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New Analytical Results on Anisotropic Membranes

Mark Bowick a∗ and Alex Travesset † a

a Physics department, Syracuse University,
Syracuse, NY 13244-1130, USA

We report on recent progress in understanding the tubular phase of self-avoiding anisotropic membranes. After

an introduction to the problem, we sketch the renormalization group arguments and symmetry considerations

that lead us to the most plausible fixed point structure of the model. We then employ an ε-expansion about the

upper critical dimension to extrapolate to the physical interesting 3-dimensional case. The results are ν = 0.62

for the Flory exponent and ζ = 0.80 for the roughness exponent. Finally we comment on the importance that

numerical tests may have to test these predictions.

1. Introduction

The statistical properties of D-dimensional ob-
jects embedded in d-dimensional space have been
the subject of intense analytical and numerical
work in the last ten years. An introduction to the
problem, as well as an update with some recent
results has been already presented in M. Bowick’s
talk [1] and in the plenary talk [2]. These studies
are of direct experimental interest for cases such
as (D = 2, d = 3) (membranes) or (D = 1, d = 3)
(polymers) (see [1]).

In [3] it was shown that anisotropy has a re-
markable effect in a model of phantom crystalline
surfaces; there is a new phase, the tubular phase,
characterized by being flat in one internal direc-
tion and crumpled in the other ones. This new
phase has been nicely corroborated by numerical
simulations [4], see [1] for an update.

While the phantom membrane model is com-
pletely understood, both analytically and numer-
ically, the situation for the more physical self-
avoiding case has been rather controversial. Once
the self-avoidance perturbation is added to the
phantom model it was found in [5] that the large
distance properties of self-avoiding anisotropic
membranes are described by a new Fixed Point
(the SAFP), different from the phantom one (the
TPFP), but perturbative in ε = 11 − d. The
phase diagram implied is shown in fig. 1. In [6] it
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Figure 1. The phase diagram for self-avoiding
anisotropic membranes with the Gaussian fixed
Point (GFP), the phantom tubular fixed point
(TPFP) and the self-avoidance fixed point
(SAFP).

was argued that the SAFP is infrared unstable,
and consequently, the large distance properties
of anisotropic self-avoiding membranes were de-
scribed by a new Fixed Point (BRFP), which has
a non-trivial anomalous dimension for the bend-
ing rigidity term. The phase diagram implied in
[6] is the one depicted in fig. 2.

In this talk we report on new analytical results
[7]. The aim of this work is twofold; first to clar-
ify the phase diagram of the model, and second
to compute the critical exponents which provide
predictions to be tested numerically or even in
actual experiments.

http://arXiv.org/abs/hep-lat/9809110v1
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Figure 2. The phase diagram for self-avoiding
anisotropic membranes with the Gaussian fixed
Point (GFP), the phantom tubular fixed point
(TPFP), the self-avoidance fixed point (SAFP)
and the bending rigidity fixed point (BRFP).

2. The Phase diagram

The configuration of a membrane is described
by giving the position ~r(x), in the d-dimensional
embedding space, of a point in the membrane
labeled by a D-dimensional internal coordinate
x. In the tubular phase, where the membrane is
crumpled in D − 1 dimensions (denoted by x⊥)
and flat in a distinguished direction y, ~r is ex-
panded as

~r(x) = (ζyy + u(x),~h(x)). (1)

The relevant degrees of freedom are then in-plane
phonons u, and out-of-plane ones ~h. Let us re-
mark that those fields have different engineer-
ing dimensions, namely, different rescalings in the
language of the Wilsonian renormalization group.

The most general free energy for this system
was first written in [3]. It is constructed as a
derivative expansion in ~r together with the re-
quirements of translational and rotational sym-
metry. A direct general analysis of this free En-
ergy is a very difficult task, close to impossible
if self-avoidance is considered. Our interest, for-
tunately, is focused on the universal properties
of the model, that is, its large distance proper-
ties. The challenge becomes to correctly identify
the terms that do not affect the universal prop-
erties (the irrelevant ones). There is a powerful
tool available for that task, the Renormalization

Group.
The implementation of the Renormalization

Group in this particular problem presents new
and interesting features. For example, the rota-
tions of the tubules imply that the free energy
should be invariant under

u → u cos θ + sin θh + (cos θ − 1)y
h → h cos θ − sin θu − sin θy

. (2)

This symmetry mixes the ~h and u fields, which, as
already pointed out, have different rescalings. It
should not come as a surprise then, that the large
distance realization of the O(D − 1) rotational
symmetry is different from Eq. 2, [7]

u → u + ~A~h −
1
2

~A2y + O(e2(ν−z)l)
~h → ~h − ~Ay + O(e2(ν−z)l) ,

(3)

where ~A is an arbitrary D−1 dimensional vector.
The symmetry Eq. 3 provides an important

guiding principle to elucidate the phase diagram.
A more detailed analysis performed in [7] shows
that the most plausible phase diagram when self-
avoidance is included is the one in fig. 1. Of
course, more complicated situations (reminiscent
of the ones depicted in fig. 2 are not completely
ruled out, but we do not find enough evidence to
sustain them. A further clarification for this de-
bate definitely requires a full treatment of both
nonlinear elastic terms and self-avoidance, an
open problem so far.

3. Critical exponents

The self-avoidance perturbation is relevant for
any embedding dimension d < dSA

c , where

dSA
c (D) =

6D − 1

5 − 2D
. (4)

The fixed point of interest, the SAFP, is pertur-
bative in ε, with ε(D, d) = 3D −

1
2 − (5

2 − D)d.
In [5] a direct ε-expansion was performed at

D = 2. In that case, ε(2, d) = 11−d
2 and the

extrapolation to the physical interesting case d =
3 was not found to be robust against higher order
corrections (recall that ε(2, 3) = 4). The values
for the critical quantities obtained in [5] show a
very large uncertainty. On the other hand, we
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have emphasized how important is to get good
estimates of the critical indices at the SAFP.

In [7], the one loop critical exponents are com-
puted for arbitrary internal dimension D ( For
those values of D for which the model is well de-
fined are 3/2 < D < 5/2). This generalization
provides a new extrapolation parameter, and al-
lows for generalized ε expansions [8] that may de-
liver reliable results at D = 2.

The extrapolation techniques we used are
rather sophisticated. Essentially they consist in
re-expressing the critical exponents in new vari-
ables such that the next corrections get mini-
mized. We tested different variables and different
corrections to the exponents. We refer the inter-
ested reader to the original work [7] for details.
We just quote the results for the two main crit-
ical exponents coming from the best extrapola-
tions, which are listed in Table 1. The results are
compared with the uncontrolled Flory estimate,
which is usually a good approximation.

d ν νFlory ζ ζFlory

8 0.333(5) 0.333 0.60 0.600
7 0.374(8) 0.375 0.64 0.643
6 0.42(1) 0.429 0.68 0.692
5 0.47(1) 0.500 0.72 0.750
4 0.54(2) 0.600 0.76 0.818
3 0.62(2) 0.750 0.80 0.900

Table 1
Final results for critical exponents. ν is the Flory
exponent and ζ is the roughness exponent. The
Flory estimate is quoted as νFlory.

4. Conclusions and Outlook

In this talk we discussed the phase diagram for
anisotropic membranes. We have definite analyt-
ical predictions for the critical exponents charac-
terizing the tubular phase of self-avoiding mem-
branes. At this stage, further refinement would
necessitate a two-loop calculation for arbitrary D
that, as a byproduct, would provide a valuable
check for our extrapolation.

There are other aspects which are worth point-
ing out. As discussed in [1], existing arguments
favors the belief that the crumpled phase for self-
avoiding isotropic membranes disappears when-
ever bending rigidity terms are present, although
a definite proof is still lacking. One might le-
gitimately ask if the same is true for the tubu-
lar phase. Intuitively, one would think that this
is not the case, since self-avoidance is less con-
straining in this case. In fact, the arguments that
lead to the considerations above do not apply(
and the corresponding molecular dynamics sim-
ulations are absent). Our conclusion is that the
tubular phase should be observed both in numer-
ical simulations and actual experiments so that
our predictions can be tested.

There has been some progress in the numerical
analysis of this model as reported in [1]. There is
evidence that the tubular phase does survive, but
the available data is not still enough to enable re-
liable estimates for critical exponents. Anyway,
we hope that the calculations presented here will
inspire further work on the numerical side. Fur-
ther progress in understanding the self-avoiding
tubular phase very much requires the insight of
numerical work.

The research of M.B. and A.T. has been sup-
ported by the U.S. Department of Energy under
contract DE-FG02-85ER40237.
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