write I 8 for the identity functor on (Set~et.) s. Then we may define a contin­
uous endofunctor of the comma category I 8 lF8 by

C : zS lFS ---+ zS lFS

: (G, Z, T: G ~ F 8 Z) ~ (R(G), T(Z), Wz · R(T))

: (e7: G ~ G', (Z ~ Z')) ~ (R(e7), (T(Z) ~ T(Z'))).

Lemma A.5 shows, taking D = I 8 , E = F 8 , G = R = R, p = 17v H = T, and
(7 = w' that c is a well-defined functor; c is continuous because n X T is.

The S-indexed family _l, ~f As . l_, is an initial object in (Set~et.) s, and we
have the natural isomorphism

'Yo ~f As . /o : _i, ~ As . F(0) .

We obtain, as in the one-sorted case,

n

with ')' a natural isomorphism, and the unique natural transformation satisfying
')' = Wr · R('f).

To uncover the look-up algorithm in')', we may begin by writing an analogue to
Formula 14, for s E S, A E Set., and (r1, ... , rrn:(s)) E R(s)(A) any T(s)-indexed,
A-valued trie,

The formula for horizontal composition generalizes just as well to k pairs of functors
which need not all be the same; so for any category L, any two S-indexed families
F and G of endofunctors of L, that is any two objects of (LL)s, any morphism
T : F ~ G of (LL)S, and any w E S* with jwj = k we have the S-sorted analogue
of Formula 15:

T(w) = (Q(wl"'Wk-d o T(wk)). (Q(wl"'Wk-2) o T(Wk-1) o p(wk))

. . . . (G(wl) o T(w2) o p(w3"'wk)). (T(w1) o p(w2"'wk)).

-(w) () -(w) S () Thus for r E R (A) we have, since')' w : R ~ (FT) w ,

('Y(w))A r = (Ff) (wl"'Wk-1) (1'(wk)A) (Ff)(wl"'Wk-2) (1'(Wk-1) R(wk) (A)) (...

· · · (Ff)(wl)('f(w2)R(w3 ··wk)(A))('f(w1)R(w2···wk)(A{)) '·')) ·

For any prefix w- = w1 · · · Wj of w, for any morphism h : B ---+ B' of Set., for
[T()] ... [T(w1)] _ _ f E B Wj , and for t 1 E T(w 1), ... , tj E T(Wj), Proposition 3.1 yields

32 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

-(w) --
Then for A E Set*, r E R (A), and tiE T(wi), i = 1, ... , k, we obtain

(-y(w))Art1· · ·tk = 'Y(wk)A('Y(Wk-1)R<wk)(A)(· · ·

'Y(w2) R(wa .. 'Wk) (A) ('Y(W1) R(w2 .. ·wk) (A{ t1) t2 ...) tk-1) tk .

So we may write the S-indexed family of mutually recursive routines implicit in
Formula 16 as

'Y(s)A • =)..t E T(s). *A

'Y(s)A(rl, · · ·, fm(s)) = A(i, (tl, · · ·, tiK;(s)il)) · 'Y((~(s)i)IK(s);I)A(· · ·

''' ('Y((~(s)i)l)R((..:(s)i)2"'(..:(s);)l~~:(s);I)(A/tl) · · ·) tiK(s);l·

This is not really as horrible as the general notation makes it look. For our example
of ordered trees and forests, calling the two look-up functions T-ap and F-ap rather
than 'Y(T) and 'Y(F), it works out to

T-apA • t =*A,

T-apA (rb r2)(1, (!)) = F-apA r1 j,

T-apA(r1,r2)(2,(!)) = F-apAr2/;

F-apA • f =*A,

F-apA(rbr2)(1, ()) = r1,

F-apA (rl, r2) (2, (t, f)) = F-apA (T-apRF(A) r2 t) f ·

Appendix. Colimits in Comma Categories.

Below are two theorems which show the creation of a colimit by parameters in a
category of functors and in a comma category. The first is MacLane's "(co)limits
with parameters" theorem [7, Theorem V.3.2] which we state here as a fact. The
second is Bierle's theorem, which shows how to construct a colimit by components
in a comma category [1, Fact I.4]. This theorem was independently discovered
by Connelly [3] and by Casley, et. al. [2]. The presentation here uses MacLane's
concept of "creating colimits" [7, p. 108], defined as follows.

A functor V : K -----+ M creates colimits for a functor F : J -----+ K if and only if
for any colimit cone T : V oF ~ m there is a unique object k inK and unique
cone a: F ~ k such that V o a= T and, further, this a is a colimit cone.

The functor Vis often a forgetful functor, sending every morphism of K to itself
as a morphism of M. In this case we may describe the creation of colimits by V for
F as the existence, for any colimit cone T : V o F ~ m, of a unique k E K such
that Fk = m, and T: F ~ k is also a cone inK, and Tis also a colimit inK.

The definition of "creates colimits" yields the following obvious fact.

Fact A.l. Let a : F ~ k be a colimit cone created by V. For any cone TJ : F ~
k', the unique mediating morphism (u.m.m.) f from V o a to V o TJ is the image of
the u.m.m. g from a to TJ (that is, V g = !).

In the case of V a forgetful functor, Fact A.1 says that any u.m.m. in K from
the created colimit a to another cone on F is the same as the u.m.m. in M between
the composites of the two cones with V.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 33

The next lemma gives a condition under which a functor that creates colimits
can be used to prove that a second functor preserves colimits.

Lemma A.2. Let F : J ~ K, G : K ~ L, and V : L ~ M be functors. If
V creates colimits forGo F, and V o G preserves colimits ofF, then G preserves
colimits of F.

Proof. Let a : F ~ k be any colimit cone. By hypothesis, V o G o a is a colimit
cone. Since V creates colimits of Go F, Go a must be the colimit cone created by
V for V o G o a. D

MacLane's theorem gives a way to create a colimit by parameters in a functor
category. It uses the following notation. Let ILl denote the discrete category whose
objects are those of L, and let i : ILl ~ L denote the insertion functor. Define
i* : KL ~ KiLl as the functor sending H t----t Hoi for each object (functor) and
17 t----t 17 o i for each morphism (natural transformation).

Fact A.3. [7, Theorem V.3.2] Let K and L be any categories. The functor i*
KL ~KiLl creates colimits (for any functor F : J ~ KL).

Lemma A.2 and Fact A.3 mean that for any functors F : J ~ M and G :
M ~ KL, if i* o G preserves colimits ofF, then G preserves colimits of F. This
is especially useful because ILl is discrete and so it is sufficient to show that i* o G
preserves colimits for each object l of L.

Beierle's theorem uses the following notation. Let T : L ~ K and S : M ~ K
be any functors. For any object z E T lS, z1 will denote the morphism in z
(i.e., the third component). Consider the following forgetful functor and natural
transformation (the latter is taken from [1]).

P:TlS~LxM

: (l, m, f) f------+ (l, m)

: (u, v) f------t (u, v)

P1 : To Ih o P ~ So Ih o P

: z f------t z l

The composites Ih o P and II2 o P will be abbreviated by P 1 and P 2 respectively.
Here is Beierle's Fact I.4. The statement of the theorem here is more detailed

than the references [1, 2, 3], but the proof method is the same.

Theorem A.4. Let T : L ~ K and S : M ~ K be any functors. Let F : J ~
T lS be any functor such that T preserves colimits of P1 oF. Then the functor
P : T lS ~ L x M creates colimits for F. Specifically, if 7 : Po F ~ (l, m) is
any colimit cone of Po F, then in the created colimit cone 7: F ~ (l, m, f), f is
the u.m.m. inK from the colimit cone To P1 o 7 to the cone (So P2 o 7) · (P1 oF).
Further, if S preserves colimits of P2 oF, and P1 oF is a natural isomorphism, then
f is an isomorphism.

Proof. Let 7 : Po F ~ (l, m) be a colimit cone. Since T preserves II1 o 7 as a
colimit cone, To II1 o 7 is a colimit cone. Let f : T(l) ~ S(m) denote the u.m.m.
from To II1 o 7 to (So II2 o 7) · (Pl oF). That is, f satisfies the following diagram

34 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

for each j E J.

T(F(j)I)
T(r(j)I)

T(l)

F(j) 11 lf
S(F(j)2) S(m).

S(r(j)2)

The diagram gives that T(j) is a morphism in T lS from F(j) to (Z, m, f) for each
j E J. Consequently, since Tis a cone from PoF to (Z, m), it is also a cone from F to
(Z, m, f). To see that f is unique in the vertex (Z, m, f), suppose (Z, m, f') to be any
other vertex ofT in T lS. For each j E J, the morphism T(j) : F(j) ----* (Z, m, f')
implies that the diagram continues to commute iff is replaced by f'. Consequently,
f' mediates from To II 1 o T to (So II 2 o T) · (P1 oF) and must be the u.m.m. f. When
S preserves colimits of P2 oF and P1 oF is an isomorphism, (So Ih o T) · (P1 oF)
is a colimit cone and so f is an isomorphism.

It remains to prove that T is a colimit cone in T lS. Let a- : F --=----+ ([, m, /) be
any cone and let v : (Z, m) ----* (f, m) denote the u.m.m. from PoT to Po a-. It
must be proved that v is a morphism in T lS from (Z, m, f) to (f, m, f) and that it
uniquely mediates from T to a-. The only part of this that is any work is to show
that v is a morphism at all, as follows.

Since T(j) : F(j) ----* (Z, m, f) for each j E J and since v2 mediates from P2 o T
to P2 o a-, the following equations are valid for each j E J:

Since v1 mediates from P 1 oTto P 1 o a- and since u(j) : F(j) ----* (f, m, /) for each
j E J, the following equations also hold for each j E J:

These two sequences of equations show that S(v2) of and f o T(v1) both mediate
from co limit cone T o P 1 o T to cone (S o P2 o a-) · (P1 o F) and so must be equal.
Consequently, vis a morphism in T lS from (l, m, f) to (f, m, /).

That v uniquely mediates from a- to T is true simply because v uniquely mediates
from P o a- to P o T. D

The following corollary gives a condition under which a functor whose codomain
is a comma category will preserve colimits. It is similar to Corollary 2.19.3 in [3].

Corollary A.4.1. Let H: Q----* T lS be any functor. For any functor F: J----*
Q, if Po H preserves colimits ofF and T preserves colimits of P1 o H oF, then H
preserves colimits of F.

Proof. By Theorem A.4, P creates colimits of H oF. Take V to be P and H to be
Gin Lemma A.2; then H preserves colimits of F. D

The following diagram lemma for the construction of an endofunctor of a comma
category, which we apply in Sections 3 and 4, generalizes a construction used in
Chapter 7 of [3] that in turn was inspired by the relational functors defined by
Reynolds [10]. It seems time it was recorded separately.

A GENERALIZATION OF THE TRIE DATA STRUCTURE 35

Lemma A.5. Given five functors D : L ----+ K, E: M ----+ K, G: L ----+ L, H :
M----+ M, and R: K----+ K, and two natural transformations p: DoG______:__. RoD
and 17: RoE______:__. Eo H, the following defines a functor:

C: DlE----+ DlE

: (Z, m, f) f-----t (G(Z), H(m), 17m o R(f) o pz)

: (g, h) f-----t (G(g), H(h)).

Proof. To see that C is a functor, consider any morphism (g, h) (Z, m, f) ----+

(Z', m', f') of D lE as a commutative diagram in K:

D(l)

!1
E(m)

D(g)

E(h)

D(l')

1!'
E(m').

This is sent by C to the outer rectangle of the following diagram.

D(G(l))
D(G(g))

D(G(l'))

Pt1 1Pt 1

R(D(l))
R(D(g))

R(D(l'))

(**) R(f) 1 1 R(f')

R(E(m))
R(E(h))

R(E(m'))

~= 1 1~='
E(H(m))

E(H(h))
E(H(m')).

The upper pane of (**) commutes because p is a natural transformation, and the
lower pane because 17 is. The center pane is simply the image of diagram (*) under
R. Consequently, (**) commutes and C is well defined. C preserves identities and
composition simply because G and H are functors. 0

As we apply the lemma here, we have D always the identity IK, with G = R
and p = lR, so that the definition of C reduces to

c: IK lE----+ IK lE

: (l, m, f) f-+ (R(l), H(m), 17m o R(f)) : (g, h) f-+ (R(g), H(h)).

36 RICHARD H. CONNELLY AND F. LOCKWOOD MORRIS

REFERENCES

1. C. Beierle, Algebraic Implementations in an Integrated Software Development and Verification
System, Dissertation, University of Kaiserlautern, Dec. 1985.

2. R. Casley, R. F. Crew, J. Meseguer, and V. Pratt, Temporal Structures, Category Theory and
Computer Science, Lecture Notes in Computer Science 389, Springer-Verlag, 1989.

3. R. H. Connelly, A Comparison of Semantic Domains for Interleaving, Dissertation, Syracuse
University, Aug. 1990.

4. E. Fredkin, Trie Memory, Comm. ACM 3 (Sept. 1960), 490-499.
5. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, Initial Algebra Semantics

and Continuous Algebras, J. ACM 24 (Jan. 1977), 68-95.
6. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison­

Wesley, Reading, Mass., 1973.
7. S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5,

Springer-Verlag, 1971.
8. A. Poigne, Cartesian Closure-Higher Types in Categories, Category Theory and Computer

Programming, Lecture Notes in Computer Science 240, Springer-Verlag, 1985.
9. J. C. Reynolds, Semantics as a Design Tool, Class notes for CS15-850A-Advanced Topics

in Theory, Carnegie-Mellon University, 1988.
10. ___ , On the Relation between Direct and Continuation Semantics, Automata, Languages,

and Programming-Second Colloquium, Lecture Notes in Computer Science 14, Springer­
Verlag, 1974.

11. M. B. Smyth and G. D. Plotkin, The Category-Theoretic Solution of Recursive Domain Equa­
tions, SIAM J. on Computing 11 (Nov. 1982), 761-783.

12. M. Spivey, A Categorical Approach to the Theory of Lists, Mathematics of Program Con­
struction, Lecture Notes in Computer Science 375, Springer-Verlag, 1989, pp. 399-408.

RICHARD CONNELLY, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, PROVI­
DENCE COLLEGE, RIVER AND EATON STREETS, PROVIDENCE Rl 02918

LOCKWOOD MORRIS, SCHOOL OF COMPUTER AND INFORMATION SCIENCE, 4-116 CENTER
FOR SCIENCE AND TECHNOLOGY, SYRACUSE UNIVERSITY, SYRACUSE NY 13244-4100

	A Generalization of the Trie Data Structure
	Recommended Citation

	SU-CIS-93-23_001c
	SU-CIS-93-23_002c
	SU-CIS-93-23_003c
	SU-CIS-93-23_004c
	SU-CIS-93-23_005c
	SU-CIS-93-23_006c
	SU-CIS-93-23_007c
	SU-CIS-93-23_008c
	SU-CIS-93-23_009c
	SU-CIS-93-23_010c
	SU-CIS-93-23_011c
	SU-CIS-93-23_012c
	SU-CIS-93-23_013c
	SU-CIS-93-23_014c
	SU-CIS-93-23_015c
	SU-CIS-93-23_016c
	SU-CIS-93-23_017c
	SU-CIS-93-23_018c
	SU-CIS-93-23_019c
	SU-CIS-93-23_020c
	SU-CIS-93-23_021c
	SU-CIS-93-23_022c
	SU-CIS-93-23_023c
	SU-CIS-93-23_024c
	SU-CIS-93-23_025c
	SU-CIS-93-23_026c
	SU-CIS-93-23_027c
	SU-CIS-93-23_028c
	SU-CIS-93-23_029c
	SU-CIS-93-23_030c
	SU-CIS-93-23_031c
	SU-CIS-93-23_032c
	SU-CIS-93-23_033c
	SU-CIS-93-23_034c
	SU-CIS-93-23_035c
	SU-CIS-93-23_036c
	SU-CIS-93-23_037c

