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Abstract 

In this paper we present several algorithms for all-to-many personalized communica­

tions which avoid node contention. Our algorithms assume that the size of messages 

are non-uniform. We discuss these algorithms and study their effectiveness both from 

the view of static scheduling as well as runtime scheduling. The algorithms are based 

on decomposing the communication matrix into a set of partial permutations. We 
also propose measures to reduce the variance of message sizes in one permutation such 

that each processor's communication time in one permutation can be approximately 

equal. In a system with n processors and every processor sends and receives d unique 

messages, our algorithm can complete the scheduling in 0( * ( n log2 d)) time on an 

average, and use an expected number of * + ~~~d partial permutations to carry out 

the communication, where,\=~' k is the number of messages which are completely 

sent out in one permutation. We present experimental results of our algorithms on 

the CM-5. 

Index Terms -Loosely synchronous communication, node contention, non-uniform 

message size, personalized communications, runtime scheduling, static scheduling. 



1 Introduction 

For distributed memory parallel computers, load balancing and reduction of commu­

nication are two important issues for achieving a good performance. it is important 

to map the program such that the total execution time is minimized, the mapping can 

be typically performed statically or dynamically. For most regular and synchronous 

problems [7], this mapping can be performed at the time of compilation. For ap­

plications with regular communication patterns, the communications can be easily 

explicitly specified using system primitives like broadcast, send, receive, concatenate, 

etc, and these regular communication patterns can be recognized by parallel compilers 

[3, 8, 12]. 

For some other class of problems, which are irregular in nature, achieving good 

mapping is considerably more difficult. The nature of this irregularity may not always 

be known, and can be derived only at runtime. The handling of irregular problems re­

quires the use of runtime information to optimize communication and load balancing 

[6, 11, 14]. These packages derive the necessary communication information based 

on the data required for performing the local computations and data partitioning. 

Typically, the same schedule is used a large number of times. Thus communica­

tion optimization is very important and affects the performance of applications on a 

parallel machine. 

In this paper we develop and analyze several simple methods of scheduling com­

munication. These methods are efficient enough that they can be used statically as 

well as at runtime. Assuming a system with n processors, our algorithms take as 

input a communication matrix COM(O .. n -1,0 .. n -1). COM(i,j) is equal to 1 if 

processor P3 needs to send a message (of size msg_len(i,j)) to Pi, 0 :5 i,j :5 n- 1. 

Because the message sizes in one permutation may vary in a very wide range, we 

propose schemes to reduce the variance of message size within one permutation by 

splitting large messages into smaller pieces, each of which is sent in different phases. 

Our algorithms decompose the communication matrix COM into a set of partial per­

mutations, pm~,pm2 , • • • ,pmz, such that if COM(i,j) = 1 then there exists at least 

a k, 1 :5 k :5 l, that pmk(j) = i. 
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With the advent of new routing methods [5, 18], the distance to which a mes­

sage is sent is becoming relatively less and less important. Thus assuming no link 

contention, permutation seems to be an efficient collective communication primitive. 

Permutations have a useful property that each node receives at most one message 

and sends at most one message. For an architecture like the CM-5, the data transfer 

rate seems to be bounded by the speed at which data can be sent or received by any 

processor [2]. Further, the routing is randomized, thus a random permutation should 

make effective use of the bandwidth of the fat-tree like architecture of the CM-5. 

Clearly, this is not going to be the case for all architectures. However, if a particular 

node receives more than one message or has to send out more than one message in 

one phase then the time would be lower bounded by the time required to remove 

the messages from the network by the processor receiving the maximum number of 

messages. 

Assuming that each of the n processors sends and receives d messages, we perform 

a probabilistic analysis and show that the complexity of the algorithm is 0( f ( n log2 d)) 

on an average. We show that our algorithms are inexpensive to be suitable for static 

as well as runtime scheduling. If the number of times the same communication sched­

ule is used is large (which happens for a large class of problems [3]), the fractional cost 

of the scheduling algorithm is quite small. On an average the fraction of extra permu­

tations generated are not very high. Further, compared to a naive algorithm which 

takes time proportional to n permutations, this algorithm has significant speedup. 

The rest of the paper is organized as follows. Section 2 gives the notation and 

assumptions of message routing algorithms. Section 3 presents the algorithms and 

their time complexity analysis. Section 4 provides approaches to decide value ..\. 

Section 5 presents the experimental results. Finally, conclusions are given in Section 

6. 
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2 Notation and Assumptions 

2.1 Category 

We categorize the routing algorithms in several different categories: 

1. Uniformity of the message - All messages are of equal size or not. In this 

paper we assume that messages are of non-uniform size. In case the messages 

are nearly of the same size, the Compact Global Masking (CGM) algorithm 

developed in [16] has considerably smaller scheduling overhead (O(dnlnd)). 

2. Density of communication matrix- If the communication matrix is nearly dense 

then all processors send data to all other processors. If the communication 

matrix is sparse then every processor sends to only a few processors. In this 

paper, we only discuss the latter case. There are a number of algorithms for 

the former case [1, 10]. 

3. Static or runtime scheduling - The communication scheduling has to be per­

formed statically or dynamically. 

2.2 Assumptions 

We make the following assumptions for the complexity analysis. 

1. All permutations can be completed in ( T + M r.p) time, where T is the com­

munication set up time, M is the maximum size of any message sent in one 

permutation, and r.p represents the inverse of the data transfer rate. 

2. In case the communication is sparse, all nodes send and receive approximately 

equal number of messages; if the density of sparseness is d then at least d 

permutations are required to send all the messages. 
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3 Scheduling Algorithms 

In this paper, we assume that each processor has a identical communication matrix 

COM at compile time. The communication matrix COM is sparse in nature, i.e. each 

processor will send and received unique messages (in a system with n processors). Our 

algorithms can be easily modified to be useful at runtime: we assume each processor 

knows its sending vector only at runtime, all processors can then participate in a 

concatenate operation which will combine each processor's sending vector to form the 

communication matrix COM and leave a copy at every processor. For architectures 

like CM-5, performing a concatenate operation is efficient and can be completed in 

0( dn) amount of time [2]. These operations have efficient implementation on other 

architectures like hypercubes and meshes [1, 15]. 

The communication patterns considered in this paper are all-to-many personalized 

communication (all-to-all personalized communication is a special case of all-to-many 

personalized communication). In personalized communication, one processor sends a 

different message to different processors [10]. We also assume that COM is a non­

uniform communication pattern, i.e., messages may not be of equal size. We have 

developed methods for the case when messages are uniform [16]. 

3.1 Linear Permutation (LP) 

In this algorithm (Figure 1), each processor Pi sends a message to processor P(i(!Jk/ 

and receives a message from P(i(!Jk), where 0 < k < n. When COM(i,j) = 0, 

processor Pi will send a dummy message to processor Pi. In every iteration, there is 

a pairwise exchange: every processor sends messages to and receives messages from 

same processor. We also experimented the LP with following scheme: each processor 

Pi sends a message to processor P(i+k) mod n and receives a message from P(i-k) mod n' 

where 0 < k < n. The results show that, for the CM-5, the pairwise exchange 

approach performs slightly better than the latter scheme. 

The time complexity of this algorithm is 0( n( T + 'PM)), where T represents the 

1 EB represents bitwise exclusive OR operator. 
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Linear _permutation() 
For all processor P~c, 0 :5 k :5 n - 1, parallel do 

for i = 1 to n-1 do 

j = k ffi i; 

P~c sends a message to Pj; 

P~c receives a message from Pj; 
end for 

Figure 1: Linear Permutation Algorithm 

communication set up cost, cp represents the inverse of the data. transfer rate, and M 
represents the maximum message size. 

3.2 Compact Global Masking using Heaps {CGMH) 

In the sparse matrix COM(i,j), there are holes (COM(k,j) = 0) along each column 

j. When we look for active entries (entry COM(k,j) = 1, 0 ::5 k :5 n - 1) along 

column j, the time used to step through these holes is wasted and should be avoided 

to minimize unnecessary computation overhead. Keeping this in mind, we compress 

then x n sparse matrix COM into ad x n totally dense matrix CCOM (Appendix 

A) such that CCOM(k,j) = i if COM(i,j) = 1, 0 ::5 k ::5 d. Each column 

of CCOM is sorted by message size in descending order and stored in heap data 

structure embedded in each column of COM. 

The vector prt is used as pointers which point to the maximum number of row in 

each column that contains useful entry. If we perform this compression statically, the 

time complexity will be O(n2). This operation can be performed at runtime: each 

processor compacts one column, and then all processors participate in a concatenate 

operation which will combine all columns into a d x n matrix. The cost of this parallel 

scheme is 0( n + dn) = 0( dn) assuming that a concatenate can be completed in 0( dn) 

time. 
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CompacLGlobaLMasking_with_Heap() 

1. Compress matrix COM into ad x n matrix CCOM; 

2. Build a heap heapk in column CCOM( *, k ), 0 :::; k < n, by each entry 

CCOM(i, k)'s, corresponding message size, where 0:::; i <d. 

3. Create_Permutation(). 

Figure 2: Compact Global Masking Algorithm with Heap 

We assume that CCOM(i,j) = -1 if this entry doesn't contain active informa­

tion. After the copy procedure, the first d rows of each column will contain active 

entries. When searching for a available entry along column j, the first row i with 

CCOM(i,j) = k and receive(k) = -1 will be chosen. We then set send(j) = k and 

receive(k) = j. Since the entries are sorted by message size, at each step, processors 

are trying to send out the biggest message size possible. However, at each step the 

message sizes may vary in a wide range, if we allow every processor to completely send 

its message, then the communication time complexity in each step is upper bounded 

by the maximum message size in each step (because CGMH is a loosely synchronous 

communication pattern, processors with smaller messages may be idle while waiting 

for processors with largest message to complete). In order to eliminate processors' 

idle time, we will introduce several approaches in next section to choose a reasonable 

message size in each step such that processors with smaller messages will send their 

messages completely, processors with bigger messages will only send part of their 

messages, and restore the remained messages back to their proper location within 

heaps. 

The CGMH algorithm is described in Figure 2. 

Step 1 takes 0( n2) time to complete in sequential program, but we can parallelize 

this step: each processor create one column of CCOM, then all processors participate 
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Create_Permutation{) 

Repeat 

1. Set send(O .. n- 1) = receive(O .. n- 1) = -1; 

2. x = random(1 .. n); 

for y = 0 to n-1 do 

j = (x + k) mod n; i = 0; S = ¢; 

while (send(j) = -1 AND i ~ prt(j)) do 

k = CCOM(l,j), where l = Heap_Extract_Max(heapj)i 

if (receive(k) = -1) then; 

send(j) = k; receive(k) = j; 

else 

S = S U CCOM(l,j); Heap_Remove(heapj,l}; i = i + 1; 

endif 

end while 

For all entries, CCO M( k, j), in S (except the last one), Heap_lnsert(heapi, MtJ; 

I* Mi is CCOM(k,j)'s corresponding message size* I 
end for 

3. Meff = Decide_Size(); 

4. For all processor Pi, 0 ~ i :S n- 1, parallel do 

Pi sends a message, no bigger than Meff, to Psend(i)i 

Pi receive a message from Preceive(i)i 

5. For all column k, 0 ~ k < n, which sent a message at this iteration, decreases prt(k) 

by 1. H it only sent partial message, add the remainder of the message back to its 

proper location in heapk and increase prt( k) by 1. 

Until no more message to he sent 

Figure 3: Procedure Create_permutation() 
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in concatenating the result together. The time complexity of this parallel version is 

O(n) + O(dn) = O(dn). Step 2 takes O(d) to build a heap in one column [4), thus it 

takes O(dn) to complete this step. Step 3.1 takes O(n) time, step 3.3 requests a sort 

operation (we use merge sort in our paper, which has a time complexity of O(n log n), 
this sort operation can be further optimized by using more advanced approach like 

radix sort, which is only required 0( n) time) plus the ..\ approach (which will be 

discussed at next sections), and step 3.4 takes O(r + cpM:u) time (where M:JJ is 

the most efficient message size at permutation pmk, which would be decided by the 

approaches proposed at next section) and step 3.5 takes O(log d) time to complete. 

We are interested in evaluating the average time complexity of step 3.2 and the 

average number of iterations to complete step 3. 

Theorem 1: The time complexity of step 3.2 is O(nlog2 d). 
Proof: We assume that at the beginning of each iteration, the value d (number 

of active entries) in each column is approximately even and the destinations to which 

each node has to send data are random (between 1 and n). Then the number of 

iterations the while loop in 3.2 is executed is proportional to O(nlnd+n) [16). Each 

heap operation in 3.2 will require O(log d) time. Thus the complexity of step 3.2 is 

upper bounded by 0( n log2 d). 0 

We are also interested in the number of entries CCOM(i,j) being consumed in 

one iteration. i.e. the number of entries CCOM(i,j) being reset to -1 in one iteration. 

Theorem 2: If every processor in one permutation sends a complete message, then 

the expected number of entries CCOM(i,j) consumed in one iteration is at least 
n n- d+I. 

Proof: The proof is given in [16). For completeness, we present the proof in 

Appendix B. 0 

But as we mentioned in previous discussion, the maximum message size allowed 

to be sent in one iteration is Mel 1 instead of Mma.z, Assuming there are n- k entries, 

in one permutation, with message size greater than Mel 1 (which will only send partial 

message and return the remaining message back to its heap). Thus the actual entries 

consumed in one iteration is k- d:1. 
We denote d* as the average number of active entries in each column after one 
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iteration of scheduling. Assuming the original number of entries in each column be 

d, we have 
1 n 

d* = - ( nd - ( k - -)) 
n d+1 

=d-~+-1-
n d+ 1 

1 
=d-A+d+1 (1) 

It is difficult to analyze the number of messages in each column at the next step. 

We are interested in finding out the number of partial permutations generated by the 

algorithm. Clearly A should be set such that A > dtl. We used* as the new value of 

d at the next step. This assumption is made for all future steps. Assume Yi be the 

number of useful entries remained at each column after one iteration. Then choosing 

am that 

(2) 

would reduce Ym to ~ (proof is given in Appendix C). 

Now we can calculate the number of iterations needed to complete the scheduling. 

According to equation 2, the number of iterations is upper bounded by 

d 1 d 1 1 1 
( 2A + A2) + ( 4A + A2) + ... + (-~ + A2) 

1 d d 1 
= ":\" ( 2 + 4 + ... + 1) + A 2 log d 

d logd R::-+--
A A2 

(3) 

The above analysis is based on the assumption of equal din each column at the 

beginning and end of every round. With the analysis presented above, we conclude 

the following about the average time complexity of the CGMH algorithm (assuming 

a fixed value A): 

• Time for compressing COM into CCOM: O(n2 ) in the sequential program and 

0( dn) in the parallelized version; 
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Figure 4: Number of heap operations I n versus ~ ln d 

160 

• Time for building heaps embedding in CCOM: O(dn); 

• Time for performing the scheduling: 0(( ~ + 1~\d) · (n log2 d)), which is approx­

imately O(~(nlog2 d)); 

• Time for sorting one permutation by message sizes: 0( n log n) for merge sort, 

it may be reduced to take only 0( n) time by using histograming techniques. 

• Time for performing the communication: 0((~ + 1~\d) · (r + c.pMeff )), which is 

approximately 0( ~ ( r + c.pMef f)). 

The number of heap operations in Step 3.2 was measured for different values of 

n and >. for randomly generated communication matrices (Appendix D). We have 

plotted no. of heap operations In against d~d in Figure 4. The experimental results 

support our theoretical analysis. 

However, our simulation results show that by the timed is close to 1, the number 

of entries left in each column are uneven, and the degree of unevenness increases as 
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.A is away from 1. This effect is amplified for large value of n. In order to reduce 

the impact of unevenness, we propose a two-phase scheduling approach: we use the 

original approach presented above during the process that d* is reduced from original 

d to a small value (we use ma.x{2, 1~} in this paper), at this stage, the number of 

iterations needed is bounded by 

d 1 d 1 1 1 
( 2..\ + ..\2 ) + ( 4..\ + ..\2 ) + ... + ( 16..\ + ..\2 ) 

15 d 4 
= 16~ + ..\2 j 

When d* is small, it would be more suitable to reset .A to 1, i.e. completely sent 

out every message in one permutation, thus reducing d* from small d to 0 is upper 

bounded by 1~ +log( 1~) [16]. With the above analysis, the number of permutations 

to complete the scheduling, using the modified algorithm, is bounded by 

15 d 4 d d 
( 16 ~ + ..\2 ) + ( 16 + log( 16)) (4) 

Table 1 and 2 show the comparison of equation (3), ( 4), number of permutations 

generated by CGMH with resetting .A, and number of permutations generated by 

CGMH without resetting. These results reveal that without resetting A to 1 when 

d* is reduced to small value, for a system with 512 nodes, it may take as many as 

15 extra iterations to complete the scheduling in comparing with algorithms which 

employ resetting .A scheme. In section 4, we propose several approaches to decide the 

value .A (we will use the resetting scheme in all of our approaches). 

3.3 Asynchronous Communication (AC) 

The previous algorithms can be considered as a sequence of loosely synchronous com­

munication patterns. In this section, we describe a asynchronous communication 

algorithm. The basic concept of this algorithm is: each processor first sends out all of 

its out going messages to other processors, then begins to receive in coming messages 

(some of them may already arrived its receiving buffer) from other processors. During 

the send-receive process, the sending processor does not need to wait until receiving 

11 



t . d _ d + log d. 
. 1- X A~ ' 

~ d di d; resetting~ no resetting 

0.75000 4 8.89 10.36 6.62 8.46 

0.75000 8 16.00 16.61 13.52 15.34 

0.75000 16 28.44 28.11 26.00 27.78 

0.75000 32 51.56 50.11 48.86 50.84 

0.93750 4 6.54 6.80 6.02 6.42 

0.93750 8 11.95 12.05 11.02 11.42 

0.93750 16 21.62 21.55 20.34 20.72 

0.93750 32 39.82 39.55 37.76 38.00 

0.96875 4 6.26 6.38 5.72 6.12 

0.96875 8 11.45 11.50 10.54 10.96 

0.96875 16 20.78 20.75 19.38 19.72 

0.96875 32 38.36 38.23 35.90 36.24 

Table 1: Scheduling on 32 nodes system 

~ d dl d2 resetting~ no resetting 

0.75000 64 96.00 93.11 99.86 103.22 

0.75000 128 183.11 178.11 189.26 194.86 

0.75000 256 355.56 347.11 364.42 374.20 

0.75000 512 698.67 684.11 712.26 728.74 

0.93750 64 75.09 74.55 77.10 77.88 

0.93750 128 144.50 143.55 148.04 149.44 

0.93750 256 282.17 280.55 288.12 290.58 

0.93750 512 556.37 553.55 566.62 570.38 

0.96875 64 72.46 72.20 73.84 74.16 

0.96875 128 139.59 139.13 142.02 142.78 

0.96875 256 272.78 272.00 277.08 277.88 

0.96875 512 538.11 536.75 546.40 547.34 

Table 2: Scheduling on 512 nodes system 
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Asynchronous_Send_Receive() 

For all processor Pi, 0 :5 i :5 n - 1, parallel do 

sends out all out going messages (one-by-one) to other processors; 

receives in coming messages (one-by-one from communication buffer(s)) from other 

processors. 

Figure 5: Asynchronous Communication Algorithm 

processor reply a signal, this is so called non-blocking communication that a processor 

can continue sending messages to different processors without any reply from those 

processors. 

The asynchronous algorithm is given in Figure 5. Similar schemes were proposed 

in several parallel compiler projects [9, 11]. 

The worst case time complexity of this algorithm is difficult to analyze as it will 

depend on the congestion and contention on the nodes and the network. Unlike the 

LP algorithm discussed in previous section, this algorithm introduces no dummy mes­

sages (that will result in no useless communication). But each processor may only 

have limited space of message buffer, when the buffer is fully occupied by unconsumed 

messages, further messages will be blocked at sending processors side. The overflow 

will block processors from doing further processing (include receiving messages) be­

cause processors are waiting for other processors to consume and empty their buffer 

to receive new coming messages. This situation may never resolve and a dead lock 

may occur among processors. In order to avoid a deadlock, we need to monitor the 

production/consumption rate very carefully to guarantee the completion of commu­

nication. In case the message buffer is too small to hold all messages at one time, we 

need to introduce strip mining scheme [9] to perform sends and receives alternately 

such that there are smaller number of unreceived messages accumulated in the buffer 

and an overflow will not occur. 
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4 Approaches of Evaluating Value ,X 

When the message sizes in one permutation is non-uniform, the communication time 

is bounded by the maximum message size in that permutation, while other processors 

with smaller message size are idle and waste their CPU time. In CGMH step 3.3 (Fig­

ure 4), the function Decide_Size() is used to evaluate the most efficient message size 

at one permutation, which in turn is finding a value A such that the communication 

cost can be reduced. 

In function Decide_Size(), the first step is sorting all sending message by their size 

(Figure 6), then different approaches can be introduced to evaluate the best value of 

A (that, in turn, will find the value of Meff ). 

4.1 Fixed A 

This is the most straightforward approach, value A is fixed throughout the entire 

scheduling excepts that when d* is reduced to small value, where A is reset to 1. This 

approach requires pre-run the applications several times with different value of As in 

order to find out the best value. When the value of A is found for a application, we 

can just apply this value at runtime without any extra overhead in finding A. If we 

don't know the value of A beforehand, each processor can begin with a different A to 

schedule the communication. The processor with minimum estimated communication 

time will send its scheduling to other processors, which is then used by all processors 

to complete the communication. 

4.2 A Proportional to d 

In this approach, the value A is proportional to the value of d* at current stage. For 

example, A can be set as O.Sd*, where d* is the average number of active entries in 

each column at current stage. The implementation of this scheme is similar to 'Fixed 

>.' approach that it will require pre-runs to find the best combination of ( d, A). 

14 



4.3 Differential Approach 

From equation 1, we know that 

which can be rewritten as 

1 
d*=d+---A 

d+1 

1 
d(,\) = d + d + 1 -A 

In Figure 6, when value A increases by b.A, the message size will increase by ~M, 

which will affect the communication cost at following categories: 

• Since the maximum message size is increased by ~M, the cost of this extra 

communication = D.M x cp; 

• The additional utilization of bandwidth = (1 -A) x ~M x cp; 

• Additional cost due to increasing in set up cost = d'(A) X ~A x r. 

Thus we should choose A + ~A instead of A if 

(1- A) X ~M X cp ~ ~M X cp + d'(A) X b.A X T 

where d'(A) = -1, we have 

~M X A<p ~ b.A X T 

A< b.Ar 
- ~Mcp 

(5) 

The above analysis is under the assumption that all permutations are completed 

synchronously. Clearly this is not the case in the CGMH algorithm given in Figure 

4, in which some processors may begin the next permutation while other processors 

are still executing the current permutation. Thus, this approach may only generate 

sub-optimal value of A. 

15 
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Figure 6: A versus M graph (1) 

5 Experimental Results 

1 

Message 
Size 

M 

0 

We have implemented our algorithms on a 32 nodes CM-5. The algorithms and data 

sets we use in our experiments will be described in the following sections. We will 

then discuss the results in detail. 

5.1 Algorithms Used in the Experiments 

In our experiments, we use following algorithms: 

1. LP: The Linear Permutation algorithm. 

2. CGM: The Compact Global Masking algorithm proposed in [16]. 

3. CGMH+MS: The CGMH algorithm with Differential Approach. 

In the process to find a best value of A in this algorithm, we begin at Ao = 0.75, 

and increase A by 6.A = .leach time, until it becomes 1. Thus Ak = Ao + k x .l, n n 

we define 
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then the best value of A = Ak such that k is chosen to maximize 

k-1 

L Gaini. 
i=O 

The additional complexity of this step is O(n). 

4. CGMH+BJ: The CGMH algorithm with Differential Approach. 

In the process to find a best value of A in this algorithm, we use the same 

definitions of CGMH+MS and choose the best value of A= Ak such that 

Gaink = max {Gain;} 
O:Sj:S~ 

The additional complexity of this step is O(n). 

Our experiments suggest that the CGMH+BJ algorithm tends to pick a higher 

value of A than CGMH+MS, the reason is we always start the A at ~ and in­

crease the value by ~ each time, if Gain; is a negative value, it will becomes 

difficult for Aj+t and above to make up the loss (this is specially true when 

message sizes are large). On the other hand, the CGMH+BJ is not affected by 

negative value of Gain and has a higher probability to choose a larger value of A. 
Our experiments reveal that when the density d in each column of COM is ap­

proximately equal, the CGMH + BJ performs slightly better than CGMH +MS. 

But when the variance of density in columns becomes large, the CGMH+MS 

produces better result. From now on, we will use CGMH to represent the better 

result of CGMH+MS or CGMH+BJ whenever there is no ambiguity. 

5. CGMH+fixed: The CGMH algorithm with fixed value of A, we experiment 

following A values: ~' ~' ~:, ~~' and 1.0. In each sample, at each message size 
level, we will use the best result among different values of A to represent the 

performance ( including number of permutations, scheduling cost, and commu­

nication cost) of this algorithm at that message size range. 

6. CGM+sort: This algorithm is same as CGM except that we sort the active 

entries in each column of CCOM by message size at the start of the scheduling 
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algorithm (we only sort the columns once, and do not make an effort to maintain 

the sort sequences during the scheduling). This approach will tend to make 

the largest message in each column being scheduled at earlier permutations 

whenever possible. 

7. CGM+heap: This scheme is equivalent to the CGMH+fixed with A = 1 

throughout the scheduling. We maintain the heap structures during the process, 

and let the messages in every permutation be completely sent out (i.e. there is 

no message splitting operations). 

5.2 Experimental Data Sets 

The data sets we use in this paper are communication matrices COM with non­

uniform message sizes. These can be classified into three categories: 

The first test set contain two subgroups, each one has 50 different communication 

matrices. In each matrix, every row and every column have approximately d active 

entries (we select d = 8 and d = 16 in the two subgroups, respectively). The procedure 

we use to generate these test sets is describe in Appendix D. 

The actual message length used in our test is msg_len(i,j) multiplied by the 

variable msg_unit, which is initially equal to 16, and is increased by 2 at every run, 

the largest value we used is 215 , which in turn represents a possible message size of 

25 x 215 = 1Mbytes. The wide range of message sizes we tested allows us to observe 

the algorithms' performance at each message size level. 

The second test set contains 10 communication matrices. We use three information 

arrays to represents these samples' characteristics: dist[5] = {1, 2, 4, 8, 17}, dense[5] = 

{1, 2, 4, 8, 16}, and length[5] = {16, 8, 4, 2, 1 }. The columns in one COM are grouped 

into five sets, set k uses the information entries: dist[k], dense[k], and length[k]. 

For example, set 1 uses: dist[l) = 2 - meaning there are two columns in this set, 

dense[!] = 2 - meaning two active entries in each column, and length[!] = 8 -

meaning each active entry's M sg_len = 8. The motivation of this test set is to 

observe the case where a few processors have a small amount of large messages, while 

18 



other processors have a bulk of small messages, however, the amount of data to be 

sent by every processor is equal. We specially want to study the effect of A in CGMH 

under these circumstances. 

The third test set contains communication matrices generated by load balancing 

algorithms [13]; the samples represent :fluid dynamics simulations of a part of a air­

plane (Figure 7) with different granularities (2800-point, 3681-point, 9428-point, and 

53961-point). We will only present the results of 2800-point and 53961-point samples. 

In order to observe the algorithms' performance with different message sizes, we have 

multiplied the matrices in this test set by a variable msg_unit which we mentioned 

above, the largest value we used in this test set is 213• 

We should also mention that in the third test set the number of messages sends (or 

receives) by each node is uneven. For example, the 2800-point sample has: max_d = 
15, min_d = 3, and ave_d = 9.25, and the msg_lens are also vary: max_len = 

36, min_len = 2, and ave_len = 14.12; the 53961-point sample has: max_d = 18, 

min_d = 6, ave_d = 10.81, and maxJen = 276, min_len = 1, ave_len = 93.21. 

5.3 Results and Discussion 

We conducted our experiments on a 32 nodes CM-5. The scheduling cost mentioned 

in this section does not include the time to compress COM into CCOM (CGMs 

and CGMHs, which will take O(n2 ) time in the sequential mode and O(dn) time 

in the parallelized version). Also, it does not include the time to sort CCOM at 

the beginning of scheduling (CGM+sort, which will take O(ndlog d) time in the 

sequential mode and O(dn) time in the parallelized version) and it does not include 

the time to establish heaps in CCOM at the beginning of scheduling (CGM+heap, 

which will take 0( nd) time in the sequential mode and 0( dn) time in the parallelized 

version). Although the time complexity of some of these ignored operations looks 

very high, we should point out that these operations are only executed once during 

the scheduling, so these complexities' constant values are very small when compared 

with the scheduling cost. Our preliminary experimental results suggested that the 

exclusion does not affect the final results. 
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Figure 7: The unstructured grid used for our simulations 
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Msg_ LP CGM CGMH 
unit +MS 

comm* 

16 9.271 3.696 3.7 

64 16.838 7.862 7.987 

256 46.056 24.007 23.83 

1024 166.985 93.243 90.813 

4096 659.505 461.421 376.511 

16384 3912.66 2817.77 2486.44 

32768 8678.48 5505.83 5047.04 

compt 0.331 4.86 23.66 

# iters~ 31.0 10.18 12.8 

*= the total communication cost in milliseconds. 
t: the scheduling cost in milliseconds. 

CGMH CGM 

+BJ +sort 

3.711 3.663 

7.933 7.674 

23.599 24.177 

90.346 93.081 

375.833 418.1 

2551.58 2588.58 

4993.06 5336.94 

21.038 4.824 

11.6 10.1 

:j:: number of iterations (permutations) to complete the scheduling. 

CGM 
+heap 

3.608 

7.437 

23.23 

89.285 

361.665 

2478.39 

4996.32 

14.406 

10.2 

Table 3: Communication and computation cost for density d = 8, the min message 

size at each level is M sg_unit bytes, and the max size is 32 x M sg_unit bytes. 

5.3.1 Uniform Distribution 

Table 3 and Figure 8 show the results of d = 8. Since the LP and CGM do not use 

the heap structure, the message sizes in each permutation may vary in a large range 

such that the maximum message size in each permutation will affect the outcome. 

On the contrary, CGMHs always begins with the largest message sizes possible, and 

.X is employed to decide a efficient message size (Men) in each permutation. Results 

show that CGM outperforms LP by a big margin, CGM+sort has a slight improve­

ment over CGM, while CGMHs have very similar results, which have a considerable 

improvement over CGM. The observations reveal that when the variance of message 

sizes is large, it is worth the effort to introduce heap structure. 

Table 4 and Figure 9 show the results of d = 16, the outcomes are similar to the 

results of d = 8, but the differences between each groups become more clear, which 
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Figure 8: Comparison of communication performance for density d = 8 

reveals that when the problem size becomes large (either message size or density), 

the CGMH algorithms are the better choice. 

Figure 10 shows that maintaining heap (which are used in CGMHs) is expensive. 

While the overhead fraction of CGM will drop to less than 0.25 for messages of size 

16K [16], the CGMHs' overhead remains high when the message size is less than 

16K, but it becomes negligible when the size is larger. We should mention that 

this comparison is based on the assumption that the same schedule is used only 

once. In most applications the same schedule will be utilized many times, hence the 

fractional cost would be considerably lower (inversely proportional to the number of 

times the same schedule is used). Thus all our algorithms are also suitable for runtime 

scheduling. 

5.3.2 Skewed Distribution 

In the second test set, the message sizes in one column (which represent the mes­

sages being sent out by one processor) are always the same, this characteristics make 
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Msg_ LP CGM CGMH CGMH CGM CGM 

unit +MS +BJ +sort +heap 

comm 

16 10.531 6.871 6.978 6.938 6.816 6.564 

64 21.461 14.626 15.29 14.602 14.473 13.726 

256 64.642 46.037 44.433 43.322 45.23 41.821 

1024 246.212 177.323 165.46 163.812 174.903 163.695 

4096 1689.99 1206.87 1080.36 661.314 750.824 1124.03 

16384 6872.43 5458.28 4717.96 4514.93 4867.82 4793.25 

32768 13866.9 10763.8 9321.5 9204.59 10158.6 9553.41 

comp 0.363 9.729 72.764 60.87 9.759 43.108 

# iters 31.0 18.54 27.4 22.0 18.6 18.88 

Table 4: Communication and computation cost for density d = 16, the min message 

size at each level is M sg_unit bytes, and the max size is 32 X M sg_unit bytes. 
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CG M +sort ·6 · 

CGMH+heap ·* · · 

6 8 10 12 
msg_unit (2x bytes) 

14 16 

Figure 9: Comparison of communication performance for density d = 16 
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6 x CGMH ( d=8) -B-

CGMH (d=16) ·X·-
Fraction 5 

(comp/comm) 4 

3 
2 

1 

0 
4 6 8 10 12 14 16 

msg_unit (2X bytes) 

Figure 10: The scheduling algorithms' overhead fraction 

CGM+heap useless, because the heap structure will keep the active entries in each 

column at a very similar order, which will make the probability to find a entry in each 

column become uneven, and result in more permutations and larger communication 

cost (in CGM, we randomly swap entries in one column to break the order in order 

to even the success probability in every column [16}). Also, the columns with larger 

messages have smaller amount of messages, and the columns with the smallest mes­

sages have the largest number of messages, which in turn will dominate the number 

of permutations needed. Because of this attribute, the splitting of large messages 

should even the message sizes in one permutation without significantly increasing the 

number of permutations. 

Table 5 and Figure 11 show the results of the second test set. As anticipated, the 

CGM+heap does not improve the result while CGMH+MS (which tends to select a 

small value of A and splits more larger messages into smaller ones) and CGMH+fixed 

have clear improvements over other approaches. 
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Msg_ LP CGM CGMH CGMH CGM CGM CGMH 
unit +MS +BJ +sort +heap +fixed 

comm 

16 7.267 4.326 4.37 4.436 4.348 4.042 3.888 

64 8.167 4.852 5.04 5 4.836 4.661 4.596 

256 12.035 7.484 7.305 7.598 7.452 7.593 7.388 

1024 27.077 18.48 16.389 17.238 18.982 18.406 15.918 

4096 89.24 63.837 52.863 57.784 63.039 67.391 50.403 

16384 343.345 252.116 197.247 226.384 258.203 258.204 200.155 

32768 866.909 745.569 459.59 580.13 564.715 762.867 507.858 

comp 0.323 7.797 31.944 29.827 8.81 19.177 35.53 

# iters 31.0 17.6 19.1 18.9 18.1 19.0 20.8 

Table 5: Communication and computation cost for test set 2, the min message size 

at each level is M sg_unit bytes, and the max size is 16 x M sg_unit bytes. 
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Figure 11: Comparison of communication performance for test set 2 
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5.3.3 Applications 

Table 6 and Figure 12 show the results of 2800-point sample in the third test set, 

and Table 7 and Figure 13 show the results of 53961-point sample. The results of 

both samples have similar behaviors as the first test set, which reveal that even if the 

number of messages in each column is non-uniform, our algorithms maintain their 

characteristics and performance. The CGMHs will be superior when the msg_unit 

becomes large, which in turn means that it is worth the extra effort (of heap and A) 
to reduce the variance of message sizes in each permutation. These results also show 

the comparison of fixed A and variable A (differential approach). The observation 

reveal that both methods have comparable performance. So for static applications 

(which can be pre-run to find the best value of A), the fine tuned, fixed A may be as 

good as (or even better than) the dynamic As found during the scheduling. One can 

potentially run the algorithms for different values of A in parallel and choose the best 

one. However, it is difficult to estimate the actual performance (with varying A) and 

choose the best value of A. 
It is hard to make generalizations on which algorithms are better based on the 

limited number of experimental results presented above. In general, from the com­

putation cost point of view, the comparison of these algorithms is 

cost(LP) ~ cost(CGM) ~ cost(CGM+sort) ~ cost(CGM+heap) < cost(CGMHs) 

and from the communication cost point of view, the comparison is 

cost(CGMHs) ~ cost(CMG +sort)~ cost(CGM) :5 cost(LP) 

but, we should mention that when the communication matrix becomes total (or nearly 

total) density, the LP will have the same communication performance with much 

smaller amount of scheduling overhead. 

Clearly, depending on the structure of communication matrix and the number of 

times a particular schedule is used, one method may be superior to another. How­

ever, in general if the number of times the same schedule is utilized is large, CGMH 

(with varied A) seems to be a better approach (specially if the scheduling has to be 

performed at runtime). 
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Msg_ LP CGM CGMH CGMH CGM CGM CGMH 

unit +MS +BJ +sort +heap +fixed 

comm 

16 9.366 5.146 4.843 4.956 5.195 4.785 4.808 

64 17.669 9.797 9.127 9.099 9.843 9.091 9.049 

256 49.685 29.524 25.151 25.475 29.133 25.673 24.936 

1024 181.931 110.56 90.939 94.887 110.904 95.759 90.599 

4096 1192.89 719.717 421.729 431.597 735.459 387.859 367.001 

8192 2850.1 1459.54 1219.31 1247.11 1404.68 1254.11 1180.08 

comp 0.308 6.918 33.327 27.996 6.785 19.922 34.263 

# iters 31.0 15.4 17.4 15.6 15.3 15.9 18.0 

Table 6: Communication and computation cost for test set 3: 2800-point, the min 

message size at each level is 2 x M sg_unit bytes, and the max size is 36 x M sg_unit 

bytes. 
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CGMH+heap ·* .. 
CGMH+fixed -

500 

OL_~--~._~-4~~~~~~--~ 
4 6 8 10 12 14 

msg_unit (2x bytes) 

Figure 12: Comparison of communication performance for test set 3: 2800-point 
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Msg_ LP CGM CGMH CGMH CGM CGM CGMH 

unit +MS +BJ +sort +heap +fixed 

comm 

16 26.733 18.127 17.151 16.319 17.462 15.911 15.96 

64 86.02 60.72 51.722 51.859 57.827 51.033 50.062 

256 340.269 238.227 196.03 197.183 225.356 201.373 194.733 

1024 1841.66 1675.2 1219.57 1262.86 1549.04 1243.48 1226.96 

4096 9127.03 6844.15 5624.51 5683.95 6334.7 5687.45 5185.75 

8192 16656.6 11787.9 10484.9 10223.6 11429 10215 10013.3 

comp 0.333 8.48 51.574 37.633 8.492 27.325 34.738 

# iters 31.0 18.2 25.3 19.4 18.2 18.2 18.0 

Table 7: Communication and computation cost for test set 3: 53961-point, the min 

message size at each level is M sg_unit bytes, and the max size is 276 x M sg_unit 

bytes. 
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Figure 13: Comparison of communication performance for test set 3: 53961-point 

28 



6 Conclusion 

In this pa.per, we developed algorithms to perform non-uniform message routing for 

all-to-many personalized communication. The linear permutation algorithm is very 

straightforward, it introduces little computation overhead, but this algorithm requires 

the use of dummy messages which wastes the communication bandwidth. The worst 

case complexity of this algorithm is 0( n( r + cpM)) (The experimental results for the 

32 nodes CM-5 show a complexity of O(nr + C1dMcp), where every node sends d 

messages and cl > 1). 

The asynchronous communication algorithm eliminates all dummy messages, but 

its performance will depend on the network congestion and contention on which it 

is performed. The complexity of this algorithm is machine dependent and may vary 

from machine to machine. Further, the memory requirements of this algorithm is 

large. Currently the asynchronous message passing is not available on the CM-52 • 

The CGMH algorithm is found to be very useful in handling non-uniform messages, 

the hea.p structure is used to maintain messages in each node in sorted order such 

that the bigger messages will be scheduled first when possible, and the ..\ concept 

is to decrease the variance of message size in one permutation. Because the biggest 

messages in one permutation has a. ma.jor impact at the communication time, it 

is better if the messages in one permutation have approximately equal size. We 

propose three a.pproa.ches to decide the value ..\, the first two require prerunning of 

the a.pplica.tions to find the best value of ..\, while the third one uses dynamic approach 

which is executed during the scheduling. The experimental results have shown that 

our algorithms perform well with samples which are randomly generated with density 

d and non-uniform message sizes. They also perform well with real applications that 

have non-even density din each node. 

Another advantage of our algorithms as compared to the other algorithms is the 

fact tha.t once the schedule is completed, communication can potentially be overlapped 

with computation, i.e. computation on a. pa.cket received in previous phase can be 

2We would add such a comparison in the final version of this paper if the asynchronous commu­
nication in CMMD is available at that time. 
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carried out while the communication of the current phase is being carried. It is also 

worth noting that due to the compaction, nearly all processors receive data packets 

(of nearly equal size). Thus, the load is nearly balanced on every node. Clearly, the 

number of computations phases would increase (from d to 1 + l~d). Thus, using 

overlap of communication and computation would only be useful if the overlap is 

more than the extra computation overhead (of the scheduling algorithm). 

Our analysis is based on the assumption that each node sends d messages and 

receive d messages. These algorithms can be extended to the case when the number 

of messages to be sent by each processor are not equal. Clearly if d is the maximum 

number of messages to be sent, our CGMH algorithm should produce an expected 

number of 1 + ~~~d permutations. In such case, we believe that our algorithm, on an 

average, would produce less number of permutations than the case when all processors 

need to send d messages. Since the number of permutations cannot be lower than 1, 
our algorithm would produce near optimal number of permutations. 

There is a large amount of literature on how to partition the task graph so as to 

minimize the communication cost. Many of these methods are iterative in nature, 

[13, 17] are a few of them (The author is referred to [13] for a complete list). After 

a particular threshold any improvement in partitioning is expensive. For problems 

which require runtime partitioning, it is critical that this partitioning be completed 

extremely fast. For such problems, the gains provided by effective communication 

scheduling may far outperform the gains by spending the same amount of time on 

achieving a better partitioning. 

This paper is restricted to the algorithms that will avoid node contention. We are 

currently investigating methods which are useful in avoiding link contention. 
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Appendix A: Procedure for Compressing COM 

for j = 0 to n-1 do 

k = -1 

for i = 0 to n-1 do 

if COM{i,j) = 1 then 

k = k + 1; 

CCOM(k,j) = i; 
end if 

end for 

prt(j) = k; 

end for 

Appendix B: Proof of Theorem 2 

For a system with n nodes and the number of active entries in each column of CCOM 

is equal to d, in CGMH step 3.2, the probability of success in finding an available 

entry in each column of CCOM is 

S = 13 + 1 + ... + 1 + (1- (!!_)d)+ (1- (d + 1 )d)+ ... + (1- (n- 1 )d) 
n n n 

1 n-1 

=n-dL:id 
n i=d 

> n- _.!._ {n xddx 
- nd Jd 

n d d d 

= n- d + 1 + d + 1 (-;;) 
n 

>n--­
- d+1 

Thus the expected number of entries in CCOM which can be within one iteration 

is at least n - d~I. 

3 there are d columns which would find an available entry with probability 1 
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Appendix C 

Assume }i be the number of useful entries remained at each column after one iteration. 

Then 

Yo= d 
1 

Yi=Yo--X+Yo+1 
1 

Y2=Yi--X+Yi+1 

1 
Ym = Ym-1- -X+ Y. 

m-1 + 1 
When sum all of these statements together, we have 

1 1 1 
Ym = d - m-\ + (Yo + 1 + Yi + 1 + ... + Ym-1 + 1) 

m 
Ym :s; d - m-X + Ym + 1 

We are interested in finding the number of iterations needed to reduce Ym to ~· 

Assuming that (1 + ~)-\ > 1, 

d m 
-<d-m-X+--
2- 4 + 1 

2 

d 1 
m::;; -( 1 ) 

2-\ 1 - (I+~)>. 

m::;; 2~ (1 + (1 +1 ~)-\) 
d d 

= 2-\ + ( d + 2)-\2 

If d is large, the second term at RHS can be reduced to }2 , then choosing a m that 

d 1 
m = 2-\ + _\2 

would reduce Ym to ~· 
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Appendix D: COM Random Generator 

for i = 0 to d-1 do 

k = i; 
for j = 0 to n-1 do 

COM(j,k) = 1; k = (k + 1} mod n; 

endfor 

endfor 

fori= 0 to ManyTimes do 

loc1 =random(} mod n; loc!! =random(} mod n; 

switch row locl with row loc2; 

(or switch column locl with column loc2); 

endfor 

Msg_Range = n 

for i = 0 to n-1 do 

for j = 0 to n-1 do 

if (COM(i,j) = 1} then 

Msg_len(i,j) =random() mod Msg_Range; 
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