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AUTOMATIC GRANULARITY CONTROL FOR LOAD BALANCING OF CONCURRENTPARTICLE SIMULATIONSMarc Rie�el, Stephen Taylor, and Jerrell WattsScalable Concurrent Programming LaboratorySyracuse University, Syracuse, NY 13244e-mail: fmarc,steve,jwattsg@scp.syr.edu
KEYWORDSDynamic load balancing, granularity, irregular applica-tions, particle simulations, concurrent computing.ABSTRACTThis paper demonstrates the use of automatic gran-ularity control as part of dynamic load balancing forirregular, particle-based simulations. Performance op-timization techniques are considered in the context of aconcurrent Direct Simulation Monte Carlo method usedto study the rare�ed gas 
ow inside three-dimensionalplasma reactors. Several computational techniques areused to reduce the overall time to deliver realistic three-dimensional results. The e�ectiveness of dynamic loadbalancing and granularity control are presented forlarge-scale simulations on distributed-memory multi-computers.INTRODUCTIONRecent advances in microprocessor performance havebeen driven primarily by improvements in manufac-turing technology. New processes and equipment havepaved the way for smaller feature sizes and larger wafersizes. These, in turn, have facilitated the productionof microprocessors with more transistors, operating atlower voltages and with higher clock rates. One of thekey pieces of equipment in microelectronics manufac-turing is the plasma reactor, used in 30 to 40 percent ofprocessing steps. Moreover, plasma processing equip-ment accounts for approximately 20 percent of the costof each semiconductor manufacturing facility. The costof these production facilities is escalating, as are theresearch and development costs associated with the in-troduction of each new generation of processing technol-ogy. It is widely recognized that computational tools for

modeling plasma reactors can signi�cantly reduce thecosts of validating new reactor designs and can help toimprove manufacturing processes.Due to the extensive computational requirements ofthe simulation technique, and the imperative of provid-ing results on industrial timescales, the use of large-scale concurrent computer architectures is necessary.The irregular nature of the particle simulations resultsin complicated load characteristics that may vary overthe course of a computation. It is impossible for a staticload balancing method to obtain e�cient utilization onlarge numbers of processors. Dynamic load balancingtechniques are therefore used in the present work. Onecritical factor load balancing is the granularity of thecomputation. Just as static load balancing is ine�ec-tive, static partitioning and granularity speci�cation arealso inadequate. This work presents and evaluates tech-niques for automatic granularity control as applied tolarge-scale particle-based simulations.SIMULATION TECHNIQUEThe simulation technique integrates a variety of ideastaken from computational 
uid dynamics and �nite-element methods. A central aim is to exploit existingindustrial tools, already in use by process engineers,to shorten the design cycle to acceptable engineeringtimescales. A three-dimensional geometry de�nitionis taken directly from CAD/CAM descriptions alreadyavailable to process engineers. An unstructured tetra-hedral grid is then constructed using automatic gridgeneration techniques. This grid is subsequently parti-tioned for execution on multiprocessor systems. Scal-able concurrent algorithms are then used to reduce thenumerical simulation time. Adaptive gridding is usedto automatically maintain the accuracy of the simula-tion. Dynamic load balancing and granularity control



are used to maximize processor utilization in the pres-ence of both grid adaption and dynamic 
ow variations.Finally, simulation results are analyzed using standardCFD visualization tools.The Direct Simulation Monte Carlo (DSMC)method solves the Boltzmann equation by simulatingthe behavior of individual particles. Since it is impos-sible to simulate the actual number of particles in arealistic system, a smaller number of simulation parti-cles are used, each representing a large number of realparticles. Statistical techniques are employed to repro-duce the correct macroscopic behavior. Computationalgrid cells are initially �lled with simulation particles ac-cording to density, temperature, and velocity speci�ca-tions. The simulation takes discrete steps in time, dur-ing which a transport model is used to move particles, acollision model is used for particle-particle interactions,and a boundary model is used for interactions betweenparticles and surfaces. Macroscopic properties, such asdensity and temperature, are computed by appropri-ate averaging of particle properties including mass andvelocity.Transport Model. The transport model is concernedwith moving particles through the computational gridfor a speci�ed period of time. It uses ray-tracing tech-niques to determine the paths of particles during eachtimestepCollision Model. The collision model characterizesparticle-particle interactions. Only collisions betweenparticles in the same cell must be considered, and colli-sions can be performed independently within each celland concurrently in each partition.Boundary Model. When con�guring a simulation,a surface type is speci�ed for each surface of the com-putational grid. The surface type of a face determinesparticle-surface interactions on that face. The threetypical surface types are in
ow, out
ow, and accom-modating, modeled according to standard DSMC tech-niques for gas-surface interactions. During grid parti-tioning, an additional surface type, partition, is createdto represent shared boundaries between partitions. Aparticle arriving at a partition surface is sent to theappropriate neighboring partition.The concurrent algorithm, executed by each parti-tion of the computational grid, is as follows.1. Initialize partitions according toinitial conditions (locally)2. While more steps are necessary(a) Calculate new particle positions (locally)

(b) Exchange particles between partitions (localcommunication)(c) Collide particles (locally)(d) Compute global information, such as the totalnumber of simulated particles (global commu-nication)(e) Determine load imbalance(f) Adjust granularity(g) Balance load3. Conclude computationFor the most part, particle transport is local withina partition (2a), though a particle may move across acell face on the boundary between two partitions. Inthis case, it is communicated to the appropriate neigh-boring partition (2b). In a single timestep, a particlemay cross several partition boundaries and thus requireseveral rounds of communication. In order to improvecommunication e�ciency, all particles exchanged be-tween a given pair of partitions are combined into asingle message. Once all of the particles have beenplaced in their new cell locations, the collision andboundary models are employed independently withineach cell (2c).The numerical technique, Concurrent Direct Simu-lation Monte Carlo, is presented in (Rie�el 1997). Val-idation studies, for neutral 
ow and gas mixtures in avariety of con�gurations, are considered in (Gimelshein1996). A parametric study of reactor con�gurations isdiscussed in (Rie�el 1998). The present work presentsautomatic granularity control techniques and their ap-plication to particle simulations on complex three-dimensional geometries.DYNAMIC LOAD BALANCINGNo initial partitioning of a computational grid can pro-vide optimum load balance, or optimal granularity,throughout a dynamic simulation. Dynamic load bal-ancing and granularity control are therefore essential fore�cient use of modern computational resources, espe-cially on heterogeneous networks where machines havedi�ering memory and performance characteristics. Por-tions of the grid must be decomposed at runtime, andexchanged between computers in order to achieve loadbalance. Exchanges must be selected in order to main-tain locality where possible.The load balancing mechanism is based on the con-cept of heat di�usion, which provides a scalable, correctmechanism for determining how much work should be



migrated between computers, including computers withdi�erent processing capabilities or external workloads.Heat di�usion only gives the ideal work transfer, how-ever; to meet that ideal, neighboring computers mustexchange partitions. The selection of which partitionsto exchange may be guided by both the sizes of thepartitions involved as well as the e�ect a partition'smovement would have on its communication with otherpartitions. If there are too few or too many partitions inthe system, granularity management routines are usedto increase or decrease the number of partitions. Theend-result is a �ve-step methodology for load balancinga computation (Watts 1996; Watts 1997):1. Load measurement: The load of each computeris determined, by measuring its resource usage.2. Load imbalance detection and pro�tabilitycalculation: Based on the total load measured ateach computer, the e�ciency of the computationis calculated. Load balancing is undertaken onlyif its estimated cost is exceeded by the estimatedreduction in run time that would result from loadbalancing.3. Ideal load transfer calculation: Using the loadquantities measured in the �rst step, computerscalculate the ideal amount of load that they shouldtransfer to or from their neighbors.4. Transfer quantity satisfaction: This phase maybe repeated several times until the transfer quan-tities have been adequately met:(a) Partition selection: Using the load trans-fer quantities calculated previously, partitionsare selected for transfer or exchange betweenneighboring computers.(b) Granularity adjustment: If the granular-ity is so coarse that not all transfers can be ad-equately satis�ed, partitions may be dividedto increase the options available.5. Partition migration: Once the partitions havemigrated to their �nal locations, any data struc-tures associated with those partitions are trans-ferred from their old locations to their new loca-tions, and the computation resumes.DYNAMIC GRANULARITY CONTROLA central component of the load balancing approach isthe automatic granularity control technique, discussed

in the following section. In the transfer quantity sat-isfaction phase of load balancing, the partitions maybe so large, or coarse-grained, that it is impossible tobalance the load. It is then necessary to split the par-titions into smaller partitions, resulting in a �ner gran-ularity. A partition is split if its corresponding load isgreater than a certain fraction of the average load. Ifthe division of partitions results in a better, but still in-adequate load balance, the threshold is lowered so thatmore partitions are divided. This continues until an ad-equate load balance is achieved, until no bene�t resultsfrom �ner granularity, or until partitions can no longerbe split.When the load balancing method determines that apartition must be split, the application is responsible forachieving that split. The grid cells in the partition aretraversed in order to compute a bounding box aroundthe partition. The bounding box is then divided intothe desired number of new partitions, so as to minimizethe surface area of the new bounding boxes. This pro-cess can be completed in time proportional to the num-ber of grid cells, though it does not necessarily guar-antee minimum communication or even division. Newconnections are created between the newly-created par-titions, and connections to neighboring partitions areupdated.Application support is required for splittingpartition-level data structures. For example, counts ofthe numbers of particles and cells in each partition mustbe updated. Grid cells and particles are una�ected bypartition splitting. Cell faces that lie on the border be-tween the two new partitions must be replicated, andface-level data structures updated accordingly.Note that the bulk of the granularity control opera-tions are local. Communication is only required for up-dating connections between the new partitions and theirneighbors. This allows for rapid granularity adjustmenteven on large concurrent computers. For the simula-tions considered in this study, the process of granular-ity control was completed in same amount of time asseveral simulation steps. As typical simulations requiretens or hundreds of thousands of timesteps, and loadbalancing only takes place about once every thousandsteps, this cost is negligible.SIMULATION RESULTSFor the purpose of this study, simulations of the GECReference Cell Reactor have been considered. The com-putational grid for this reactor is shown in Figure 1.Simulations were performed using Argon at an operat-ing pressure of 13.3 Pa (100 mTorr). The reactor walls



are assumed to be accommodating at 300K.

Figure 1: Computational Grid for the GEC ReferenceCell ReactorIn order to demonstrate the applicability of thesetechnique to a problem of industrial relevance, a full-
ow simulation of the GEC cell was completed. For thissimulation, gas was injected through a small port onthe side of the reactor, and removed through the largeport on the opposite side. In
owing gas was at 300K,with a particle number density of 2:5� 1022m�3 and aspeed of 37.6 m/s. Note that this is a completely three-dimensional 
ow con�guration. This simulation wascompleted in approximately 2 weeks on a 12-processorAvalon A12 with 500 MB RAM per processor, using 2million grid cells and 16 million particles.

Figure 2: Pressure in vertical planeFigure 2 shows gas pressure in a vertical slicethrough the reactor, perpendicular to the wafer. Thewafer appears as a thin horizontal surface in the mid-dle. Twenty contours are drawn from 0 to 25 Pa. Theprominent features in this plot are the high pressure inthe in
ow region and a slightly lower pressure in the

exhaust region. A boundary layer can also be seen inthe in
ow pipe, and a shock has formed on the leadingedge of the wafer.PARALLEL PERFORMANCEPractical DSMC simulations typically involve twophases: startup and statistics-collection. During thestartup phase, macroscopic properties change over timeas the solution emerges. Once the macroscopic parame-ters have converged, statistics are collected over severalthousand steps in order to obtain smooth and accu-rate results. During the startup phase, a small numberof particles are used (only as many as are required toreach a correct solution). As the number of processorsis increased, there is no need to increase the number ofparticles.During the statistics-collection phase, however, thegoal is to maximize the number of \samples", wherea sample is essentially one timestep for one particle.As the ratio of particles to cells increases, the com-putational overhead associated with each cell is amor-tized over a larger number of \useful" particle compu-tations. Maximizing the particle processing rate there-fore results in the fastest wall-clock-time convergence.On distributed-memory machines, the use of additionalprocessors makes possible the use of additional parti-cles. It is therefore useful to consider a scaled speedup,where the number of particles used is proportional tothe number of processors.In both phases of a computation, the rate of pro-ductive work can be measured and compared in termsof the number of particles that can be simulated in agiven amount of time. Because of the reduced overhead,this processing rate can actually increase super-linearlywith the number of processors. This is particularly trueon machines with small amounts of memory per proces-sor, where single-processor simulations are only possiblewith very small numbers of particles. While this metricof performance may be misleading from an algorithmic-scalability perspective, it is nevertheless a meaningfulmeasure of the amount of \useful work" that can beachieved on existing platforms.In order to investigate the e�ectiveness of dynamicload balancing with automatic granularity control, aseries of GEC simulations was conducted on the CrayT3D. A high-pressure (13.3 Pa / 100 mTorr), uniform-
ow case was considered. Due to the relatively large sizeof the grid (140,000 grid cells), and the small amountof memory per processor (32 MB), this problem couldnot be run on fewer than 16 processors. For this rea-son, the uniprocessor speed could not be determined



exactly. An estimate of the uniprocessor speed wasobtained by running the full uniprocessor case on oneAvalon A12 processor (with 512 MB RAM), then tim-ing small uniprocessor test cases on both the A12 andthe T3D. The T3D uniprocessor time was then com-puted as the A12 time scaled by the ratio of times forthe small problem on the two machines. Based on sev-eral di�erent tests, this �gure is believed to be accurateto within 10%.
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Figure 3: Performance on the unscaled GEC problemSimulations were conducted on varying numbers ofprocessors for both scaled and unscaled cases. For theunscaled simulations, 200,000 particles were used. Theunscaled results are shown in Figure 3. Three linesare shown here: the measured speed without load bal-ancing or automatic granularity control; the measuredspeed with load balancing and granularity control; andthe ideal speed, computed by scaling the estimateduniprocessor speed. For these tests, the combination ofload balancing and granularity control improved per-formance by 50-100%, but performance still droppedbelow 40% of ideal on 128 processors. This can be at-tributed to the small number of particles per processorfor the unscaled case on large numbers of processors.As the number of particles per processor decreases, thefraction of time spent on computational overhead in-creases, resulting in poor scaling.Several scaled-particle simulations were also con-ducted, using 12,500 particles per processor. These re-sults are shown in Figure 4, again with unbalanced,balanced, and ideal speeds. Here, the unbalanced per-formance quickly drops to 26% of ideal, but with loadbalancing and granularity control, performance remainsabove 70% of ideal. On 128 processors, the combinationof load balancing and granularity control resulted in a3x performance improvement, resulting in performance
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Figure 4: Performance on the scaled GEC problemthat was 77% of ideal.A �nal test was conducted in order to evaluate thee�ectiveness of the automatic granularity control tech-nique. The scaled-particle simulation was executed on128 processors with 3.2 million particles, both with au-tomatic granularity control, and without, using di�er-ent numbers of partitions per processor. The GEC Gridwas initially statically partitioned for one partition oneach of 128 processors, and tests were conducted usingthe same initial partitioning, both with and without au-tomatic granularity control. For the simulation with au-tomatic granularity control, partitions were automati-cally divided only when deemed appropriate by the loadbalancing technique. For the simulations without au-tomatic granularity control, each initial partition wasrepeatedly split in order to obtain a speci�ed numberof partitions per processor (1,2,4,8, or 16), and then theload balancing method continued without any furthersplits. This approach yields the most uniform granu-larity possible for the given initial partitioning. In eachof these cases, the performance, in particles per sec-ond, was measured both before and after dynamic loadbalancing.The decrease in performance of the unbalanced casere
ects the increased overhead of the additional parti-tions on the same processor, which is fairly small, asinter-processor communication is not increased. Withonly one partition per processor, load balancing can-not make any improvement. Up to 8 partitions perprocessor, performance improves with more partitionsper processor, as load balancing has more 
exibility intransfer selection. Above 8 partitions per computer,however, the increased overhead of non-local commu-nication is greater than any improvements from load



balancing, resulting in a lower performance. Withoutautomatic granularity control, the best performance isobtained with the use of 8 partitions per processor.
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Figure 5: Performance as a function of partitions perprocessorsThe automatic granularity control techniqueyielded an average of 5.84 partitions per processor, anda 10% better performance, with 27% fewer partitions.The performance improvement is the result of two fac-tors. First, fewer partitions are required and thus thevolume of communication is reduced; second, the ap-proach guarantees that no partition is so large as toimpede the load balancing method.In addition to the performance improvement thatresults from the use of automatic granularity control,it is important to note the reduction of parameters.Without automatic granularity control, it is necessaryto specify the desired number of partitions per proces-sor. An optimal value for this parameter can only bedetermined by extensive tests. A sub-optimal numberof partitions per processor could further reduce perfor-mance by 12%. In general, dynamic load balancing andautomatic granularity control will yield better perfor-mance than static manual partitioning.CONCLUSIONThese results demonstrate the e�ectiveness of auto-matic granularity control for the purpose of load bal-ancing of particle-based simulations on distributed-memory multicomputers. Due to the irregular nature ofparticle-based simulations, static techniques are inade-quate; dynamic and adaptive techniques must thereforebe applied. These techniques have been presented inthe context of rare�ed gas 
ow in the GEC ReferenceCell reactor. The same tools can also be applied to
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