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ABSTRACT

The two main objectives of this dissertation are the systematic development of explicitly cor-

related electron-hole wave function based methods and the application of these methods to chemi-

cal systems with an emphasis on nanoparticles. The understanding of the basic physics of excited

electronic states is an important consideration when developing new methods and applications.

In this dissertation, excited electronic states were studied using the electron-hole quasiparticle

representation. Theoretical treatment of electronic excitation in large quantum dots and nanopar-

ticles is challenging because of the large number of electrons in the system. The quasiparticle

representation provides an alternative representation that can partially alleviate the computational

bottleneck associated with investigating these systems. However, in this representation, the effects

of electron-hole correlation must be understood in order to accurately describe the system’s optical

and electronic properties.

The electron-hole wave function consists of two separate mathematical components which

are the explicitly correlated part of the wave function and the reference wave function which is op-

erated on by the explicitly correlated operator. This dissertation presents theoretical development

of both of these components. In the first part, a systematic formulation for deriving the explic-

itly correlated form of the electron-hole wave function was performed. Towards that goal, the

electron-hole correlation length was defined using the electron-hole cumulant. The construction of

explicitly correlated wave function was improved by the introduction of the electron-hole correla-

tion length which was determined using the electron-hole cumulant. The electron-hole correlation

length allowed the determination of parameters in the explicitly correlated operator without the

performance of energy minimizations. In the second part, the electron-hole reference wave func-

tion was improved by combining full configuration electron-hole wave function with the explic-

itly correlated operator. The developed methods were used to investigate the quantum-confined

Stark effect (QCSE) and the effect of pH on the optical properties of quantum dots. The effect



of applied electric fields on nanoparticles is known as the quantum-conned Stark effect. In this

dissertation, the effect of both homogeneous and inhomogeneous electric fields on the optical and

electronic properties of quantum dots was investigated. The effect of electric fields on the optical

and electronic properties of a GaAs quantum dot was determined by combining the variational

polaron transformation with the explicitly correlated electron-hole wave function. The presence

of charged ligands also influenced the optical properties of quantum dot and this effect is known

as the ligand-induced quantum-confined Stark effect. In this dissertation, the effect of pH on the

optical properties of functionalized quantum dots were investigated by first calculating the charged

states of the surface ligands at a given pH and then performing electron-hole explicitly correlated

wave function based calculations in the electrostatic field generated by the charged ligands.

Theoretical methods developed in this dissertation have impacted the field of computational

nanoscience by reducing the computational bottleneck to investigate nanoparticles and by provid-

ing novel avenues for improving accuracy of existing methods.
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Chapter 1: Introduction

Accurate calculation of the properties of large excited electronic systems is an inherently

difficult and expensive undertaking under current methods. However, the need to perform highly

accurate calculations of the optical and electronic properties of large systems is a necessary and re-

quired tool. There are many tools for approaching these problems. Quantum dots are a particularly

interesting class of nanopaticles that have become popular for many applications. Many aspects of

quantum dots have been (and are being) explored, but this work focuses on the effect that electric

fields have on the optical and electronic properties; that is, the quantum confined Stark effect. The

quantum confined Stark effect is explored in cases where the applied electric field is homogeneous

(chapter 3) and where the field is generated by discrete atomic charges (chapter 4), in the example

of a set of charged ligands on the surface of a quantum dot. The methods that have been used in

this work are explicitly correlated methods. In the pursuit of better explicitly correlated methods,

the effects of correlation were studied by means of a newly defined method called the electron-hole

correlation length. This method is the subject of chapter 3.

The organization of the rest of the introduction chapter is a brief summary of important

components of quantum mechanics (section 1.1), electronic structure theory (section 1.2), and

excited electronic systems (section 1.3), Then, the particular type of system (quantum dots) that

has been used in the work will be discussed with emphasis on the applications that peek interest,

1



in section 1.4. Finally, the organization of the remainder of this work will be given in section 1.5.

1.1 Quantum mechanics

Chemistry is inherently a quantum mechanical science. While many aspects of chemistry

have been successful treated using various models, it is necessary to face the dragon of quantum

mechanics in order to improve the picture of physical reality. While a full treatment of quantum

mechanics is beyond the scope of this work, a brief treatment of the most important parts of the

discipline is necessary. There are a number of important works which give the many aspects of

quantum mechanics,[3, 4, 5, 6] so only a brief review will be given in this chapter.

1.1.1 Postulates of quantum mechanics

Quantum mechanics is build upon a number of postulates.[3, 4, 5, 7] These postulates are

the basis for every quantum system. It is a most amazing realization that the findings based on

these postulates have given such a wonderful and accurate picture of the world. The far-reaching

consequences of these postulates is the complete study of quantum mechanics. However, the

postulates will be briefly stated and described.

Postulate 1. The state of a quantum mechanical system at time t and set of coordinates x is de-

scribed by a wave function |Ψ(x, t〉. The wave function is the complete set of all information

about a quantum mechanical system. The wave function is complex and the complex conjugate is

〈Ψ(x, t)|. The probability of finding a particle at in the region [x,x+dx] at time t is given by

p(x, t) = Ψ(x, t)∗Ψ(x, t)dx. (1.1)

2



An important consequence is that

〈Ψ(x, t)|Ψ(x, t)〉=
∫ +∞

−∞

Ψ(x, t)∗Ψ(x, t)dx = 1. (1.2)

Postulate 2. For every measurable quantity, there is a linear operator. Two of the most important

operators are the position operator x and the momentum operator px =−ih̄ d
dx .

Postulate 3. The only possible values for a given measurement of a quantity are the eigenvalues

of the operator.

Postulate 4. The time evolution of the quantum system is given by the time-dependent Schrödinger

equation

ih̄
∂

∂ t
Ψ(x, t) = HΨ(x, t), (1.3)

where H is the Hamiltonian (energy) operator.

Postulate 5. A particle must obey the correct statistics for its particle-type. Interchange of two

fermions must be antisymmetric

Ψ(x1,x2) =−Ψ(x2,x1) (1.4)

and bosons must be symmetric to interchange of coordinate

ψ(x1,x2) = Ψ(x1,x2). (1.5)

3



1.1.2 Time-independent Schrödinger equation

The key equation in the study of quantum systems is the Schrödinger equation,[3, 4, 8, 9, 10]

which is

H|Ψ〉= E|Ψ〉, (1.6)

where H is the Hamiltonian (energy) operator, Ψ is the wave function for the system, and E is the

energy of the system. This is the key equation in most applications. With the exception of a few

cases (for example: hydrogen atom, harmonic oscillator, particle-in-a-box), the time-independent

Schrödinger equation is unsolvable.[3, 11]

1.1.3 Approximation methods

In the majority of quantum mechanical problem, the exact solution to the Schrödinger equa-

tion is unknown. However, there are methods to develop approximate solutions to the Schrödinger

equation. Two of the most useful methods are the variational and the perturbational methods.

Variational methods use the requirement that the a quantum mechanical system energy must be

bounded from below in the ground state. Perturbational methods begin with the case of either an

exactly solved system or one in which the system has been approximately solved to high degree of

accuracy and builds a solution from that system. Each method has strengths and weakness which

lend each method to particular types of problems. In this section, the methods will be briefly

described.
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1.1.3.1 Variational method

The variational method is a key tool in quantum mechanics. For any exact system, the energy

is given by

H|Ψ0〉= E0|Ψ0〉, (1.7)

where |Ψ0〉 is the exact wave function. For a trial wave function ΨT,[3, 6]

E[ΨT] =
〈ΨT|H|ΨT〉
〈ΨT|ΨT〉

, (1.8)

that E ≤ E0 and the equality only holds if ΨT = Ψ0.[3, 11] The proof of the variational principle

is found in many texts.[3, 6, 12] The key advantage to variational methods is that the one may

chose a wide set of trial wave functions and search for the minimum energy wave function. The

key disadvantage is that, without additional constraints, is the variational method only allows for

the determination of the ground state since only the ground state is bounded from below without

further restraints being imposed.[6]

1.1.3.2 Perturbational method

Perturbation theory is a highly useful approximation method in quantum mechanics.[3, 6, 11]

In perturbational methods, the system is divided into components to which the true answer (or a

very good approximation) is known and a perturbation which is relatively small, that is

H|Ψi〉= (H0 +V )|Ψ〉= Ei|Ψi〉 (1.9)
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where H0|ψn〉= En|ψn〉, V is the perturbation, and |Ψi〉 is the exact wave function. Introduction of

a parameter λ gives the energy and the wave function as the series

Ei = E(0)
i +λE(1)

i +λ
2E(2)

i + · · · , (1.10)

|Ψi〉= |ψi〉+λ |ψ(1)
i 〉+λ

2|ψ(2)
i 〉+ · · · . (1.11)

The full derivation can be found in many excellent textbooks.[3, 6, 11] The key results are the first

energy corrections which are[6]

E(0)
i = 〈ψi|H0|ψi〉, (1.12)

E(0)
i = 〈ψi|V |ψi〉. (1.13)

In this regime, a solution may be approximately be determined. The key advantage of pertur-

bational methods is that excited all states are determined simultaneously. The key disadvantage

to perturbational methods is the energy is only guaranteed to converge in the limit of the infinite

expansion.[3, 6, 11, 12]

1.2 Electronic structure theory

Quantum chemistry concerns itself with the electronic properties of molecules. Molecules

consist of atoms which contain nuclei and electrons. There are a number of very helpful textbooks;[6,

9, 11, 12, 13, 14, 15, 16, 17] therefore, the key concepts and results necessary for this work will be

briefly described here.

The organization for this section is as follows. In this subsection 1.2.1, the molecular Hamil-
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tonian will be presented. With the molecular Hamiltonian in hand, the Born-Oppenheimer approx-

imation will be described in subsection 1.2.2. The antisymmetry of electrons will be discussed

in subsection 1.2.3. Then, the Hartree-Fock method will be briefly described in subsection 1.2.4.

Next, the problem of electron correlation will be presented in subsection 1.2.5 . The conceptually

simplest solution to the electron correlation problem will be presented briefly in subsection 3.2.1.

Finally, the alternative quantum mechanical method of density functional theory (DFT) will be

briefly described.

1.2.1 Molecular Hamiltonian

The basic Hamiltonian operator for a molecular system in the absence of external fields can

be written as[10]

H = TN +VNN +Te +Vee +VNe, (1.14)

where the TN is the nuclear kinetic energy operator, VNN is the nuclear-nuclear interaction operator,

Te is the electronic kinetic energy operator, Vee is the electron-electron interaction operator, and VNe

is the nuclear-electron interaction operator. The nuclear kinetic energy term is

TN =
NA

∑
A=1
− h̄2

2MA
∇

2
A, (1.15)
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where A is the index for the nucleus, NA is the total number of nucleus, and MA is the mass of the

nucleus A. The nuclear-nuclear interaction operator is

VNN =
NA

∑
A=1

NA

∑
B<A

ZAZB

4πε0|RA−RB|
, (1.16)

where ZA is the charge on nucleus A, ZB is the charge on nucleus B, ε0 is the permittivity of free

space, RA is the position of nucleus A, and RA is the position of nucleus B. The electronic kinetic

operator is

Te =
Ne

∑
i=1
− h̄2

2me
∇

2
i , (1.17)

where i is the index for electron i, Ne is the total number of electrons, and me is the mass of the

electron. The electron-electron interaction operator is

Vee =
Ne

∑
i=1

Ne

∑
j>i

qeqe

4πε0|ri− r j|
, (1.18)

where ri is the coordinate of the electron i, r j is the coordinate of the electron j, and qe is the

charge on the electron. The nuclear-electron interaction operator is

VNe =
NA

∑
A=1

Ne

∑
i=1

ZAqe

4πε0|RA− ri|
. (1.19)

The molecular Hamiltonian for general systems in the absence of applied fields has been described.

The solution of the molecular Hamiltonian is the key to understanding molecular systems.
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1.2.1.1 Atomic units

In the majority of this work, atomic units are used. In the atomic unit system, the values for

the mass of the free electron (m0), elementary charge e, the reduced Plank’s constant h̄ = h
2π

, and

value of 1
4πε0

(ε0 is the permittivity of free space) are all set to 1.[10] The charge on the electron

in atomic units is qe = −1. This choice reduces the clutter of the many equations and decouples

the results of the calculations from any particular value of many physical constants (which may be

refined over time).

1.2.2 Born-Oppenheimer Approximation

The molecular Hamiltonian is still an imposing equation. In order to perform many cal-

culations, approximations are usually made. The first approximation that is typically made is the

Born-Oppenheimer approximation, which seeks to separate the electronic and nuclear motions.[10,

12, 16, 17] The electrons and nuclei are only coupled by the attractive nuclear-electronic Coulomb

interaction.On a qualitative level, the large difference in the mass of the nucleus (the lightest nu-

cleus is a single proton, which has mass 1836m0) leads to the separation of the molecular wave

function into an electronic and nuclear wave function. In the Born-Oppenheimer approximation,

the molecular wave function is separated into a nuclear and electronic component wave function;

that is,

|Ψ(R,r)〉= |ΨN(R)ψ(r,R)〉, (1.20)
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where ΨN is the nuclear wave function and ψ is the electronic wave function.[10] As a consequence

of the Born-Oppenheimer approximation, the molecular Hamiltonian can be separated as

H|Ψ(R,r)〉= H|ΨN(R)ψ(r,R)〉 (1.21)

= (TN +VNN +Te +Vee +VNe)|ΨN(R)ψ(r,R)〉 (1.22)

= HN|Ψ(R)〉+He|ψ(r,R)〉 (1.23)

The electronic Hamiltonian is

He = Te +Vee +VNe, (1.24)

which means

He|ψ(r,R)〉= Ee(R)|ψ(r,R)〉, (1.25)

the electronic energy depends parametrically on the coordinates of the nuclei.[10, 11, 12, 14, 16]

The nuclear Hamiltonian which contains only the terms which have explicit dependence on the

nuclear coordinates and is[10, 11, 12, 14, 16]

HN = TN +TNN +Ee(R). (1.26)
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1.2.3 Antisymmetry of electrons

A key physical requirement of the any electron-containing wave function is that it must

satisfy the antisymmetry of fermions (since electrons are fermions); that is,[3, 6, 12, 14, 16, 17]

Ψ(x1,x2, . . . ,xi, . . . ,x j, . . . ,xN) =−Ψ(x1,x2, . . . ,x j, . . . ,xi, . . . ,xN), (1.27)

where Ψ is a N-electron wave function and x is an electronic coordinate containing both spatial and

spin coordinates. Any electron-containing wave function that does not satisfy this requirement may

give unphysical results. This is the more rigorous statement of the Pauli exclusion principle.[3, 10,

11, 12, 16]

1.2.4 Hatree-Fock method

The Hartree-Fock method is a cornerstone in modern electronic structure theory. The Hartree-

Fock method is the variational search for the single Slater determinant that yields the lowest

energy.[12, 14, 16, 17, 18]

1.2.4.1 Slater determinant

The choice for the wave function in the Hartree-Fock method is the single Slater determinant.[12,

14, 16, 17, 18] The Slater determinant was chosen because the Slater determinant is a relatively

simple construction that guarantees the antisymmetric of the electrons and the building blocks are
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relatively simple one-electron wave functions.[11] The Slater determinant is written as

Φ(x1,x2, . . . ,xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) χ3(x3) · · · χN(x1)

χ1(x2) χ2(x2) χ3(x2) · · · χN(x2)

... . . . . . .
. . . ...

χ1(xN) χ2(xN) χ3(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.28)

= |x1x2 · · ·xN〉, (1.29)

where χ1(x1) are molecular orbitals that are one-electron wave functions. Molecular orbitals (also

called spin orbitals) consist of a spatial component and a spin component,

χ(x) =


ψ(r)α(ω)

or

ψ(r)β (ω)

, (1.30)

where ψ(r) is the spatial orbital, r is the spatial coordinate of the electron, α(ω) is a possible spin

function, β (ω) is a possible spin function, and ω is the spin coordinate of the electron.

In Eq. (1.29), a shorthand method for writing the Slater determinant is shown. The key

advantage of using the Slater determinant is that the choice gives an antisymmetric wave function,

since interchange of any two rows or two columns gives the negative of the initial arrangement.

Furthermore, the Slater determinant enforces the condition that no two electrons can occupy the

same set of quantum numbers at any time, since duplicate columns or duplicate rows will cause

the determinant to vanish.

The Hartree-Fock method finds the best single Slater determinant for a given system. In the
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next section, the highlights of the method will be described. Further details may be found in many

references.[9, 11, 12, 14, 16, 18, 19]

1.2.4.2 Energy expression for a single Slater determinant

The energy expression for a single Slater determinant is[9, 11, 14, 16, 18, 19]

E[Φ] =
N

∑
i=1
〈i|h(1)|i〉+ 1

2

N

∑
i, j=1

(〈i j|i j〉−〈i j| ji〉), (1.31)

where

h(1) =− h̄2

2m1
∇

2
1 +

Natom

∑
A=1

ZAqe

r1A
, (1.32)

〈i|h(1)|i〉=
∫ +∞

−∞

dx1χ
∗
i (x1)h(1)χi(x1), (1.33)

and

〈i j|i j〉=
∫ +∞

−∞

dx1dx2χi(x1)
∗
χ j(x2)

∗ 1
r12

χi(x1)χ j(x2). (1.34)

The second integral in Eq. (1.31) is the Coulomb integral and the third integral is the exchange

integral.
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1.2.4.3 Coulomb and exchange operators

The presence of the two-body terms in Eq. (1.31) complicates what would be a one-electron

Schrödinger equation of the spin orbital states in the field of the nuclei[18]

h(1)|χa(1)〉= εi|χa(1)〉, (1.35)

where εa is the energy of ath energy level. In order to rewrite Eq. (1.31) as a one-electron form,

the Coulomb operator (from the Coulomb portion of the two body integrals) is defined as[18]

Jb(1) =
∫ +∞

−∞

dx2|χb(2)|2r−1
12 , (1.36)

and the exchange operator (from the exchange portion of the two-body integrals) is[18]

Kb(1)χ1(1) =
[∫ +∞

−∞

dx2χ
∗
b (2)r

2
12χ1(2)

]
χb(1). (1.37)

Using Eq. (1.36) and (1.37), Eq. (1.31) can be written as the single-electron eigenvalue problem[18]

[
h(1)+ ∑

b6=a
Jb(1)−∑

b 6=a
Kb(1)

]
χa(1) = εachia(1). (1.38)

With the Coulomb and exchange operators defined, the Fock operator may now be defined.
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1.2.4.4 Fock operator

In (1.38), the bracket term appears to be different for every spin orbital χ because of the

restriction on the summation b 6= a; however,[18]

[Ja(1)−Ka(1)]|χa(1) = 0. (1.39)

The restriction on the summation can then be removed to give the operator

f (1) = h(1)+∑
b

Jb(1)−Kb(1), (1.40)

which is called the Fock operator.[18] The Hartree-Fock equations are now

f |χa〉= εa|χa〉, (1.41)

and the second and third term in Eq. (1.40) are usually combined and called the Hartree-Fock

potential[18]

vHF(1) = ∑
b

Jb(1)−Kb(1). (1.42)

The Fock operator is then written as

f (1) = h(1)+ vHF(1). (1.43)
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1.2.4.5 Energy minimization

The process by which the Hartree-Fock equations (Eq. (1.40)) are used to minimize the

energy will now be shown. In this process, the energy will be minimized by determining the sta-

tionary points of the functional. This is a procedure that is comparable to the standard minimization

of functions. The key difference is that energy is given by an energy functional (a mathematical

operation that takes in a function and returns a number). Beginning with the energy functional for

a trial Slater determinant Φ̃ gives

E[Φ̃] = 〈Φ̃|H|Φ̃〉. (1.44)

The wave function will be varied by a small amount

E[Φ̃+δ Φ̃] = 〈Φ̃+δ Φ̃|H|Φ̃+δ Φ̃〉 (1.45)

= E[Φ̃]+{〈δ Φ̃|H|Φ̃〉+ 〈Φ̃|H|δ Φ̃〉}+ · · · (1.46)

= E[Φ̃]+δE[Φ̃]+ · · · (1.47)

where δE is the collection of all linear terms in the variation of the wave function. Similar to

function minimization, the wave function that gives

δE = 0 (1.48)

is stationary and is usually a minimum. [17, 18]

The standard methods for finding the stationary states are found in many references for
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several different possibilities.[9, 11, 12, 14, 16, 18, 19] The full derivation of the minimization

using the second quantization notation is found in subsubsection 2.2.1.8.

1.2.5 Electron correlation

Correlation is the statistical impact that the presence of a factor has on other factors. An

analogy is the sequential drawing of cards as compared to the rolling dice. In the card draw, the

identity of the drawn cards effects the probability of subsequent cards. This is an example of

correlated behavior.

The behavior of electrons is correlated. The coordinates of one electron affect the coordinates

of all other electrons. There are two important factors that lead to the correlated behavior between

electrons:

1. the requirement that no two fermions have the same complete set of quantum numbers.[3, 6]

2. the repulsive interaction between two like charged particles.

The electron-electron correlation is fundamental to the correct physics of these systems as evi-

denced by the Kato cusp condition.[20] The Kato cusp condition requires that the wave function

contain the correct behavior when ree = 0 to cancel the Coulomb singularity. Due to the inherent

physics that rule the interaction between electrons, the electronic wave functions must show corre-

lation between electrons. The Hartree-Fock method is taken as the uncorrelated basis in quantum

chemistry. The correlation energy is defined as[6, 12, 14, 16, 17]

Ecorr = Eexact−EHF. (1.49)
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In most cases, Ecorr is small, often less than 1% of Eexact. However, this difference is often on the

order of chemical importance (accuracy of less than 1 kcal/mol).[6, 11, 14, 15, 16, 17] Highly accu-

rate treatments must address electron-electron correlation, whether by post-Hartree-Fock “fixes”

to the correlation treatment, by choosing an ansatz (choice of wave function) that addresses the

correlation (that is, an explicitly correlated ansatz), or by developing a method that is correlated

from first principles (an example of this is density functional theory).

1.3 Excited electronic states

In the preceding section, the ground state of an electron system was discussed. In the appli-

cations of interest in semiconductors, the important processes occur in the excitation, lifetime, and

relaxation of the excited electronic states. An excited electronic state is one in which all electrons

are not in the lowest possible energy levels. This state is reached by the addition of some amount

of energy, which must be equal to the difference in energy levels, which may occur either by the

absorption of a photon or as the result of a chemical reaction.[15] In Figure 1.1, the ground state

is excited by the interaction with a photon of energy hν to give an excited state. The change in

energy is

∆E = hν =
2π h̄c

λ
, (1.50)

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of the radiation.[3, 6,

12, 15] While in this state, there are two possibilities[21]

1. the molecule can return to the ground state either directly or by means of combination of
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Figure 1.1: Example of an electronic transition due to the addition of energy via a photon.
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processes.

2. the excited molecule can interact with another molecule transferring energy into some pro-

cess that molecule is undergoing.

The photon emitted in the first case can either be of the same energy as absorbed photon or (by

non-radiative processes which change the excited state energy level) different energy.[12, 15] The

generation and fate of excited electron states is an essential component of understanding the prop-

erties of certain applications of a molecule.

1.3.1 Optical properties

The optical properties of an atom or molecule are closely tied to the excited electronic states

of the atom or molecule. One of the methods for generating an excited electronic state is the

addition of energy, by way of a photon, to the system. Optical spectroscopy in the forms of absorp-

tion spectroscopy and photoluminescence spectroscopy are particularly useful for studying excited

electronic systems. In absorption spectroscopy, the degree to which photons of particular energies

(wavelengths) are absorbed is measured. In photoluminescence, the system is excited by photons

and the system’s response is measured. These properties allow the system to be characterized and

to determine how the material may be used.

1.3.2 Computational methods for excited electronic states

The calculation of excited electronic states is a challenging undertaking. There are sev-

eral methods for calculating the properties of the excited electronic states.[12, 22]. The single-

configuration methods usually use the Hartree-Fock as the reference wave function. The config-
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uration interaction singles (CIS) and its various refinements, such as CISD (singles and doubles),

CISDT (singles, doubles, and triples), produce excited states from the Hartree-Fock reference wave

function by replacing spin orbitals with virtual (unoccupied higher energy) orbitals. The key dif-

ference from CI methods used to improve the ground state energy (by including electron-electron

correlation) is that one must use at least the singles and doubles in the electron correlation prob-

lem because the ground state does not couple to the singly excited states (by the Slater-Condon

rules) and in the calculation of the excited states the singles since it is the sets of molecular or-

bitals themselves that are important.[15] One of the pitfalls of the methods is that the basis sets

are usually optimized for the ground state and are of limited quality in the description of the ex-

cited states.[15] A further pitfall is that the CI methods lack electron correlation in the excited

states which leads to error in the energies of the excited states.[12] Higher accuracy methods in-

clude symmetry-adapted cluster configuration interaction (SAC-CI),[23, 24] equation-of-motion

coupled-cluster (EOM-CC),[25] and linear response coupled-cluster methods.[26]

The problem of determination of the excited states may also be approached from the point of

view of time-dependence using propagator methods, such as time-dependent Hartree-Fock (TDHF)

and time-dependent DFT (TDDFT).[15] Both methods are largely the application of the Random

Phase Approximation to the time-independent methods.[15] TDDFT has the advantage of contain-

ing electron-correlation in the formalization which leads to potentially higher quality than the CIS

or time-dependent Hartree-Fock (TDHF) results.[15]

The calculation of the excited electron states remains a challenge which has yet to be solved

in a manner which is general and cheap, especially for large systems. Large systems are often

computational prohibitive in the all-electron picture.
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1.4 Quantum dots

Quantum dots are nanocrystalline materials that have tunable optical and electronic properties.[27,

28] For instance, the interesting relationship between the number of atoms (size and shape com-

bined) and the intermediate electronic properties (between those of molecules and of bulk semi-

conductors) can be seen in Figure 1.2. As this is one example, each of the tunability factors can
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molecule

dot
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semiconductor

quantum

Low Highdensity of states
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g
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number of atoms

Figure 1.2: Energy levels as the number of atoms increases.

be observed to allow the optical and electronic properties of the system to be customized while

holding the other factors as close to constant as possible.
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1.4.1 Tunable factors

In this subsection, a more in-depth discussion of each tuning factor will in turn described.

The key to wide application of qdots has been the control of optical and electronic properties by

several parameters, including size and shape[29, 30, 31, 32, 33, 34, 35, 36], composition[37, 38],

applied electromagnetic fields[39, 40, 41, 42, 43, 44], and ligands[45, 46, 47, 48, 49].

1.4.1.1 Size

The electronic and optical properties of quantum dots (QD) depend strongly on the size of

the dots. [35, 50, 51, 52] This allows unprecedented opportunity to modify quantum dots for cus-

tomized applications. The fundamental reason behind the strong structural dependence of optical

properties of QDs can be understood in terms of the density of electronic states in quantum dots.

As shown in Figure 1.2, the density of states in QDs are higher than isolated molecules but is lower

than the bulk material.[35] By changing the size, one can control the density of states in quantum

dots and directly modify the optical and electronic properties. Increasing the size of a quantum dot

increases the density of states and in the limit of very large number of atoms, the optical properties

of quantum dots become identical to that of bulk material.

1.4.1.2 Shape

The changing of the shape of the nanoparticle can greatly influence the optical and elec-

tronic properties of the system.[36, 53, 54] Shapes that have been prepared include spheres,[54, 55]

rods,[51, 52, 56, 57] wires,[54, 58] pyramid,[59, 60] lens,[61, 62] cubic,[63, 64, 65] tetrapod,[57]

hexapod,[66] and others shapes.[55] In each of these studies, the shape of the nanoparticle has had
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a significant impact on the optical and electronic properties.

1.4.1.3 Composition

The composition of the quantum dot is an important factor in the optical and electronic prop-

erties of the quantum dot. The quantum dot can be made of an single element or combination

of different elements. Some of the materials used to prepare quantum dots are Si,[67, 68, 69],

Ge,[70, 71, 72] CdSe,[32, 46, 49, 54, 73, 74, 75, 76] CdS,[73, 77, 78, 79] CdTe,[46, 73, 80]

PbS,[77, 81, 82] GaAs,[83], InP,[84], ZnS,[77] and others. Core-shell (systems where materials

are layered) are structural motifs that have been explored.[30, 31, 38, 85, 86, 87] The notation used

here is X/Y where X is the core material and Y is shell material. Core-shell material combina-

tions include CdSe/ZnS,[30, 38, 86, 87, 88], CdTe/CdSe,[89] CdSe/CdS,[31] InGa/GaAs,[60] and

CdS/CdSe.[85] The various possibilities for the composition of the quantum dot give an amazing

variety of possibilities.

1.4.1.4 Ligands

The capping ligands play an important role in the formation and have sizable impacts in the

optical and electronic properties of quantum dots.[45] The choice of the ligands has been made

for many reasons, including solubility, functionalization, and specific targeting of chemicals and

biomolecules. The most common ligands are phosphine oxides (in particular, tri-n-ocytlphosphine

oxide (TOPO)), amines, thiols, and carboxylic acids.[45]

The surface chemistry of quantum dots is a very complex and difficult study component of

the quantum dot system. In this work, the ligand length has been isolated as one of the many
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parameters that exist in the surface chemistry of quantum dots. A central problem in the study

of even modest size quantum dots is the large number of electrons that are within the quantum

dot core. Even at a relatively modest ligand density, many ligands are present on the surface

of the quantum dot. Each ligand is a polyelectronic system that adds more complexity to the

already complex quantum dot system. Smaller systems, such as Cd33Se33 with trimethylphosphine

oxide ligands, have been treated using DFT.[48, 90] The ligand can also influence the shape of the

quantum dot, as seen by McPhail and Weiss in their study of the effect of change of shape from

cubic to hexapodal by changing ligand parameters.[66]

1.4.1.5 Applied electric fields

The presence of an applied electric field can alter the optical and electronics of quantum

dots. The influence of an external electric field on optical properties of semiconductors has been

studied extensively using both experimental and theoretical techniques. In bulk semiconduc-

tors the shift in the optical absorbtion due to the external field is known as the Franz-Keldysh

effect.[91, 92] In quantum wells and quantum dots, application of electric field has shown to

modify the optical properties of nanosystems and is known as the quantum-confined Stark ef-

fect (QCSE).[93, 94] The application of the external field induces various modifications in the

optical properties of the nanomaterial including, absorption coefficient, spectral weight of transi-

tions, and change in λmax of the absorption spectra. In certain cases, the applied field can lead

to exciton ionization.[95] The quantum-confined Stark effect has found application in the field of

electro-absorption modulators,[96] solar cells,[97] and light-emitting devices.[98] Recent exper-

iments by Weiss et al. on semiconductor quantum dots have shown that the QCSE can also be
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enhanced by the presence of heterojunctions.[39] In some cases, the QCSE can be induced chemi-

cally because of close proximity to ligands.[97] The QCSE also plays a major role in electric field

dependent photoconductivity in CdS nanowires and nanobelts. [99] Application of electric field

has emerged as one of the tools to control and customize quantum dots as novel light sources. In

a recent study, electric field was used in generation and control of polarization-entangled photons

using gallium arsenide (GaAs) quantum dots.[100] It has been shown that the coupling between

stacked quantum dots can be modified using electric field. [101] A particularly intriguing method

for controlling and producing an electric field is the use of plasmonic active materials such as gold

as shell for quantum dots. Jin and Gao demonstrated that a gold shell on a quantum dot could

have plasmonic activity and that the fluoresent properties of the quantum dot could be controlled

by changing the spacing between the quantum dot and gold shell.[102] Erogbogdo and co-workers

have developed gold-encapsulated silicon quantum dots for use in cancel cell imaging which uses

the plasmonic enhancement of the gold shell.[103] Liaw and Liu have studied the plasmonic en-

hancement of silicon quantum dots which showed a relationship between metal layer thickness and

the enhancement.[104] Jin and co-workers have used quantum dots to harvest light which led to an

plasmonic enhancement due to the presence of silver nanoparticles.[105] West and Sadgeghi has

shown how FRET can be influenced in quantum dots in the region of metal nanoparticles.[106] The

QCSE has been investigated using various theoretical techniques including perturbation theory,[19,

107, 108, 109, 110, 111] variational techniques,[112, 113, 114, 115, 116, 117, 118] and configura-

tion interaction method.[119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
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1.4.2 Applications of quantum dots

The many tuning parameters that have been reviewed in subsection 1.4.1 have led to ap-

plication in development and fabrication of novel materials including light-harvesting devices,

light-emitting devices, and varius sensors. The tunable parameteters allow for both the course and

fine tuning of the optical and electronic properties of the material. This tuning can lead to the

engineering of materials to very tight specifications.

1.4.2.1 Light-harvesting devices

The harvesting of light to conversion of light energy to electrical energy is one of the

most popular applications for quantum dots.[130, 131, 132, 133, 134, 135, 136, 137, 138, 139,

140, 141] Greenham and co-workers prepared early quantum cell solar cells.[130] Kongkanand

and co-workers prepared CdSe solar cells and improved the efficiency by use of size and shape

controls.[131] López and co-workers have prepared CdSe quantum dots capped with thioglycolic

acid with N-doped TiO2 solar cells that had much higher efficiency than either undoped TiO2 or

N-doped TiO2 without CdSe quantum dots.[132] Kamat has discussed several methods for im-

proving efficiency in solar cells by using CdSe quantum dots.[133] Sargent and co-workers have

prepared solar cells with PbS quantum dot components that have exhibited efficiency of up to

4.2%.[134, 135, 136, 137] Si and co-workers have prepared CdSe on TiO2 nanotube solar cells

which showed a strong dependence on CdSe quantum dot size.[138] Plass and co-workers have

made solar cells sensitized with PbS quantum dots that energy conversion efficiencies of up to

0.49%.[139] Zaban and co-workers prepared solar cells that used InP quantum dots that greatly

increased the sensitivity of photoconductivity in TiO2.[140] Yu and co-workers prepared InAs
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quantum dot TiO2 solar cells that had an efficiency of 0.3% but were air stable for at least a

week.[141]

1.4.2.2 Light-emitting devices

Quantum dots have been of interest as the material for light-emitting as well as light-harvesting

devices.[60, 80, 98, 142, 143, 144, 145, 146, 147, 148] These applications have included lasers,[60,

142, 143, 144, 145] and solid-state lighting.[80, 146, 147, 148] Bimberg and co-workers have pro-

duced lasers with InAs/GaAs and InGaAs/GaAs quantum dots.[60] Klimov and co-workers have

produced lasers from CdSe quantum dots.[142] Foucher and co-workers have produced a hybrid

material laser with a collodial quantum dot film with a polymer on a glass background.[143] Wang

and co-workers have produced a laser from CdSe/CdS/ZnS core-muitishell materials.[145] De and

co-worker shave produced InGaN/GaN light emitting diodes.[98] Anikeeva and co-workers have

produced light-emitting devices with a mixture of red-green-blue quantum dots in a monolayer.[146]

Jang and co-workers have used green- and red-light-emitting quantum dots combined with blue

InGaN LEDs to create white quantum dot LEDs with high quantum efficiencies.[147] Sohn and

co-workers have improved the white light-emitting diodes using a non-conventional packing tech-

nique that uses multiple core-shell CuInS2/ZnS quantum dot with silica-coated quantum dots to

form color conversion film.[148] Shea-Rohwer and co-workers have produced red-emitting CdTe

quantum dots for use with InGaN blue LEDs.[80] Quantum dots have great potential for the pro-

duction and design of light-emitting devices.
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1.4.2.3 Photocatalysis

The ability of the quantum dot to be tuned towards particular energies leads to applica-

tions in photocatalysis.[69, 78, 149, 150, 151, 152, 153, 154, 155, 156, 157] Labiadh and co-

workers have used ZnS quantum dots to catalysis the degradation of salicylic acid.[149] Sun and

co-workers have used CdS quantum dots to catalyze charge transfer processes.[78] Yan and co-

workers have PbS/CdS quantum dots to produce H2 photocatalytically.[150] Li and co-workers

have used CdS in TiO2 to photocatalytically oxidize NO in air and degrade organic compounds

in aqueous solution.[151] Kang and co-workers have used Si quantum dots in the photocatalysis

of benzene to phenol.[69] Soni and co-workers have performed a size-dependent CdSe quantum

dot study of the photocatalyzed degradation of organic dye.[152] Singh and co-workers have de-

veloped an artificial photosynthesis using CuInS quantum dots.[153] Mansur and co-workers have

studied the “green” degradation of organic dye pollutants using ZnS.[154] Li and co-workers have

developed carbon quantum dots as photocatalysts for highly selective oxidation of benzyl alcohol

and its derivatives.[155] Pourahmad has integrated PbS quantum dots into molecular sieves for

the photocatalyic production of H2.[156] Holmes and co-workers have used CdSe quantum dots

to photocatalyze the splitting of water and found a size-dependent rate.[157] Quantum dots have

been used in a wide array of photocatalyic systems.

1.4.2.4 Sensors

Quantum dots have found applications as sensors for many analyates.[28, 39, 41, 86, 87, 89,

158, 159, 160] Chan and co-workers used the functional flexibility of the surface ligands to at-

tach biorecognition molecules that target certain cells.[28] Chen and Wu have used ZnSe quantum
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dots capped with mercaptoacetic acid to determine pH by fluorescence spectroscopy.[158, 159]

Yu and co-workers have used quantum dot-based pH probes for the study of enzyme reaction

kinetics.[161] Yang and co-workers has used CdTe/CdSe core/shell quantum dots as pH-sensitive

fluorescence probe with ascorbic acid as the added acid.[89] Deng and co-workers reported green

and orange CdTe quantum dots, capped with specially marked ligands, as pH probes and for de-

tection of viruses.[160] Tomasulo and co-workers produced CdSe/ZnS core/shell quantum dots

with ligands which allowed the pH could be probed from 3 to 11.[86, 87] Teubert and co-workers

investigated the electric-field dependence of the optical properties of INGaN/GaN quantum dots in

contact with an electrolyte, finding that pH variation corresponds with photoluminescence.[41] An-

other application is the use of the quantum dots as nanoscale electric probes. Park and co-workers

have used quantum dots to measure electrical fields on the nanoscale by taking advantage of the

quantum-confined Stark effect using a variety of nanocrystals, including CdSe nanorods, CdSe

quantum dot in CdS nanorods, CdTe/CdSe core/shell quantum dots, and ZnSe in CdS nanorod.[39]

In each of these application, the change in the optical and electronic properties in quantum dots

was used to determine the presence of some compound or characteristic of the system.

1.4.2.5 Bioimaging

A special application has been the use of quantum dots to determine the location of certain

types of cells in living systems. [162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,

175, 176, 177, 178, 179] Lovriá and co-workers examined the subcellular localization of CdTe

quantum dots and also studied the toxcity of CdTe quantum dots finding that smaller quantum

dots were more toxic.[175] Selvan and co-workers have used CdSe quantum dots to target cell
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membranes.[176] Yong and co-workers have used InP/ZnS quantum dots conjugated with pan-

creatic cancer specific antibodies for efficient optical imaging of cancer cells in vitro.[177] Yang

and co-workers have produced innovative carbon quantum dots which were demonstrated in use for

bioimaging and staining.[178] Luo and co-workers have prepared carbon quantum dots which have

high performance but are nontoxic in comparison to the txocity of the heavy metals in traditional

quantum dots and comparable bioimaging performance.[179]

1.5 Organization

The remainder of this work is organized as follows. In chapter 2, a newly defined quantity

call the electron-hole correlation length will be determined for CdSe quantum dots. It will also be

demonstrated that the electron-hole correlation length can be used to improve the determination of

the explicit correlation operator. In chapter 3, the development of the variational polaron transfor-

mation for use in the study of the optical and electronic properties in GaAs quantum dots under

an applied electric field will be discussed. In chapter 4, the influence of electric fields on CdSe

quantum dots will be explored, particularly the influence of ligand length and environment pH on

the exciton binding energy for these systems. In chapter 5, conclusions from these projects will be

given and avenues for future work along these tracks will be discussed.
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Chapter 2: Determination of electron-hole correlation length in CdSe quantum

dots using explicitly correlated two-particle cumulant

2.1 Introduction

Electron-hole excitations in semiconductor quantum dots are influenced by their size, shape

and chemical composition. Controlling the generation and the dissociation of electron-hole (eh)

pairs have important technological applications in the field of light-harvesting materials,[133, 180,

181, 182] photovoltaics,[85, 183, 184, 185] solid-state lighting,[80, 146, 147, 148] and lasing[142,

143, 144, 145]. In order to control the generation and dissociation of the eh-pair, it is impor-

tant to understand the underlying interaction between the quasiparticles. Theoretical treatment

of electron-hole interaction in quantum dots is challenging because of the computational bottle-

neck associated with quantum mechanical treatment of many-electron systems. In principle, a

simplified description of the electron-hole pair can be achieved by ignoring the eh interaction

and treating them as independent quasiparticles. Although this approach can dramatically reduce

the computational cost, such simplifications can lead to qualitatively wrong results. For exam-

ple, optical spectra calculation using independent quasiparticle approach often shows significant

deviation from the experimental results. One of the main limitations of the independent quasi-

particle method is its inability in describing bound excitonic states. Multiexcitonic interaction,
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exciton and biexciton binding energies, radiative and Auger recombination are some of the proper-

ties whose calculations depend on the accurate treatment of electron-hole correlation. Theoretical

investigation of electron-hole correlation has been performed using various methods such as time-

dependent density functional theory (TDDFT)[186, 187, 188, 189, 190, 191, 192, 193], perturba-

tion theory[194], GW combined with Bethe-Salpeter equation[195, 196, 197, 198, 199, 200, 201,

202, 203], configuration interaction[81, 119, 128, 204, 205, 206, 207, 208, 209], quantum Monte

Carlo[206, 210, 211, 212], path-integral Monte Carlo,[213, 214] explicitly correlated Hartree-Fock

method,[40, 215, 216, 217, 218] and electron-hole density functional theory.[219]

In this work, we are interested in the calculation of electron-hole correlation length (eh-CL)

in CdSe quantum dots. Our goal is to provide a statistical definition of the electron-hole correlation

length. The concept of correlation length has been widely used in many fields, including statistical

mechanics[220, 221, 222, 223] and polymer science.[221, 222, 223, 224, 225, 226, 227] One of

the important features of the eh-CL is that is it provides an intrinsic length scale for describing

the electron-hole interaction. Because of this, it can play an important role in describing exci-

tonic effects in quantum dots and other nanomaterials such as carbon nanotubes.[228, 229, 230]

The eh-CL can also be used for construction of electron-hole correlation functional for multi-

component density functional theory.[219] For example, Salahub and co-workers have devel-

oped a series of exchange-correlation functions that are based on electron-electron correlation

length[231, 232, 233, 234] and a similar strategy can be used for construction of electron-hole cor-

relation functionals using eh-CL. The eh-CL can also aid in the development of explicitly corre-

lated wave functions (such as Jastrow and Gaussian-type geminal functions) which depend directly

on the electron-hole separation distance.[40, 212, 215, 216, 217, 218]

We have used the 2-particle electron-hole density matrix for the definition and calcula-
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tion of the eh-CL. Two-particle reduced density matrix (2-RDM) has been used extensively for

investigation of electron-electron correlation[235, 236, 237, 238, 239, 240, 241] and electronic

excitation[242] in many-electron systems. For the present system, the 2-RDM is the appropriate

mathematical quantity that contains all the necessary information about electron-hole correlation.

Specifically, the cumulant associated with the electron-hole 2-RDM is the component of the 2-

RDM that cannot be expressed as a product of 1-particle electron and hole densities. In principle,

the 2-RDM can be obtained directly without the need for an underlying wave function as long

as the N-representability of 2-RDM can be satisfied. However, in the present work, we have ob-

tained the 2-RDM from an explicitly correlated electron-hole wave function. The remainder of

the article is organized as follows. The basic theory of second quantization in electronic sys-

tems is presented in subsection 2.2.1. Electronic density matrices definitions and properties are

shown in subsection 2.2.2. The derivation of eh-CL from the electron-hole cumulant is presented

in subsection 2.2.4, transformation to intracular and extracular coordinates is described in sub-

section 2.2.6, and details of the explicitly correlated electron-hole wave function are presented in

subsection 2.2.7 and section 2.3. The method was applied to a series of CdSe quantum dots and

the results are presented in section 2.4.

2.2 Theory

2.2.1 Second quantization

Second quantization has been shown to be great use in several textbooks.[6, 17, 243, 244]

Second quantization is an another representation of quantum mechanics that reduces all operators

and wave functions to a set of elementary operators. The elementary operators create and annihilate

34



states in a standard reference state. The creation and annihilation operator may be defined for any

particle type. In this section, the electronic creation and annihilation operators will be presented.

In subsubsection 2.2.3.1, the creation and annihilation operators for a multi-component system will

be presented. While the standard representation of quantum mechanics is widely used, it requires

the imposition of certain properties of the system and requires the foreknowledge of certain aspects

of the system (such as the number of electrons). This representation offers the advantages of built-

in antisymmetry (which does not have to be imposed, since the creation and annihilation operators

enforce the property) and simplified manipulation of wave functions and operators. On the other

hand, second quantization introduces additional relationships and rules.

2.2.1.1 Creation and Annihilation Operators

The electronic creation operator is defined as [6, 17, 243, 244]

a†
i |vac〉= |χi〉, (2.1)

which means that a electron is placed in the molecular orbital χi. It follows logically that

a†
1|χ1〉= 0, (2.2)

since the state cannot hold two particles in the same position.

The electronic annihilation operator is then defined as [6, 17, 243, 244]

ai|χi〉= |vac〉. (2.3)
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Two cases will yield zero for an annihilation operator:

ai|vac〉= 0 (2.4)

and

ai|χ j〉= 0 if i 6= j. (2.5)

Now, we wish to know what occurs when creation and annihilation operators operate to the

left (on bras). For annihilation operators, we have[6, 17, 243, 244]

〈vac|ai = 〈vac|(ai)
†

= 〈vac|a†
i

= 〈χi|.

For creation operators, we have[6, 17, 243, 244]

〈χi|a†
i = 〈χi|(a†

i )
†

= 〈χi|ai

= 〈vac|

36



2.2.1.2 Important Relations

In order to manipulate the creation and annihilation operators, three relations are used[6, 17,

243, 244]

a†
i a†

j +a†
ja

†
i = 0 (2.6)

aia j +a jai = 0 (2.7)

a†
i a j +a ja

†
i = δi j. (2.8)

The use of these relations, in particular the last, is the key to rearranging the operators into useful

expressions.

2.2.1.3 Normal Order and Contractions

For the case of the vacuum state, it is useful to define a normal order. This ordering is such

that all annihilation operators are to the right of all creation operators. This is,

A†B†C† · · ·XY Z

Now, we define a contraction[245]

aia
†
j = aia

†
j −{aia

†
j} (2.9)

which also introduces the notation {· · ·}which is the enclosed string in normal order (for operation

on a vacuum). It is important to realize that {· · ·} includes a factor (−1)P where P is the number

37



of permutations (or transpositions) required to bring the string of operators into normal order.

We note that

aia j = 0 (2.10)

a†
i a†

j = 0 (2.11)

a†
i a j = 0 (2.12)

aia
†
j = δi j (2.13)

aia ja
†
ka†

l = δika ja
†
l (2.14)

We also define full contractions as the case where all operators are pairwise contracted. For

example,

aia ja
†
ka†

l =−δikδ jl

is fully contracted. A rule of thumb to note here is that the sign of a full contraction is negative if

the number of crossings is odd and positive otherwise.

2.2.1.4 Wick’s Theorem

For an arbitrary string of annihilation and creation operators ABC · · ·XY Z, the string may be

written as a linear combination of normal ordered strings.[245, 246]

ABC · · ·XY Z = {ABC · · ·XY Z}

+ ∑
singles

{ABC · · ·XY Z}

38



+ ∑
doubles

{ABC · ··XY Z}

+ · · · (2.15)

The generalized Wick’s theorem simplifies the matter further because it states that if a string

can be divided into normal ordered substrings, then only contractions between the strings need be

evaluated, not those contractions within the strings.[246]

{ABC · · ·}{XY Z · · ·}= {ABC · · ·XY Z · · ·}

+ ∑
singles

{ABC · ··XY Z · ··}

+ ∑
doubles

{ABC · ··XY Z · ··}

+ · · ·

2.2.1.5 Operators in Second Quantization

With the tools to express and manipulate creation and annihilation operations to give any

wavefunction from a vacuum state, it remains necessary to express the single and two particles

operators in terms of creation and annihilation operators. We define the operators O1, the sum of a

one-particle operators, h as[246]

O1 = ∑
i j
〈i|h| j〉a†

i a j. (2.16)

and the two particle operator, O2 as

O2 = ∑
i jkl
〈i j|kl〉a†

i a†
jalak, (2.17)
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in which one should carefully note the order of alak. One should also note that O2 can be expressed

to explicitly show the operator g as

O2 = ∑
i jkl
〈i j|g|kl〉a†

i a†
jalak, (2.18)

as will be seen in the example (vide infra).

2.2.1.6 Fermi Vacuum

It is useful to consider a state that is filled with N-particles, such as |χ1χ2 · · ·χN〉. If we

consider what operators will cause a these states to vanish, it becomes clear that the normal order

should be such that all creation operators are to the left of all annihilation operators. This ordering

is denoted as : · : and the only not-zero contraction are[246]

a†
i a j = δi j. (2.19)

2.2.1.7 Energy of a N-particle Slater Determinant

For a system such that

H = ∑
i j
〈i|h| j〉a†

i a j︸ ︷︷ ︸
H0

+∑
i jkl
〈i j|Vee|kl〉a†

i a†
jalak︸ ︷︷ ︸

H2

(2.20)
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with |Ψ0〉= |χ1χ2 · · ·χN〉, show that

E = 〈Ψ0|H|Ψ0〉 (2.21)

We consider the first term. Given the form of |Ψ0〉, the creation and annihilation string

should be converted to normal order for an occupied system

a†
i a j =: a†

i a j : +δi j = δi j−a ja
†
i . (2.22)

Using Eq. (2.22) in the first term with the wavefunctions gives

H0 =
N

∑
i j
〈i|h| j〉〈Ψ0|δi j−a ja

†
i |Ψ0〉=

N

∑
i j
〈i|h| j〉(δi j〈Ψ0|Ψ0〉−〈Ψ0|a ja

†
i |Ψ0〉) (2.23)

For this term to be nonzero, i = j and the upper limit must be N since the rearrangement simplifi-

cation assumes that the strings are operating on an N-particle Slater determinant, so we have

H0 =
N

∑
i=1
〈i|h|i〉. (2.24)

The second term, H2, is now determined. Let us consider the creation and annihilation

operators

a†
i a†

jalak = : a†
i a†

jalak :

+ : a†
i a†

jalak : + : a†
i a†

jalak :

+ : a†
i a†

jalak : + : a†
i a†

jalak :
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+ : a†
i a†

jalak : + : a†
i a†

ja2ak :

= alaka†
i a†

j

−δilaka†
j +δikala

†
j

−δ jlaka†
i +δ jkala

†
i

+δikδ jl−δilδ jk

Let us consider the implications of this rearrangement. Clearly, the conditions on H2 do not allow

i = j or k = l to give nonzero terms, but place no limitation on i = k or i = l and j = k j = l.

Consider the case i = l, j = k, then we have

a†
i a†

ja jai = a jaia
†
i a†

j

−δiia ja
†
j +δi jaia

†
j

−δ jia ja
†
i +δ j jaia

†
i

+δi jδ ji−δiiδ j j

Similarly, the case i = k, j = l gives

a†
i a†

jaia j = aiaia
†
ja

†
j

−δi jaia
†
j +δiia ja

†
j

−δ j jaia
†
i +δ jia ja

†
i

+δiiδ j j−δi jδ ji
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Assuming that these operators are operating on a N-particle Slater determinant gives

a†
i a†

jalak = δikδ jl−δilδ jk (2.25)

with the consideration that this is not a general term but is limited to an N-particle Slater determi-

nant.

With this determination in hand and the consideration that i = k, i = l, j = k, or j = l, we

may now determine the H2 term

H2 =
N

∑
i j
〈i j|Vee|i j〉(δiiδ j j−δi jδ ji)+

N

∑
i j
〈i j|Vee|i j〉(δi jδ ji−δiiδ j j)

=
N

∑
i j
〈i j|Vee|i j〉−〈i j|Vee| ji〉.

Therefore, it is shown that

E = 〈Ψ0|H|Ψ0〉=
N

∑
i=1
〈i|h|i〉+

(
N

∑
i j
〈i j|Vee|i j〉−〈i j|Vee| ji〉

)
. (2.26)

2.2.1.8 Minimization of The Energy

With Eq. (2.26) in hand, we now turn to the minimization of energy. We may do so by

Lagrange’s method of undetermined multipliers. We note that a boundary condition is determined

by ∫
dx1χ

∗
a (1)χb(1) = [a|b] = δab. (2.27)
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From this, the constraints are expressed as

[i| j]−δi j = 0. (2.28)

In order to minimize the energy, we consider the functional L [{χi}], given as

L [{χi}= E[{χ}]−
N

∑
i=1

N

∑
j=1

ε ji([i| j]−δi j). (2.29)

We may then minimize the energy by minimizing L , that is

δL = δE[{χ}]−
N

∑
i=1

N

∑
j=1

ε jiδ [i| j] = 0. (2.30)

To do so, we must find δE. We do so by

δE[χ] = E[χ +δ χ]−E[χ]

=
N

∑
i=1
〈(χi +δ χi)|h|(χi +δ χi)〉

+

(
N

∑
1=1

N

∑
j=1
〈(χi +δ χi)(χ j +δ χ j)|Vee(1−P12)|(χi +δ χi)(χ j +δ χ j)〉

)

−
N

∑
i=1
〈χi|h|χi〉+

(
N

∑
i=1

N

∑
j=1
〈χiχ j|Vee(1−P12)|χiχ j〉

)
.

Rewriting in integral form and dropping the integrals and differentials for clarity gives

δE =
N

∑
i=1

(χ∗i +δ χ
∗
i )h(χi +δ χi)

+
N

∑
i=1

N

∑
j=1

(χ∗i +δ χ
∗
i )(χ

∗
j +δ χ

∗
j )Vee((χi +δ χi)(χ j +δ χ j)− (χ j +δ χ j)(χi +δ χi))
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−
N

∑
i=1

χ
∗
i hχi +

N

∑
i=1

N

∑
j=1

(χ∗i χ
∗
j )Vee(χiχ j−χ jχi)

=
N

∑
i=1

χ
∗
i hχi−χ

∗
i hδ χi +δ χ

∗
i hχi +δ χ

∗
i hδ χi

+
N

∑
i=1

N

∑
j=1

(χ∗i χ
∗
j +χiδ χ

∗
j +δ χ

∗
i χ
∗
j +δ χ

∗
i δ χ

∗
j )Vee((χiχ j +χiδ χ j +δ χiχ j +δ χiδ χ j))

−
N

∑
i=1

N

∑
j=1

(χ∗i χ
∗
j +χiδ χ

∗
j +δ χ

∗
i χ
∗
j +δ χ

∗
i δ χ

∗
j )Vee((χ jχi +χ jδ χi +δ χ jχi +δ χ jδ χi))

−
N

∑
i=1

χ
∗
i hχi +

N

∑
i=1

N

∑
j=1

(χ∗i χ
∗
j )Vee(χiχ j−χ jχi)

=
N

∑
i=1

χ
∗
i hχi−χ

∗
i hδ χi +δ χ

∗
i hχi +δ χ

∗
i hδ χi

+
N

∑
i=1

N

∑
j=1

χ
∗
i χ
∗
j Veeχiχ j +χ

∗
i χ
∗
j Veeχiδ χ j +χ

∗
i χ
∗
j Veeδ χiχ j +χ

∗
i χ
∗
j Veeδ χiδ χ j

+χ
∗
i δ χ

∗
j Veeχiχ j +χ

∗
i δ χ

∗
j Veeχiδ χ j +χ

∗
i δ χ

∗
j Veeδ χiχ j +χ

∗
i δ χ

∗
j Veeδ χiδ χ j

+δ χ
∗
i χ
∗
j Veeχiχ j +δ χ

∗
i χ
∗
j Veeχiδ χ j +δ χ

∗
i χ
∗
j Veeδ χiχ j +δ χ

∗
i χ
∗
j Veeδ χiδ χ j

+δ χ
∗
i δ χ

∗
j Veeχiχ j +δ χ

∗
i δ χ

∗
j Veeχiδ χ j +δ χ

∗
i δ χ

∗
j Veeδ χiχ j +δ χ

∗
i δ χ

∗
j Veeδ χiδ χ j

−
N

∑
i=1

N

∑
j=1

χ
∗
i χ
∗
j Veeχ jχi +χ

∗
i χ
∗
j Veeχ jδ χi +χ

∗
i χ
∗
j Veeδ χ jχi +χ

∗
i χ
∗
j Veeδ χ jδ χi

+χ
∗
i δ χ

∗
j Veeχ jχi +χ

∗
i δ χ

∗
j Veeχ jδ χi +χ

∗
i δ χ

∗
j Veeδ χ jχi +χ

∗
i δ χ

∗
j Veeδ χ jδ χi

+δ χ
∗
i χ
∗
j Veeχ jχi +δ χ

∗
i χ
∗
j Veeχ jδ χi +δ χ

∗
i χ
∗
j Veeδ χ jχi +δ χ

∗
i χ
∗
j Veeδ χ jδ χi

+δ χ
∗
i δ χ

∗
j Veeχ jχi +δ χ

∗
i δ χ

∗
j Veeχ jδ χi +δ χ

∗
i δ χ

∗
j Veeδ χ jχi +δ χ

∗
i δ χ

∗
j Veeδ χ jδ χi

−
N

∑
i=1

χ
∗
i hχi−

N

∑
i=1

N

∑
j=1

χ
∗
i χ
∗
j Veeχiχ j−χ

∗
i χ
∗
j Veeχ jχi

=
N

∑
i=1

χ
∗
i hδ χi +δ χ

∗
i hχi

+
N

∑
i=1

N

∑
j=1

χ
∗
i χ
∗
j Veeχiδ χ j +χ

∗
i χ
∗
j Veeδ χiχ j +χ

∗
i δ χ

∗
j Veeχiχ j +δ χ

∗
i χ
∗
j Veeχiχ j

−
N

∑
i=1

N

∑
j=1

χ
∗
i χ
∗
j Veeχ jδ χi +χ

∗
i χ
∗
j Veeδ χiχ j +χ

∗
i δ χ

∗
j Veeχ jχi +δ χ

∗
i χ
∗
j Veeχ jχi
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Returning to standard notation gives us

δE =
N

∑
i=1

[χi|h|δ χi]+ [δ χi|h|χi] (2.31)

+
N

∑
i=1

N

∑
j=1
〈χiχ j|Vee|χiδ χ j〉+ 〈χiχ j|Veeδ χiχ j〉+ 〈χiδ χ j|Vee|χiχ j〉+ 〈δ χiχ j|Vee|χiχ j〉

−
N

∑
i=1

N

∑
j=1
〈χiχ j|Vee|χ jδ χi〉+ 〈χiχ j|Vee|δ χ jχi〉+ 〈χiδ χ j|Vee|χ jχi〉+ 〈δ χiχ j|Vee|χ jχi〉.

This may completely rewritten in chemist’s notation as

δE =
N

∑
i=1

[χi|h|δ χi]+ [δ χi|h|χi] (2.32)

+
N

∑
i=1

N

∑
j=1

[χiχi|Vee|χ jδ χ j]+ [χiχi|Vee|δ χ jχ j]+ [χiδ χi|Vee|χ jχ j]+ [δ χiχi|Vee|χ jχ j]

−
N

∑
i=1

N

∑
j=1

[χiχ j|Vee|χ jδ χi]+ [χiχ j|Vee|δ χ jχi]+ [χiδ χ j|Vee|χ jχi]+ [δ χiχ j|Vee|χ jχi].

This equation is shown to be

δE =
N

∑
i=1

[χi|h|δ χi]+ [δ χi|h|χi] (2.33)

+
N

∑
i=1

N

∑
j=1

[χiχi|Vee|χ jδ χ j]+ [χiχi|Vee|δ χ jχ j]+ [χiδ χi|Vee|χ jχ j]+ [δ χiχi|Vee|χ jχ j]

−
N

∑
i=1

N

∑
j=1

[χiχ j|Vee|χ jδ χi]+ [χiχ j|Vee|δ χ jχi]+ [χiδ χ j|Vee|χ jχi]+ [δ χiχ j|Vee|χ jχi]

=
N

∑
i=1

[χi|h|δ χi]+ [χi|h|δ χi]
∗

+2
N

∑
i=1

N

∑
j=1

[δ χiχi|Vee|χ jχ j]+ [χ jχ j|Vee|δ χiχi]
∗

−2
N

∑
i=1

N

∑
j=1

[δ χiχ j|Vee|χ jχi]+ [χ jχi|V ee|δ χiχ j]
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=
N

∑
i=1

[χi|h|δ χi]+ complex conjugate

+2
N

∑
i=1

N

∑
j=1

[δ χiχi|Vee|χ jχ j]+ complex conjugate

−2
N

∑
i=1

N

∑
j=1

[δ χiχ j|Vee|χ jχi]+ complex conjugate.

We now turn to the second term in Eq. (2.30) and find that since

δ [i| j] = [δ χi|χ j]+ [χi|δ χ j]

and ε ji = ε∗i j, we have

∑
i=1

N

∑
j=1

ε ji[δ χi|χ j]+ [χi|δ χ j] = ∑
i=1

N

∑
j=1

ε ji[δ χi|χ j]+∑
i=1

N

∑
j=1

εi j[χ j|δ χi]

= ∑
i=1

N

∑
j=1

ε ji[δ χi|χ j]+∑
i=1

N

∑
j=1

ε
∗
ji[δ χi|χb]

∗

= ∑
i=1

N

∑
j=1

ε ji[δ χi|χ j]+ complex conjugate.

We now write δL as

δL =
N

∑
i=1

[δ χi|h|χi]

+2
N

∑
i=1

N

∑
j=1

[δ χiχi|Vee|χ jχ j]− [δ χiχ j|Vee|χ jχi]

+ complex conjugate

= 0.

At this point, it is advantageous to introduce the exchange operator K j(1) and coulomb operator
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J j(1) as

K j(1)χi(1) =
[∫

dx1χ
∗
j (2)Veeχi(2)

]
χ j(1) (2.34)

J j(1)χi(1) =
[∫

dx2χ
∗
j (2)Veeχ j(2)

]
χi(1) (2.35)

We may then also write

〈χi(1)|J j(1)|χi(1)〉=
∫

dx1dx2χ
∗
i (1)χi(1)Veeχ

∗
j (2)χ j(2) = [ii|Vee| j j] (2.36)

〈χi(1)|K j(1)|χi(1)〉=
∫

dx1dx2χ
∗
i (1)χ j(1)Veeχ

∗
j (2)χi(2) = [i j|Vee| ji] (2.37)

In addition, we may use the exchange and coulomb operators to define the Fock operator f as

f (1) = h(1)+
N

∑
1=1

Jb(1)−Kb(1). (2.38)

Returning to Eq. (2.34), we use K j(1) and J j(1) and return to integral form, and factor out

the common δ χi to get

δL =
N

∑
i=1

∫
dx1δ χ

∗
i (1)

[
h(1)χi(1)+

N

∑
j=1

(J j(1)−K j(1))χi(1)−
N

∑
j=1

ε jiχ j(1)

]
+ complex conjugate = 0. (2.39)

Since δ χi is an arbitrary infinitesimal but non-zero value, the bracket expression must be zero for
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all i, giving

[
h(1)+

N

∑
j=1

J j(1)−K j(1)

]
χi(1) =

N

∑
j=1

ε jiχ j(1) i = 1,2, . . . ,N (2.40)

The bracketed operators match our definition of the Fock operator f giving us

f |χi〉=
N

∑
j=1

ε ji|χ j〉. (2.41)

2.2.2 Density matrices

Density matrices are powerful tools for expressing both pure and ensemble states. For pure

states (states that can be expressed as a single state vector), the density matrix is an alternative

representation. For mixed states, which can only be expressed as multiple state vectors, the density

matrix is a highly useful method for expressing the necessary statistical average of the states. For

an ensemble of N systems ni(i = 1,2, . . . ,k) of which some are in state |i〉. The operator which

selects only the desired state is given by

ρ = ∑
i

pi|i〉〈i| (2.42)

where pi is the probability that a state picked randomly will be in the state |i〉.
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2.2.2.1 Density Operators

To describe a more general form of the density operator, consider that[247]

ΨN(x1x2 · · ·xN)Ψ
∗
N(x1x2 · · ·xN) (2.43)

is the probability distribution. The quantity in (2.43) will be expressed as

γN(x′1x′2 · · ·x′N ,x1x2 · · ·xN)≡ΨN(x′1x′2 · · ·x′N)Ψ∗N(x1x2 · · ·xN). (2.44)

If xi = x′i for all i, we get the elements of (2.43). We may also express (2.44) as[247]

|Ψn〉〈Ψn|= γ̂N (2.45)

since

(x′1x′2 · · ·x′N |γ̂N |x1x2 · · ·xN) = (x′1x′2 · · ·x′N |ΨN〉〈ΨN |x1x2 · · ·xN) (2.46)

= ΨN(x′1x′2 · · ·x′N)Ψ∗N(x1x2 · · ·xN), (2.47)

noting that | · · ·) signifies a conversion from discrete values (with associated δ ) to continuous

values (with use of the function δ (x)).

Clearly, γ̂ is a projection operator. The normalized ΨN is

tr(γ̂) =
∫

ΨN(xN)Ψ∗NdxN , (2.48)
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where tr is the trace of the operator in Hilbert space and is the sum of the diagonal elements of the

operator matrix. This is useful since it also occur st that for any operator Â, the expectation value

is found as

〈Â〉= tr(γ̂Â) = tr(Âγ̂). (2.49)

This operator description is necessary since in large systems, a particular state may not be

represented by a linear superposition of eigenstates of a particular Hamiltonian. However, some

states, called pure, may be described by a wave function. States which may not be described a

wave function are termed mixed.

Systems may be described by the probability distribution of the accessible pure states. This

is done by the use of the ensemble density operator, which is

Γ̂ = ∑
i

pi|Ψi〉〈Ψi|, (2.50)

where pi is the probability of the system being in state |Ψi〉 For a single pure state Γ̂ reduces to

γ̂ .[247]

The operator Γ̂ is constructed such that is normalized. For any basis | fk〉, it gives[247]

Tr(Γ̂) = ∑
i

∑
k

pi〈 fk|Ψi〉〈Ψi| fk〉

= ∑
i

pi〈Ψi ∑
k
| fk〉〈 fk|Ψi〉

= ∑
i

pi〈Ψi|Ψi〉= ∑
i

pi = 1 (2.51)

The symbol Tr is the trace in Fock-space rather than strict Hilbert space. It also shown that Γ̂ is
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Hermitian since[247]

〈 fk|Γ̂| fl〉= ∑
i

pi〈 fk|Ψi〉〈Ψi| fl〉

= ∑
i

pi {〈 fl|Ψi〉〈Ψi| fk〉}∗

= 〈 fl|Γ̂| fk〉∗ (2.52)

It is useful to note that γ̂ is idempotent[247]

γ̂ · γ̂ = |Ψ〉〈Ψ|Ψ〉〈Ψ|= |Ψ〉〈Ψ|= γ̂, (2.53)

but the ensemble density operator Γ̂ is not:

Γ̂ · Γ̂ = ∑
i

p2
i |Ψi〉〈Ψi| 6= Γ̂. (2.54)

The expectation value for observable Â is found, similarly to (2.49), as

〈Â〉= Tr(Γ̂Â) = ∑
i

pi〈Ψi|Â|Ψi〉. (2.55)

2.2.2.2 Reduced Density Matrices for Fermion Systems

The most basic Hamiltonian operator is the sum of two symmetric “one-electron” operators

and a symmetric “two-electron” operator, of which none depend on spin. With these observations,
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the concept of the reduced density matrix. The reduced density matrix of order p is given by[247]

γ̂p(x′1x′2 · · ·x′p,x1x2 · · ·xp)

=

 N

p

∫ · · ·∫ γ̂(x′1x′2 · · ·xpxp+1 · · ·xN ,x1x2 · · ·xp · · ·xN)dxp+1 · · ·dxN . (2.56)

Consider

γ̂2(x′1x′2,x1x2)

=
N(N−1)

2

∫
· · ·
∫

Ψ(x′1x′2x3 · · ·xN)Ψ
∗(x1x2x3 · · ·xN)dx3 · · ·dxN (2.57)

and

γ1(x′1,x1) = N
∫
· · ·
∫

Ψ(x′1x2 · · ·xN)Ψ
∗(x1x2 · · ·xN)dx2 · · ·xdxN . (2.58)

The reduced density matrices γ̂1 and γ̂2 are semifinite (zero or positive), Hermitian, and are

antisymmetric (exchange of two particles gives a negative value).[247]

The operators γ̂1 and γ̂2 each give eigenfunctions and eigenvalues such that[247]

∫
γ̂1(x′1,x1)ψi(x1)dx1 = niψi(x′1) (2.59)

and ∫ ∫
γ̂2(x′1x′2,x1x2)θi(x1x2)dx1dx2 = giθi(x′1x′2). (2.60)

For γ̂1, ψi(x) are the eigenfunctions called natural spin orbitals and the eigenvalues ni are called
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the occupation numbers. These are are also represented by

γ̂1 = ∑
i

ni|ψi〉〈ψi| (2.61)

or

γ̂1(x′1,x1) = ∑
i

niψi(x′1)ψ
∗
i (x1). (2.62)

For γ̂2, it is

γ̂2 = ∑
i
|θi〉〈θi|, (2.63)

where the gi are called occupation numbers; the |θi〉 are two-particle functions called natural

geminals. These values are defined to be antisymmetric and are also semidefinite.[247]

In the case of mixed states, corresponding definitions of reduced density matrices and oper-

ators with the same properties are used. In the case where all participating states have the same

particle number, N, the operator Γ̂ is used as the Nth-order density operator Γ̂N . The pth-order

mixed state density matrix is[247]

Γ̂p (x′1x′2 · · ·x′p,x1x2 · · ·xp)

=

 N

p

∫ · · ·∫ Γ̂N(x′1x′2 · · ·x′px′p+1 · · ·xn,x1x2 · · ·xN)dxp+1 · · ·dxN . (2.64)

The operators Γ̂2 and Γ̂1 also exist, the latter of which is of special importance. It is

Γ̂1(x′1,x1) = N
∫
· · ·
∫

∑
i

piΨi(x′1x2 · · ·xN)Ψ
∗
i (x1x2 · · ·xN)dx2 · · ·dxN , (2.65)
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where the Ψ are various N-electron states entering the mixed state under consideration.

The one electron operator is given as[247]

Ô1 =
N

∑
i=1

Ô1(xi,x′i). (2.66)

The expectation value of this operator is

〈Ô1 = tr(Ô1γ̂1) =
∫

Ô1(x1x′1)γ̂1(x′1,x1)dx1dx′1. (2.67)

If the one-electron operator is local (Â(r′,r) = Â(r)δ (r′− r), then only the diagonal part is written

down giving[247]

Ô1 =
N

∑
i=1

Ô1(xi) (2.68)

and the expectation-value is given by

〈Ô1〉=
∫ [

Ô1(x1)γ̂1(x′1,x1)
]

x′1=x1
dx1 (2.69)

All the two-electron operators under consideration are local, so these operators are written

as their diagonal parts, giving[247]

Ô2 =
N

∑
i< j

Ô2(xi,x j) (2.70)

with expectation-value of

〈Ô2〉= tr(Ô2γ̂N)
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=
∫ ∫ [

Ô2(x1,x2)γ̂2(x′1x′2,x1x2)
]

x′1=x1,x′2=x2
dx1dx2. (2.71)

The expectation value of the Hamiltonian, all these parts are combined to give

E = tr(Ĥ γ̂N = E[γ̂1, γ̂2] = E[γ̂2]

=
∫
[(−1

2
∇

2
1 + v(r1))γ̂1(x′1,x1)]x′1=x1

dx1 +
∫ ∫ 1

r12
γ̂2(x1x2,x1,x2)dx1dx2. (2.72)

2.2.3 Electron-hole picture

The importance and difficulty of highly accurate calculations of the excited electronic states

was discussed in section 1.3. In this section, the use of the multi-component electron-hole picture

will be described. There are many systems in which the renormalization of different components

can aid in simplifying aspects of the systems. The renormalized particles are called “dressed-

particles” or (preferred in this work) quasi-particles. By analogy, concrete examples would be

similar to describe a bottle of water by describing the air bubble (quasi-particle) rather than the

water (all-electron) or by describing a crowded auditorium by describing the empty seats (“there

are three empty seats”) rather than attempted to describe it by the attendance (“we have 347 at-

tendees”). The renormalization constant is quite powerful and is used in the solution of many

problems, with some representative (but not exhaustive) examples being[248]

1. The modeling of a gas as N interacting particles in a box.

2. The modeling of a magnetic material as set of individual magnets in a lattice.

3. The random arrangement of polymers in solution.
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The greatest strength of renormalization is the reduction in the number of degrees of freedom in

the system.[248]

The key renormalization that is used in this work is the quasi-particle transformation. The

quasi-particle transformation is an exact mathematical transformation that allows a compact rep-

resentation of excited electronic states.[249] In the quasi-particle representation, the excitation of

a single electron from the ground to the excited electronic state is described by generation of an

electron-hole pair. This process is illustrated in Figure 2.1.[249, 250] The electron and the hole

generated during the excitation process are known as quasi-particles and the interaction between

them is described by the electron-hole Hamiltonian.

Electron−Hole Picture

+hν +hν

kF

Ordinary Picture

Figure 2.1: Comparison of the all-electron picture (on the left) with the electron-hole picture (on
the right) of an arbitrary excitation.

A schematic representation of the transformation is presented in Figure 2.1.[249, 250] On

the left, the electrons are represented as particles at various energy levels, up to kF, the Fermi level.

Excitation of a electron creates an unoccupied energy level below the Fermi level and occupies an

energy level above the Fermi level. On the right in Figure 2.1, the electron-hole representation has
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been invoked. The excited electron is now represented by a quasi-electron (the full circle) and the

set of the N−1 electrons is now represented by the hole (the empty circle).

2.2.3.1 Second quantization for the electron-hole picture

In analogy to the electronic picture, second quantization can be useful in expressing quantum

mechanical systems in the electron-hole picture.

2.2.3.1.1 Creation and annihilation operators

In analogy to the electronic system, creation and annihilation operators may be defined. The

quasi-particles electron and hole are both fermion-type particles.[249? ] The rules as related in

subsection 2.2.1 apply. In the electron-hole picture, the reference space is a direct product of the

Fock space for the electron and the Fock space for the hole,

|Φk〉= |Φe〉⊗ |Φh〉. (2.73)

The creation and annihilation operators for the electron will be denoted

e†
i |〉= |χ

e
i 〉 (2.74)

ei|χe
i 〉= |〉. (2.75)

The creation and annihilation operators for the hole will be denoted

h†
i |〉= |χ

h
i 〉 (2.76)
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hi|χh
i 〉= |〉. (2.77)

2.2.3.1.2 Important relations

The relationships between the electron and hole creation and annhilation operators are given

as[249]

[ek,e
†
l ]+ = δkl, (2.78)

[ek,el]+ = [e†
k ,e

†
l ]+ = 0, (2.79)

[hk,h
†
l ]+ = δkl, (2.80)

[hk,hl]+ = [h†
k ,h

†
l ]+ = 0, (2.81)

[ek,hm]+ = [ek,h†
m]+ = [e†

k ,hm]+ = [e†
k ,h

†
m]+ = 0, (2.82)

where

[A,B]+ = AB+BA. (2.83)

2.2.3.1.3 Electron and hole operators

The key difference from the single component second quantization is the appearance of an

additional two-body operator. Observe that the electron-electron (and hole-hole) Coulomb inter-

action terms has the property that the order of the annihilation operators is reversed in Eq. (2.92).

However, since the electron and holes are different particle types, the two-body electron-hole op-
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erator is

∑
i ji′ j′
〈i ji′ j′|ε−1r−1

eh |i ji′ j′〉e†
i e jh

†
i′h j′. (2.84)

With the tool of second quantization for the electron and hole picture, the electron-hole quasipar-

ticle transformation will be developed in the next section.

2.2.3.2 Electron-hole quasiparticle transformation

The electron-hole quasiparticle transformation may be shown in the following manner. In

excited state, the excited electron is higher than the Fermi level, as seen in Figure 2.1. With that in

mind, the Hamiltonian for the simple system in the figure is

H = ∑
k<kF

εk− ∑
k<kF

εkh†
khk + ∑

k>kF

e†
kek, (2.85)

where kF is the Fermi energy level. Beginning with the electronic Hamiltonian

H =
∞

∑
pq
〈p|h(1)|q〉p†q+

∞

∑
pqrs
〈pq|rs〉p†q†sr. (2.86)

The one-body operator will be expressed as

∞

∑
pq
〈p|h(1)|q〉p†q = ∑

i j
〈i|h(1)| j〉i† j+∑

ab
〈a|h(1)|b〉a†b, (2.87)

where indices of i, j are over occupied states and indices of a,b are unoccupied states. By changing

the operators for the occupied states (in the electronic picture) to hole operators and the unoccupied
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states (corresponding to quasielectron) gives

∞

∑
pq
〈p|h(1)|q〉p†q = ∑

i j
〈i|h(1)| j〉h†

i h j +∑
ab
〈a|h(1)|b〉e†

aeb. (2.88)

The two-particle term leads to a much more complicated set of equations. The equations are given

as[251]

∞

∑
pqrs
〈pq|rs〉p†q†sr =

1
2 ∑

abcd
〈ab|cd〉{a†

aa†
badac}+

1
2 ∑

i jkl
〈i j| jl〉{a†

i a†
jalak}+2 ∑

iab j
〈ia|b j〉{a†

i a†
aa jab}

+ ∑
aibc
〈ai|bc〉{a†

aa†
i acab}+ ∑

i jka
〈i j|ka〉{a†

i a†
jakaa}+ ∑

abci
〈ab|ci〉{a†

aa†
baiac}

+ ∑
ia jk
〈ia| jk〉{a†

i a†
aaka j}+

1
2 ∑

abi j
〈ab|i j〉{a†

aa†
ba jai}+

1
2 ∑

i jab
〈i j|ab〉{a†

i a†
jabaa},

(2.89)

where the notation {· · ·} indicates that the string of creation and annihilation operators must be

placed in normal order. The terms on the left-hand side in Eq. (2.89) can also be expressed in

diagrams which can be seen in Figure 2.2 Eq. (2.89) will now be written in terms of electron and

hole creation and annihilation operators

∞

∑
pqrs
〈pq|rs〉p†q†sr =

1
2 ∑

abcd
〈ab|cd〉{e†

ae†
bedec}+

1
2 ∑

i jkl
〈i j| jl〉{hih jh

†
l h†

k}+2 ∑
iab j
〈ia|b j〉{hie†

ah†
jeb}

+ ∑
aibc
〈ai|bc〉{e†

ahih†
ch†

b}+ ∑
i jka
〈i j|ka〉{e†

i e†
jekh†

a}+ ∑
abci
〈ab|ci〉{e†

ae†
beih†

c}

+ ∑
ia jk
〈ia| jk〉{hihah†

kh†
j}+

1
2 ∑

abi j
〈ab|i j〉{e†

ae†
bh†

jh
†
i }+

1
2 ∑

i jab
〈i j|ab〉{hih jebea},

(2.90)
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Figure 2.2: The two-body terms expressed in diagrams. The numbers under each diagram corre-
spond to the excitation levels.
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The only terms which contribute to the group state are those with excitation index 0 (see Fig-

ure 2.2). The full electron-hole Hamiltonian will shown in the next section.

2.2.3.3 Electron-Hole Hamiltonian

The exact transformation of the excited electron state into the electron-hole representation

gives, as a consequence, the electron-hole Hamiltonian which describes the electron, the hole, and

the interactions between the electron and the hole and is given as[40, 126, 128, 205, 206, 212, 215,

216, 218, 252, 253, 254, 255, 256, 257, 258]

H = ∑
i j
〈i|−h̄2

2me
+ ve

ext| j〉e
†
i e j (2.91)

+∑
i j
〈i|−h̄2

2mh
+ vh

ext| j〉h
†
i h j

+ ∑
i ji′ j′
〈i ji′ j′|ε−1r−1

eh |i ji′ j′〉e†
i e jh

†
i′h j′

+∑
i jkl

wee
i jkle

†
i e†

jelek +∑
i jkl

whh
i jklh

†
i h†

jhlhk

= T̂e +V̂ee +V̂ ext
e︸ ︷︷ ︸

electronic

+ T̂e +V̂hh +V̂ ext
h︸ ︷︷ ︸

hole

+ V̂eh︸︷︷︸
interaction

where T̂e is the electron kinetic energy operator, V̂ee is the electron-electron interaction potential,

V̂ ext
e is the electron external potential (nuclear-electron interaction) term, T̂h is the hole kinetic en-

ergy operator, V̂hh is the hole-hole interaction potential, V̂ ext
h is the hole external potential (nuclear-

hole interaction) term, and V̂eh is the electron-hole Coulomb interaction term. In this presentation,

the second quantization version of the Hamiltonian is used. Second quantization for electron-hole

systems will be presented in subsection 2.2.5.
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2.2.3.3.1 Methods for electron-hole systems

There are a number of methods for performing calculations within the electron-hole regime.

Electron-hole systems have been investigated using various theoretical techniques including per-

turbation theory,[19, 107, 108, 109, 110, 111] variational techniques,[112, 113, 114, 115, 116, 117,

118] and configuration interaction method.[119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]

2.2.3.4 Electron-hole correlation

The V̂eh term couples the electron and hole coordinates and is responsible for electron-

hole correlation. Electron-hole correlation has been treated by a number of traditional methods

including Hartree-Fock, configuration interaction,[127, 128, 204, 205] many-body perturbation

theory,[259, 260, 261] many-body Green’s function theory,[200, 203, 261, 262, 263] and quantum

Monte Carlo.[210, 211, 212, 213, 264, 265, 266, 267, 268] The inherent physics of the electron-

hole system leads to the systems requiring strong correlation effects. The attractive Coulomb

interaction between the electron and hole should lead to enhancement of the probability of find-

ing electron and hole particles at short spatial separations. Highly accurate determination of

the properties of electron-hole systems should incorporate this requirement. Theoretical inves-

tigation of electron-hole correlation has been performed using various methods such as time-

dependent density functional theory (TDDFT)[186, 187, 188, 189, 190, 191, 192, 193], pertur-

bation theory[194], GW combined with Bethe-Salpeter equation[195, 196, 197, 198, 199, 200,

201, 202, 203], configuration interaction[81, 119, 128, 204, 205, 206, 207, 208, 209], quantum

Monte Carlo[206, 210, 211, 212], path-integral Monte Carlo[213, 214], and explicitly correlated

Hartree-Fock method.[40, 215, 216, 217, 218]
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2.2.3.5 Explicitly correlated electron-hole methods

In this work, the methods will be explicilty correlated electron-hole methods. In each of

these methods, the electron-hole correlation will be explicitly addressed by incorporation of the

electron-hole interaction into the wave function. Of particular use in this work is the electron-hole

explicitly correlated Hartree-Fock (XC)[215, 216, 217] and Full Configuration Interaction.[40]

2.2.3.5.1 Ansatz

The ansatz for an XC method is

Ψeh−XCHF = GΦ
eh, (2.92)

where G is the explicit correlation operator and Φeh is a reference wave function. The reference

wave function can be a Hartree-Fock (HF) wave function, Full Configuration Interaction (FCI),

or nearly any other multi-component wave function. The explicit correlation operator can lead to

many possible methods.

2.2.3.5.2 Explicit correlation operator

The explicit correlation operator G (or sometimes called geminal operator) is defined as[40,

215, 216, 217]

G =
Ne

∑
i=1

Nh

∑
j=1

g(i, j), (2.93)
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where Ne is the number of electrons, Nh is the number of holes, and

g(i, j) =
Ngem

∑
k=1

bk exp(−γkr2
i j), (2.94)

where Ngem is the number of geminal parameter sets and {bk,γk} are sets of geminal parameters.

This is called an explicitly correlated method because the electron-hole separation distance reh

is found directly in the operator. Explicit correlation operators of this form have been shown to

improve:

1. the quality of the wave function at small electron-hole separation distances.[215, 216, 218]

2. speed the convergence of energy with smaller basis sets.[40, 217]

Each of these qualities helps greatly in the calculation of highly accurate electron-hole properties.

2.2.3.5.3 Electron-hole explicitly correlated Hartree-Fock

The multi-component Hartree-Fock reference wave function is a single Slater determinant

for the electron and the hole,[216]

Φ
eh = Φ

e
Φ

h. (2.95)

The ansatz for the electron-hole explicitly correlated Hartree-Fock method is[215, 216, 217]

Ψeh−XCHF = GΦ
eh. (2.96)
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The energy for the method is determined by the minimization

Eeh−XCHF = min
G,Φe,Φh

〈GΦeΦh|H|GΦeΦh〉
〈GΦeΦh|GΦeΦh〉

. (2.97)

This minimization may be done by several methods. A very useful method is to use the transfor-

mations

H̃ = G†HG, (2.98)

1̃ = G†G, (2.99)

so that

Eeh−XCHF = min
G,Φe,Φh

〈ΦeΦh|H̃|ΦeΦh〉
〈ΦeΦh|1̃|ΦeΦh〉

. (2.100)

This allows the search to be performed with a relatively simple wave function, while taking advan-

tage of the explicit correlation operator.[215, 216, 217]

2.2.3.5.4 Electron-hole explicitly correlated Full Configuration Interaction

The choice of the reference wave function in this method is the Full Configuration Interaction

(FCI) wave function. The form of the wave function is the direct product of FCI wave functions

for the electron and the hole[40]

Φ
eh
k = Φ

e
i ⊗Φ

h
j . (2.101)
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The FCI method for multicomponent methods shares the conceptually simple approach to the

correlation (in this case, electron-hole) problem. However, due to the nature of FCI wave functions,

the untenability of the size of the FCI matrix is reached sooner than in the electron systems since

the number of matrix elements grows as the product of two factorial increase quantities. The

addition of an explicit correlation operator leads to the explicitly correlated FCI method (XCFCI).

The full details of the XCFCI method are given in subsection 3.2.2.

2.2.3.5.5 Particular Applications

The XCHF and related methods have been used to study a wide of variety of systems. Elward

and co-workers have studied the electron-hole recombination in CdSe quantum dots.[216] Elward

and Chakraborty have studied the effect of dot size on both exciton binding energy and electron-

hole recombination probability.[215] Blanton and co-workers have use the explicitly correlated

Full Configuration Interaction to study the effect of a homogeneous electric field on the exciton

binding energy and electron-hole recombination probability.[40]

2.2.3.6 Electron-hole pair in a parabolic confinement

A system that has been studied extensively for the application of electron-hole systems is the

electron-hole pair in a parabolic well. The Hamiltonian for such a system is given by

Ĥ =− h̄2

2me
∇

2
e +

1
2

ker2
e +−

h̄2

2mh
∇

2
h−

1
εreh

1
2

khr2
h (2.102)

= Ĥe + Ĥh +V̂eh, (2.103)
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where me is the mass of the quasi-electron, mh is the mass of the hole, ke is the force constant for

the electron, kh is the force constant for the hole, and ε is the dielectric constant for the material.

This is an example of the effective mass approximation. In the effective mass approximation,

the properties of the material are simulated by using an effective mass (as scaled mass relative

to the mass of the free electron). The inherent damping of the electron-hole interaction in the

material is simulated using the dielectric constant ε . This parabolic potential system has been

extensively studied and exact solutions are known in certain limits, which allows for accurate

benchmarking.[269, 270, 271, 272, 273, 274, 275, 276, 277]

2.2.3.7 Interesting properties of electron-hole systems

There are a number of interesting properties of electron-hole systems which may be studied.

In the current work, exciton binding energy, electron-hole recombination probability, electron-hole

correlation length, and electron-hole separation have been studied.

2.2.3.7.1 Exciton binding energy

Exciton binding energy is the amount of energy required to completely dissociate a bound

electron-hole pair (exciton). Mathematically, it expressed as

EB = Eni−E int, (2.104)

where EB is the exciton binding energy, Eni is the non-interacting energy (energy for a completely

dissociated system), and E int is the interacting energy. Exciton binding energy has been studied by

a number of groups.[40, 217, 278, 279]
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2.2.3.7.2 Electron-hole recombination probability

Electron-hole recombination probability is a measure of the probability of finding the elec-

tron and hole within a small (or directly “on-top”) volume. While measuring the lifetime of the

electron-hole pair is difficult in the electron-hole picture, determination of the electron-hole recom-

bination probability is approachable. The electron-hoe recombination probability has been studied

by several groups.[40, 205, 216, 217]

2.2.3.7.3 Electron-hole separation distance

The average separation of the electron and hole is often an interesting and useful property to

study. Often, either the expectation value of the distance 〈|re− rh|〉 or the expectation value of the

square of the separation will be studied.

2.2.3.7.4 Electron-hole correlation length

Electron-hole correlation length is this context is quantity that has been determined through a

new definition in this work. In general, the electron-hole correlation length has been explored with

many definitions as a measure of the influence that the attractive interaction between the electron

and hole has on the properties of the system. The electron-hole correlation length is the subject of

this chapter.

2.2.4 Electron-hole cumulant

The interaction between the quasi-particles in the quantum dot is described the electron-hole

Hamiltonian,[40, 126, 128, 205, 206, 212, 215, 216, 218, 252, 253, 254, 255, 256, 257, 258] which
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has the following general expression

H = ∑
i j
〈i|−h̄2

2me
∇

2
e + ve

ext| j〉e
†
i e j (2.105)

+∑
i j
〈i|−h̄2

2mh
∇

2
h + vh

ext| j〉h
†
i h j

+ ∑
i ji′ j′
〈i ji′ j′|ε−1r−1

eh |i ji′ j′〉e†
i e jh

†
i′h j′

+∑
i jkl

wee
i jkle

†
i e†

jelek +∑
i jkl

whh
i jklh

†
i h†

jhlhk.

We define the electron-hole wave function for a multiexcitonic system consisting of Ne and Nh

number of electrons and holes, respectively by Ψeh(xe
1, . . . ,x

e
Ne
,xh

1, . . . ,x
h
Nh
), where x is a compact

notation for both the spatial and spin coordinate of the particles. The spin-integrated 2-particle

reduced density can be obtained from the electron-hole by integration over the Ne−1 and Nh−1

coordinates as shown in the following equation

ρeh(re,rh) =
NeNh

〈Ψeh|Ψeh〉

∫
dse

1dsh
1dxe

2, . . . ,x
e
Ne

xh
2, . . . ,x

h
Nh

Ψ
∗
ehΨeh (2.106)

where, integration over the spin coordinate s1 is performed for both electron and hole. The single-

particle density is obtained from the 2-particle density using the sum-rule condition[280]

ρe(re) =
1

Nh

∫
drhρeh(re,rh), (2.107)

ρh(rh) =
1

Ne

∫
dreρeh(re,rh). (2.108)
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We define the electron-hole cumulant as the difference between the 2-particle density and the

product of the 1-particle electron and hole densities as shown in the following equation

q(re,rh) = ρeh(re,rh)−ρe(re)ρh(rh). (2.109)

This definition is analogous to the definition used by Mazziotti et al.[281] in electronic structure

theory. By construction, the cumulant contains information about correlation between the two

particles. Consequently, the Coulomb contribution of the electron-hole correlation energy can be

directly expressed in terms of the electron-hole cumulant and is given by the following expression

〈Ψeh|Veh|Ψeh〉= 〈ρehε
−1r−1

eh 〉 (2.110)

= Jeh + 〈q(re,rh)ε
−1r−1

eh 〉,

where ε is the dielectric constant and Jeh is the classical Coulomb electron-hole energy

Jeh = 〈ρeρhε
−1r−1

eh 〉. (2.111)

The cumulant has an important property that its integration over all space should be zero due to the

density sum-rule conditions[280]

∫
dredrhq(re,rh) = 0. (2.112)

We use this relationship for the definition of the electron-hole correlation length.
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2.2.5 Electron-hole cumulant in density matrices

The electron-hole cumulant may be expressed in terms of density matrices. The electron-

hole reduced density matrix is

Γ
eh
i jab = 〈Ψ|e

†
i e jh†

ahb|Ψ〉. (2.113)

The single-component electron and hole density matrices are

Γ
e
i j = 〈Ψ|e

†
i e j|Ψ〉, (2.114)

Γ
h
ab = 〈Ψ|h†

ah j|Ψ〉 (2.115)

The cumulant is then

qi jab = Γ
eh
i jab−Γ

e
i jΓ

h
ab (2.116)

2.2.6 Intracular and extracular coordinates

Beginning with Coleman’s initial definition of the the intracule and extracule matrices in

terms of the center of mass (extracule) and relative motion (intracule) coordinates,[282] the concept

of the intracule and extracule in the regime of electronic systems has been previously explored in

earlier studies.[282, 283, 284, 285, 286, 287, 288] The intracular and extracular coordinates for the
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eh-system are defined by

reh = re− rh (2.117)

R =
1
2
(re + rh) . (2.118)

The integral of the cumulant is expressed in terms of these coordinates

∫
dredrhq(re,rh) =

∫
dreh

∫
dRq(reh,R) (2.119)

=
∫

∞

0
drehr2

eh

∫
dΩsinθ

∫
dRq(reh,R) (2.120)

=
∫

∞

0
drehr2

ehqr(reh) (2.121)

In the above expression, the integral over the intracular coordinate reh is transformed into spherical

polar coordinates. The function qr is the spherically averaged radial cumulant and the integral of

the radial cumulant over a finite limit is used to define the following function I(d)

I(d) =
∫ d

0
drehr2

ehqr(reh). (2.122)

The zero-integral property of q (defined in Eq. (2.112)) ensures that this integral goes to zero at

large d

lim
d→∞

I(d) = 0. (2.123)
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Here, we use I(d) to define the electron-hole correlation length. Specifically, the electron-hole

correlation length (rc) is defined as the value of d at which the value of I(d) is zero

|I(rc)|= 0 rc << ∞. (2.124)

The description of the electron-hole wave function used for the calculation of the radial cumulant

is presented in the following section.

2.2.7 Explicitly correlated electron-hole wave function

We have used the electron-hole explicitly correlated Hartree-Fock method (eh-XCHF) for

obtaining the electron-hole wave function. This method has been used in earlier work for the

computation of exciton binding energies and electron-hole recombination probabilities in quantum

dots.[40, 215, 216, 217, 218] A brief summary of the eh-XCHF method is presented here and the

implementation details of this method can be found in work by Elward and co-workers.[216, 217,

218] The ansatz of the eh-XCHF wave function consists of multiplying the mean-field electron-

hole reference wave functions with an explicitly correlated function G as shown in the following

equation

Ψeh−XCHF = GΦeΦh, (2.125)

where G is the geminal operator

G =
Ne

∑
i=1

Nh

∑
j=1

g(ri j), (2.126)
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g(reh) =
Ng

∑
k=1

bk exp(−γkr2
eh). (2.127)

The eh-XCHF method is a variational method in which the correlation function G and the reference

wave function are obtained by minimizing the total energy

Eeh−XCHF = min
G,Φe,Φh

〈GΦ0|H|GΦ0〉
〈GΦ0|GΦ0〉

, (2.128)

where Φ0 = ΦeΦh. To perform the above minimization, it is more efficient to work with the

following congruent-transformed operators

H̃ = G†HG, (2.129)

1̃ = G†G. (2.130)

This transformation is particularly important for the calculation of the 2-particle reduced den-

sity matrix in the present work. The set of parameters {bk,γk} in G were obtained by non-linear

optimization, and for a given set of these parameters, the minimization over the reference wave

function was performed by determining the self-consistent solution of the coupled Fock equations

F̃eCe = S̃eCeλe, (2.131)

F̃hCh = S̃hChλh. (2.132)

The tilde in the above expressions represent that the Fock and the overlap matrices incorporate the

transformed operators defined in Eq. (2.129).
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The transformed operator 1̃ can be written as a sum of operators as shown below

1̃ = G†G (2.133)

= ∑
ii′

g(i, i′)∑
j j′

g( j, j′) (i, j = 1, . . . ,Ne; i′, j′ = 1, . . . ,Nh) (2.134)

= ∑
ii′

g(i, i′)g(i, i′)+ ∑
i6= j,i′

g(i, i′)g( j, i′) (2.135)

+ ∑
i′ 6= j′,i

g(i, i′)g(i, j′)+ ∑
i 6= j,i′ 6= j′

g(i, i′)g( j, j′).

The above expression can be written in a compact notation as a sum of 2, 3, and 4-particle operators

G†G = Ω11 +Ω21 +Ω12 +Ω22. (2.136)

The 2-particle density for the eh-XCHF wave function can be expressed in terms of these operators

as shown below

ρeh(re,rh) =
NeNh

〈Ψeh−XCHF|Ψeh−XCHF〉
(2.137)

×〈Ψ∗eh−XCHFΨeh−XCHF〉s1,s′1,2,2
′,...,Ne,Nh

,

where the subscript in the above expression is a compact notation for integration over the remaining

coordinates described in Eq. (2.106). Substituting the expression from Eq. (2.136), we get the

following expression

ρeh(re,rh) =
NeNh

〈Φ0|1̃|Φ0〉
(2.138)
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×〈Φ∗0(Ω11 +Ω12 +Ω21 +Ω22)Φ0〉s1,s′1,2,2
′,...,Ne,Nh

.

For a multiexcitonic system all 2, 3, and 4-particle operators should be used for the computation of

the 2-particle density. In a related work on many-electron system, we have shown that it is possible

to avoid integration over higher-order operators by using the diagrammatic summation technique

and a similar strategy can be used for multiexcitonic systems as well.[289]

2.2.8 Relation to uncorrelated transition density matrices

One of the important features of the correlation function is that it allows for a compact

representation of the 2-particle density matrix in the position representation. The relationship can

be readily seen by expanding the eh-XCHF wave function in the Slater determinant basis

GΦ0 =
∞

∑
ii′
〈Φe

i Φ
h
i′|G|Φ

e
0Φ

h
0〉︸ ︷︷ ︸

cii′

Φ
e
i Φ

h
i′ =

∞

∑
ii′

cii′Φ
e
i Φ

h
i′. (2.139)

Substituting Eq. (2.139) in the expression of ρeh gives

ρeh(re,rh) =
NeNh

〈Φ0|1̃|Φ0〉
(2.140)

×〈
∞

∑
i j

∞

∑
i′ j′

c∗ii′c j j′Φ
e∗
i Φ

h∗
i′ Φ

e
jΦ

h
j′〉s1,s′1,2,2

′,...,Ne,Nh

=
NeNh

〈Φ0|1̃|Φ0〉

∞

∑
i j

∞

∑
i′ j′

c∗ii′c j j′d
e
i jd

h
i′ j′, (2.141)
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where the transition density matrix di j is defined as

de
i j(re) = 〈Φe∗

i Φ
e
j〉s1,2,...,Ne . (2.142)

It is seen from Eq. (2.140) that the 2-particle density obtained from the eh-XCHF wave function is

equivalent to the infinite-order expansion in terms of the transition density matrices.

2.2.9 Determination of geminal coefficient using Gaussian trial wave function

In general, the determination of the correlation length is a computationally intensive process,

however, the expression for the radial cumulant can be derived for a model trial Gaussian wave

function. This derivation is important because it give useful insight into the inter-relationship

between the correlation length rc and the geminal parameters. In subsection 2.4.2, the result from

this derivation is used for construction of eh-XCHF wave function.

The model trial wave function consist of only one set of optimizable geminal parameters and

is defined as

ΨT(re,rh) = (1+be−γr2
eh)e−αer2

e e−αhr2
h , (2.143)

where, the electron and hole are represented by a single Gaussian basis function. The normalization

can be expressed as polynomial in b and is given by the following expression Setting

〈ΨT|ΨT〉= d0 +d1b+d2b2, (2.144)
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where the terms

d0 =

(
π

2αe

) 3
2
(

π

2αh

) 3
2

(2.145)

d1 =

 π
√

2
√

2αe + γ

√
αeγ

2αe+γ
+αh

3

(2.146)

d2 =

 π

2
√

αe + γ

√
αeγ

αe+γ
+αh

3

(2.147)

The two-particle density is given as

ρ2(re,rh) =
Ψ2

T
〈ΨT|ΨT〉

(2.148)

=
1

〈ΨT|ΨT〉
(1+2be−γr2

eh +b2e−2γr2
eh)e−2αer2

e e−2αhr2
h . (2.149)

The 1-particle for the electron density ρe is obtained by integrating over the hole coordinates. For

the above equation, the expression ρe can be expressed as a sum of three Gaussian functions

ρe(r) =
1

〈ΨT|ΨT〉
e−2αer2

(c0 +2c1be−p1r2
+ c2b2e−p2r2

) (2.150)

=
1

〈ΨT|ΨT〉
e−2αer2

2

∑
n=0

bn fn(r) (2.151)

where the coefficients are given as

c0 =

(
π

2αh

)3/2

(2.152)

c1 = 2
(

π

2αh + γ

)3/2

(2.153)
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c2 =

(
π

2αh +2γ

)3/2

(2.154)

p0 = 0 (2.155)

p1 =
2αhγ

2αh + γ
(2.156)

p2 =
4αhγ

2αh +2γ
(2.157)

Combining Eq. (2.149) and (2.151), the cumulant is given by the following equation

q(re,rh) =
1

〈ΨT|ΨT〉
e−2αer2

e e−2αhr2
h

[
(1+2be−γr2

eh +b2e−2γr2
eh)− 1

〈ΨT|ΨT〉

2

∑
i, j=0

bib j fi(re) f j(rh)

]

(2.158)

=
1

〈ΨT|ΨT〉2
e−2αer2

e e−2αhr2
h

[
〈ΨT|ΨT〉(1+2be−γr2

eh +b2e−2γr2
eh)−

2

∑
i, j=0

bib j fi(re) f j(rh)

]

(2.159)

To simplify the subsequent step, we evaluate the cumulant at re = 0 and perform integration over

the hole coordinates as shown in the following expression

∫ rc

0
drr2

∫
dΩq(0,r) = 0 (2.160)

Preforming the radial integration using the integration rule

I(α,rc) =
∫ rc

0
r2e−αr2

dr (2.161)

=

√
π

4
√

α3
Erf[rc

√
α]− rc

2α
e−αr2

c , (2.162)
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and substituting the Eq. (2.144) in Eq. (2.160), we get the following equations that relates the

geminal parameters with the correlation length.

(I(2αh,rc)+2bI(γ +2αh),rc)+b2I(2(γ +αh),rc))(d0 +d1b+d2b2) (2.163)

−(ce
0 +bce

1 +b2ce
2)(c

h
0I(2αh,rc)+ ch

1bI(p1 +2αh,rc)+ ch
2b2I(p2 +2αh,rc)) = 0

We have used this relationship to obtain geminal parameters using correlation length and the details

are provided in subsection 2.4.2.

2.3 Computational method

The method described in subsection 2.2.6 was used for calculating electron-hole correla-

tion length in CdSe quantum dots in the range of 1-20 nm in diameter. We are interested in the

effect of dot size on the electron-hole correlation length for a single electron-hole pair in CdSe

quantum dots. For a single electron-hole pair, the higher-order operators in Eq. (2.138) rigor-

ously vanish from the expression. This provides considerable simplification in the calculation of

the 2-particle density. Because of the dot size, application of either DFT or atom-centered pseu-

dopotential approach is computationally prohibitive. To make the computation tractable, we have

used a parabolic confining potential in the electron-hole Hamiltonian described in Eq. (2.105).

Parabolic confinement potential in quantum dots has been used extensively for various proper-

ties such as total exciton energy[270, 290], exciton dissociation[291], exciton binding energy[215,

216, 218, 292] eh-recombination probability[215, 216, 217], effect of magnetic[107, 293, 294,

295, 296, 297] and electric fields[2, 19, 40, 107, 298], exciton-polariton condensate[299], linear

optical properties[300, 301], optical rectification[302], non-linear rectification[2], dynamics[303],
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eh-correlation energy[304, 305], resonant tunneling[306], collective modes[307], and thermody-

namic properties[308]. The external potential for the electron and hole quasiparticle was defined

as

vext
α =

1
2

kα |rα |2 α = e,h (2.164)

where kα is the force constant which determines the strength of the confinement potential. We

have used a particle-number based search procedure for determination of the force constant kα .

The central idea of this approach is to find the value of kα such that the computed 1-particle

electron and hole densities are confined within the volume of the quantum dot. This is obtained by

performing the following minimization

min
kmin

α

(
Nα −

∫ Ddot
2

0
drr2

∫
dΩρα(r)

)2

, (2.165)

where Ddot is the diameter of the quantum dot and Ω is the angular coordinate. The values of the

force constants used for each dot are listed in Table 2.1. The kinetic energy operator was computed

using the electron and hole effective masses of 0.13 and 0.38 atomic units, respectively.[253] The

interaction between the electrons and hole was described by screened Coulomb potential. We have

used the size and distance dependent dielectric function ε(r,Rdot), which was developed by Wang

and Zunger for CdSe.[309] The electron and hole molecular orbitals in Φ0 were represented using a

linear combination of Gaussian type orbitals (GTOs) and the expansion coefficients were obtained

by the solving the coupled Fock equations shown in Eq. (2.131). The basis used was a single

S Cartesian GTO was used and the exponents of the basis functions are listed in Table 2.2. The
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Table 2.1: Force constants for CdSe quantum dots.
Dot diameter (nm) ke (atomic units) kh (atomic units)

1.24 2.66×10−2 9.10×10−3

1.79 6.22×10−3 2.13×10−3

2.76 1.10×10−3 3.76×10−4

2.98 8.10×10−4 2.77×10−4

3.28 5.52×10−4 1.89×10−4

3.79 3.09×10−4 1.06×10−4

4.80 1.20×10−4 4.12×10−5

5.00 1.02×10−4 3.51×10−5

6.60 3.40×10−5 1.16×10−5

10.00 6.41×10−6 2.19×10−6

15.00 1.26×10−6 4.33×10−7

20.00 4.01×10−7 1.37×10−7

use of GTOs is especially convenient because the integrals involving the GTOs and the Gaussian

correlation function, G, are known analytically.[310, 311, 312, 313] For a given value of re, the

1-particle density ρ was calculated analytically. The integration over the intracular coordinate in

Eq. (2.122) was performed numerically. The correlation function, G, was expanded as a linear

combination of six Guassian-type geminal functions[215, 216, 218] and the set of {bk,γk} param-

eters were optimized for each dot size. The first set of geminal parameters was set to b1 = 1 and

γ1 = 0 for all CdSe dot diameters. For each dot diameter, five sets of geminal parameters were de-

termined sequentially by minimizing the energy. The values of the geminal parameters are found

in Table 3.3.
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Table 2.2: Exponent used in GTO basis e−αr2
.

Dot diameter (nm) α (atomic units)
1.24 2.94×10−2

1.78 1.42×10−2

2.76 5.98×10−2

2.98 5.13×10−2

3.28 4.24×10−3

3.79 3.17×10−3

4.80 1.98×10−3

5.00 1.83×10−3

6.60 1.05×10−3

10.00 4.57×10−4

15.00 2.03×10−4

20.00 1.14×10−4

2.4 Results

2.4.1 Calculation of electron-hole correlation length

The electron-hole correlation length was obtained by integration of the radial cumulant as

described in Eq. (2.122). In Figure 2.3, the integral of the cumulant, I(d), for three different

dot sizes is presented. As expected, the integral goes to zero at large distances (high d values)

and the distance at which the integral converges to zero is defined as the electron-hole correlation

length rc. The determination of an analytic form for the cumulant in Eq. (2.158) has allowed the

plotting of the cumulant for as function of the magnitudes of the length of re and rh and may be

seen in Figure 2.4, Figure 2.5, and Figure 2.6. In each case, there is a relatively small region with

maximum enhancement (positive value of the cumulant) with a correponding region of maximum

reduction.

The calculated electron-hole correlation lengths are presented in Table 2.4. We find that,

in all cases, the correlation length increases with increasing dot diameter. Another quantity that
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Figure 2.3: The value of I(d) as d, the upper limit in Eq. (2.122), is varied for the 1.78 nm, 6.6
nm, and 20 nm diameter CdSe quantum dots.

is important for investigating electron-hole correlation is the the length scale associated with the

first node of the radial cumulant. We define this quantity as rnode and the calculated values are

presented in Table 2.4. The maximum of the I(d) in Figure 2.3 corresponds to rnode. Because

the interaction between the electron and hole is attractive, we expect an enhancement in the pair

density as compared to mean-field density at small reh distances. This phenomenon is opposite to

the correlation hole observed in electron-electron interaction, in which small ree shows a decrease

in correlated electron-pair density as compared to uncorrelated electron density. The rnode can be
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Figure 2.4: The cumulant for the 1.24 nm CdSe quantum dot plotted using the analytic expression
in Eq. (2.158). The axes are in atomic units.
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Figure 2.5: The cumulant for the 10 nm CdSe quantum dot plotted using the analytic expression
in Eq. (2.158). The axes are in atomic units.
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Figure 2.6: The cumulant for the 20 nm CdSe quantum dot plotted using the analytic expression
in Eq. (2.158). The axes are in atomic units.
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interpreted as the effective radius of the sphere that encloses the region of enhanced probability

density. As seen from Table 2.4, rc and rnode are similar in magnitude for small dot sizes, but these

quantities differ significantly for larger dots.

2.4.2 Construction of eh-XCHF wave function without geminal optimization

The optimization of the geminal parameters in the eh-XCHF method is computationally

intensive process. Therefore, determination of geminal parameters that do not require energy min-

imization step can significantly reduce the overall computational cost. In this work, we have used

a correlation-length based approach to obtain the geminal coefficient. The central idea of this ap-

proach is to use obtain approximate correlation lengths for different dot sizes by interpolation and

then use the relationship between correlation length and geminal parameters given in Eq. (2.163),

to obtain the corresponding {b,γ} values. From the range of dot size 1-20 nm, we have selected

three dots with diameters 1.24 nm, 10 nm, and 20 nm for interpolation. The geminal parameters

for these three dots were obtained by minimizing the eh-XCHF energy and the correlation lengths

were obtained from the eh-XCHF wave functions. For the remaining dots in the set, the correlation

lengths were determined by linear interpolation between the computed correlation lengths. In the

next step, the interpolated correlation lengths in Eq. (2.163) and was used to obtain the geminal

parameters for the remaining dots by solving the equation numerically. The quality of the gemi-

nal parameters obtained using the correlation length based and energy minimized based methods

were analyzed by comparing the exciton binding energies obtained using the two methods and the

results are presented in Table 2.5. The exciton binding energies calculated using the correlation

length method were found to be in good agreement with the energy-minimized results. These
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results show that correlation length based eh-XCHF wave function can deliver accurate exciton

binding energies at reduced computational cost.

2.5 Conclusion

In conclusion, we have presented a method for calculating electron-hole correlation length in

semiconductor quantum dots. We have used the cumulant derived from the electron-hole 2-particle

density as the central quantity for defining the correlation length. There are two key features

of this method. First, the 2-particle reduced density was obtained from an explicitly correlated

electron-hole wave function. Consequently, the reduced density matrix and the corresponding

cumulant were explicit functions of the electron-hole separation distance. Second, the calculation

of the correlation length was not based on the nodes of the cumulant but was derived from the

exact sum rule relationship satisfied by all N-representable cumulants. The developed method was

used for calculation of electron-hole correlation length for a series of CdSe quantum dots. The

analytical relationship between the correlation length and the geminal parameters were derived

and the equation was numerically inverted to obtain geminal parameters for a given correlation

length. The results from this study show that correlation-length based explicitly correlated wave

functions can give results that are comparable to the energy-minimized wave functions at a reduced

computational cost.

The electron-hole correlation length provides a natural length scale for investigating electron-

hole correlation in nanoparticles. We envision that in future work, the electron-hole correlation

length will be used in the construction of compact explicitly correlated wave functions and also for

developing multi-component electron-hole density functionals. [219]
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Table 2.4: Electron-hole correlation lengths and rnode for CdSe quantum dots.
Dot Diameter Correlation length rnode

(nm) (nm) (nm)
1.24 0.381 0.283
1.78 0.683 0.431
2.76 1.905 0.595
2.98 2.117 0.653
3.28 2.572 0.732
3.79 2.778 0.833
4.80 3.293 1.082
5.00 3.307 1.124
6.60 4.047 1.653

10.00 6.156 2.749
15.00 10.164 3.257
20.00 11.930 4.733

Table 2.5: Exciton binding energies calculated using energy-minimized and correlation-length
based Gaussian-type geminal G function.

Dot Diameter Energy-minimized based G Correlation-length based G
(nm) (eV) (eV)
1.24 1.260 1.259
1.78 0.759 0.752
2.76 0.430 0.426
2.98 0.391 0.387
3.28 0.347 0.342
3.79 0.290 0.285
4.80 0.219 0.212
5.00 0.209 0.202
6.60 0.151 0.144

10.00 0.095 0.092
15.00 0.061 0.052
20.00 0.046 0.042
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Chapter 3: Development of polaron-transformed explicitly correlated full con-

figuration interaction method for investigation of quantum-confined

Stark effect in GaAs quantum dots

3.1 Introduction

3.1.1 Background

The influence of an external electric field on optical properties of semiconductors has been

studied extensively using both experimental and theoretical techniques. In bulk semiconduc-

tors the shift in the optical absorbing due to the external field is known as the Franz-Keldysh

effect.[91, 92] In quantum wells and quantum dots, application of electric field has shown to

modify the optical properties of nanosystems and is known as the quantum-confined Stark ef-

fect (QCSE).[93, 94] The application of the external field induces various modifications in the

optical properties of the nanomaterial including, absorption coefficient, spectral weight of transi-

tions, and change in λmax of the absorption spectra. In certain cases, the applied field can lead

to exciton ionization.[95] The quantum-confined Stark effect has found application in the field of

electro-absorption modulators,[96] solar cells,[97] and light-emitting devices.[98] Recent exper-

iments by Weiss et al. on semiconductor quantum dots have shown that the QCSE can also be

enhanced by the presence of heterojunctions.[39] In some cases, the QCSE can be induced chem-
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ically by proximity to ligands.[97] The QCSE also plays a major role in electric field dependent

photoconductivity in CdS nanowires and nanobelts. [99] Application of electric field has emerged

as one of the tools to control and customize quantum dots as novel light sources. In a recent

study, electric field was used in generation and control of polarization-entangled photons using

gallium arsenide (GaAs) quantum dots.[100] It has been shown that the coupling between stacked

quantum dots can be modified using electric field. [101] The QCSE has been investigated using

various theoretical techniques including perturbation theory,[19, 107, 108, 109, 110, 111] varia-

tional techniques,[112, 113, 114, 115, 116, 117, 118] and configuration interaction method.[119,

120, 121, 122, 123, 124, 125, 126, 127, 128, 129] In the present work, development of explicitly

correlated full configuration interaction (XCFCI) method is presented for investigating the effect of

an external electric field on quantum dots and wells. The XCFCI method is a variational method in

which the conventional CI wave function is augmented by explicitly correlated Gaussian-type gem-

inal functions.[312] The inclusion of explicitly correlated function in the form of the wave function

is important for the following two reasons. First, the addition of the geminal function increases the

convergence of the FCI energy with respect to the size of the underlying 1-particle basis set.[314]

Second, inclusion of explicitly correlated function improves the form of the electron-hole (eh) wave

function at small inter-particle distances which is important for accurate calculation of electron-

hole recombination probability. [210, 218, 253] The effect of explicitly correlated function on the

convergence of CI energy has been investigated by Prendergast et al. and is directly related to

accurate treatment of the Coulomb singularity in the Hamiltonian. [314, 315, 316] Varganov et al.

have also demonstrated the applicability of geminal augmented multiconfiguration self-consistent

field wave function for many-electron systems.[317] For electron-hole systems, Elward et al. have

performed variational calculation using explicitly correlated wave function for treating electron-
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hole correlated in quantum dots.[216, 218] One of the important features of the XCFCI method

presented here is the inclusion of the external field in the ansatz of the wave function. This is

achieved by defining a new set of field-dependent coordinates which are generated by perform-

ing variational polaron transformation[318] and recasting the original Hamiltonian in terms of the

field-dependent coordinates. The variational polaron transformation was introduced by Harris and

Silbey for studying quantum dissipation phenomenon in the spin-boson system[318] and is used

in the present work because of the mathematical similarity between the spin-boson and the field-

dependent electron-hole Hamiltonian. The spin-boson system will be discussed in more detail in

subsection 3.1.2

3.1.2 Spin-Boson system

As stated above, the spin-boson system is a model that appears in quantum dissipative sys-

tems (or open quantum systems); that is, systems in which the system interacts with the surround-

ing environment.[319] The spin-boson system is a particle of spin 1/2 that is coupled to environ-

ment of bosons that behave as harmonic oscillators. The Hamiltonian for this system is[319]

H = TTSS +HB +Hint, (3.1)

where TTSS is the Hamiltonian for a two state system (TSS), HB is the Hamiltonian for the bo-

son environment, and Hint is the Hamiltonian for the interaction between the TSS and the boson

environment. The components of the total Hamiltonian will be discussed in turn.
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A TSS is a system in which the system exists as a linear combination of states, such as

|Ψ〉= c1|1〉+ c2|2〉. (3.2)

A double well can be considered a TSS, with a local state that can be solved in the region about

each local minimum. The general wave function for double well may be expressed as

|ΨDW〉= cR|R〉+ cL|L〉, (3.3)

where R is the right-hand state and L is the left-hand state.[319] The TSS Hamiltonian is[319]

HTSS =−1
2

h̄∆σx−
1
2

h̄σz (3.4)

=
h̄
2

 −ε −∆

−∆ +ε

 (3.5)

where ∆ is the tunneling matrix element and ε is the energy splitting between the wells (this

Hamiltonian is written so that only the right hand minimum can be biased). The σi, i = x,y,z are

the Pauling spin matrices and are given as

σx =

 0 1

1 0

 (3.6)

σy =

 0 −i

i 0

 (3.7)
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σz =

 1 0

0 −1

 (3.8)

The boson environment behaves as a set of harmonic oscillators and the Hamiltonian is[319]

HB =
N

∑
i=1

p2
i

2mi
+

1
2

miωix2
i (3.9)

=
N

∑
i=1

h̄ωib
†
i bi, (3.10)

where p is the momentum operator for particle i, m is the mass of particle i, ω is the frequency of

the oscillator i, and N is the number of bosons.

The Hamiltonian for the interaction between the TSS and the boson environment is

Hint =−
1
2

σz

N

∑
i=1

q0cixi (3.11)

=−1
2

σz

N

∑
i=1

h̄λi(bi +b†
i ) (3.12)

(3.13)

where q0 is the separation between the two minimum of the double well, c0 is a coupling strength

term in first quantized notation, and λi is the coupling strength term in second quantized notation.

By rewritten the Pauling spin matrices in terms of the two state system basis as

σx = |R〉〈L|+ |L〉〈R|, (3.14)

σy = i|L〉〈R|− i|R〉〈L|, (3.15)
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σz = |R〉〈R|− |L〉〈L|, (3.16)

the spin-boson Hamiltonian can be written as

H =− h̄
2

∆(|R〉〈L|+ |L〉〈R|)− h̄
2

ε(|R〉〈R|− |L〉〈L|) (3.17)

−
N

∑
i=1

(gR
i |R〉〈R|−gL

i |L〉〈L|)xi

+HB,

where gL
i and gR

i are coupling terms for the left-hand and right-hand wells.

3.1.2.1 Variational polaron transformation for the spin-boson system

Harris and Silbey presented a solution to the spin-boson system using the variational polaron

transformation.[318, 320, 321] The Hamiltonian is transformed so that origins of the oscillator are

shifted. This is done by performing the following unitary transformation

H̃ =U†HU (3.18)

with the unitary operator

U = exp(i∑
j

f j

ω2
j

p j[|L〉〈L|− |R〉〈R|]). (3.19)
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The parameters { f j} are determined variationaly.[318] The Hamiltonian after transformation ap-

pears as

H̃ =− h̄
2

∆
new(|R〉〈L|+ |L〉〈R|)− h̄

2
ε(|R〉〈R|− |L〉〈L|) (3.20)

−
N

∑
i=1

gnew
i (|R〉〈R|− |L〉〈L|)xi

+HB

where the new operators have been transformed. In more compact notation,

Hnew = Hnew
TSS +Hnew

int +HB. (3.21)

3.1.3 Organization

The remainder of this chapter is organized as follows. The important equations and futures

of full configuration interaction for electrons and for multicomponent systems will be given in

subsection 3.2.1. The important features of the XCFCI method are summarized in subsection 3.2.2,

construction of the field dependent basis functions is presented in subsection 3.2.3, the application

of the XCFCI method using field-dependent basis is presented in section 3.3, and the conclusions

are provided in section 3.4.

100



3.2 Theory

3.2.1 Full configuration interaction

The wave function for a configuration interaction (FCI) may be written as[17]

|C〉= ∑
i

ci|i〉, (3.22)

where |i〉 are different configurations of Slater determinants. The coefficients ci are determined by

variational minimization

E = min
{ci}

〈C|H|C〉
〈C|C〉

. (3.23)

The coefficients may be determined by finding the stationary states

∂

∂ci

〈C|H|C〉
〈C|C〉

= 0, (3.24)

which may equivalently be posed as an eigenvalue problem

HC = EC, (3.25)

where the elements of the matrix H are Hi j = 〈i|H| j〉.

The pertinent details of the full configuration interaction method will be described. Further
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details may be found in many references.[6, 11, 14, 16, 17] The wave function for FCI is

|ΨFCI〉= c0|Φ0〉+∑
a,r

cr
a|Φr

a〉+ ∑
a<b
r<s

crs
ab|Φ

rs
ab〉+ ∑

a<b<c
r<s<t

crst
abc|Φ

rst
abs〉+ · · · , (3.26)

where the subscripts indicate the orbitals that were removed and superscripts indicate the orbitals

which were added in the excitation. Note that full in FCI refers to the excitation of all possible

electrons for each type of excitation. This equation shows both the simplicity and the expense of

the method. The simplicity is that there is a readily available form for expansion which has known

rules for the evaluation of the terms (the Slater-Condon rules). The difficulty is that the expansion

is both infinite and unordered with regards to the importance of terms.[6, 11] The need to use many

of the determinants to obtain sizable improvements on the energies obtained using Hartree-Fock

makes FCI infeasible for all but the small systems.[6, 12, 14, 16, 17] The computational expense

of FCI methods grows at a factorial rate. Consider for a set of M spin orbitals with N electrons,

one can construct[6]

(
M
N

)
=

M!
N!(M−N)!

(3.27)

different Slater determinants. If there are n orbitals, k electrons of spin α , and k electrons of spin

β , the total number of possible determinants is

Ndet =

(
n
k

)(
n
k

)
=

(
n
k

)2

. (3.28)

In cases where the FCI wave function is intractable, the FCI wave function may be truncated by
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selecting only determinants with certain excitations.[17] For example, in the CIS (configuration

interaction singles), only the the ground state and singly excited determinants are used.[17] There

are several many possibilites for truncated CI wave functions.

The systems under consideration in treatment have spin. The single excitation operator for

an electronic system is

Epq = a†
pαaqα +q†

pβ
qqβ , (3.29)

where the α,β indicates the spin of the electron that is being created. The one-body operator in

second quantization becomes[17]

f̂ = ∑
pq

fpqEpq. (3.30)

The two-body operator, after modification with the single excitation operator, becomes

ĝ =
1
2 ∑

pqrt
gpqrt ∑

στ

q†
pσ a†

rτasτqqσ (3.31)

=
1
2 ∑

pqrs
gpqrt(EpqErs−δqrEps) (3.32)

=
1
2 ∑

pqrs
gpqrsepqrs, (3.33)

where the two-electron excitation operator has been introduced[17]

epqrs = EpqErs−δqrEps = ∑
pqrs

a†
pσ a†

rτasτaqσ . (3.34)
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The Hamiltonian is written in terms of the electron excitation operators as[17]

H = ∑
pq

hpqEpq +
1
2 ∑

pqrs
gpqrsepqrs +hnuc, (3.35)

where the one-body term is [17]

hpq =
∫ +∞

−∞

drφ
∗(r)

(
− h̄2

2m
∇

2 +∑
A

ZAqe

r1A

)
φ(r), (3.36)

and the two-body term is[17]

gpqrs =
∫ +∞

−∞

dr1dr2φ
∗
p(r1)φ

∗(r2)r−1
12 φr(r1)φs(r2). (3.37)

The Hamiltonian being used is a spin-free operator. Determinants which have different spin

projections lead to Hamiltonian matrix elements which vanish.[17] To avoid possible additional

work, the determinants are restricted to those determinants with the same spin projection. For N

total electrons restricted to spin projection M, the number of α and β are given as[17]

Nα =
1
2

N +M (3.38)

Nβ =
1
2

N−M. (3.39)

The restricted Slater determinants are written as

|Iα Iβ 〉= αIαβIβ |vac〉, (3.40)
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where αIα and βIβ are the alpha and beta strings; that is, strings of creation operators which give

the proper arrangement of orbitals. The number of alpha strings is given by[17]

Nα
str =

(
n

Nα

)
=

n!
Nα !(n−Nα)

. (3.41)

The Hamiltonian operator will now be placed in a determinantal representation. Eq.(3.36)

can be written for a CI expansion as[17]

hSD
Iα Iβ ,Jα Jβ

= 〈Iα Iβ |h|JαJβ 〉, (3.42)

and Eq.(3.37) can be written as[17]

gSD
Iα Iβ ,Jα Jβ

= 〈Iα Iβ |g|JαJβ 〉 (3.43)

For |JαJβ 〉, the non-zero elements for hSD
Iα Iβ ,Jα Jβ

are for the choices of |Iα Iβ 〉[17]

|Iα Iβ 〉= |JαJβ 〉 (3.44)

|Iα Iβ 〉= Eα
pq|JαJβ 〉 (3.45)

|Iα Iβ 〉= Eβ
pq|JαJβ 〉, (3.46)

where the excitation operators are[17]

Eγ
pq = a†

pγaqγ ,γ = α,β . (3.47)

105



For the two-electron operator, the matrix elements gSD
Iα Iβ ,Jα Jβ

are nonzero in the same cases as the

one-body operator (Eq.(3.44)-(3.46)) with the additional choices

|Iα Iβ 〉= Eα
pqEβ

rs|JαJβ 〉 (3.48)

|Iα Iβ 〉= Eα
pqEα

rs|JαJβ 〉 (3.49)

|Iα Iβ 〉= Eβ
pqEβ

rs|JαJβ 〉 (3.50)

With the previous tools in hand, it is now possible to develop a method for calculating

σIα Iβ
= ∑

Jα Jβ

〈Iα Iβ |H|JαJβ 〉CJα Jβ
(3.51)

in an efficient manner. Falling back to the Slater-Condon rules leads to an inefficient algorithm

because it requires inspecting each matrix element which means the number of operations scales

as the square of the number of Slater determinants.[17] The modern method is to determine for

each Slater determinant which determinants are connected by single and double excitations, since

these are the contributing terms.[17] Rewriting the spin-free Hamiltonian (Eq.(3.35)) as

H = ∑
pq

hpqEpq +
1
2 ∑

pqrs
gpqrs(EpqErs−δrqEps) (3.52)

= ∑
pq

kpqEpq +
1
2 ∑

pqrs
gpqrsEpqErs, (3.53)

where the effective one-body integral

kpq = hpq−
1
2

gprrq (3.54)
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has been introduced and the nuclear-nuclear term has been ignored. Eq.(3.51) can now be written

as[17]

σIα Iβ
= σ

(1)
Iα Iβ

+σ
(2)
Iα Iβ

, (3.55)

where the terms are

σ
(1)
Iα Iβ

= ∑
pq

∑
Jα Jβ

kpq〈Iα Iβ |Epq|JαJβ 〉CJα Jβ
(3.56)

σ
(2)
Iα Iβ

=
1
2 ∑

pqrs
∑

Jα Jβ

gpqrs〈Iα Iβ |EpqErs|JαJβ 〉CJα Jβ
. (3.57)

The focus will be on Eq.(3.57) since the one-electron term will be obtained in the course of the

calculation.[17] A completeness relationship is inserted between the excitation operators to give

σ
(2)
Iα Iβ

=
1
2 ∑

Kα Kβ Jα Jβ

pqrs

〈Iα Iβ |Epq|KαKβ 〉gpqrs〈KαKβ |Ers|JαJβ 〉CJα Jβ
(3.58)

where the Kα and Kβ contain all alpha and beta strings.[17] Eq. (3.58) is now rewritten to give a

sequence of partial summations

Drs,Kα Kβ
= ∑

Jα Jβ

〈KαKβ |Ers|JαJβ 〉CJα Jβ
(3.59)

Gpq,Kα Kβ
=

1
2 ∑

rs
gpqrsDrs,Kα Kβ

(3.60)

σ
(2)
Iα Iβ

= ∑
pq,Kα Kβ

〈Iα Iβ |Epq|KαKβ 〉Gpq,Kα Kβ
〉. (3.61)
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In step 1, the matrix D is generated. The matrix can be separated into

Drs,Kα Kβ
= ∑

Jβ

〈Kβ |E
β
rs|Jβ 〉CKα Jβ

+∑
Jα

〈Kα |Eα
rs|Jα〉CJα Kβ

(3.62)

In step 2, matrix D is multiplied by the two-electron matrix. Due to the permutational symmetry

of the two-electron integrals, Eq. (3.60) is rewritten as

Gpq,Kα Kβ
=

1
2 ∑

r≥s
qpqrs(Drs,Kα Kβ

+Dsr,Kα Kβ
)(1+δsr)

−1, (3.63)

which improves computational efficiency.[17] In step 3, the matrix G is contracted with the matrix

elements of Epq. As a consequence of this formulation, Eq. (3.56) may be written as[17]

σ
(1)
Iα Iβ

= ∑
pq

kpqDpq,Iα Iβ
. (3.64)

This is one of the modern efficient methods for calculating the CI matrix elements. This method is

known as the N-resolution method. The application of an explicit correlation operator to the FCI

method will be described in subsection 3.2.2.

3.2.2 Explictly correlated full configuration interaction

The many-particle field dependent electron-hole Hamiltonian is defined as [1, 2]

H = Te +V ext
e +Vee +

Ne

∑
i

F · re
i (3.65)

+Th +V ext
h +Vhh−

Nh

∑
i

F · rh
i
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−
Ne

∑
i=1

Nh

∑
j=1

r−1
i j ,

where T is the kinetic energy operator, ε is the dielectric constant, and F is the external electric

field. The external potential V ext
e and V ext

h represent the confining potential experienced by the

quasi-particles. The form of the XCFCI wave function is defined as

ΨXCFCI = Ĝ∑
k

ckΦk, (3.66)

where ck is the CI coefficient and Φk are basis functions. Analogous to the conventional CI method,

the basis functions Φk are obtained by applying excitation operator X̂k to the reference function Φ0

Φk = X̂kΦ0 and 〈Φk|Φk′〉= δkk′ . (3.67)

The reference function is a product of electron and hole Slater determinants

Φ0 = Φ
e
0Φ

h
0, (3.68)

and its construction is described in subsection 3.2.3. For a multicomponent electron-hole system

with Ke electronic orbitals, Ne electrons, Kh, and Nh, the total number of determinants is

Ndet =

(
Ke

Ne

)2(Kh

Nh

)2

. (3.69)

The operator Ĝ is known as the geminal operator and is an explicit function of reh and is
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Table 3.1: Total number of determinants in a multicomponent electron-hole FCI.
Ne Ke Ne

det Nh Kh Nh
det Ntotal

det

1 4 1.60×101 1 4 1.60×101 2.56×102

1 6 3.60×101 1 6 3.60×101 1.30×103

1 8 6.40×101 1 8 6.40×101 4.10×103

1 10 1.00×102 1 10 1.00×102 1.00×104

2 10 2.03×103 2 10 2.03×103 4.10×106

10 30 9.03×1014 10 30 9.03×1014 8.14×1029

defined as a linear combination of Gaussian functions

Ĝ =
Ne

∑
i=1

Nh

∑
j=1

Ng

∑
k=1

bk exp(−γr2
i j), (3.70)

where Ng is the number of Gaussian functions included in the expansion, Ne and Nh are the number

of electrons and holes, respectively. The parameters bk and γk used in the definition of the geminal

operator are obtained variationally. The presence of the electron-hole distance dependent term

in the Gaussian-type geminal (GTG) function plays an important role in improving the form of

the electron-hole wave function at small interparticle distances. It is important to note that the

GTG function uses Gaussian as opposed to exponential functions and consequently is incapable

of describing the electron-hole Kato cusp condition exactly. The derivative of GTG function with

respect to the electron-hole distance vanishes at reh = 0

(
∂G
∂ reh

)
reh

= 0, (3.71)

and therefore it is only capable of improving the structure of the wave function in the neighborhood

of the coalescence point. However since the coalescence point is of measure zero, we do not expect

this approximation to limit the accuracy of the GTG function. [216, 218, 316] This has also been
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found to be true for the electron-electron coalescence point[316] in electronic structure theory

and the work of Prendergast et al. demonstrated the importance of medium-range correlation

for many-electron systems.[314] The XCFCI calculation is performed in two steps. In the first

step, the parameters of geminal operator are obtained variationally by performing the following

minimization:

E[Gmin] = min
bk,γk

〈GΦ0|H|GΦ0〉
〈GΦ0|GΦ0〉

. (3.72)

In the second step, the expansion coefficients {ck} are obtained variationally and are defined by

the following minimization procedure:

EXCFCI = min
c

〈ΨXCFCI|H|ΨXCFCI〉
〈ΨXCFCI|ΨXCFCI〉

(3.73)

The above equation can be rewritten as a FCI calculation of transformed operators

EXCFCI = min
c

〈ΨFCI|H̃|ΨFCI〉
〈ΨFCI|1̃|ΨFCI〉

(3.74)

where the transformed operators are defined as

H̃ = G†
minHGmin, (3.75)

1̃ = G†
minGmin. (3.76)

The exact expression of the transformed operators in Eqs. (3.75) and (3.76) and discussion relevant

to their derivation has been presented earlier in Refs. [216, 218] and is not repeated here. The
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EXCFCI reduces to the conventional FCI energy in the limit of geminal function approaches unity

EFCI = lim
G→1

EXCFCI. (3.77)

We expect the E XCFCI energy to be lower than the FCI energy for identical set of basis functions

and earlier studies have shown this to be true.[216] Since Gmin is obtained in the first step, the

limit in the above equation should be evaluated first before the optimization of the CI coefficients

is performed. One of the key features of the optimization of the XCFCI wave function described

here is that the G min is obtained in the presence of Φ0 which results in substantial reduction in the

cost of the calculation. In an ideal situation, the parameters of GTG function and the CI coefficient

should be minimized simultaneously as shown in the following equation:

min
c,g

〈ΨFCI|G†HG|ΨFCI

〈ΨFCI|G†G|ΨFCI〉
≤min

c

〈ΨFCI|G†HG|ΨFCI

〈ΨFCI|G†G|ΨFCI〉
(3.78)

However, such a procedure will be computationally very expensive and the strategy of two suc-

cessive subspace minimizations is used in the presented work. The underlying assumption in the

minimization procedure is that the G min obtained using Φ0 is of sufficiently high-quality that

the XCFCI energy is lower than the FCI energy. During the course of the calculations, this as-

sumption can be verified easily by numerical comparison of the two energies. In a situation where

E[Gmin]< E[G = 1] and EFCI < EXCFCI indicates that the sequential subspace minimization cannot

be used for accurate determination of the geminal parameters, and a search in the full parameters

spaces of CI coefficient and geminal parameters must be performed. After the successful com-

pletion of the XCFCI calculations, the field dependent exciton binding was calculated from the
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difference between the non-interacting and interacting ground state energies. Defining the non-

interacting Hamiltonian as

H0 = lim
reh→∞

H, (3.79)

the exciton binding energy is computed as

EB[F] = E(0)
0 −EXCFCI, (3.80)

where E(0)
0 is defined as

E(0)
0 = min

Ψ

〈Ψ|H0|Ψ〉
〈Ψ|Ψ〉

. (3.81)

The field dependent electron-hole recombination probability is obtained from the XCFCI wave

function using the following expression[216, 218] and is related on-top electron-hole pair density[322,

323, 324, 325, 326]

Peh[F] =
〈ΨXCFCI|δ (re− rh)|ΨXCFCI〉

〈ΨXCFCI|ΨXCFCI〉
. (3.82)

The exciton binding energy and the recombination probability are functionals of the applied exter-

nal field and are indicated explicitly in Eqs. (3.80) and (3.82) , respectively.
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3.2.3 Construction of field dependent basis set

One of the key features of the electron-hole Hamiltonian used in the present work is the

presence of the field-dependent term in Eq. (3.65) . Since the convergence of the CI expansion

depends on the quality of the underlying 1-particle basis, it is desirable to construct and use efficient

single particle basis sets. In the present work, we have developed field-dependent basis functions

and the details of the derivation are presented as following. Starting with the expression of H0 in

Eq. (3.79), the zeroth-order Hamiltonian is expressed as a sum of non-interacting electronic and

hole Hamiltonians

H0 = He
0 +Hh

0 , (3.83)

where the expression for the single-component Hamiltonian is given as

He
0 = Te +V ext

e + |e|F · re, (3.84)

Hh
0 = Th +V ext

h −|e|F · rh. (3.85)

As seen from the above equations, the coupling between the external field and the quasi-particle

coordinates is linear. The above Hamiltonian shares mathematical similarity with the spin-boson

Hamiltonian that has been used extensively in quantum dissipative systems.[327] In the present

method, we perform analogous transformation which is defined by the following equations:

qe = re +λ
eF, (3.86)
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qh = rh−λ
hF. (3.87)

Similar to the polaron transformation in the spin-boson system, the coordinates of the quasi-particle

experience a shift due to the presence of the external field.[327] Using the method of variational

polaron transformation by Harris and Silbey,[318] the shift parameters λ e and λ h are determined

variationally. Gaussian-type orbitals (GTOs) are defined using the transformed coordinates and are

used in construction of the electronic and hole Slater determinant. The Hartree-Fock energy is ob-

tained by performing double minimization over single Slater determinant and the shift parameters

λ e and λ h

Ee
HF[λ

e
min,Φ

e
0] = min

λ e
min
ΦSD
〈ΦSD(qe)|He

0(qe)|ΦSD(qe)〉, (3.88)

Eh
HF[λ

h
min,Φ

h
0] = min

λ h
min
ΦSD
〈ΦSD(qh)|Hh

0 (qh)|ΦSD(qh)〉, (3.89)

For identical set of GTO basis functions, the above minimization will yield energy lower than the

conventional HF energy

Ee
HF[λ

e
min]≤ Ee

HF[λ
e = 0]. (3.90)

The minimization in Eqs. (3.88) and (3.89) is also related to the earlier work on the floating

Gaussian method by Frost.[328, 329, 330] Equations (3.88) and (3.89) also define the electron

and hole reference functions that are used for construction of the CI expansion. The electron-hole

basis functions for the FCI calculations are constructed by taking a direct product between the set
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of electronic and hole single-component basis sets

{Φk}= {Φe
i }⊗{Φh

j}. (3.91)

The procedure described above is a general method that is independent of the exact form of the

external potential. However, if the external potential is of quadratic form, the field dependent

zeroth-order single-component Hamiltonian has an uncomplicated mathematical form and addi-

tional simplification can be achieved.

3.3 Results and Discussion

The electron-hole Hamiltonian in Eq. (3.65) has been used extensively for studying opti-

cal rectification[1, 2, 111, 115, 119] effect in GaAs quantum dots. In the present work, a single

electron-hole pair was used and all the system specific parameters were obtained from previous

calculations on the GaAs system.[1, 2] The parabolic confinement potential has found widespread

applications[19, 107, 114, 117, 270, 293, 295, 297, 302, 331, 332, 333, 334, 335, 336, 337] in the

study of quantum dots and was used in the present work to approximate the external potential term

in the Hamiltonian shown below

H =− h̄2

2me
∇

2
e−

h̄2

2mh
+

1
2

ker2
e +

1
2

khr2
h (3.92)

− 1
ε|reh|

+ |e|F · (re−h). (3.93)

All the parameters that are needed for the complete description of the electron-hole Hamiltonian

used in the calculations are presented in Table 3.2 . Following earlier work on the effect of electric
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field on nonlinear optical properties of GaAs quantum dots,[1, 2] the external electric field was

aligned along the z-axis and the field strength was varied from zero to 500 kV/cm. Similar to the

spin-boson Hamiltonian, the polaron transform resulted in shifted harmonic oscillators.[327] The

1-particle GTO basis was constructed from the lowest ten eigenfunction of the harmonic oscillator

Hamiltonian in Eq. (3.79) and was used to perform the minimization described in Eqs. (3.88) and

(3.89). The reference functions for electron and hole were obtained and a direct product between

the electronic and the hole basis sets was performed to generate the electron-hole basis for the FCI

calculations. The geminal minimization was performed using a set of three {bk,γk} parameters at

each field strength, and the optimized values are presented in Table 3.3. The total exciton energy

for the field-free case was found to be 269.45 meV. The total exciton energy of the system as a

function of the field strength is presented in Figure 3.1.

Table 3.2: System dependent parameters used in the electron-hole Hamiltonian for the GaAs quan-
tum dot [1, 2]

Parameter Value
me 0.067m0
mh 0.090m0
ke 9.048×10−7 a.u.
kh 1.122×10−6 a.u.
ε 13.1ε0

It is seen that the total energy decreases with increasing field strength. Earlier studies on

this system indicate that the exciton energy is a quadratic function of the applied field.[338, 339]

To investigate the scaling of the total exciton energy with respect to the field strength, we have

performed least-square fit of the calculated values with a second order polynomial and the results

are presented in Figure 3.1. The results from these calculations confirm that the quadratic scaling

of the exciton energy as a function of the field strength. The exciton binding energy was calculated
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Figure 3.1: Relative exciton energy compared to the fit E = (−2.7925× 10−6)F2
z +(−7.0938×

10−5)Fz +1.

using Eq. (3.80) and was found to be 28.52 meV for the field-free case. The effect of the external

field on the exciton binding energy was investigated by calculating the relative binding energy

which is defined by the following equation:

ẼB =
EB[F]

EB[F = 0]
. (3.94)

It is seen from Figure 3.2 that the exciton binding energy decreases with increasing field

strength. As the field strength is increased from 0 to 500 kV/cm, the exciton binding energy
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Figure 3.2: Comparison of ẼB and P̃eh as a function of electric field strength.

decreases by a factor of 2.6. In addition to the calculation of binding energy, the effect of the

field on electron-hole recombination probability was also investigated. Analogous to the relative

binding energy, the relative recombination probability is defined as

P̃eh =
Peh[F]

Peh[F = 0]
, (3.95)

and is presented in Figure 3.2

It is seen that the there is a sharp decrease in the recombination probability with increasing
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field strength and the recombination probability at 500 kV/cm is lower than the field-free case

by a factor of 166. One of the key results from this study is that exciton binding energy and

eh-recombination probability are affected differently by the external electric field. It is seen that

the exciton binding energy and eh-recombination probability follow different scaling with respect

to field strength. The effectiveness of the polaron transformation was investigated by computing

the exciton binding energy with and without the transformation for identical basis functions. The

calculations for the untransformed basis were performed by setting λ e = λ h = 0 and the results are

presented in Figure 3.3.

Figure 3.3: Comparison of exciton binding energy obtained using polaron transformed and un-
transformed method for identical set of electron and hole basis functions.
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As expected for low field strengths, we do not see significant difference between the bind-

ing energies. However, with increasing field strength the error in the untransformed calculation

becomes significant and shows a qualitatively wrong trend in the high field strength limit.

The polaron transformation also provides insight into the effect of the electric field on the ex-

citon binding energy in the limit of high field strengths. Starting with the transformation defined in

Eq. (3.86), the electron-hole Coulomb interaction in the transformed coordinate can be expressed

as

1
|re− rh|

=
1

|(qe−qh)− (λe +λh)F|
= veh(q). (3.96)

It is seen in the above equation that the above expression will be dominated by the field-dependent

term in the limit of high field strength. A direct consequence of the above condition is that in the

limit of high field strengths, we expect the exciton binding energy to be small

H(q)≈ H0(q) =⇒ EB ≈ 0 for1� |F|< ∞. (3.97)

It is important to note that the above conclusion is independent of the choice of the external poten-

tial.

3.4 Conclusion

The effect of an external electric field on exciton binding energy and electron-hole recombi-

nation probability was computed using explicitly correlated full configuration interaction method.

Field-dependent basis functions were used in the calculations and a variational polaron transforma-

122



tion scheme was developed for the construction of field-dependent basis functions. It was found

that both exciton binding energy and electron-hole recombination probability decrease with in-

creasing field strength. One interesting conclusion from this study is that the binding energy and

recombination probability follow different scaling with respect to the external electric field. For the

range of field strengths studied, the recombination probability and exciton binding energy decrease

by a factor of 166 and 2.6, respectively. These results give important insights into the application

of electric fields for controlling the dissociation of excitons in quantum dots.

123



Chapter 4: Effect of environmental acidity and ligand length on exciton binding

energy of CdSe quantum dots

4.1 Introduction

Quantum dots have interesting optical and electronic properties which have found many ap-

plications, including light harvesting materials[340], light-emitting materials[79], photocatalysis[78,

149, 341, 342],bioimaging [88, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,

303, 343], molecular sensing[165, 166, 172, 344], nanoscale probes[39, 158, 159, 161]. The key

to wide application of quantum dots has been the control of optical and electronic properties by

several parameters, including size and shape[29, 30, 31, 32, 33, 34], composition[37], applied

electromagnetic fields[39, 40, 41, 42, 43, 44],and ligands[45, 46, 47, 48, 49]. The capping lig-

ands play an important role in the formation and have sizable impacts in the optical and electronic

properties of quantum dots.[45] The choice of the ligands has been made for many reasons, in-

cluding solubility, functionalization, and specific targeting of chemicals and biomolecules. The

most common ligands are phosphine oxides (in particular, tri-n-ocytlphophine oxide (TOPO)),

amines, thiols, and carboxylic acids.[45] A key step towards the full understanding and ultimately

necessary for the complete ability to engineer quantum dots for specific applications is to under-

stand how the choice of a specific ligand will impact the optical and electronic properties of the
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quantum dot systems Many properties of the quantum dots have been studied, including exciton

binding energy,[40, 217, 278, 279] recombination probability,[40, 205, 216, 217], and quantum

yields.[345]

Of the many parameters that have been used to control the optical and electronic properties of

quantum dots, the choice of ligands can be very multifaceted. In an example by Munro and Ginger,

the addition of a single octadecanethiol molecule to a CdSe quantum dot caused a 50% decrease in

photoluminescence quantum yield.[49] Clearly, the choice of the ligand can have a great impact on

the optical and electronic properties. However, it is difficult to isolate one component of the many

parameters, but systematic variation of one aspect of ligands has been attempted by the consider-

ation of families of ligands. Aldeek and co-workers have studied the influence on the growth and

optical properties by capping CdSe and CdTe quantum dots with mercaptopropionic acid, mercap-

tohexanoic acid, and mercaptoundeanoic acid.[46] Kwon and co-workers have shown experimen-

tally that the field-effect mobility decreases exponentially as the quantum dot-amine ligand length

increases in carbon quantum dots.[346] Ouyang and co-workers studied the effect of changing the

ligand length in CdS quantum dots using capric acid and oleic acid, with the longer ligand oleic acid

shifting the absorption maximum to the shorter wavelengths.[79] Ma and co-workers have studied

the effect of branching isomers of mercaptovaleric acid as ligands for CdTe on the optical prop-

erties, finding that branched isomers improved optical properties.[347] Gao and co-workers have

studied the impact on photoconductivity in PbSe quantum dots, finding that amines gave higher

carrier mobilities than carboxylic acids and gave a lower carrier mobility increases.[47] Newton

and co-workers have used TOPO to synthesis ultrasmall and “magic” ((CdSe)n n= 13,19,33,34)

CdSe clusters.[76] Dolai and co-workers have produced (CdSe)34 in multi-gram quantities with-

out the use of phosphine-ligands, which showed high photoluminescence efficiency.[75] Dolai and
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co-workers have studied the “magic” cluster CdSe for the electrochemical properties of the clus-

ters, especially for use in photocatalysts and photovoltaic devices.[74] In each of the preceding

cases, the presence and nature of the ligands has shown great impact on the optical and electronic

properties of the quantum dot systems.

The relationship between ligand properties and the core quantum dot optical and electronic

properties has suggested many applications. An interesting application that suggests itself is the

use of the changes in the optical properties as the surface ligands react to the changes in the

environment acidity. It has been experimentally shown that this can be accomplished by many

groups. Chen and Wu have used ZnSe quantum dots capped with mercaptoacetic acid to de-

termine pH by fluorescence spectroscopy.[158, 159] Yu and co-workers have used quantum dot-

based pH probes for the study of enzyme reaction kinetics.[161] Yang and co-workers has used

CdTe/CdSe core/shell quantum dots as pH-sensitive fluorescence probe with ascorbic acid as the

added acid.[89] Deng and co-workers reported green and orange CdTe quantum dots, capped with

specially marked ligands, as pH probes and for detection of viruses.[160] Tomasulo and co-workers

produced CdSe/ZnS core/shell quantum dots with ligands such the pH could be probed from 3

to 11.[86, 87] Teubert and co-workers investigated the electric-field dependence of the optical

properties of INGaN/GaN quantum dots in contact with an electrolyte, finding that pH variation

corresponds with photoluminescence.[41] Another application is the use of the quantum dots as

nanoscale electric probes. Park and co-workers have use quantum dots to measure electrical fields

on the nanoscale by taking advantage of the quantum-confined Stark effect using a variety of

nanocrystals, including CdSe nanorods, CdSe quantum dot in CdS nanorods, CdTe/CdSe core/shell

quantum dots, and ZnSe in CdS nanorods.[39] These applications, especially the nanoscale pH

probes, are especially interesting since they require a change in the partial electrical field due to
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the ligand as the environment acidity changes.

The previous applications suggest the importance of understanding how ligands impact the

properties such as exciton binding energy, eh-recombination probability, and others. Towards that

goal, it is necessary to consider the quantum dot system with ligands from a theoretical basis. The

surface chemistry of quantum dots is a very complex and difficult study component of the quantum

dot system. In this work, the ligand length has been isolated as one of the many parameters that

impact in the surface chemistry of quantum dots. A central problem in the study of even modest

size quantum dots is the large number of electrons that are within the quantum dot core. Even at

a relatively modest ligand density, many ligands are present on the surface of the quantum dot.

Each ligand is a polyelectronic system that adds more complexity to the already complex quantum

dot system. Smaller systems, such as Cd33Se33 with trimethylphosphine oxide ligands, have been

treated using DFT.[48, 90] Treatment of a large system with a realistic number of ligands is a

computational expensive task.

The purpose of this work is to study the effect of ligand length and environmental acidity on

the exciton binding energy. The CdSe quantum dot size will be varied while maintaining the con-

stant ligand density but changing the length of the charged ligands and environmental acidity of the

system to determine the effect of charged ligands with respect to ligand length and environmental

acidity on the exciton binding energy.

The electron-hole in a parabolic potential treatment of spherical quantum dots has been suc-

cessfully used.[269, 270, 271, 272, 273, 274, 275, 276, 277] Elward and co-workers have used the

explicitly correlated Hartree-Fock (XCHF) method to treat parabolic quantum dots.[215, 216, 217]

The XCHF method uses a Gaussian-type function that depends directly on the electron-hole sep-

aration to improve the form of the wave function at small eh-separations. The attractive nature
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of the electron-hole Coulomb interaction increases the importance of the correct behavior in the

vicinity of the eh-cusp, which occurs when reh = 0.[217] Similarly, this method has been shown

to improve calculation of the eh-recombination probability due to improved treatment of small eh-

separations.[217] Blanton and co-workers have used this method for parabolic quantum dots in a

homogeneous field.[40] The XCHF and related methods has been successfully used to treat several

electron-hole systems.[40, 215, 216, 217, 218]

The remainder of the chapter is organized as follows. The theory used in these calculations

will be detailed briefly in section 4.2. The computational method used in the study will be detailed

first in section 4.3. The exciton binding energy will be determined using several combinations of

dot size, ligand length, and environmental acidity will be shown and discussed next in section 4.4.

Finally, conclusions and future work will appear in section 4.5.

4.2 Theory

The general electron-hole Hamiltonian is[40, 126, 128, 205, 206, 212, 215, 216, 218, 252,

253, 254, 255, 256, 257, 258]

H = ∑
i j
〈i|−h̄2

2me
+ ve

ext| j〉e
†
i e j (4.1)

+∑
i j
〈i|−h̄2

2mh
+ vh

ext| j〉h
†
i h j

+ ∑
i ji′ j′
〈i ji′ j′|ε−1r−1

eh |i ji′ j′〉e†
i e jh

†
i′h j′

+∑
i jkl

wee
i jkle

†
i e†

jelek +∑
i jkl

whh
i jklh

†
i h†

jhlhk.
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The wave function used in this work is a Ne and Nh wave function Ψeh(xe
1, . . . ,x

e
Ne
,xh

1, . . . ,x
h
Nh
),

where x is the spatial and spin coordinates for a given coordinate.

The choice of the ansatz is the explicitly correlated Hartree-Fock wave function (XCHF).[40,

215, 216, 217, 218] The method has been full described by Elward and co-workers[216]; therefore,

it is briefly described here. The XCHF wave function is

Ψ
XCHF = GΦeΦh, (4.2)

where Φe is the reference wave function for the electron, Φh is the reference wave function for the

hole, and G is the geminal operator of form

G =
Ne

∑
i=1

Nh

∑
j=1

g(ri j), (4.3)

g(reh) =
Ng

∑
k=1

bk exp(γkr2
eh), (4.4)

where Ne is the number of electrons, Nh is the number of holes, Ng is the number of sets of

geminal parameters. The XCHF method is variational and energy is determined by performing

the minimization

EXCHF = min
G,Φe,Φh

〈GΦ0|H|GΦ0〉
〈GΦ0|GΦ0〉

, (4.5)

where Φ0 = ΦeΦh. The minimization is performed more efficiently using the transformed opera-
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tors

H̃ = G†HG (4.6)

1̃ = G†G. (4.7)

The set of geminal parameters {bk,γk} were determined by non-linear optimization and the mini-

mization over the reference wave function was performed by self-consistent solution of the coupled

Fock equations

F̃eCe = S̃eCeλe (4.8)

F̃hCh = S̃hChλh (4.9)

where the tilde indicates that the operators incorporate the transformed operators from Eq. (4.6)

and Eq. (4.7).

4.3 Computational method

The system under study is an electron-hole system which is generally described in Eq. (4.1).

The values of the effective mass for the electron is 0.13m0, the effective mass of the hole is 0.38m0,

where m0 is the mass of the free electron. The dielectric constant is 6.2ε0, where ε0 is the dielectric

constant of vacuum. In this system, only generation of a single electron-hole pair is considered.

The external potential for system is

vα
ext =

1
2

kα |rα |2 +
N

∑
A=1

ZAqα

|rα −RA|
α = e,h (4.10)
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where {ZA} is the set of point charges, and {RA} is the set of the point locations, and qα is the

charge on the quasi-particle. A schematic of the charges can be seen in Figure 4.1. The set of point

charges for each diameter were determined by placing points on a sphere of the given diameter

equidistant. The number of points was determined such that the density of points on the surface

of the quantum dot was 3.4 ligands per nm2. The total number of ligands is given in Table 4.2.

The charge vectors were then extended from these points by the length of the ligand. The length

of the vectors was determined by using the length of the mercaptocarboxylic acid ligands seen in

Figure 4.1.

The number of negative charges corresponding to a quantum dot in an environment pH was

calculated by solving the Henderson-Hasselbalch equation to give the ratio of deprotonated to

protonated carboxylate groups on the ligands as

%A− =
10pKa−pH

1+10pKa−pH ×100%. (4.11)

Using the pKa = 4.78 for each carboxylic acid. The percentage of charges at each pH is given in

Table 4.1.

The force constants were determined such that the electron and hole would both be found

within the diameter of the CdSe qdot by performing the minimization

min
kmin

α

(
Nα −

∫ Ddot
2

0
drr2

∫
dΩρα(r)

)2

, (4.12)

where Ddot is the diameter of the quantum dot. The force constants determined by the minimization

in Eq. (4.12) are found in Table 4.2. In unoptimized basis calculations, a set of S,P,D Cartesian
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Figure 4.1: Schematic representation of the ligand length system with representative ligand.
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Table 4.1: Percentage of negatively charged ligands on a CdSe quantum in a pH environment.
pH % of negatively charged ligands

1.00 0.02
2.00 0.17
3.00 1.63
4.00 14.23
4.78 50.00
5.00 62.40
6.00 94.40
7.00 99.94
8.00 100.00
9.00 100.00

10.00 100.00
11.00 100.00
12.00 100.00
13.00 100.00
14.00 100.00

Table 4.2: Table of system parameters
Diameter Number of ke kh

(nm) Ligands (atomic units) (atomic units)

6.0 384 4.016×10−5 1.374×10−5

9.0 864 4.923×10−6 1.684×10−6

Gaussian functions was used, with exponents derived from the force constants in Table 4.2. These

exponents are found in Table 4.3.

The geminal parameters in this study were the geminal parameters determined and are found

in Table 4.4. The first set of geminal parameters are b1 = 1.00 and γ1 = 0.00. The choice of the first

set of geminal parameters ensures that the method will contain the Hartree-Fock wave function as

a reference, which maintains the correct behavior of wave function at large reh.

The exciton binding energy is defined as

EB = E0−E int, (4.13)
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Table 4.3: Exponents of basis functions e−αr2
.

Dot diameter α

(nm) (atomic units)

6.0 1.14×10−3

9.0 4.00×10−4

Table 4.4: Geminal parameters for 6 nm and 9 nm diameter CdSe qdots.
Dot diameter b2 γ2 b3 γ3

(nm)

6.0 2.55×10−2 1.86×10−2 1.06×10−2 1.37×10−2

9.0 2.55×10−2 1.86×10−2 1.06×10−2 1.49×10−2

where E0 is the non-interacting energy, found using the Hamiltonian H0, and E int is the interacting

energy using the fully interacting Hamiltonian H. From the exciton binding energies, a relative

difference percentage in exciton binding energy

%DR =
(E l

B−E∞
B )

E∞
B

×100%, (4.14)

where E l
B is the exciton binding energy at the ligand length l and E∞

B is the exciton binding energy

for a ligand-free quantum dot.

The non-interacting exciton energies were determined using a full minimization of the non-

interacting Hamiltonian

H0 = lim
reh→∞

H, (4.15)
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to give

E0 = min
Ψ

〈Ψ|H0|Ψ〉
〈Ψ|Ψ〉

. (4.16)

The interacting energies were determined using field-free wave functions

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (4.17)

4.4 Results

The exciton binding binding energy was determined for 6 nm and 9 nm CdSe quantum dots

with a range of ligands containing 1-30 CH2 units between the thiol and the carboxylic acid and in

pH environments from 1 to 14. This range of lengths and environmental acidities gives a full range

of possibilities for each parameter. The effect of all ligands protonated to all ligands depronated

was observed in these sets of data.

In Figure 4.2, the full set of relative difference percentage of exciton binding energy is seen.

In Figure 4.3, a subset of the ligand lengths (1,2,5, 10, 15, 20, 25, 30 CH2 units) is plotted. Most

noticeable in this plot is the regularity with which the relative difference percentage increases as

the ligand length becomes longer. With shorter ligands, the decreases in the exciton binding energy

was greatest. As the ligands become longer, the effect of the charges decreases as the interaction

term is an inverse separation relationship. At pH near the pKa, the maximum decrease in the

exciton binding energy is observed for all ligand lengths.

In Figure 4.4, the full set of relative difference percentage of exciton binding energy for the

complete set of pH and ligand lengths for the 9 nm CdSe quantum is shown. The results are similar
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Figure 4.2: Relative difference percentage of exciton binding energy for the 6 nm CdSe quantum
dot with ligands from 1-30 CH2 units and pH 1-14 viewed as a contour plot.
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Figure 4.3: Relative difference percentage of exciton binding energy for the 6 nm CdSe quantum
dot with ligands from 1-30 CH2 units and pH 1-14.
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Figure 4.4: Relative difference percentage of exciton binding energy for the 9 nm CdSe quantum
dot with ligands from 1-30 CH2 units and pH 1-14 view as a contour plot.

to Figure 4.2; however, the larger dot shows additional features. The key finding in the 6 nm CdSe

quantum dot study was the consistent minimum of the relative difference percentage in the region

of pKa. In Figure 4.2 shows similar results. The greatest decrease in exciton binding energy is in

the region about pH = pKa; however, there is broadening of the region in which the decreases are

greatest. In Figure 4.5, a subset of the full data seen in Figure 4.4 is seen in cross-section. In this

view, the new feature of the shoulder between pH 6 and 8 is more easily seen.

In both cases 6 nm (Figure 4.2) and 9 nm (Figure 4.4), it is most notable that both low and

high pH values gave similar changes in the exciton binding energy. At low pH, the majority (if
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Figure 4.5: Relative difference percentage of exciton binding energy for the 9 nm CdSe quantum
dot with ligands from 1-30 CH2 units and pH 1-14.
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not all) of the charges are zero. In the case of the high pH, the majority (if not all) of the charges

are negative. This may lead to a homogeneous electric field. As ligand charges are removed

randomly, there is a greater possibility for asymmetric in the charges to develop which may lead to

inhomogeneous electric field. In this inhomogeneous electric field, both the electron and the hole

may localized in very different spatial locations which would leads to a spatial separation of the

electron and hole. This spatial separation lowers the exciton binding energy.

4.5 Conclusion

The relationship between the quantum dots and the ligands that passivate the surface is a

complex and multifaceted subject. In this work, the relationship between the length of a charged

ligand and the exciton binding energy was studied. In isolation from other parameters, the effect

of the length of the ligand was studied. It was found that shorter ligands have a greater effect on

exciton binding energy than longer ligands. The effect of the environmental pH was also studied. It

was found that the maximum decrease in the exciton binding energy occurred when near pH= pKa.

This is likely due to the increased inhomogeneity of the electric field that occurs when 50% of the

charges have become neutral. Both the low pH and high pH lead to a fairly homogeneous electric

field inside the quantum dot.

Ligands on quantum dots play an important role in determining the optical and electronic

properties of the systems. However, to what extent each of the many properties (length, charge,

functional group type, etc) of the ligand impacts the properties of the system to the largest degree.

In experimental systems, it is difficult or impossible to isolate one facet of the multifaceted ligands.

In this work, ligand length and charge density were separated from the other variables in the ligand.

140



This separation may provide a useful insight into nature of the ligand in quantum dot systems.

This insight may give further coarse and fine control of the optical and electronic properties of the

already versatile quantum dot systems.
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Chapter 5: Conclusions

In this work, the effects of electric fields on nanoparticles, the quantum-confined Stark effect,

were studied for quantum dot systems. In each of the chapters, different aspects of the optical and

electronic properties of nanoparticle systems were developed.

In chapter 2, the electron-hole cumulant was used to define an electron-hole correlation

length. The electron-hole correlation length is a useful quantity that measures the length at which

the correlation effects become minimal. This quantity was determined in a series of CdSe quan-

tum dots with diameters between 1.25 nm and 20 nm. The electron-hole correlation length was

also used to calculate parameters in the explicit correlation operator without performing energy

minimizations. This construction of the explicit correlation operator has the potential to greatly

improve the computational efficiency of the explicitly correlated methods.

In chapter 3, the effect of homogeneous electric fields on the optical and electronic properties

of GaAs parabolic quantum dots. It was found that the electron-hole recombination probability was

more influenced than the exciton binding energy. In order to gain the most accurate description of

the system, the variational polaron transformation was developed for electron-hole systems.

In chapter 4, the effect of ligand length and environmental pH on the optical and electronic

properties of CdSe parabolic quantum dots were determined. It was found that the length of the

ligand has a great impact on the exciton binding energy, with shorter ligands causing a greater re-
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duction in the exciton binding energy. The change in pH showed the greatest reduction in exciton

binding energy when the pH = pKa. The exciton binding energy behavior is likely tied to the inho-

mogeneity of electric field as charges are randomly neutralized on the ligands as the environmental

pH changes.

5.1 Potential avenues for future work

There are several avenues for future work. The use of the electron-hole correlation length

for the construction explicitly correlated operators has only been demonstrated for one system. In

the future, this method may become the primary method for either the initial determination of the

geminal parameters or as a initial screening for the potential sets of geminal parameters for energy

minimization.

The study of the effect of electric fields is a very interesting avenue. Many of the aspects

of the ligands can be studied and the effects in isolation are still relatively unknown. By studying

various systems, the parameters necessary for customization of the optical and electronic properties

will be better understood. Also, one potential project is the effect of a time-dependent electric field.

It is of great interest to observe what happens the electric field changes and to see how the system

reacts.
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Chapter A: Derivation of r2
eh

A.1 Introduction

We wish to calculate 〈r2
eh〉 where reh = re− rh. We begin by

〈Ψ(re,rh)|r2
eh|Ψ(re,rh)〉= 〈Ψ(re,rh)|(xe− xh)

2|Ψ(re,rh)〉

+ 〈Ψ(re,rh)|(ye− yh)
2|Ψ(re,rh)〉

+ 〈Ψ(re,rh)|(ze− zh)
2|Ψ(re,rh)〉 (A.1)

We develop only the x-term here, since the integrals will be of the same form for each coor-

dinate The first term on the right hand side of Eq. (A.1) is

〈Ψ(re,rh)|(xe− xh)
2|Ψ(re,rh)〉= 〈Ψ(re,rh)|x2

e |Ψ(re,rh)〉

−2〈Ψ(re,rh)|xexh|Ψ(re,rh)〉

+ 〈Ψ(re,rh)|x2
h|Ψ(re,rh)〉 (A.2)
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A.2 Centered at Zero

If the wavefunction can be seperated as Ψ(re,rh) = ψx(xe,xh)ψy(ye,yh)ψz(ze,zh) and we use

a wavefunction ψx(xe,xh) = φ e
x (nx,αx)φ

h
x (mx,βx), which has been centered at zero.

Then, Eq. (A.2) becomes

〈ψx(xh,xh)|(xe− xh)
2|ψx(xe,xh)〉= 〈φ e

x (nx,αx)φ
h
x (mx,βx)|φ e

x (nx +2,αx)φ
h
x (mx,βx)〉

−2〈φ e
x (nx,αx)φ

h
x (mx,βx)|φ e

x (nx +1,αx)φ
h
x (mx,βx +1)〉

+ 〈φ e
x (nx,αx)φ

h
x (mx,βx)|φ e

x (nx,αx)φ
h
x (mx +2,βx)〉 (A.3)

A.3 Generalized Function

A general way to express the wavefunction is

Ψ(re,rh) = φe(re)φh(rh) (A.4)

Each φe(re) is

φe(re) = φ
e
x (nx,αx,Ax)φ

e
y (ny,αx,Ax)φ

e
z (nz,αz,Az), (A.5)

where Ax is the x-center (and so on).

We need only derive the expression for one coordinate, which will be x to find the form for
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all three components. we will now calculate

〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|(xe− xh)

2|φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)〉 (A.6)

For which, we need to express (xe− xh)
2 as

(xe− xh)
2 = [(xe−Ax +Ax)− (xh−Bx +Bx)]

2

= [(xe−Ax)− (xh−BY )+(Ax +BX)]
2

= [(xe−Ax)− (xh−Bx)]
2 +(Ax−By)

2 +2(Ax−Bx)[(xe−Ax)− (xh−Bx)]

= (xe−Ax)
2 +(xh−Bx)

2−2(xe−Ax)(xh−Bx)+(Ax−Bx)
2

+2(Ax−Bx)[(xe−Ax)− (xh−Bx)] (A.7)

Eq. (A.6) is now represented, using Eq. (A.7), as

〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|(xe− xh)

2|φ e′
x (nx,αx,Ax)φ

h′
x (mx,βx,Bx)〉=

〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|φ e′

x (nx +2,αx,Ax)φ
h′
x (mx,βx,Bx)〉

+ 〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|φ e′

x (nx,αx,Ax)φ
h′
x (mx +2,βx,Bx)〉

−2〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|φ e′

x (nx +1,αx,Ax)φ
h′
x (mx +1,βx,Bx)〉

+(Ax−Bx)
2〈φ e

x (nx,αx,Ax)φ
h
x (mx,βx,Bx)|φ e′

x (nx,αx,Ax)φ
h′
x (mx,βx,Bx)〉

+2(Ax−Bx)〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|φ e′

x (nx +1,αx,Ax)φ
h′
x (mx,βx,Bx)〉

−2(Ax−Bx)〈φ e
x (nx,αx,Ax)φ

h
x (mx,βx,Bx)|φ e′

x (nx,αx,Ax)φ
h′
x (mx +1,βx,Bx)〉 (A.8)
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As a check, we set Ax = Bx = 0 to find (omitting the center coordinates for emphasis)

〈φ e
x (nx,αx)φ

h
x (mx,βx)|(xe− xh)

2|φ e
x (nx,αx)φ

h
x (mx,βx)〉=

〈φ e
x (nx +1,αx)φ

h
x (mx,βx)|φ e

x (nx +1,αx)φ
h
x (mx,βx)〉

+ 〈φ e
x (nx,αx)φ

h
x (mx +1,βx)|φ e

x (nx,αx)φ
h
x (mx +1,βx)〉 (A.9)

which is equal to Eq. (A.3).
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