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The Statistical Mechanics of Membranes

Mark J. Bowick∗ and Alex Travesset†
1Physics Department, Syracuse University,

Syracuse, NY 13244-1130, USA

Abstract

The fluctuations of two-dimensional extended objects (membranes)
is a rich and exciting field with many solid results and a wide range of
open issues. We review the distinct universality classes of membranes,
determined by the local order, and the associated phase diagrams. Af-
ter a discussion of several physical examples of membranes we turn to
the physics of crystalline (or polymerized) membranes in which the
individual monomers are rigidly bound. We discuss the phase dia-
gram with particular attention to the dependence on the degree of
self-avoidance and anisotropy. In each case we review and discuss an-
alytic, numerical and experimental predictions of critical exponents
and other key observables. Particular emphasis is given to the results
obtained from the renormalization group ε-expansion. The resulting
renormalization group flows and fixed points are illustrated graphi-
cally. The full technical details necessary to perform actual calcula-
tions are presented in the Appendices. We then turn to a discussion of
the role of topological defects whose liberation leads to the hexatic and
fluid universality classes. We finish with conclusions and a discussion
of promising open directions for the future.

∗bowick@physics.syr.edu
†alex@suhep.phy.syr.edu
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1 Introduction

The statistical mechanics of one-dimensional structures (polymers) is fasci-
nating and has proved to be fruitful from the fundamental and applied points
of view [1, 2]. The key reasons for this success lie in the notion of universality
and the relative simplicity of one-dimensional geometry. Many features of
the long-wavelength behavior of polymers are independent of the detailed
physical and chemical nature of the monomers that constitute the polymer
building blocks and their bonding into macromolecules. These microscopic
details simply wash out in the thermodynamic limit of large systems and
allow predictions of critical exponents that should apply to a wide class of
microscopically distinct polymeric systems. Polymers are also sufficiently
simple that considerable analytic and numerical progress has been possible.
Their statistical mechanics is essentially that of ensembles of various classes
of random walks in some d-dimensional bulk or embedding space.

A natural extension of these systems is to intrinsic two-dimensional struc-
tures which we may call generically call membranes. The statistical me-
chanics of these random surfaces is far more complex than that of polymers
because two-dimensional geometry is far richer than the very restricted ge-
ometry of lines. Even planar two-dimensional — monolayers — are complex,
as evidenced by the KTNHY [3, 4, 5] theory of defect-mediated melting
of monolayers with two distinct continuous phase transitions separating an
intermediate hexatic phase, characterized by quasi-long-range bond orien-
tational order, from both a low-temperature crystalline phase and a high-
temperature fluid phase. But full-fledged membranes are subject also to
shape fluctuations and their macroscopic behavior is determined by a sub-
tle interplay between their particular microscopic order and the entropy of
shape and elastic deformations. For membranes, unlike polymers, distinct
types of microscopic order (crystalline, hexatic, fluid) will lead to distinct
long-wavelength behavior and consequently a rich set of universality classes.

Flexible membranes are an important member of the enormous class of
soft condensed matter systems [6, 7, 8, 9], those which respond easily to exter-
nal forces. Their physical properties are to a considerable extent dominated
by the entropy of thermal fluctuations.

In this review we will describe some of the presently understood behavior
of crystalline (fixed-connectivity), hexatic and fluid membranes, including
the relevance of self-avoidance, intrinsic anisotropy and topological defects.
Emphasis will be given to the role of the renormalization group in elucidating
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the critical behavior of membranes. The polymer pastures may be lovely but
a dazzling world awaits those who wander into the membrane meadows.

The outline of the review is the following. In sec. 2 we describe a vari-
ety of important physical examples of membranes, with representatives from
the key universality classes. In sec. 3 we introduce basic notions from the
renormalization group and some formalism that we will use in the rest of the
review. In sec. 4 we review the phase structure of crystalline membranes for
both phantom and self-avoiding membranes, including a thorough discussion
of the fixed-point structure, RG flows and critical exponents of each global
phase. In sec. 5 we turn to the same issues for intrinsically anisotropic mem-
branes, with the new feature of the tubular phase. In sec. 6 we address the
consequences of allowing for membrane defects, leading to a discussion of the
hexatic membrane universality class. We end with a brief discussion of fluid
membranes in sec. 7 and conclusions.

2 Physical examples of membranes

There are many concrete realizations of membranes in nature, which greatly
enhances the significance of their study. Crystalline membranes, sometimes
termed tethered or polymerized membranes, are the natural generalization
of linear polymer chains to intrinsically two-dimensional structures. They
possess in-plane elastic moduli as well as bending rigidity and are character-
ized by broken translational invariance in the plane and fixed connectivity
resulting from relatively strong bonding. Geometrically speaking they have
a preferred two-dimensional metric. Let’s look at some of the examples.
One can polymerize suitable chiral oligomeric precursors to form molecular
sheets [10]. This approach is based directly on the idea of creating an intrinsi-
cally two-dimensional polymer. Alternatively one can permanently cross-link
fluid-like Langmuir-Blodgett films or amphiphilic bilayers by adding certain
functional groups to the hydrocarbon tails and/or the polar heads [11, 12] as
shown schematically in Fig. 1.

The cytoskeletons of cell membranes are beautiful and naturally occur-
ring crystalline membranes that are essential to cell membrane stability and
functionality. The simplest and most thoroughly studied example is the cy-
toskeleton of mammalian erythrocytes (red blood cells). The human body
has roughly 5 × 1013 red blood cells. The red blood cell cytoskeleton is a
fishnet-like network of triangular plaquettes formed primarily by the proteins
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Figure 1: The polymerization of fluid-like membrane to a crystalline mem-
brane.

spectrin and actin. The links of the mesh are spectrin tetramers (of length
approximately 200 nm) and the nodes are short actin filaments (of length
37 nm and typically 13 actin monomers long) [13, 14], as seen in Fig.2 and
Fig.3. There are roughly 70,000 triangular plaquettes in the mesh altogether
and the cytoskeleton as a whole is bound by ankyrin and other proteins to
the cytoplasmic side of the fluid phospholipid bilayer which constitutes the
other key component of the red blood cell membrane.

There are also inorganic realizations of crystalline membranes. Graphitic
oxide (GO) membranes are micron size sheets of solid carbon with thicknesses
on the order of 10Å, formed by exfoliating carbon with a strong oxidizing
agent. Their structure in an aqueous suspension has been examined by sev-
eral groups [17, 18, 19]. Metal dichalcogenides such as MoS2 have also been
observed to form rag-like sheets [20]. Finally similar structures occur in the
large sheet molecules, shown in Fig.4, believed to be an ingredient in glassy
B2O3.

In contrast to crystalline membranes, fluid membranes are characterized
by vanishing shear modulus and dynamical connectivity. They exhibit signif-
icant shape fluctuations controlled by an effective bending rigidity parameter.

A rich source of physical realizations of fluid membranes is found in am-
phiphilic systems [21, 22, 23]. Amphiphiles are molecules with a two-fold
character – one part is hydrophobic and another part hydrophilic. The clas-
sic examples are lipid molecules, such as phospholipids, which have polar or
ionic head groups (the hydrophilic component) and hydrocarbon tails (the
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Figure 2: An electron micrograph of a region of the erythrocyte cytoskele-
ton. The skeleton is negatively stained (magnification 365,000) and has been
artificially spread to a surface area nine to ten times as great as in the native
membrane [15].

Figure 3: An extended view of the crystalline spectrin/actin network which
forms the cytoskeleton of the red blood cell membrane [16].
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Figure 4: The sheet molecule B2O3

WATER

Figure 5: Schematic of experimental procedure to make a black membrane.

hydrophobic component). Such systems are observed to self-assemble into
a bewildering array of ordered structures, such as monolayers, planar (see
Fig.5) and spherical bilayers (vesicles or liposomes) (see Fig. 6) as well as
lamellar, hexagonal and bicontinuous phases [24]. In each case the basic
ingredients are thin and highly flexible surfaces of amphiphiles. The lipid
bilayer of cell membranes may itself be viewed as a fluid membrane with
considerable disorder in the form of membrane proteins (both peripheral and
integral) and with, generally, an attached crystalline cytoskeleton, such as
the spectrin/actin mesh discussed above.

A complete understanding of these biological membranes will require a
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Figure 6: The structure of a liposome with its pure lipid spherical bilayer

thorough understanding of each of its components (fluid and crystalline)
followed by the challenging problem of the coupled system with thermal fluc-
tuations, self-avoidance, potential anisotropy and disorder. The full system
is currently beyond the scope of analytic and numerical methods but there
has been considerable progress in the last fifteen years.

Related examples of fluid membranes arise when the surface tension be-
tween two normally immiscible substances, such as oil and water, is sig-
nificantly lowered by the surface action of amphiphiles (surfactants), which
preferentially orient with their polar heads in water and their hydrocarbon
tails in oil. For some range of amphiphile concentration both phases can
span the system, leading to a bicontinuous complex fluid known as a mi-
croemulsion. The oil-water interface of a microemulsion is a rather unruly
fluid surface with strong thermal fluctuations [25] (see Fig.7).

The structures formed by membrane/polymer complexes are of consider-
able current theoretical, experimental and medical interest. To be specific
it has recently been found that mixtures of cationic liposomes (positively
charged vesicles) and linear DNA chains spontaneously self-assemble into a
coupled two-dimensional smectic phase of DNA chains embedded between
lamellar lipid bilayers [26, 27]. For the appropriate regime of lipid concen-
tration the same system can also form an inverted hexagonal phase with
the DNA encapsulated by cylindrical columns of liposomes[28] (see Fig.9).
In both these structures the liposomes may act as non-viral carriers (vec-
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Figure 7: The structure of a microemulsion formed by the addition of sur-
factant to an oil-water mixture.
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Figure 8: Metal-coated fluid microcylinders (tubules) formed by chiral lipids.
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tors) for DNA with many potentially important applications in gene ther-
apy [29]. Liposomes themselves have long been studied and utilized in the
pharmaceutical industry as drug carriers [30]. On the materials science side

Figure 9: The lamellar and inverted hexagonal DNA-membrane complexes
from the work of [28]

the self-assembling ability of membranes is being exploited to fabricate mi-
crostructures for advanced material development. One beautiful example is
the use of chiral-lipid based fluid microcylinders (tubules) as a template for
metallization. The resultant hollow metal needles may be half a micron in di-
ameter and as much as a millimeter in length [31, 32], as illustrated in Fig.8.
They have potential applications as, for example, cathodes for vacuum field
emission and microvials for controlled release [31].

3 The Renormalization Group

The Renormalization Group (RG) has provided an extremely general frame-
work that has unified whole areas of physics and chemistry [33]. It is beyond
the scope of this review to discuss the RG formalism in detail but there is an
ample literature to which we refer the reader (see the articles in this issue).
It is the goal of this review to apply the RG framework to the statistical me-
chanics of membranes, and for this reason we briefly emphasize and review
some well known aspects of the RG and its related ε-expansion.
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The RG formalism elegantly shows that the large distance properties
(or equivalently low p-limit) of different models are actually governed by
the properties of the corresponding Fixed Point (FP). In this way one can
compute observables in a variety of models, such as a molecular dynamics
simulation or a continuum Landau phenomenological approach, and obtain
the same long wavelength result. The main idea is to encode the effects of
the short-distance degrees of freedom in redefined couplings. A practical way
to implement such a program is the Renormalization Group Transformation
(RGT), which provides an explicit prescription for integrating out all the
high p-modes of the theory. One obtains the large-distance universal term of
any model by applying a very large (∞ to be rigorous) number of RGTs.

The previous approach is very general and simple but presents the tech-
nical problem of the proliferation in the number of operators generated along
the RG flow. There are established techniques to control this expansion, one
of the most successful ones being the ε-expansion. The ε-expansion may
also performed via a field theoretical approach using Feynman diagrams and
dimensional regularization within a minimal subtraction scheme, which we
briefly discuss below. Whereas it is true that this technique is rather ab-
stract and intuitively not very close to the physics of the model, we find it
computationally much simpler.

Generally we describe a particular model by several fields {φ, χ, · · ·} and
we construct the Landau free energy by including all terms compatible with
the symmetries and introducing new couplings (u, v, · · ·) for each term. The
Landau free energy may be considered in arbitrary dimension d, and then, one
usually finds a Gaussian FP (quadratic in the fields) which is infrared stable
above a critical dimension (dU). Below dU there are one or several couplings
that define relevant directions. One then computes all physical quantities as
a function of ε ≡ dU − d, that is, as perturbations of the Gaussian theory.

In the field theory approach, we introduce a renormalization constant for
each field (Zφ, Zχ, · · ·) and a renormalization constant (Zu, Zv, · · ·) for each
relevant direction below dU . If the model has symmetries, there are some
relations among observables (Ward identities) and some of these renormal-
ization constants may be related. This not only reduces their number but
also has the added bonus of providing cross-checks in practical calculations.
Within dimensional regularization, the infinities of the Feynman diagrams
appear as poles in ε, which encode the short-distance details of the model. If
we use these new constants (Z’s) to absorb the poles in ε, thereby producing
a complete set of finite Green’s functions, we have succeeded in carrying out
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the RG program of including the appropriate short-distance information in
redefined couplings and fields. This particular prescription of absorbing only
the poles in ε in the Z’s is called the Minimal Subtraction Scheme (MS), and
it considerably simplifies practical calculations.

As a concrete example, we consider the theory of a single scalar field
φ with two independent coupling constants. The one-particle irreducible
Green’s function has the form

ΓN
R (ki; uR, vR, M) = Z

N/2
φ ΓN (ki; u, v;

1

ε
) , (1)

where the function on the left depends on a new parameter M , which is
unavoidably introduced in eliminating the poles in ε. The associated correla-
tor also depends on redefined couplings uR and vR. The rhs depends on the
poles in ε, but its only dependence on M arises through Zφ. This observation
allows one to write

M
d

dM

(

Z
−N/2
φ Γ

(N)
R

)

= (2)

=

(

M
∂

∂M
+ β(uR)

∂

∂uR
+ β(vR)

∂

∂vR
− N

2
Γφ

)

Γ
(N)
R = 0 ,

where

uR = M−εF (Zφ, Zχ, · · · |Zu)u , vR = M−εF (Zφ, Zχ, · · · |Zv)v (3)

βu(uR, vR) =

(

M
∂uR

∂M

)∣

∣

∣

∣

∣

u,v

, βv(uR, vR) =

(

M
∂vR

∂M

)∣

∣

∣

∣

∣

u,v

γφ =

(

M
∂ ln Zφ

∂M

)∣

∣

∣

∣

∣

u,v

.

The β-functions control the running of the coupling by

M
duR

dM
= βu(uR, vR) , M

dvR

dM
= βv(uR, vR) (4)

The existence of a FP, at which couplings cease to flow, requires β(u∗
R, v∗

R) = 0
for all β-functions of the model. Those are the most important aspects of
the RG we wanted to review. In Appendix B we derive more appropriate
expressions of the RG-functions for practical convenience. For a detailed
exposition of the ε-expansion within the field theory framework we refer to
the excellent book by Amit[34].
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4 Crystalline Membranes

A crystalline membrane is a two dimensional fish-net structure with bonds
(links) that never break - the connectivity of the monomers (nodes) is fixed.
It is useful to keep the discussion general and consider D-dimensional objects
embedded in d-dimensional space. These are described by a d-dimensional
vector ~r(x), with x the D-dimensional internal coordinates, as illustrated
in Fig.10. The case (d = 3, D = 2) corresponds to the physical crystalline
membrane.

z

x

y

r(x  )α

xα

Figure 10: Representation of a membrane.

To construct the Landau free energy of the model, one must recall that
the free energy must be invariant under global translations, so the order
parameter is given by derivatives of the embedding ~r, that is ~tα = ∂~r

∂uα
, with

α = 1, · · · , D. This latter condition, together with the invariance under
rotations (both in internal and bulk space), give a Landau free energy [35,
36, 37]

F (~r) =
∫

dDx

[

1

2
κ(∂2

α~r)
2 +

t

2
(∂α~r)

2 + u(∂α~r∂β~r)
2 + v(∂α~r∂

α~r)2
]

+
b

2

∫

dDx dDyδd(~r(x) − ~r(y)) , (5)
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where higher order terms may be shown to be irrelevant at long wavelength,
as discussed later. The physics in Eq.(5) depends on five parameters,

• κ, bending rigidity : This is the coupling to the extrinsic curvature
(the square of the Gaussian mean curvature). Since reparametrization
invariance is broken for crystalline membranes, this term may be re-
placed by its long-wavelength limit. For large and positive bending
rigidities flatter surfaces are favored.

• t, u, v, elastic constants : These coefficients encode the microscopic elas-
tic properties of the membrane. In a flat phase, they may be related
to the Lamé coefficients of Landau elastic theory (see sect. 4.1.3).

• b, Excluded volume or self-avoiding coupling : This is the coupling
that imposes an energy penalty for the membrane to self-intersect. The
case b = 0, i. e. no self-avoidance, corresponds to a phantom model.

We generally expand ~r(x) as

~r(x) = (ζx + u(x), h(x)) , (6)

with u the D-dimensional phonon in-plane modes, and h the d − D out-of-
plane fluctuations. If ζ = 0 the model is in a rotationally invariant crumpled
phase, where the typical surfaces have fractal dimension, and there is no
real distinction between the in-plane phonons and out-of plane modes. For
a pictorial view, see cases a) and b) in Fig.11.

If ζ 6= 0 the membrane is flat up to small fluctuations and the full ro-
tational symmetry is spontaneously broken. The fields h are the analog of
the Goldstone bosons and they have different naive scaling properties than
u. See Fig.11 for a visualization of a typical configuration in the flat phase.

We will begin by studying the phantom case first. This simplified model
may even be relevant to physical systems since one can envision membranes
that self-intersect (at least over some time scale). One can also view the
model as a fascinating toy model for understanding the more physical self-
avoiding case to be discussed later. Combined analytical and numerical stud-
ies have yielded a thorough understanding of the phase diagram of phantom
crystalline membranes.
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Figure 11: Examples of a) crumpled phase, b) crumpling transition (crum-
pled phase) and c) a flat phase. Results correspond to a numerical simulation
of the phantom case [38] and gives a very intuitive physical picture of the
different phases.

4.1 Phantom

The Phantom case corresponds to setting b = 0 in the free energy Eq.(5):

F (~r) =
∫

dDx

[

1

2
κ(∂2

α~r)2 +
t

2
(∂α~r)

2 + u(∂α~r∂β~r)
2 + v(∂α~r∂

α~r)2
]

. (7)

The mean field effective potential, using the decomposition of Eq.(6),
becomes

V (ζ) = Dζ2(
t

2
+ (u + vD)ζ2) , (8)
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with solutions

ζ2 =

{

0 : t ≥ 0
− t

4(u+vD)
: t < 0 .

(9)

There is, consequently, a flat phase for t < 0 and a crumpled phase for t > 0,
separated by a crumpling transition at t = 0 (see Fig.12).

T0 Tcrumpling

f

t

flat
crumpled

τ < 0 < t > = 0=> τ > 0 < t > = 0=>

Figure 12: Mean field solution for crystalline membranes.

The actual phase diagram agrees qualitatively with the phase diagram of
the model shown schematically in Fig.13. The crumpled phase is described
by a line of equivalent FPs(GFP). There is a general hyper-surface, whose
projection onto the κ−t plane corresponds to a one-dimensional curve (CTH),
which corresponds to the crumpling transition. Within the CTH there is an
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infrared stable FP (CTFP) which describes the large distance properties of
the crumpling transition. Finally, for large enough values of κ and negative
values of t, the system is in a flat phase described by the corresponding infra-
red stable FP (FLFP) 1. Although the precise phase diagram turns out to
be slightly more complicated than the one depicted in Fig.13, the additional
subtleties do not modify the general picture.

GFP

t

CTH

CRUMPLED PHASE

(Crumpling Transition)

CTFP

FLAT PHASE

FLFP

1/κ

Figure 13: Schematic plot of the phase diagram for phantom membranes.
GFP are the equivalent FPs describing the crumpled phase. The crumpling
transition is described by the Crumpling transition critical line (CTH), which
contains the Crumpling Transition FP (CTFP). The Flat phase is described
by the (FLFP).

The evidence for the phase diagram depicted in Fig.13 comes from com-
bining the results of a variety of analytical and numerical calculations. We
present in detail the results obtained from the ε-expansion since they have
wide applicability and allow a systematic calculation of the β-function and
the critical exponents. We also describe briefly results obtained with other
approaches.

1The FLFP is actually a line of equivalent fixed points.
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4.1.1 The crumpled phase

In the crumpled phase, the free energy Eq.(7) for D ≥ 2 simplifies to

F (~r) =
t

2

∫

dDx(∂α~r)
2 + Irrelevant terms , (10)

since the model is completely equivalent to a linear sigma model in D ≤ 2
dimensions having O(d) symmetry, and therefore all derivative operators in ~r
are irrelevant by power counting. The parameter t labels equivalent Gaussian
FPs, as depicted in Fig.13. In RG language, it defines a completely marginal
direction. This is true provided the condition t > 0 is satisfied. The large
distance properties of this phase are described by simple Gaussian FPs and
therefore the connected Green’s function may be calculated exactly with
result

G(x) ∼
{

|x|2−D D 6= 2
log |x| D = 2

(11)

The associated critical exponents may also be computed exactly. The Haus-
dorff dimension dH , or equivalently the size exponent ν = D/dH , is given
(for the membrane case D = 2) by

dH = ∞ (ν = 0) → R2
G ∼ log L . (12)

The square of the radius of gyration R2
G scales logarithmically with the mem-

brane size L. This result is in complete agreement with numerical simulations
of tethered membranes in the crumpled phase where the logarithmic behav-
ior of the radius of gyration is accurately checked [39, 40, 41, 42, 43, 44, 45,
46, 47, 38]. Reviews may be found in [48, 49].

4.1.2 The Crumpling Transition

The Free energy is now given by

F (~r) =
∫

dDx

[

1

2
(∂2

α~r)2 + u(∂α~r∂β~r)
2 + v̂(∂α~r∂

α~r)2
]

, (13)

where the dependence on κ may be included in the couplings u and v̂. With
the leading term having two derivatives, the directions defined by the cou-
plings u and v̂ are relevant by naive power counting for D ≤ 4. This shows
that the model is amenable to an ε-expansion with ε = 4−D. For practical
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purposes, it is more convenient to consider the coupling v = v̂ + u
D

. We pro-
vide the detailed derivation of the corresponding β functions in Appendix D.
The result is

βu(uR, vR) = −εuR + 1
8π2 {(d/3 + 65/12)u2

R + 6uRvR + 4/3v2
R}

βv(uR, vR) = −εvR + 1
8π2 {21/16u2

R + 21/2uRvR + (4d + 5)v2
R}

(14)

Rather surprisingly, this set of β functions does not possess a FP, except
for d > 219. This result would suggest that the crumpling transition is first
order for d = 3. Other estimates, however, give results which are consistent
with the crumpling transition being continuous. These are

• Limit of large elastic constants[50]: The Crumpling transition is ap-
proached from the flat phase, in the limit of infinite elastic constants.
The model is

HNL =
∫

dDσ
κ

2
(∆~r)2 , (15)

with the further constraint ∂α~r∂β~r = δαβ. Remarkably, the β-function
may be computed within a large d expansion, yielding a continuous
crumpling transition with size exponent at the transition (for D = 2)

dH =
2d

d − 1
→ ν = 1 − 1

d
. (16)

• SCSA Approximation[51]: The Schwinger-Dyson equations for the model
given by Eq.(13) are truncated to include up to four point vertices. The
result for the Hausdorff dimension and size exponent is

dH = 2.73 → ν = 0.732 . (17)

• MCRG Calculation [52]: The crumpling transition is studied using
MCRG (Monte Carlo Renormalization Group) techniques. Again, the
transition is found to be continuous with exponents

dH = 2.64(5) → ν = 0.85(9) . (18)

Each of these three independent estimates give a continuous crumpling
transition with a size exponent in the range ν ∼ 0.7 ± .15. It would be
interesting to understand how the ε-expansion must be performed in order
to reconcile it with these results.
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Figure 14: Plot of the specific heat observable [38]. The growth of the specific
heat peak with system size indicates a continuous transition.

Further evidence for the crumpling transition being continuous is provided
by numerical simulations [39, 40, 41, 42, 43, 44, 45, 46, 47, 38] where the
analysis of observables like the specific heat (see Fig.14) or the radius of
gyration radius give textbook continuous phase transitions, although the
precise value of the exponents at the transition are difficult to pin down. Since
this model has also been explored numerically with different discretizations
on several lattices, there is clear evidence for universality of the crumpling
transition [46], again consistent with a continuous transition. In Appendix C
we present more details of suitable discretizations of the energy for numerical
simulations of membranes.

4.1.3 The Flat Phase

In a flat membrane (see Fig.15), we consider the strain tensor

uαβ = ∂αuβ + ∂βuα + ∂αh∂βh . (19)

The free energy Eq.(7) becomes

F (u, h) =
∫

dDx

[

κ̂

2
(∂α∂βh)2 + µuαβuαβ +

λ

2
(uα

α)2

]

, (20)
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Figure 15: Coordinates for fluctuations in the flat phase

where we have dropped irrelevant terms. One recognizes the standard Landau
Free energy of elasticity theory, with Lamé coefficients µ and λ, plus an
extrinsic curvature term, with bending rigidity κ̂. These couplings are related
to the original ones in Eq.(7) by µ = uζ4−D, λ = 2vζ4−D, κ̂ = κζ4−D and
t = −4(µ + D

2
λ)ζD−2.

The large distance properties of the flat phase for crystalline membranes
are completely described by the Free energy Eq.(20). Since the bending rigid-
ity may be scaled out at the crumpling transition, the free energy becomes a
function of µ

κ2 and λ
κ2 . The β-function for the couplings u, v at κ = 1 may be

calculated within an ε-expansion, which we describe in detail in Appendix E.
Let us recall that the dependence on κ may be trivially restored at any stage.
The result is

βµ(µR, λR) = −εµR +
µ2

R

8π2
(
dc

3
+ 20A) (21)

βλ(µR, λR) = −ελR +
1

8π2
(
dc

3
µ2

R + 2(dc + 10A)λRµR + 2dcλ
2
R) ,

where dc = d−D, and A = µR+λR

2µR+λR
. These β functions show four fixed points

whose actual values are shown in Table 1.
As apparent from Fig.16, the phase diagram of the flat phase turns out

to be slightly more involved than the one shown in Fig.13, as there are three
FPs in addition to the FLFP already introduced. These additional FPs are
infra-red unstable, however, and can only be reached for very specific values
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Figure 16: Phase diagram for the phantom flat phase. There are three infra-
red unstable FPs, labelled by FLP1, FLP2 and FLP3, but the physics of the
flat phase is governed by the infra-red stable FP (FLFP).

of the Lamé coefficients, so for any practical situation we can regard the
FLFP as the only existing FP in the flat phase.

The properties of the flat phase

The flat phase is a very important phase as will be apparent once we
study the full model, including self-avoidance. For that reason we turn now
to a more detailed study of its most important properties.

Fig.11 (c) gives an intuitive visualization of a crystalline membrane in the
flat phase. The membrane is essentially a flat two dimensional object up to
fluctuations in the perpendicular direction. The rotational symmetry of the
model is spontaneously broken, being reduced from O(d) to O(d−D)×O(D).
The remnant rotational symmetry is realized in Eq.(20) as

hi(x) → hi(x) + Aiαxα (22)
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FP µ∗
R λ∗

R η ηu

FP1 0 0 0 0
FP2 0 2ε/dc 0 0
FP3 12ε

20+dc

−6ε
20+dc

ε
2+dc/10

ε
1+20/dc

FLFP 12ε
24+dc

−4ε
24+dc

ε
2+dc/12

ε
1+24/dc

Table 1: The FPs and critical exponents of the flat phase.

uα(x) → uα − Aiαhi −
1

2
δij(AiαAβjxβ) ,

where Aiα is a D × (d − D) matrix. This relation is very important as it
provides Ward identities which simplify enormously the renormalization of
the theory.

Let us first study the critical exponents of the model. There are two key
correlators, involving the in-plane and the out-of-plane phonon modes. Using
the RG equations, it is easy to realize that at any given FP, the low-p limit
of the model is given by

Γuu(~p) ∼ |~p|2+ηu (23)

Γhh(~p) ≡ |~p|4κ(~p) ∼ |~p|4−η ,

where the last equation defines the anomalous elasticity κ(~p) as a function
of momenta ~p. These two exponents are not independent, since they satisfy
the scaling relation [53]

ηu = 4 − D − 2η , (24)

which follows from the Ward identities associated with the remnant rotational
symmetry (Eqn.(22). Another important exponent is the roughness exponent
ζ , which measures the fluctuations transverse to the flat directions. It can
be expressed as ζ = 4−D−η

2
.

The long wavelength properties of the flat phase are described by the
FLFP (see Fig.16). Since the FLFP occurs at non-zero renormalized values
of the Lamé coefficients, the associated critical exponents discussed earlier
are clearly non-Gaussian. Within an ε-expansion, the values for the critical
exponents are given in Table 1. There are alternative estimates available
from different methods. These are

• Numerical Simulation: In [38] a large scale simulation of the model
was performed using very large meshes. The results obtained for the
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critical exponents are very reliable, namely

ηu = 0.50(1) η = 0.750(5) ζ = 0.64(2) (25)

For a review of numerical results see [48, 49].

• SCSA Approximation: This consists of suitably truncating the Schwinger-
Dyson equations to include up to four-point correlation functions [51].
The result for general d is

η(d) =
4

dc + (16 − 2dc + d2
c)

1/2
, (26)

which for d = 3 gives

ηu = 0.358 η = 0.821 ζ = 0.59 (27)

• Large d expansion: The result is [50]

η =
2

d
→ η(3) = 2/3 (28)

We regard the results of the numerical simulation as our most accurate es-
timates, since we can estimate the errors. The results obtained from the
SCSA, which are the best analytical estimate, are in acceptable agreement
with simulations.

Finally there are two experimental measurements of critical exponents for
the flat phase of crystalline membranes. The static structure factor of the
red blood cell cytoskeleton (see Sect.1) has been measured by small-angle
x-ray and light scattering, yielding a roughness exponent of ζ = 0.65(10)
[13]. Freeze-fracture electron microscopy and static light scattering of the
conformations of graphitic oxide sheets (Sect.1) revealed flat sheets with a
fractal dimension dH = 2.15(6). Both these values are in good agreement
with the best analytic and numerical predictions, but the errors are still too
large to discriminate between different analytic calculations.

The Poisson ratio of a crystalline membrane (measuring the transverse
elongation due to a longitudinal stress [54]) is universal and within the SCSA
approximation, which we regard as the more accurate analytical estimate, is
given by

σ(D) = − 1

D + 1
→ σ(2) = −1/3 , (29)
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This result has been accurately checked in numerical simulations [55]. Rather
remarkably, it turns out to be negative. Materials having a negative Poisson
ratio are called auxetic. This highlights potential applications of crystalline
membranes to materials science since auxetic materials have a wide variety
of potential applications as gaskets, seals etc.

Finally another critical regime of a flat membrane is achieved by subject-
ing the membrane to external tension [56, 57]. This allows a low temperature
phase in which the membrane has a domain structure, with distinct domains
corresponding to flat phases with different bulk orientations. This describes,
physically, a buckled membrane whose equilibrium shape is no longer planar.

4.2 Self-avoiding

Self-avoidance is a necessary interaction in any realistic description of a crys-
talline membrane. It is introduced in the form of a delta-function repulsion
in the full model Eq.(5). We have already analyzed the phantom case and
explored in detail the distinct phases. The question before us now is the
effect of self-avoidance on each of these phases.

The first phase we analyze is the flat phase. Since self-intersections are
unlikely in this phase, it is intuitively clear that self-avoidance should be
irrelevant. This may also be seen if one neglects the effects of the in-plane
phonons. In the self-avoiding term for the flat phase we have

b

2

∫

dDx dDyδd(~r(x) − ~r(y)) (30)

=
b

2

∫

dDx dDyδD(ζ(x− y) + u(x) − u(y))δd−D(h(x) − h(y))

∼ b

2

∫

dDx dDyδD(ζ(x− y))δd−D(h(x) − h(y)) = 0 ,

as the trivial contribution where the membrane equals itself is eliminated by
regularization. The previous argument receives additional support from nu-
merical simulations in the flat phase, where it is found that self-intersections
are extremely rare in the typical configurations appearing in those simula-
tions. It seems clear that self-avoidance is most likely an irrelevant operator,
in the RG sense, of the FLFP. Nevertheless, it would be very interesting if one
could provide a more rigorous analytical proof for this statement. A rough
argument can be made as follows. Shortly we will see that the Flory approx-
imation for self-avoiding membranes predicts a fractal dimension dH = 2.5.
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For bulk dimension d exceeding 2.5 therefore we expect self-avoidance to be
irrelevant. A rigorous proof of this sort remains rather elusive, as it involves
the incorporation of both self-avoidance and non-linear elasticity, and this
remains a difficult open problem.

The addition of self-avoidance in the crumpled phase consists of adding
the self-avoiding interaction to the free energy of Eq.(10)

F (~r) =
1

2

∫

dDx(∂α~r(x))2 +
b

2

∫

dDx dDyδd(~r(x) − ~r(y)) , (31)

which becomes the natural generalization of the Edwards’ model for polymers
to D-dimensional objects. Standard power counting shows that the GFP of
the crumpled phase is infra-red unstable to the self-avoiding perturbation for

ε(D, d) ≡ 2D − d
2 − D

2
> 0 , (32)

which implies that self-avoidance is a relevant perturbation for D = 2-objects
at any embedding dimension d. The previous remarks make it apparent that
it is possible to perform an ε-expansion of the model [58, 59, 60, 61]. In
Appendix F, we present the calculation of the β-function at lowest order
in ε using the MOPE (Multi-local-operator-product-expansion) formalism
[62, 63]. The MOPE formalism has the advantage that it is more easily
generalizable to higher orders in ε, and enables concrete proofs showing that
the expansion may be carried out to all orders. At lowest order, the result
for the β-function is

βb(bR) = −εbR +
(2 − D)−1+ d

2

(4π)
d
2





2π
D
2

Γ(D/2)





2+ d
2
[

Γ( D
2−D

)2

Γ( 2D
2−D

)
+

d

2

(2 − D)2

2D

]

b2
R

2

≡ −εbR + a1b
2
R . (33)

The infra-red stable FP is given at lowest order in ε by b∗R = ε
a1

, which
clearly shows that the GFP of the crumpled phase is infra-red unstable in
the presence of self-avoidance.

The preceding results are shown in Fig.17 and may be summarized as

• The flat phase of self-avoiding crystalline membranes is exactly the
same as the flat phase of phantom crystalline tethered membranes.

• The crumpled phase of crystalline membranes is destabilized by the
presence of any amount of self-avoidance.
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Figure 17: The addition of Self-avoidance at the Crumpled and Flat phases.

The next issue to elucidate is whether this new SAFP describes a crum-
pled self-avoiding phase or a flat one and to give a more quantitative descrip-
tion of the critical exponents describing the universality class. Supposing
that the SAFP is, in fact, flat we must understand its relation to the FLFP
describing the physics of the flat phase and the putative phase transitions
between these two.

4.2.1 The nature of the SAFP

Let us study in more detail the model described in Eq.(31). The key issue
is whether this model still admits a crumpled phase, and if so to determine
the associated size exponent. On general grounds we expect that there is a
critical dimension dc, below which there is no crumpled phase (see Fig.18).

An estimate for the critical dimension may be obtained from a Flory
approximation in which minimizes the free energy obtained by replacing both
the elastic and self-avoiding terms with the radius of gyration raised to the
power of the appropriate scaling dimensions. Within the Flory treatment a
D-dimensional membrane is in a crumpled phase, with a size exponent given
by

ν = (D + 2)/(d + 2) . (34)

From this it follows that dc = D (see Fig.18). The Flory approximation,
though very accurate for polymers (D = 1), remains an uncontrolled ap-
proximation.

In contrast the ε-expansion provides a systematic determination of the
critical exponents. For the case of membranes, however, some extrapolation
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Figure 18: The size exponent as a function of d. There is a critical dimension
dc below which the crumpled phase disappears.

is required, as the upper critical dimension is infinite. This was done in [64],
where it is shown that reconsidering the ε-expansion as a double expansion
in ε and D, critical quantities may be extrapolated for D = 2-dimensional
objects. At lowest order in ε, the membrane is in a crumpled phase. The
enormous task of calculating the next correction (ε2) was successfully carried
out in [65], employing more elaborate extrapolation methods than those in
[64]. Within this calculation, the d = 3 membrane is still in a crumpled
phase, but with a size exponent now closer to 1. It cannot be ruled out that
the ε-expansion, successfully carried out to all orders could give a flat phase
ν = 1. In fact, the authors in [65, 66] present some arguments in favor of a
scenario of this type, with a critical dimension dc ∼ 4.

Other approaches have been developed with different results. A Gaussian
approximation was developed in [67, 68]. The size exponent of a self-avoiding
membrane within this approach is

ν = 4/d, (35)

and since one has ν > 1 for d ≤ 4, one may conclude that the membrane
is flat for d ≤ dc = 4. Since we cannot determine the accuracy of the
Gaussian approximation this estimate must be viewed largely as interesting
speculation. Slightly more elaborate arguments of this type [8] yield an
estimated critical dimension dc = 3.
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Numerical simulations

We have seen that numerical simulations provide good support for an-
alytic results in the case of phantom membranes. When self-avoidance is
included, numerical simulations become invaluable, since analytic results are
harder to come by. It is for this reason that we discuss them in greater detail
than in previous sections.

A possible discretization of membranes with excluded volume effects con-
sists of a network of N particles arranged in a triangular array. Nearest
neighbors interact with a potential

VNN(~r) =

{

0 for |~r| < b
∞ for |~r| > b

, (36)

although some authors prefer a smoothened version, with the same general
features. The quantity b is of the order of a few lattice spacings. This is
a lattice version of the elastic term in Eq.(31). The discretization of the
self-avoidance is introduced as a repulsive hard sphere potential, now acting
between any two atoms in the membrane, instead of only nearest neighbors.
A hard sphere repulsive potential is, for example,

VExc(~r) =

{

∞ for |~r| < σ
0 for |~r| > σ

, (37)

where σ is the range of the potential, and σ < b. Again, some smoothened
versions, continuous at |~r| = σ, have also been considered. This model may
be pictured as springs, defined by the nearest-neighbor potential Eq.(36),
with excluded volume effects enforced by balls of radius σ (Eq.(37)). This
model represents a lattice discretization of Eq.(31).

Early simulations of this type of model [39, 40] provided a first estimate of
the size exponent at d = 3 fully compatible with the Flory estimate Eq.(34).
The lattices examined were not very large, however, and subsequent simula-
tions with larger volumes [69, 70] found that the d = 3 membrane is actually
flat. This result is even more remarkable if one recalls that there is no explicit
bending rigidity.

The flat phase was a very surprising result, in some conflict with the
insight provided from the analytical estimates discussed in the previous sub-
section. An explanation for it came from the observation [71] that excluded
volume effects induce bending rigidity, as depicted in Fig.19. The reason is
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Figure 19: Visualization of bending rigidity generated by a hard sphere po-
tential. Normals ~n1 and ~n2 cannot be anti-parallel.

that the excluded volume effects generate a non-zero expectation value for
the bending rigidity, since the normals can be parallel, but not anti-parallel
(see 19). This induced bending rigidity was estimated and found to be big
enough to drive the self-avoiding membrane well within the flat phase of the
phantom one. This means that this particular discretization of the model
renders any potential SAFP inaccessible and the physics is described by the
FLFP. In [72] the structure function of the self-avoiding model is numerically
computed and found to compare well with the analytical structure function
for the flat phase of phantom crystalline membranes, including comparable
roughness exponents.

The natural question then to ask is whether it is possible to reduce the
bending rigidity sufficiently to produce a crumpled self-avoiding phase. Sub-
sequent studies addressed this issue in various ways. The most natural way
is obviously to reduce the range of the potential sufficiently that the induced
bending rigidity is within the crumpled phase. This is the approach followed
in [73]. The flat phase was found to persist to very small values of σ, with
eventual signs of a crumpled phase. This crumpled phase may essentially
be due to the elimination at self-avoidance at sufficiently small σ. A more
comprehensive study, in which the same limit is performed this time with
an excluded volume potential which is a function of the internal distance
along the lattice [74], concluded that for large membranes, inclusion of ex-
cluded volume effects, no matter how small, leads to flatness. A different
approach to weakening the flat phase, bond dilution [75], found that the flat
phase persists until the percolation critical point. In conclusion the bulk
of accumulated evidence indicates that flatness is an intrinsic consequence
of self-avoidance. If this is indeed correct the SAFP coincides with FLFP
and this feature is an inherent consequence of self-avoidance, rather than an
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artifact of discretization.
Given the difficulties of finding a crumpled phase with a repulsive poten-

tial, simulations for larger values of the embedding space dimension d have
also been performed [76, 77]. These simulations show clear evidence that the
membrane remains flat for d = 3 and 4 and undergoes a crumpling transition
for d ≥ 5, implying dc ≥ 4.

An alternative approach to incorporating excluded volume effects cor-
responds to discretize a surface with a triangular lattice and imposing the
self-avoidance constraint by preventing the triangular plaquettes from inter-
penetrating. This model has the advantage that is extremely flexible, since
there is no restriction on the bending angle of adjacent plaquettes (triangles)
and therefore no induced bending rigidity (see C).

The first simulations of the plaquette model [78] found a size exponent
in agreement with the Flory estimate Eq. 34. A subsequent simulation [79]
disproved this result, and found a size exponent ν = 0.87, higher than the
Flory estimate, but below one. More recent results using larger lattices
and more sophisticated algorithms seem to agree completely with the results
obtained from the ball and spring models [80].

Further insight into the lack of a crumpled phase for self-avoiding crys-
talline membranes is found in the study of folding [81, 82, 83, 84, 85, 86, 87].
This corresponds to the limit of infinite elastic constants studied by David
and Guitter with the further approximation that the space of bending angles
is discretized. One quickly discovers that the reflection symmetries of the
allowed folding vertices forbid local folding (crumpling) of surfaces. There is
therefore essentially no entropy for crumpling. There is, however, local un-
folding and the resulting statistical mechanical models are non-trivial. The
lack of local folding is the discrete equivalent of the long-range curvature-
curvature interactions that stabilize the flat phase. The dual effect of the
integrity of the surface (time-independent connectivity) and self-avoidance is
so powerful that crumpling seems to be impossible in low embedding dimen-
sions.

4.2.2 Attractive potentials

Self-avoidance, as introduced in Eq.(37) is a totally repulsive force among
monomers. There is the interesting possibility of allowing for attractive po-
tentials also. This was pioneered in [71] as a way to escape to the induced
bending rigidity argument (see Fig.19), since an attractive potential would
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correspond to a negligible (or rather a negative) bending rigidity. Remark-
ably, in [71], a compact (more crumpled) self-avoiding phase was found, with
fractal dimension close to 3.

This was further studied in [88], where it was found that with an attractive
Van der Waals potential, the crystalline membrane underwent a sequence of
folding transitions leading to a crumpled phase. In [89] similar results were
found, but instead of a sequence of folding transitions a crumpled phase
was found with an additional compact (more crumpled phase) at even lower
temperatures. Subsequent work gave some support to this scenario [90].

On the analytical side, the nature of the Θ-point for membranes and its
relevance to the issue of attractive interactions has been addressed in [91].

We think that the study of a tether with an attractive potential remains
an open question begging for new insights. A thorough understanding of the
nature of the compact phases produced by attractive interactions would be
of great value.

4.2.3 The properties of the SAFP

The enormous efforts dedicated to study the SAFP have not resulted in
a complete clarification of the overall scenario since the existing analytical
tools do not provide a clear picture. Numerical results clearly provide the best
insight. For the physically relevant case d = 3, the most plausible situation is
that there is no crumpled phase and that the flat phase is identical to the flat
phase of the phantom model. For example, the roughness exponents ζSA from
numerical simulations of self-avoidance at d = 3 using ball-and-spring models
[76] and the roughness exponent at the FLFP, Eq.(25), compare extremely
well

ζSA = 0.64(4) , ζ = 0.64(2) , (38)

So the numerical evidence allows us to conjecture that the SAFP is exactly
the same as the FLFP, and that the crumpled self-avoiding phase is absent in
the presence of purely repulsive potentials (see Fig.20). This identification of
fixed points enhances the significance of the FLFP treated earlier. It would
be very helpful if analytical tools were developed to further substantiate this
statement.
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Figure 20: The conjectured phase diagram for self-avoiding crystalline mem-
branes in d = 3. With any degree of self-avoidance the flows are to the flat
phase fixed point of the phantom model (FLFP).

5 Anisotropic Membranes

An anisotropic membrane is a crystalline membrane having the property that
the elastic or the bending rigidity properties in one distinguished direction
are different from those in the D−1 remaining directions. As for the isotropic
case we keep the discussion general and describe the membrane by a d-
dimensional ~r(x⊥, y), where now the D dimensional coordinates are split
into D − 1 x⊥ coordinates and the orthogonal distinguished direction y.

The construction of the Landau free energy follows the same steps as in
the isotropic case. Imposing translational invariance, O(d) rotations in the
embedding space and O(D− 1) rotations in internal space, the equivalent of
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Eq.(5) is now

F (~r(x)) =
1

2

∫

dD−1x⊥dy
[

κ⊥(∂2
⊥~r)2 + κy(∂

2
y~r)

2

+κ⊥y∂
2
y~r · ∂2

⊥~r + t⊥(∂⊥
α ~r)2 + ty(∂y~r)

2

+
u⊥⊥
2

(∂⊥
α ~r · ∂⊥

β ~r)2 +
uyy

2
(∂y~r · ∂y~r)

2

+u⊥y(∂
⊥
α ~r · ∂y~r)

2 +
v⊥⊥
2

(∂⊥
α ~r · ∂⊥

α ~r)2

+v⊥y(∂
⊥
α ~r)2(∂y~r)

2
]

+
b

2

∫

dDx

∫

dDx′δd(~r(x) − ~r(x′)). (39)

This model has eleven parameters, representing distinct physical interactions:

• κ⊥, κy, κ⊥y bending rigidity: the anisotropic versions of the isotropic
bending rigidity splits into three distinct terms.

• t⊥, ty, u⊥⊥, uyy, v⊥⊥, v⊥y elastic constants: there are six quantities de-
scribing the microscopic elastic properties of the anisotropic membrane.

• b, self-avoidance coupling: This particular term is identical to its isotropic
counterpart.

Following the same steps as in the isotropic case, we split

~r(x) = (ζ⊥x⊥ + u⊥(x), ζyy + uy(x), h(x)) , (40)

with u⊥ being the D−1-dimensional phonon in-plane modes, uy the in-plane
phonon mode in the distinguished direction y and h the d − D out-of-plane
fluctuations. If ζ⊥ = ζy = 0, the membrane is in a crumpled phase and if
both ζ⊥ 6= 0 and ζy 6= 0 the membrane is in a flat phase very similar to the
isotropic case (how similar will be discussed shortly). There is, however, the
possibility that ζ⊥ = 0 and ζy 6= 0 or ζ⊥ 6= 0 and ζy = 0. This describes a
completely new phase, in which the membrane is crumpled in some internal
directions but flat in the remaining ones. A phase of this type is called a
tubular phase and does not appear when studying isotropic membranes. In
Fig.21 we show an intuitive visualization of a tubular phase along with the
corresponding flat and crumpled phases of anisotropic membranes.

We will start by studying the phantom case. We show, using both analyt-
ical and numerical arguments, that the phase diagram contains a crumpled,
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Figure 21: Examples of a) the tubular phase b) the crumpled phase and c)
the flat phase of an anisotropic phantom crystalline membrane taken from
the simulations of [92]

tubular and flat phase. The crumpled and flat phases are equivalent to the
isotropic ones, so anisotropy turns out to be an irrelevant interaction in those
phases. The new physics is contained in the tubular phase, which we describe
in detail, both with and without self-avoidance.

5.1 Phantom

5.1.1 The Phase diagram

We first describe the mean field theory phase diagram and then the effect
of fluctuations. There are two situations depending on the particular values
of the function ∆, which depends on the elastic constants u⊥⊥, v⊥y, uyy and
v⊥⊥. Since the derivation is rather technical, we refer to Appendix G for the
details.

• Case A (∆ > 0): the mean field solution displays all possible phases.
When ty > 0 and t⊥ > 0 the model is in a crumpled phase. Lowering
the temperature, one of the t couplings becomes negative, and we reach
a tubular phase (either ⊥ or y-tubule). A further reduction of the
temperature eventually leads to a flat phase.
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• Case B (∆ < 0): in this case the flat phase disappears from the mean
field solution. Lowering further the temperature leads to a continuous
transition from the crumpled phase to a tubular phase. Tubular phases
are the low temperature stable phases in this regime.

This mean field result is summarized in Fig.22.
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Figure 22: The phase diagram for anisotropic phantom membranes

Beyond mean field theory, the Ginsburg criterion applied to this model
tells us that the phase diagram should be stable for physical membranes
D = 2 at any embedding dimension d, so the mean field scenario should give
the right qualitative picture for the full model.

Numerical simulations have spectacularly confirmed this result. We have
already shown in Fig.21 the results from the numerical simulation in [92],
where it was shown that changing the temperature generates a sequence of
transitions crumpled-to-tubular and tubular-to-flat, in total agreement with
case A) in the mean field result illustrated in Fig.22.

We now turn to a more detailed study of both the crumpled and flat
anisotropic phases. Since we have already studied crumpled and flat phases
we just outline how those are modified when anisotropy is introduced.
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5.1.2 The Crumpled Anisotropic Phase

In this phase ty > 0 and t⊥ > 0, and the free energy Eq.(39) reduces for
D ≥ 2 to

F (~r(x)) =
1

2

∫

dD−1x⊥dy
[

t⊥(∂⊥
α ~r)2 + ty(∂y~r)

2
]

+ Irrelevant . (41)

By redefining the y direction as y′ = t⊥
ty

y this reduces to Eq.(10), with t ≡ t⊥.

We have proved that anisotropy is totally irrelevant in this particular phase.

5.1.3 The Flat Phase

This phase becomes equivalent to the isotropic case as well. Intuitively, this
may be obtained from the fact that if the membrane is flat, the intrinsic
anisotropies are only apparent at short-distances, and therefore by analyzing
the RG flow at larger and larger distances the membrane should become
isotropic. This argument may be made slightly more precise [93].

5.2 The Tubular Phase

We now turn to the study of the novel tubular phase, both in the phantom
case and with self-avoidance. Since the physically relevant case for mem-
branes is D = 2 the y-tubular and ⊥-tubular phase are the same. So we
concentrate on the properties of the y-tubular phase.

The key critical exponents characterizing the tubular phase are the size
(or Flory) exponent ν, giving the scaling of the tubular diameter Rg with the
extended (Ly) and transverse (L⊥) sizes of the membrane, and the rough-
ness exponent ζ associated with the growth of height fluctuations hrms (see
Fig.23):

Rg(L⊥, Ly) ∝ Lν
⊥SR(Ly/L

z
⊥) (42)

hrms(L⊥, Ly) ∝ Lζ
ySh(Ly/L

z
⊥)

Here SR and Sh are scaling functions [94, 95] and z is the anisotropy exponent.
The general free energy described in Eq.(39) may be simplified consider-

ably in a y-tubular phase. The analysis required is involved and we refer the
interested reader to [96, 97]. We just quote the final result. It is

F (u,~h) =
1

2

∫

dD−1x⊥dy
[

κ(∂2
y
~h)2 + t(∂α

~h)2
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Figure 23: A schematic illustration of a tubular configuration indicating the
radius of gyration Rg and the height fluctuations hrms.

+g⊥(∂αu + ∂α
~h∂y

~h)2

+ gy(∂yu +
1

2
(∂y

~h)2)2
]

+
b

2

∫

dydD−1x⊥dD−1x′
⊥δd−1(~h(x⊥, y) −~h(x′

⊥, y)) . (43)

Comparing with Eq.(39), this free energy does represent a simplification as
the number of couplings has been reduced from eleven to five. Furthermore,
the coupling g⊥ is irrelevant by standard power counting. The most natural
assumption is to set it to zero. In that case the phase diagram one ob-
tains is shown in Fig.24. Without self-avoidance b = 0, the Gaussian Fixed
Point (GFP) is unstable and the infra-red stable FP is the tubular phase FP
(TPFP). Any amount of self-avoidance, however, leads to a new FP, the Self-
avoiding Tubular FP (SAFP), which describes the large distance properties
of self-avoiding tubules.

We just mention, though, that other authors advocate a different scenario
[95]. For sufficiently small embedding dimensions d, including the physical
d = 3 case, these authors suggest the existence of a new bending rigidity
renormalized FP (BRFP), which is the infra-red FP describing the actual
properties of self-avoiding tubules (see Fig. 25).

Here we follow the arguments presented in [97] and consider the model
defined by Eq.(43) with the g⊥-term as the model describing the large dis-
tance properties of tubules. One can prove then than there are some general
scaling relations among the critical exponents. All three exponents may be
expressed in terms of a single exponent

ζ =
3

2
+

1 − D

2z
ν = ζz . (44)
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Figure 24: The phase diagram for self-avoiding anisotropic membranes with
the Gaussian fixed point (GFP), the tubular phase fixed point (TPFP) and
the self-avoidance fixed point (SAFP).

Remarkably, the phantom case as described by Eq.(43) can be solved
exactly. The result for the size exponent is

νPhantom(D) =
5 − 2D

4
, νPhantom(2) =

1

4
(45)

with the remaining exponents following from the scaling relations Eq.(44).
The self-avoiding case may be treated with techniques similar to those in

isotropic case. The size exponent may be estimated within a Flory approach.
The result is

νF lory =
D + 1

d + 1
. (46)

The Flory estimate is an uncontrolled approximation. Fortunately, a ε-
expansion, adapting the MOPE technique described for the self-avoiding
isotropic case to the case of tubules, is also possible [96, 97]. The β-functions
are computed and provide evidence for the phase diagram shown in Fig.24.
Using rather involved extrapolation techniques, it is possible to obtain esti-

40



b

g T

TPFP

SAFP

BRFP

gyGFP

Figure 25: The phase diagram for self-avoiding anisotropic membranes with
the Gaussian fixed point (GFP), the tubular phase fixed point (TPFP),
the self-avoidance fixed point (SAFP) and the bending rigidity fixed point
(BRFP).

mates for the size exponent, which are shown in Table 2. The rest of the
exponents may be computed from the scaling relations.

6 Defects in membranes: The Crystalline-

Fluid transition and Fluid membranes

A flat crystal melts into a liquid when the temperature is increased. This
transition may be driven by the sequential liberation of defects, as predicted
by the KTNHY theory. The KTNHY theory is schematically shown in Fig.26.
With increasing temperature, a crystal melts first to an intermediate hexatic
phase via a continuous transition, and finally goes to a conventional isotropic
fluid phase via another continuous transition.

We will not review here either the KTNHY theory or the experimental
evidence in its favor – [98]. We just want to emphasize here that the KTNHY
theory is in general agreement with existing experiments, although there are
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d ν νF νV νF lory

8 0.333(5) 0.34(1) 0.34(1) 0.333
7 0.374(8) 0.39(2) 0.39(2) 0.375
6 0.42(1) 0.44(2) 0.44(4) 0.429
5 0.47(1) 0.51(3) 0.51(5) 0.500
4 0.54(2) 0.60(4) 0.60(6) 0.600
3 0.62(2) 0.71(6) 0.70(9) 0.750

Table 2: Different extrapolations for the size exponent at different embedding
dimensions d [97]. The first column gives the corrections to the mean field
result, the second corrections to the Flory estimate and the third corresponds
to corrections to the Gaussian approximation. The last column quotes the
Flory estimate for comparison.

CRYSTAL HEXATIC FLUID

TEMPERATURE

Figure 26: Two stage melting according to KTNHY theory.

two main points worth keeping in mind when studying the more difficult case
of fluctuating geometries. 1) The experimental evidence for the existence of
the hexatic phase is not completely settled in those transitions which are
continuous. 2) Some 2D crystals (like Xenon absorbed on graphite) melt to
a fluid phase via a first order transition without any intermediate hexatic
phase.

The straight-forward translation of the previous results to the tethered
membrane would suggest a similar scenario. There would then be a crys-
talline to hexatic transition and a hexatic to fluid transition, as schemati-
cally depicted in Fig.26. Although the previous scenario is plausible, there
are no solid experimental or theoretical results that establish it. From the
theoretical point of view, for example, an important open problem is how to
generalize the RG equations of the KTNHY theory to the case of fluctuating
geometry. The situation looks even more uncertain experimentally, especially
considering the elusive nature of the hexatic phase even in the case of flat
monolayers.

In this review we will assume the general validity of the KTNHY scenario
and we describe models of hexatic membranes, as well as fluid membranes.

42



The study of the KTNHY theory in fluctuating geometries is a fascinating
and challenging problem that deserves considerable effort. In this context, let
us mention recent calculations of defects on frozen topographies [99], which
show that even in the more simplified case when the geometry is frozen, de-
fects proliferate in an attempt to screen out Gaussian curvature, even at zero
temperature, and organize themselves in rather surprising and unexpected
structures. These results hint at a rich set of possibilities for the more general
case of fluctuating geometries.

6.1 Topological Defects

A crystal may have different distortions from its ground state. Thermal
fluctuations are the simplest. Thermal fluctuations are small displacements
from the ground state, and therefore one may bring back the system to its
original positions by local moves without affecting the rest of the lattice.
There are more subtle lattice distortions though, where the lattice cannot be
taken to its ground state by local moves. These are the topological defects.
There are different possible topological defects that may occur on a lattice,
but we just need to consider dislocations and disclinations. Let us review
the most salient features.

b

Figure 27: Example of a dislocation showing the breaking of the translational
holonomy measured by the Burgers vector ~b.

• Dislocation: represents the breaking of the translational holonomy. A
path that would naturally close in a perfect lattice fails to close by a
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vector ~b, the Burgers vector, as illustrated in Fig.27. In a flat mono-
layer, the energy is

E =
K0

~b2

8π
ln(

R

a
) , (47)

where K0 is the Young Modulus. It diverges logarithmically with system
size.

• Disclination: represents the breaking of the rotational holonomy. The
bond angle around the point defect is a multiple of the natural bond
angle in the ground state (π

3
in a triangular lattice), as illustrated in

Fig.28 for a + and − disclination. The energy for a disclination in a
flat monolayer is given by

E =
K0s

2

32π
R2 . (48)

Note the quadratic divergence of the energy with system size R.

Figure 28: Example of a minus disclination (left figure) and a plus disclination
(right figure). The orientational holonomy is broken by ±π

3
respectively.

Inspection of Fig.27 shows that a dislocation may be regarded as a tightly
bound +,- disclination pair.

6.1.1 Topological Defects in fluctuating geometries

The problem of understanding topological defects when the geometry is al-
lowed to fluctuate was addressed in [100] (see [101] for a review). The impor-
tant new feature is that the energy of a disclination defect may be lowered

44



considerably if the membrane buckles out-of-the-plane. That is, the mem-
brane trades elastic energy for bending rigidity. The energy for a buckled
free disclination is given by

E = f(κ, K0, qi) ln(
R

a
) , (49)

where f is some complicated function that may be evaluated numerically for
given values of the parameters. It depends explicitly on qi, which implies
that the energies for positive and negative disclinations may be different,
unlike the situation in flat space. The extraordinary reduction in energy
from R2 to lnR is possible because the buckled membrane creates positive
Gaussian curvature for the plus-disclination and negative curvature for the
negative-disclination. This is a very important physical feature of defects
on curved surfaces. The defects attempt to screen out like-sign curvature,
and analogously, like-sign defects may force the surface to create like-sign
curvature in order to minimize the energy.

The reduction in energy for a dislocation defect is even more remarkable,
since the energy of a dislocation becomes a constant, independent of the
system size, provided the system is larger than a critical radius Rc. Again,
by allowing the possibility of out-of-plane buckling, a spectacular reduction
in energy is achieved (from R2 to ln R).

The study of other topological defects, e.g. vacancies, interstitials, and
grain boundaries, may be carried out along the same lines. Since we are not
going to make use of it, we refer the reader to the excellent review in [101].

6.1.2 Melting and the hexatic phase

The celebrated Kosterlitz-Thouless argument shows that defects will neces-
sarily drive a 2D crystal to melt. The entropy of a dislocation grows loga-
rithmically with the system size, so for sufficiently high temperature, entropy
will dominate over the dislocation energy (Eq.(47)) and the crystal will nec-
essarily melt. If the same Kosterlitz-Thouless is applied now to a tethered
membrane, the entropy is still growing logarithmically with the system size,
while the energy becomes independent of the system size, as explained in the
previous subsection, so any finite temperature drive the crystal to melt, and
the low temperature phase of a tethered membrane will necessarily be a fluid
phase, either hexatic if the KTNHY melting can be applied, or a conventional
fluid if a first order transition takes place, or even some other more perverse
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possibility. This problem has also been investigated in numerical simulations
[102], which provide some concrete evidence in favor of the KTNHY scenario,
although the issue is far from being settled.

It is apparent from these arguments that a hexatic membrane is a very
interesting and possibly experimentally relevant membrane to understand.

6.2 The Hexatic membrane

The hexatic membrane is a fluid membrane that, in contrast to a conven-
tional fluid, preserves the orientational order of the original lattice (six-fold
(hexatic) for a triangular lattice). The mathematical description of a fluid
membrane is very different from those with crystalline order. Since the de-
scription cannot depend on internal degrees of freedom, the free energy must
be invariant under reparametrizations of the internal coordinates (that is,
should depend only on geometrical quantities, or in more mathematical ter-
minology, must be diffeomorphism invariant). The corresponding free energy
was proposed by Helfrich [103] and it is given by

HH

T
= µ

∫ √
g +

κ

2

∫

dx
√

g ~H2 , (50)

where µ is the bare string tension, κ the bending rigidity, g is the determinant
of the metric of the surface

gµν(x) = ∂µ~r(x)∂ν~r(x) (51)

and ~H is the mean Gaussian curvature of the surface. For a good description
of the differential geometry relevant to the study of membranes we refer
to [104] A hexatic membrane has an additional degree of freedom, the bond
angle, which is introduced as a field on the surface θ. The hexatic free energy
[105] is obtained from adjoining to the fluid case of Eq.(50), the additional
energy of the bond angle

Hhex/T =
KA

2

∫

dx
√

ggµν(∂µθ + Ωsing − ΩL
µ)(∂νθ + Ωsing − ΩL

ν ) (52)

where KA is called the hexatic stiffness, and Ωµ is the connection two form
of the metric, which may be related to the Gaussian curvature of the surface
by

K(x) =
1√
g
ǫµν∂µΩν (53)
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and Ωsing is similarly related to the topological defect density

s(x) =
1√
g
ǫµν∂µΩsingν

s(x) =
π

3

1√
g

N
∑

i=1

qiδ(x,xi) . (54)

From general theorems on differential geometry one has the relation

∫ √
gs(x) = 4π →

i
∑

i=1

qi = 2χ , (55)

where χ is the Euler characteristic of the surface.
Therefore the total free energy for the hexatic membrane is given by

H/T = µ
∫ √

g +
κ

2

∫

dx
√

g ~H2 + (56)

+
KA

2

∫

dx
√

ggµν(∂µθ + Ωsing − ΩL
µ)(∂νθ + Ωsing − ΩL

ν ) .

The partition function is therefore

Z(β) =
∑

N+,N−

δN+−N−,2χ

N+!N−!
yN++N− × (57)

∫

D[~r]D[θ]
∫ N+
∏

µ=1

dx+
µ

√
g

N−
∏

ν=1

dx−
ν

√
ge−H(~r(x),θ(x))/T ,

where y is the fugacity of the disclination density. The partition function
includes a discrete sum over allowed topological defects, those satisfying the
topological constraint Eq.(55), and a path integral over embeddings ~r and
bond angles θ. The previous model remains quite intractable since the sum
over defects interaction is very difficult to deal with.

Fortunately, the limit of very low fugacity y → 0 is analytically tractable
as was shown in the beautiful paper [107]. The RG functions can be computed
within a combined large d and large bending rigidity expansion. The β
functions in that limit is given by

β(α) =
1

4πKA

(

−Dα2 +
3

4
α3 + O(1/K2

A)
)

,

β(KA) = 0 (58)
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Figure 29: Phase diagram according to [106]. The hexatic membrane inter-
polates between a crystalline membrane and a fluid one. For small rigidity
and large hexatic stiffness the RG flows towards a fluid crumpled phase. For
small hexatic stiffness and large κ it flows towards a tethered like phase,
whereas for both large κ and KA the flow is to the crinkled phases described
by the non-trivial FP of Eq.(58).

where α = 1/κ. The physics of hexatic membranes in the limit of very low
fugacity is very rich and show a line of fixed points parametrized by the
hexatic stiffness KA. The normal-normal correlation function, for example,
reads [107]

〈~n(r)~n(0)〉 ∼ |x|−η , (59)

with η = 2
3π

d(d − 2)kBT
KA

. The FPs of Eq.(58) describe a new crinkled phase,
more rigid than a crumpled phase but more crumpled than a flat one. The
Hausdorff dimension at the crinkled phase is given by [107]

dH = 2 +
d(d − 2)

3π

kBT

KA
. (60)

From the RG point of view, the properties of these crinkled phases are really
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interesting, since they involve a line of Fixed Points which are inequivalent
in the sense that the associated critical exponents depend continuously on
KA, a situation reminiscent of the XY -model. In [106] the phase diagram is
discussed, and the authors propose the scenario depicted in Fig.29. How these
scenarios are modified when the fugacity is considered is not well established
and we refer the reader to the original papers [108, 109, 106].

The shape fluctuations of hexatic vesicles, for large defect core energies,
have also been investigated [110, 111].

7 The Fluid Phase

The study of fluid membranes is a broad subject, currently under intense
experimental and theoretical work. The Hamiltonian is given by

H/T = µ
∫ √

g +
κ

2

∫

dx
√

g ~H2 +
κ̂

2

∫ √
gK , (61)

This corresponds to the Helfrich hamiltonian together with a term that allows
for topology changing interactions. For fixed topology it is well-known [112,
113, 114, 115] that the one loop beta function for the inverse-bending rigidity
has a fixed point only at κ = 0, which corresponds to the bending rigidity
being irrelevant at large length scales. The RG flow of the bending rigidity
is given by

κ(l) = κo −
3T

4π
ln(l/a) , (62)

where a is a microscopic cutoff length. The fluid membrane is therefore crum-
pled, for arbitrary microscopic bending rigidity κ0, at length scales beyond a
persistence length which grows exponentially with κ0. For a fluid membrane
out-of-plane fluctuations cost no elastic energy (the membrane flows inter-
nally to accommodate the deformation) and the bending rigidity is therefore
softened by thermal undulations at all length scales, rather than stiffening
at long length scales as in the crystalline membrane.

So far we have assumed an infinite membrane, which is not always a real-
istic assumption. A thickness may be taken into account via a spontaneous
extrinsic curvature ~H0. The model described by Eq. 61 gets replaced then
by

H/T = µ
∫ √

g +
κ

2

∫

dx
√

g( ~H − ~H0)
2 +

κ̂

2

∫ √
gK . (63)
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Further effects of a finite membrane size for spherical topology have been
discussed in [116, 117, 118]. The phase diagram of fluid membranes when
topology change is allowed is fascinating and not completely understood. A
complete description of these phases goes beyond the scope of this review –
we refer the reader to [48, 49, 22, 25] and references therein.

8 Conclusions

In this review we have described the distinct universality classes of mem-
branes with particular emphasis on crystalline membranes. In each case we
discussed and summarized the key models describing the interactions of the
relevant large distance degrees of freedom (at the micron scale). The body
of the review emphasizes qualitative and descriptive aspects of the physics
with technical details presented in extensive appendices. We hope that the
concreteness of these calculations gives a complete picture of how to extract
relevant physical information from these membrane models.

We have also shown that the phase diagram of the phantom crystalline
membrane class is theoretically very well understood both by analytical and
numerical treatments. To complete the picture it would be extremely valu-
able to find experimental realizations for this particular system. An exciting
possibility is a system of cross-linked DNA chains together with restriction
enzymes that catalyze cutting and rejoining [119]. The difficult chemistry
involved in these experiments is not yet under control, but we hope that
these technical problems will be overcome in the near future.

There are several experimental realizations of self-avoiding polymerized
membranes discussed in the text. The experimental results compare very
well with the theoretical estimates from numerical simulations. As a future
theoretical challenge, analytical tools need to be sharpened since they fail to
provide a clear and unified picture of the phase diagram. On the experimental
side, there are promising experimental realizations of tethered membranes
which will allow more precise results than those presently available. Among
them there is the possibility of very well controlled synthesis of DNA networks
to form physical realizations of tethered membranes.

The case of anisotropic polymerized membranes has also been described in
some detail. The phase diagram contains a new tubular phase which may be
realized in nature. There is some controversy about the precise phase diagram
of the model, but definite predictions for the critical exponents and other
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quantities exist. Anisotropic membranes are also experimentally relevant.
They may be created in the laboratory by polymerizing a fluid membrane in
the presence of an external electric field.

Probably the most challenging problem, both theoretically and experi-
mental, is a complete study of the role of defects in polymerized membranes.
There are a large number of unanswered questions, which include the exis-
tence of hexatic phases, the properties of defects on curved surfaces and its
relevance to the possible existence of more complex phases. This problem is
now under intense experimental investigation. In this context, let us men-
tion very recent experiments on Langmuir films in a presumed hexatic phase
[120]. The coalescence of air bubbles with the film exhibit several puzzling
features which are strongly related to the curvature of the bubble.

Crystalline membranes also provide important insight into the fluid case,
since any crystalline membrane eventually becomes fluid at high temperature.
The physics of fluid membranes is a complex and fascinating subject in itself
which goes beyond the scope of this review. We highlighted some relevant
experimental realizations and gave a quick overview of the existing theoretical
models. Due to its relevance in many physical and biological systems and its
potential applications in material science, the experimental and theoretical
understanding of fluid membranes is, and will continue to be, one of the most
active areas in soft condensed matter physics.

We have not been able in this review, simply for lack of time, to address
the important topic of the role of disorder. We hope to cover this in a separate
article.

We hope that this review will be useful for physicists trying to get a
thorough understanding of the fascinating field of membranes. We think it
is a subject with significant prospects for new and exciting developments.

Note: The interested reader may also find additional material in a forthcom-
ing review by Wiese [121], of which we have seen only the table of contents.
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A Useful integrals in dimensional regulariza-

tion

In performing the ε-expansion, we will be considering integrals of the form

Iα1,···,αn(a, b)(~p) =
∫

dDq̂
qα1

· · · qαn

(~p + ~q)2a~q2b
, (64)

These integrals may be computed exactly for general D, a, b and α = 1, · · · , N .
The result will be published elsewhere. We will content ourselves by quoting
what we need, the poles in ε, for the integrals that appear in the diagram-
matic calculations. We just quote the results

Iα1α2
(2, 2) = − 1

8π2p4
pα1

pα2

1

ε
(65)

Iα1α2α3
(2, 2) =

1

8π2p4
pα1

pα2
pα3

1

ε
(66)

Iα1α2α3α4
(2, 2) = − 1

8π2p4
(pα1

pα2
pα3

pα4
−

p4

24
(δα1α2

δα3α4
+ δα1α3

δα2α4
+ δα1α4

δα2α3
)

)

1

ε
(67)

Iα1α2α3
(2, 1) = − 1

8π2p2
(
p2

6
(pα1

δα2α3
+ pα2

δα1α3
+ pα3

δα2α1
)

−pα1
pα2

pα3
)
1

ε
(68)

B Some practical identities for RG quantities

The beta functions defined in Eq. 3 may be re-expressed as

(

βu(uR, vR)
βv(uR, vR)

)

= −ε

(

∂ lnu
∂uR

∂ lnu
∂vR

∂ ln v
∂uR

∂ ln v
∂vR

)−1 (

1
1

)

(69)

The previous expression may be further simplified noticing

A =

(

∂ ln u
∂uR

∂ ln u
∂vR

∂ ln v
∂uR

∂ ln v
∂vR

)

=

(

1
uR

0

0 1
vR

)

+ D , (70)
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so that

A−1 =

(

1 +

(

uR 0
0 vR

)

D

)−1 (

uR 0
0 vR

)

(71)

=

(

uR 0
0 vR

)

−
(

uR 0
0 vR

)

D

(

uR 0
0 vR

)

+ · · ·

where the last result follows from Taylor-expanding. These formulas easily
allow to compute the corresponding β-functions. If

u = Mε
[

uR +
1

ε
(a11u

2
R + a12uRvR + a13v

2
R)
]

(72)

v = Mε
[

vR +
1

ε
(a21u

2
R + a22uRvR + a23v

2
R)
]

,

from Eq. 71 and Eq. 69 we easily derive the leading two orders in the couplings

βu(uR, vR) = −εuR + a11u
2
R + a12uRvR + a13v

2
R (73)

βv(uR, vR) = −εvR + a21u
2
R + a22uRvR + a23v

2
R .

The formula for γ in Eq. 3 may also be given a more practical expression.
It is given by

γ = (βu
∂

∂uR

+ βv
∂

∂vR

) lnZφ , (74)

Those are the formulas we need in the calculations we present in this
review.

C Discretized Model for tethered membranes

In this appendix we present appropriate discretized models for numerical
simulation of tethered membranes. The surface is discretized by a triangu-
lar lattice defined by its vertices {~r}a=1,···, with a corresponding discretized
version of the Landau elastic term Eq. 20 given by [100]

Fs =
β

2

∑

〈ab〉
(|~ra − ~rb| − 1)2 , (75)

where 〈a, b〉 are nearest-neighbor vertices. If we write ~ra = xa + ua with xa

defining the vertices of a perfectly regular triangular lattice and u the small
perturbations around it, one gets

|~ra − ~rb| = 1 + uαβxαxβ + · · · , (76)
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with uαβ being a discretized strain tensor and we we have neglected higher
order terms. Plugging the previous expression into Eq. 75 and passing from
the discrete to the continuum language we obtain

Fs =

√
3

8
β
∫

d2x(2u2
αβ + u2

αα) (77)

which is the elastic part of the free energy Eq. 20 with λ = µ =
√

3
4

β.
The bending rigidity term is written in the continuum as

Sext =
∫

d2x
√

gKµ
αβKαβ

µ =
∫

d2u
√

ggαβ∇α~n∇β~n (78)

where ~n is the normal to the surface and ∇ is the covariant derivative (see
[122] for a detailed description of these geometrical quantities). We discretize
the normals form the the previous equation by

∫

d2u
√

ggαβ∇α~n∇β~n →
∑

〈ab〉
(~na − ~nb)

2 = 2
∑

〈ab〉
(1 − ~na~nb) (79)

The two terms Eq. 75 and Eq. 79 provide a suitable discretized model
for a tethered membranes. However, in actual simulations, the even more
simplified discretization

F =
∑

〈a,b〉
(~ra − ~rb)

2 + κ
∑

〈i,j〉
(1 − ~ni~nj) (80)

is preferred since it is simpler and describes the same universality class (see
[38] for a discussion). Anisotropy may be introduced in this model by ascrib-
ing distinct bending rigidities to bending across links in different intrinsic
directions [92].

Self-avoidance can be introduced in this model by imposing that the tri-
angles that define the discretized surface cannot self-intersect. There are
other possible discretizations of self-avoidance that we discus in sect. 4.2.

In order to numerically simulate the model Eq. 80 different algorithms
have been used. A detailed comparison of the performance of each algorithm
may be found in [123].
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D The crumpling Transition

The Free energy is given by Eq. 13

F (~r) =
∫

dDx

[

1

2
(∂2

α~r)
2 + u(∂α~r∂β~r −

δαβ

D
(∂α~r)

2)2 + v(∂α~r∂α~r)2

]

, (81)

where the dependence on κ is trivially scaled out. The Feynman rules for
the model are given in Fig.30.
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Figure 30: Feynman rules for the model at the crumpling transition

We need three renormalized constants, namely Z, Zu and Zv in order to
renormalize the theory. We define the renormalized quantities by

~r = Z−1/2~r (82)

uR = M−εZ2Z−1
u u , vR = M−εZ2Z−1

v v .

Then Eq. 81 becomes

F (~r) =
∫

dDx

[

Z

2
(∂2

α~rR)2 + MεZuu(∂α~rR∂β~rR − δαβ

D
(∂α~rR)2)2 +

+ MεZvv(∂α~rR∂α~rR)2
]

, (83)

In order to compute the renormalized couplings, one must compute all
relevant diagrams at one loop. Those are depicted in fig. 31. Within dimen-
sional regularization, diagrams (1a) and (1b) are zero, which in turns imply
that the renormalized constant is Z = 1 at leading order in ε, similarly as in
linear σ models.

Using the integrals in dimensional regularization (see Sect. A) Diagram
(2a) gives the result

d

8π2

1

ε
δi1i2δj1j2

{

u2

24
(~p1 · ~p3~p2 · ~p4 + ~p1 · ~p4~p2 · ~p3) + (v2 − u2

48
)~p1 · ~p2~p3 · ~p4

}

(84)
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Figure 31: Diagrams to consider at one loop

And diagram (2b) and (2c) may be computed at once, since the result of
(2c) is just (2b) after interchanging ~p3 ↔ ~p4, so the total result (2a)+(2b) is

1

16π2

1

ε
δi1i2δj1j2

{

(
61

96
u2 +

7

12
uv +

v2

6
)(~p1 · ~p3~p2 · ~p4 + ~p1 · ~p4~p2 · ~p3)

+(
v2

6
+

uv

12
+

u2

96
)~p1 · ~p2~p3 · ~p4

}

(85)

And the result for (2d) and (2e) is just identical, so the total result
(2d)+(2e) is

1

16π2

1

ε
δi1i2δj1j2

{

(
u2

24
+

1

6
uv)(~p1 · ~p3~p2 · ~p4 + ~p1 · ~p4~p2 · ~p3)

+(v2 +
13

6
uv − u2

48
)~p1 · ~p2~p3 · ~p4

}

(86)

Adding up all these contributions taking into account the different combi-
natorial factors (4 the first contribution, 8 the last two ones) and recalling
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Z = 1, we get

u = Mε

[

uR +
1

ε

1

8π2

(

(
d

3
+

65

12
)u2

R + 6uRvR +
4

3
v2

r

)]

v = Mε
[

vR +
1

ε

1

8π2

(

21

16
uR +

21

2
uRvR + (4d + 5)v2

R

)]

. (87)

The resultant β-functions are then readily obtained by applying Eq.(73).

E The Flat Phase

The free energy is given in Eq. 20,and it is given by

F (u, h) =
∫

dDx

[

κ̂

2
(∂α∂βh)2 + µuαβuαβ +

λ

2
(uα

α)2

]

. (88)

The Feynman rules are shown in fig. 32, it is apparent that the in-plane
phonons couple different from the out-of-plane, which play the role of Gold-
stone bosons.
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Figure 32: Feynman rules for the model in the flat phase
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We apply standard field theory techniques to obtain the RG-quantities.
Using the Ward identities, the theory can be renormalized using only three
renormalization constants Z, Zµ and Zλ, corresponding to the wave function
and the two coupling renormalizations. Renormalized quantities read

hR = Z−1/2h , u = Z−1u (89)

µR = M−εZ2Z−1
µ µ , λR = M−εZ2Z−1

λ λ ,

Then Eq. 88 becomes

F (u, h) =
∫

dDx
[

Z(∂α∂βhR)2 + 2MεZµµRuRαβuαβ
R + MεZλλ(uα

Rα)2
]

.

(90)
We now compute the renormalized quantities from the leading divergences
appearing in the Feynman diagrams. The diagrams to consider are given in
Fig.33. These can be computed using the integrals given in Sect.A.

(1a)

(2a) (2b) (2c)

Figure 33: Diagrams to consider at one loop

The result of diagram (1a) is given by

1

ε

dc

6π2

[

µ2(δαβ − pαpβ

p2
) + 3(µ2 + 2µλ + 2λ2)

pαpβ

p2

]

p2 . (91)

Diagrams (2b) and (2c) are identically zero, so (2a) is the only additional
diagram to be computed. The result is

− 1

ε

δij

8π2

µ(µ + λ)

2µ + λ
10(p2)2 (92)
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from Eq. 92 and the definitions in Eq. 89

Z = 1 − 1

ε

10

8π2

µR(µR + λR)

2µR + λR
. (93)

Using the previous result in the diagrams (1a) whose result is in Eq. 91 we
obtain

Zµ = 1 +
1

ε

dc

24π2
µR (94)

Zλ = 1 +
1

ε

dc

24π2
(µ2

R + 6µRλR + 6λ2
R)/λR

and we deduce the renormalized couplings

µ = Mε

[

µR +
1

ε

(

10

4π2

(µR + λR)

2µR + λR
+

dc

24π2

)

µ2
R

]

(95)

λ = Mε

[

λR +
1

ε

(

10

4π2

(µR + λR)

2µR + λR
µRλR +

dc

24π2
(µ2

R + 6µRλR + 6λ2
R)

)]

from which the β-functions trivially follow with the aid of Eq.(73).

F The Self-avoiding phase

The model has been introduced in Eq. 31 and is given by

F (~r) =
1

2

∫

dDx(∂α~r(x))2 +
b

2

∫

dDx dDyδd(~r(x) − ~r(y)) , (96)

We follow the usual strategy of defining the renormalized quantities by

~r = Z1/2~rR (97)

b = MεZbZ
d/2bR ,

and the renormalized Free energy by

F (~r) =
Z

2

∫

dDx(∂α~rR(x))2 + MεZb
bR

2

∫

dDx dDyδd(~rR(x) − ~rR(y)) . (98)

The δ-function being non-local adds some technical difficulties to the calcu-
lation of the renormalized constants Z and Zb. There are different approaches
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available but we will follow the MOPE (Multilocal-Operator-Product-Expansion),
which we will just explain in a very simplified version. A rigorous description
of the method may be found in the literature.

The idea is to expand the δ-function term in Eq. 98

e−F (~r) = e−
Z
2

∫

dDx(∂α~rR(x))2×
∞
∑

n=0

(

−MεZb
bR

2

∫

dDx dDyδd(~rR(x) − ~rR(y))

)n

,

(99)
with this trick, the delta-function term may be treated as expectation values
of a Gaussian free theory. This observation alone allows to isolate the poles
in ε. We write the identity

ei~k(~r(x1)−~r(x2)) =: ei~k(~r(x1)−~r(x2)) : ek2G(x1−x2) , (100)

where G(x) is the two point correlator

− G(x) = −〈~r(x)~r(0)〉 =
|x|2−D

(2 − D)SD
, (101)

with SD being the volume of the D-dimensional sphere. The symbol :: stands
for normal ordering. A normal ordered operator is non-singular at short-
distances, so it may be Taylor-expanded

ei~k(~r(x1)−~r(x2)) = (1 + i(x1 − x2)
α(~k∂α~r) (102)

−1

2
(x1 − x2)

α(x1 − x2)
β(~k∂α~r)(~k∂β~r) + · · ·)ek2G(x1−x2) .

To isolate the poles in ε we do not need to consider higher order terms as it
will become clear. If we now integrate over ~k, we get

δd(~r(x1) − ~r(x2)) =
1

(4π)d/2(−G(x1 − x2))d/2
1 (103)

−1

4

(x1 − x2)
α(x1 − x2)

β

(4π)d/2(−G(x1 − x2))d/2+1
∂β~r(x)∂α~r(x) + · · ·

≡ C1(x1 − x2)1 + Cαβ(x1 − x2)∂β~r(x)∂α~r(x) + · · ·

where we omit higher dimensional operators in ~r, which are irrelevant by
power counting, so since the theory is renormalizable they cannot have simple
poles in ε. Additionally, we have defined x = x1+x2

2
. One recognizes in
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Eq. 103 Wilson’s Operator product expansion, applied to the non-local delta-
function operator.

Following the same technique of splitting the operator into a normal or-
dered part and a singular part at short-distances, it just takes a little more
effort to derive the OPE for the product of two delta functions, the result is

δd(~r(x1)−~r(y1))δ
d(~r(x2)−~r(y2)) = C(x1 −x2,y1 −y2)δ

d(~r(x)−~r(y))+ · · ·
(104)

with C(x1 − x2,y1 − y2) = 1
(4π)d/2(−G(x1−x2)−G(y1−y2))d/2 . The terms omitted

are again higher dimensional by power counting so they. The OPE Eq. 103
and Eq. 104 is all we need to compute the renormalization constants at
lowest order in ε, but the calculation may be pursued to higher orders in ε.
In order to do that, one must identify where poles in ε arise. In the previous
example poles in ε appear whenever the internal coordinates (x1 and x2 in
Eq. 103, x1,x2,y3 and y2 in Eq. 104) are pairwise made to coincide. This is
diagrammatically shown in fig. 34. It is possible to show, that higher poles
appear in the same way, if more δ-product terms are considered.

y

y

x x

x

x

x

y

1

1

1

1 2

2 2 2

x
1

y2

Figure 34: Diagrammatic expansion to isolate the poles in ε within the
MOPE formalism at lowest non-trivial order. Solid lines represent δ-function
terms and dashed lines indicate that points inside are taken arbitrarily close.
Higher orders contributions arise in the same way.

Let us consider the first delta-function term corresponding to n = 1 in
the sum Eq. 99. Using Eq. 103 we have

−brM
ε

2
Zb

∫

dDx dDyδd(~rR(x) − ~rR(y)) (105)

= −brM
ε

2
Zb

∫

dDx dDy(C1(x − y) + Cαβ(x − y)∂β~rR(x)∂α~rR(x) + · · ·
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= −brM
ε

2
Zb

∫

dDx∂α~rR(x)∂α~rR(x)
∫

dDy
δαβCαβ

D
+ · · ·

The first term just provides a renormalization of the identity operator, which
we can neglect. From

∫

|y|>1/M
dDy

δαβCαβ

D
(y) = − 1

4D

M−ε

ε
(4π)−d/2(2 − D)1+d/2

(

2πD/2

Γ(D/2)

)2+d/2

,

(106)
and we can absorb the pole by Z if we define

Z = 1 +
bR

ε

(4π)−d/2

4D
(2 − D)1+d/2

(

2πD/2

Γ(D/2)

)2+d/2

, (107)

From the short distance behavior in the sum Eq. 99 corresponding to
n = 2 we get

−b2
rM

2ε

8

∫

dDx1 dDy1d
Dx2 dDy2δ

d(~rR(x1) − ~rR(y1))δ
d(~rR(x1) − ~rR(y2))

−b2
rM

2ε

8

∫

dDx dDyδd(~rR(x) − ~rR(y))
∫

dDz dDwC(z, w) , (108)

where, in order to isolate the pole we can perform the following tricks
∫

dDz dDwC(z, w) (109)

= (4π)−d/2S
d/2
D (2 − D)d/2

(

2πD/2

Γ(D/2)

)2
∫ M−1

0
dz
∫ M−1

0
dw

zD−1wD−1

(z2−D + w2−D)d/2

= (4π)−d/2S
d/2
D (2 − D)d/2

(

2πD/2

Γ(D/2)

)2
M−ε

(2 − D)2

∫ 1

0

∫ 1

0
dxdy

x
D

2−D y
D

2−D

(x + y)−d/2

= (4π)−d/2S
d/2
D (2 − D)d/2

(

2πD/2

Γ(D/2)

)2
M−ε

(2 − D)2

∫

x2+y2≤1
dxdy

x
D

2−D y
D

2−D

(x + y)−d/2

= (4π)−d/2S
d/2
D (2 − D)d/2

(

2πD/2

Γ(D/2)

)2
M−ε

(2 − D)3

Γ( D
2−D

)2

Γ( 2D
2−D

)

1

ε

since changing the boundary of integration from a square to a circle does not
affect the residue of the pole. We finally have

Zb = 1 +
bR

ε

1

2
(2 − D)−1+d/2

Γ( D
2−D

)2

Γ( 2D
2−D

)

(

2πD/2

Γ(D/2)

)2+d/2

(4π)−d/2 , (110)
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and the β-function follows from the definitions Eq.(97) together with Eq.(107)
and Eq.(73).

G The mean field solution of the anisotropic

case

The free energy has been introduced in Eq. 39. Let us first show the con-
straints on the couplings so that the Free energy is bounded from below.

• uyy > 0: This follows trivially.

• u′
⊥⊥ ≡ v⊥⊥ + u⊥⊥

D−1
> 0 : Define Ai

α = ∂αri(x) then from Eq. 39 we get

u⊥⊥
2

Tr(AAT )2 +
v⊥⊥
2

(TrAAT )2 ≥ (
u⊥⊥

D − 1
+ v⊥⊥)/2(TrAAT )2

=
u′
⊥⊥
2

(TrAAT )2 , (111)

which implies u′
⊥⊥ > 0.

• v⊥y > −(u′
⊥⊥uyy)

1/2 : defining ~b = ∂y~r(x), It is derived from

u′
⊥⊥
2

(Tr(AT A))2 +
uyy

2
(b2)2 + v⊥yb

T bTrAAT > 0 . (112)

Introducing the variables

A =

(

v⊥⊥ + u⊥⊥

D−1
v⊥y

v⊥y uyy

)

, b = (t⊥, ty) (113)

and w = ((D−1)ζ2
⊥, ζ2

y), the mean field effective potential may be written as

V (w) =
1

2
LD−1
⊥ Ly

[

w · b +
1

2
w · A · w

]

. (114)

In this form, it is easy to find the four minima of Eq. 114, those are

1. Crumpled phase:
ζ2
⊥ = 0

ζ2
y = 0

Vmin = 0 (115)
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2. Flat phase:

ζ2
⊥ = −uyyt⊥−v⊥ty

∆(D−1)

ζ2
y =

−v⊥yt⊥+u′

⊥⊥
ty

∆

Vmin = −LD−1
⊥ Ly

4∆

[

u′
⊥⊥t2y + uyyt

2
⊥ − 2v⊥yt⊥ty

]

(116)

3. ⊥-Tubule:
ζ2
⊥ = −t⊥

u′

⊥⊥

ζ2
y = 0

Vmin = −LD−1
⊥ Ly

4

t2⊥
u′
⊥⊥

(117)

4. y-Tubule:
ζ2
⊥ = 0

ζ2
y = − ty

uyy

Vmin = −LD−1
⊥ Ly

4

t2y
uyy

(118)

The regions in which each of the four minima prevails depend on the sign
of ∆.

• ∆ > 0: Let us see under which conditions the flat phase may occur.
We must satisfy the equations

uyyt⊥ < v⊥yty

u′
⊥⊥ty < v⊥yt⊥y (119)

If v⊥y > 0 this inequalities can only be satisfied if both t⊥ and ty0 have
the same sign. If they are positive, Eq. 119 imply ∆t⊥ < 0 or ∆ty < 0,
which by the assumption ∆ > 0 cannot be satisfied. The flat phase
exists for ty < 0 and t⊥ < 0 and satisfying Eq. 119. If ty > 0 and
t⊥ > 0 then the flat phase or the tubular cannot exist (see Eq. 117
and Eq. 118) so those are the conditions for the crumpled phase. Any
other case is a tubular phase, either ⊥-tubule or y-tubule, depending
on which of the inequalities Eq. 119 is not satisfied. If v⊥y < 0 it easily
checked from Eq. 116 that the flat phase exists as well and the same
analysis apply.

• ∆ < 0: From inequality Eq. 112 we have v⊥y > 0. The inequalities are
now

ty <
uyy

v⊥
t⊥

ty >
v⊥y

u′
⊥⊥t⊥y

(120)

65



Now, in order to have a solution for both inequalities we must have
uyy

v⊥
>

v⊥y

u′

⊥⊥

which requires ∆ > 0. This proves that the flat phase

cannot exist. There is then a crumpled phase for ty > 0 and t⊥ > 0 and
tubular phase when either one of this two conditions are not satisfied.
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