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Abstract

Semiconductor nanoparticles, or quantum dots (QDs), are well known to have very
unique optical and electronic properties. These properties can be controlled and tai-
lored as a function of several influential factors, including but not limited to the
particle size and shape, effect of composition and heterojunction as well as the effect
of ligand on the particle surface. This customizable nature leads to extensive exper-
imental and theoretical research on the capabilities of these quantum dots for many
application purposes. However, in order to be able to understand and thus further
the development of these materials, one must first understand the fundamental in-
teraction within these nanoparticles. In this thesis, I have developed a theoretical
method which is called electron-hole explicitly correlated Hartee-Fock (eh-XCHF). It
is a variational method for solving the electron-hole Schrodinger equation and has
been used in this work to study electron-hole interaction in semiconductor quantum
dots. The method was benchmarked with respect to a parabolic quantum dot system,
and ground state energy and electron-hole recombination probability were computed.
Both of these properties were found to be in good agreement with expected results.
Upon successful benchmarking, I have applied the eh-XCHF method to study optical
properties of several quantum dot systems including the effect of dot size on exciton
binding energy and recombination probability in a CdSe quantum dot, the effect of
shape on a CdSe quantum dot, the effect of heterojunction on a CdSe/ZnS quan-
tum dot and the effect of quantum dot-biomolecule interaction within a CdSe-firefly
Luciferase protein conjugate system. As metrics for assessing the effect of these in-
fluencers on the electron-hole interaction, the exciton binding energy, electron-hole
recombination probability and the average electron-hole separation distance have been
computed. These excitonic properties have been found to be strongly infuenced by
the changing composition of the particle. It has also been found through this work
that the explicitly correlated method performs very well when computing these prop-
erties as it provides a feasible computational route to compare to both experimental
and other theoretical results.
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Chapter 1

Introduction and background on

quantum dot systems

Over the past several decades there has been increasing experimental and theoretical

research with respect to particles confined to the nanoscale dimension [11]. Specifi-

cally, when a semiconductor material is confined to dimensions that are that small,

they display unique optical and electronic properties that are very highly tunable [12].

These nanoscale size particles are referred to as quantum dots (QDs) [13, 14, 15, 16].

A quantum dot is generally in the size range of 1-20 nanometers (nm) and can be of

differing shapes, though generally spherical [11, 12, 17, 18, 19, 20]. The nanoparticle

can also be rod-like [21, 22, 23, 24], pyramidal [25, 26, 27, 28] and so on. Changing

the shape [29, 30, 31, 11], size [32, 33, 34], and other influential factors can mod-

ify the optical properties of the nanocrystal. Due to this customization capability,

these quantum dots find extensive experimental application and theoretical research

interest.

In order to understand the application of quantum dots, one must first under-

stand the generation and dissociation of the electron-hole pair or exciton. When light

strikes a semiconductor material, an electron is excited from the valence band to
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Figure 1-1: Electron-hole pair picture.

the conduction band. This electronic excitation in QDs can be represented via the

quasiparticle representation which describes the formation of the exciton. This rep-

resentation provides a viable route for the theoretical treatment of excitonic systems.

The goal of the work presented within this thesis is to develop a computationally

efficient theoretical method which can accurately compute the optical properties of

semiconductor quantum dot systems. The details of the work performed are described

in the following chapters. The introduction is organized as follows, in section 1.1

the factors that influence the optical properties and electron-hole interaction within

quantum dots are presented, in section 1.2 the experimental outlets for the application

of quantum dots are discussed followed by the theoretical treatment of electron-hole

correlation in quantum dots in section 1.3. The theoretical details of the method

developed in this work is given in section 2.1. Finally, the excitonic properties of

interest are discussed in section 1.4 .
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Figure 1-2: CdSe quantum dots of increasing size.

1.1 Influential factors on quantum dot properties

1.1.1 Particle size

Changing particle size is one of the direct routes for modifying the exciton dissociation

in quantum dots. As shown in Figure 1-2 [35], all vials within the figure are of

CdSe quantum dot material of differing size. Based on the size of the quantum

dot, they fluoresce at different wavelengths [11]. Therefore, it is evident that the

particle size can directly affect the optical properties . Studies on CdSe quantum

dots have shown that the exciton binding energy changes as a function of dot size

[3, 2, 4, 36, 37, 1, 5, 6, 7]. The exciton binding energy is defined as the energy it

takes to separate an electron-hole pair and is discussed in section 1.4. In addition to

modifying the exciton binding energy, the dot size also has strong influence on Auger

recombination[38, 39] , multiple exciton generation [40, 41, 42, 43] , and blinking

effects [44, 45, 46] within QDs. For example, Ghosh et al. have generated "giant"

CdSe/ZnS core/shell quantum dots in order to study the effect of dot size and shell
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growth on the ability to suppress blinking within QDs [46]. Lin et al. have also studied

the effect of dot size on multi-exciton generation (MEG) rates within CdSe quantum

dots [42]. In recent work, Alam et al. have studied effects of both particle shape and

size on bioluminescence resonance energy transfer (BRET) between firefly luciferase

protein and QDs and both the size and shape were found to be strong influencers of

energy transfer capability. Size effects are discussed in detail in chapter 5 .

1.1.2 Particle shape

In addition to particle size, the nanocrystal shape also plays a large role in the tun-

ability of the optical properties. Quantum dots are generally thought of as sphere-like

particles, however, their shape can be modified and extended to resemble an ellipsoid

, a rod-like structure or even greatly extended to nanowire dimensions. Changing the

shape of the nanoparticle directly influences the spatial confinement of the electron

and hole within the quantum dot [47, 48, 49, 50, 51, 52, 25, 53]. In experimental study,

Li and coworkers have found that modifying the aspect ratio of a rod-like nanoparticle

can greatly modify the optical properties of the system [52]. Wang et al. have found

that in InP quantum rods the confinement can be modified at small aspect ratios,

where the nanoparticle goes from 3D to 2D confinement around an aspect ratio of

three [48]. It has also been found that the particle shape can be used to both control

and optimize energy transfer between QDs and related charge acceptors. In work

performed by Alam et al. they have shown that quantum rods have optimum energy

acceptor characteristics with respect to bioluminescence resonance energy transfer

(BRET) from core/shell nanoparticles to firefly Luciferase protein [54]. Additionally,

quantum rods have also been found to be efficient at the dissociation of multiexcitons

compared to spherical quantum dots by Zhu et al. [50]. When the particle size is

confined in extreme, such as a nanowire , it has been found that this extreme con-

finement benefits applications like solid state lighting. In that respect, Quian et al.
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have used core/shell nanowires to generate efficient multi-color light emitting diodes

[55]. Studying the shape of nanoparticles is often difficult due to the inherent volume

constraint. One may be able to change the shape of the particle, but if volume is

not conserved a direct comparison of the optical properties cannot be easily drawn.

Therefore, isovolumetric transformation is necessary in order to be able to demon-

strate the true effect of shape. An overview of the effect of shape on CdSe quantum

dots via isovolumetric transformation is discussed in chapter 7.

1.1.3 Heterojunction effects

One of the most prominent methods to modify optical properties and induce exciton

dissociation is to introduce a heterojunction into the system [56, 57, 45, 58, 59, 60].

With respect to quantum dots, a core of a certain diameter is often modified by

the addition of a shell of a differing material. When the dot diameter is modified

by growth of shell , the alignment and band structure of the particle changes and

introduces new features into the electronic structure of the material. These can then

be classified as one of three types, a type I, type II or quasi-type II heterojunction

[61]. Based on the type of heterojunction exhibited, the particle’s optical properties

can be modified. Additionally, the optical and charge transfer properties can be

modified extensively by changing the shell thickness of the nanoparticle. Zhu et al.

have shown that based on the thickness of the shell the charge transfer capability

of the particle can be greatly modified in a CdSe/ZnS system [62]. Abdellah and

coworkers have also found that an optimal shell thickness exists for electron transfer

to ZnO nanoparticles, this specific application has possible application within solar

cell materials due to the ability to control the charge transfer via shell thickness [63].

Hole transfer from core/shell quantum dots has also been investigated by Xu and

coworkers, and they have found that there is a strong dependence on shell thickness

for hole transfer as well [64]. Hamada and coworkers have found that coupling 𝑇𝑖𝑂2
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material with core/shell CdSe/ZnS core/shell quantum dots has shown to greatly

decrease the blinking characteristic within the core/shell dot due to the coupling

with the electron acceptor of 𝑇𝑖𝑂2 [65]. This is very good for applications in which

consistent emission is desired. In 2009, Jin and coworkers also found that coupling

core/shell quantum dots with TiO2 has been found to greatly increase the electron

transfer rate as compared to other materials [66].

Therefore as described above, the optical properties of quantum dots can be mod-

ified extensively by the introduction of a heterojunction. In chapter 6, the effect

of heterojunction and increasing shell thickness within a CdSe/ZnS quantum dot is

discussed in detail and through the study of optical properties like exciton binding

energy , electron hole recombination probability and average electron-hole separation

the effect of heterojunction on the QDs is presented.

1.1.4 Ligand effects in QDs

The effect of ligand on exciton dissociation within quantum dots is an area of con-

siderable research interest. The type of ligand chosen, whether it is an organic based

ligand or a biological molecule can strongly effect the charge separation and the op-

tical properties [67, 30, 68, 69]. The optical properties are highly sensitive to the

local chemical environment. Therefore, changing the surrounding ligand can strongly

affect the optical characteristics. The effects of protein corona formation on quan-

tum dot surfaces are presented in chapter 8 and the firefly Luciferase protein corona

formation on the optical signature of a CdSe quantum dot is investigated.

However, ligands also have an effect on properties such as Auger recombination

, where Sippel and coworkers have found that the type of ligand surrounding the

quantum dot has an effect on the rate of Auger recombination. They have studied a

CdSe quantum dot and found that the use of a hexanedithiol capping ligand causes

the Auger recombination to be slowed [70]. Zhang et al. have found that you can
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control the type of ligand used in order to target different types of cells which has

application in biological labeling and tracking as discussed in the following section

[71]. Frederick et al. have studied the effect of ligand on several quantum dots.

They find that the type of ligand chosen can strongly affect the dissociation of charge

carriers , their findings have application in solid state materials [72].

1.2 Applications of quantum dots

1.2.1 Quantum dots for solar energy applications

Quantum dots find application in many experimental outlets due to their versatility

and highly tunable properties. One of the most prominent applications is the use

of QDs in light harvesting applications like solar cells [73, 34, 74]. Quantum dots

are ideal for this application due to their ability to facilitate exciton dissociation

and charge transfer which can increase solar cell efficiency depending on the type

of quantum dot used within the cell. For example, Chang et al. have used PbS

quantum dots coupled with CdS thin film to generate a solar cell with efficiency of

nearly 3.5% [75]. Willis et al. have also used a PbS QD based solar cell coupled

with ZnO . They have found that doping the ZnO material causes the capability for

charge extraction to increase [76]. Santra et al. have used an approach where a solar

cell is layered with CdSeS quantum dots with varying band gaps. This layering of

QDs allows for efficiency of around 3% [77]. In an effort to further increase efficiency,

Santra et al. have doped quantum dots to boost efficiency to 5% [78]. There have also

been alternative methods for using quantum dots for light harvesting applications,

wherein Genovese et al. in 2012 have developed a solar paint consisting of CdS, CdSe

and 𝑇𝑖𝑂2 nanoparticles. Although the efficiency of this new material is not as high

as other approaches, at only 1%, it does provide a new route for generating light

harvesting materials that can be improved upon in the future [79]. In a study in
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2013, Abdellah and coworkers have found that core/shell CdSe/ZnS quantum dots

have the capability to facilitate the charge transfer necessary to make an efficient light

harvesting device. They have also found that there is an optimal ZnS shell thickness

for electron transfer to ZnO nanoparticles [63].

In 2012, Ehrler et al. studied a hybrid organic/inorganic solar cell using PbS

nanocrystals. They find that multi-exciton generation helps to increase the charge

transfer rate within the cell [80]. Salant et al. have found that changing the shape

of the nanoparticle helps to increase the charge transfer rates. It was found that

rods performed the best for charge transfer due to their elongated shape [81]. Pan

et al. have utilized a core/shell QD coupled with 𝑇𝑖𝑂2. The specific inverted type-I

core/shell system coupled with the electron acceptor allowed for recorded efficiency

of up to 5.32% [82]. Many times QDs are coupled with charge accepting materials in

order to increase the performance of solar cells, however, in recent work by Tang and

coworkers, they have developed a fully quantum dot based solar cell with no coupling

material. The efficiency for this cell was said to be 5.4%, therefore, showing an

alternative approach to better the performance of quantum dot based solar cells.

1.2.2 Quantum dots as key role in energy transfer applications

Quantum dots can also facilitate energy transfer processes very well. For example,

Hupp and coworkers have found that coupling a CdSe quantum dot with a metal

organic framework (MOF) increased the energy transfer capability. The study reports

that the coupling of the QD with the MOF has shown an increase in electron transfer

of nearly 50% [83]. Algar et al. have found that a quantum dot based scaffolding

approach works best for sensing of biomolecules based on its fluorescence resonance

energy transfer (FRET) capability [84].

In keeping with energy producing applications of quantum dots, Zhao et al. have

used CdSe QDs for photocatalytic 𝐻2 evolution at the QD/solution interface. What
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they have found within this work sheds light on the ability to use the quantum

confinement effects found within nanocrystals to control the reduction of protons and

thus control the energetics of Hydrogen generation [85]. Huang et al. have also found

that it is possible to facilitate the mechanism by which Hydrogen is generated via

charge separation in core/shell quantum dots, where the effect of the heterojunction

is very important [86]. The effect of heterojunction on quantum dots is discussed in

detail in chapter 6. In 2012, Ye et al. have shown that it is possible to couple Pd

based QDs with 𝑇𝑖𝑂2 in order to achieve efficient Hydrogen generation [87].

1.2.3 Light emitting devices

In tandem with solar cells, quantum dots have also found application in light emitting

devices or LEDs [88, 89]. The tunability of quantum dots can help to tune the

performance of QDs for light emitting purposes. Specifically, Jun and coworkers have

used QDs in combination with a silica based structure in order to construct highly

efficient quantum dot based light emitting diodes. The silica ensures that the QD

retains its properties throughout the process of conversion to LED [89].

1.2.4 Role of quantum dots within biological applications

One of the other prominent applications of quantum dots is in biological applications,

as they are often used for detection and tracking purposes. For example, Zhang and

coworkers in 2013 have utilized quantum dots for the labeling and tracking of various

viruses [90]. Wang et al. have used QDs to target disease and certain biomolecules.

Specifically, they have been able to develop a quantum dot barcode approach for

targeting Hepatitis-B [91]. Draz and coworkers have also coupled QDs with gold

nanoparticles in order to make use of the plasmon resonance between the particles,

specifically this approach was again used to test for Hepatitis B. However, the method

is not necessarily limited and can be used to test for other biomolecules as well [92].
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The shape of quantum dots has played a role in biological applications, in a study

by Smith et al. in 2012 they have compared the effect of nanoparticle shape on

cancer detection in cells [93]. The effect of ligand is again very imporant in biological

applications. Zhang et al. have found that they have the ability to control the type

of ligand on an 𝐴𝑔2𝑆 quantum dot in order to be able to target various types of cells

[71]. In 2012, Liu and coworkers have shown that single particle QDs can track the

influenza virus. This technology was also used to show the step by step process of

virus infection using quantum dots [94].

1.2.5 Quantum dots for detection purposes

Closely related to biological applications, recently QDs have been used for the detec-

tion of pH . Ji et al. have studied the use of core/shell CdSe/ZnS quantum dots in pH

depedent chemical systems. Within their study, the QDs can interact with different

types of electron transfer based materials depending on the pH of the system. There-

fore, by tuning the pH, the charge transfer properties of the system can be tuned.

They have also found that the recombination dynamics of the electron and hole were

effected by the change in the pH of the system [95]. Mattoussi and coworkers have

also found that CdSe/ZnS quantum dots can be stabilized at extreme pH by the

type of ligands used within the system. These have been found to be stable even at

extreme pH [96]. The effect of pH dependence on a QD-dopamine system has also

been investigated by Ji et al. in 2012 [95].

In addition to the biological detection that QDs are often used for, they can also

be employed for other, more general signal detection purposes. For example, Diaz

et al. have used a photoswitchable quantum dot based method in order to improve

signal detection capability [97]. Padilha and coworkers have used semiconductor QDs

for detection purposes in order to detect x-ray and gamma rays based on high energy

excitation behavior [98]. In recent work by Zhou et al., they have used CdTe quan-
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tum dots as a nanothermometer due to the lattice dilation of the QD material [99].

Quantum dots also show possible application in the field of flourescence microscopy,

Schwartz and coworkers have used QDs for their stability at low excitation repeti-

tion rates and thus due to the stability it is possible that they can be used within

fluorescence microscopy [100].

1.2.6 Unique applications of QDs

Quantum dots also find many unique applications that provide new research interest

and increasing research capabilities for both experimental and theoretical outlets.

For example, Yang et al. have used QDs for application within Lithium ion batteries

, where a ZnO particle was coated with Carbon in the battery. This method has

shown increased electrochemical capabilities [101]. Luther et al. have used a method

in which they control the stoichiometry of a quantum dot (specifically, PbS and PbSe)

which can be tuned specifically to display either n or p type behavior [102].

1.3 Theoretical treatment of electron-hole correla-

tion in quantum dots

As the experimental understanding of quantum dots and their various applications

advances, the need for accurate and computationally efficient theoretical methods

increases as well. Theoretical treatment of quantum dots is crucial as it allows for

prediction of the optical properties of nanoparticles. It is apparent in some cases that

we are able to predict with theory what may be experimentally difficult to prepare.

In order to understand and thus be able to study properties of QDs, one must first

understand the role of electron-hole correlation .
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1.3.1 Experimental and theoretical importance of electron-

hole correlation

Electron-hole correlation plays a central role in understanding and interpretation of

optical properties of a wide variety of materials [103, 104, 105, 106, 107]. The role

of electron-hole correlation has been investigated both experimentally and theoret-

ically for a large number of systems including predicting excitonic ground state in

quantum dots [108], light emission from quantum wires[109, 110], optical response of

metal clusters[111], excitonic effects in graphene [112], radiative lifetimes in carbon

nanotubes [113], excitonic states in polymers [114] and luminescence of quantum dots

[115]. Accurate treatment of electron-hole correlation in computational studies can

predict shapes of absorption spectra and biexciton formation in quantum dots[108].

Electron-hole correlation also has a strong influence on electron-hole recombination

probability in photoactive materials. Eh-recombination plays an important role in the

field of photovoltaics[116, 117, 118, 119, 120, 121] , photocatalysis[122, 123, 124, 125]

, light emitting devices [126] , and electroluminescence [115]. For light-harvesting ap-

plications, it is desirable to design materials with low probability of eh-recombination.

In certain TiO2-based photoactive materials, the eh-recombination causes reduction

in the quantum yield[123], however, the photocatalytic activity can be enhanced

by chemical modification of the material inhibiting of eh-recombination [124]. In

photocatalytic nanocrystals, shape of the nanocrystal was found to influence eh-

recombination and synthetic modifications of the shape of the nanocrystal can be

made to suppress eh-recombination and design highly efficient photocatalysts [125].

Suppressing eh-recombination has also received attention in the field of dye-sensitized

solar cells research. Chemical modifications such as addition of alkyl chains [127]

and designing new metal centered complexes [120] have been carried out to enhance

light-harvesting capabilities by reducing eh-recombination. In a related application,

Bose-Einstein condensation of excitons was also found to be strongly influenced by the
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eh-recombination probability and exciton lifetime [128]. In semiconductor quantum

dots, eh-recombination can be reduced by introducing a core/shell heterostructure

. This is generally achieved by using a core material whose valence and conduc-

tion bands are either higher or lower than those of the shell material [16, 129, 130].

As a consequence, one of the charge carriers (electron or hole) is mostly confined

to the core, while the other charge carrier is confined to the shell. The core/shell

structure induces spatial separation between electrons and holes which reduces eh-

recombination[131]. Dissociation of electron-hole pair generates charge carriers and

increases the quantum yield of the photocurrent generation processes. Consequently,

it is important to have accurate theoretical and computational techniques for accurate

calculation of electron-hole binding energies and recombination probabilities .

1.3.2 Computational treatment of electron-hole correlation in

quantum dots

Computational treatment of electron-hole interaction can be carried out using various

techniques including, one and two particle Green’s function method [132, 133, 134]

effective mass approximation (EMA) , [135] configuration-interaction (CI) [136, 137,

138, 139, 140, 141], coupled cluster (CC)[142], quantum Monte Carlo (QMC) method

,[143, 144, 145, 146] and density functional theory (DFT) [147, 148, 149]. A detailed

review of various computational techniques has been presented by Sundholm and

coworkers [150] The many-body pseudopotential theory for excitons in quantum dots

[3, 151, 39] has been developed by Franceschetti et al. that uses CI scheme to solve

the electron-hole Schrodinger equation . This method has been successfully used for

studying a wide range of problems including charge carrier multiplicity [152], lifetime

and recombination energies of excitons[153, 154] and Auger scattering and recombi-

nation in quantum dots [155, 155]. Sundholm and coworkers have also used CI for

calculation of lifetime and binding energies [156, 157]. Accurate description of the
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two-particle cusp plays an important role both in electron-electron and electron-hole

systems. In electronic systems, the importance of electron-electron cusp has been

demonstrated in a large number of studies [158, 159, 160] and is typically included

in the calculation by either by using a Jastrow correlation function [158, 159, 161]

or by explicitly correlated R12 scheme [160]. The nature of electron-hole correla-

tion is very different from electron-electron correlation typically encountered for the

ground state calculations in many-electron systems because the particles involved are

oppositely charged. As a consequence of the attractive Coulomb interaction , the

quality of the electron-hole wave function at small inter-particle distances is very

important. This has important consequence on the calculation of electron-hole (eh)

recombination probability , 𝑃eh. The lifetime of the generated electron-hole pair is

inversely proportional to the 𝑃eh and serves as an important metric to assess the

photovoltaic properties of quantum dots [162]. Since 𝑃eh is the "on-top" probability

of electrons and holes, an accurate description of the electron-hole wave function at

small electron-hole distances is extremely important. One of the ways to achieve this

is by introducing an explicit eh-inter-particle distance term in the approximation to

the many-body wave function . This is generally done by introducing a Jastrow factor

in the electron-hole wave function and solving the electron-hole Schrodinger equation

using QMC techniques. Shumway and Ceperley have performed QMC calculations

for exciton-exciton scattering [163]. Zhu and Hybertsen have also applied QMC for

treating electron-hole correlation using variational Monte Carlo [144].

1.3.3 Current challenges associated with theoretical treatment

of quantum dots

As the knowledge and understanding of quantum dots and their theoretical treatment

advances, one of the relevant issues that needs to be addressed is the treatment

of larger quantum dot systems. All electron treatment of these types of QDs is
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prohibitive in general, although methods like DFT are able to treat up to for example,

𝐶𝑑33𝑆𝑒33, but beyond small diameters, treatment of quantum dots becomes difficult.

Therefore it is readily apparent that theoretical methods are needed that do not find

restriction in treating large quantum dots up to and surpassing 20 nm in dot diameter.

An additional challenge associated with current theoretical treatment of quantum

dots is the changing morphology. If the aspect ratio of a quantum dot is modified

to a shape much like a nanowire or nanorod, it could mean particle sizes of up to

hundreds of nanometers. Therefore, a method that is general and computationally

efficient enough to treat these large nanoparticles is of utmost importance as these

longer morphologies have seen great application in light emitting devices such as solid

state lighting and for energy transfer purposes as discussed in section 1.2.

The theoretical treatment of large quantum dot systems is motivated by experi-

mental systems where large nanoparticles are of importance. For example, in work by

Klimov and coworkers, they have chosen a small CdSe core of about 2 nm in diameter

and have grown a shell on the core QD so that the diameter increases to nearly 20

nm [38]. Alam and coworkers have grown CdSe/ZnS core/shell nanorods that are

used for bioluminescence resonance energy transfer in a nanoparticle-protein conju-

gate system. These nanorods deviate from typical spherical quantum dot structure

[54]. As an interesting metric, Figure 1-3 shows the number of atoms in a CdSe quan-

tum dot system as a function of particle diameter. Smaller CdSe diameters contain

a managable number of atoms, the smallest diameter of 1.25 nm has the chemical

formula Cd20Se19, with only 39 atoms total. However, it is clear that as the diam-

eter increases the number of particles within the QD goes up considerably. At 20

nm in diameter, the chemical formula becomes Cd74608Se74837, where the total num-

ber of atoms is greater than 140,000. Therefore, it is clear that theoretical methods

that are general and extendable in nature are necessary for the accurate treatment of

these nanoparticle systems. The explicitly correlated Hartree-Fock (XCHF) method
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Figure 1-3: Number of CdSe atoms as a function of dot size. Full details about
calculations shown are presented in chapter 5.

is presented as the given solution to address the growing need to treat these types of

systems. The theoretical details of the XCHF method are presented in the following

chapter, and the extension of the XCHF method to study quantum dot systems is

given in chapter 5.

1.4 Properties of interest in quantum dot systems

In order to be able to study the optical properties of quantum dot systems, the

following properties have been computed in varying capacities. The hallmark of the

listed properties is that they rely heavily on electron-hole interaction and can give

insight into the generation and dissociation of excitons . They are also highly sensitive

to the modification of the characteristics of the quantum dot system, such as changing

the size as discussed in chapter 5, heterojunction in chapter 6, shape in chapter 7

and ligand in chapter 8.
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1.4.1 Exciton binding energy

Exciton binding energy (𝐸BE) in the simplest definition is defined as the energy it

takes to dissociate an electron-hole pair. Being able to study the binding energy of a

system is inherent in understanding the properties of the generation and dissociation

of the electron-hole pair. The binding energy is of both experimental and theoretical

importance. Experimentally, binding energy is defined in Figure 1-4. Computation-

ally, the binding energy is defined as the non-interacting exciton

1st exciton level Quasiparticle
energy gap

Optical absorption (OA) gap

Exciton binding (EBE) gap

Conduction band

Valence band

Figure 1-4: The relationship between optical energy gap, quasiparticle gap, and ex-
citon binding energy .

energy less the interacting exciton energy as shown below.

𝐸BE = 𝐸non−interacting − 𝐸exciton (1.1)
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Figure 1-5: Recombination probability of an hole within a finite volume around an
electron.

1.4.2 Electron-hole recombination probability

Recombination probability (𝑃eh) is defined as the probability of finding a hole within

a finite cube of volume around an electron. If the hole is found within this cube

of volume, the particles are likely to recombine due to the Coulomb attraction felt

between them,

𝑃eh =
1

𝑁e𝑁h

∫︁
𝑑re

∫︁ re+
Δ
2

re−Δ
2

𝑑rh 𝜌eh(re, rh). (1.2)

Because the recombination probability is able to predict the recombining of the elec-

tron and hole within a quantum dot, it is of importance for applications where charge

recombination should be suppressed or heightened. Therefore, recombination proba-

bility can be studied as a function of various influential factors within quantum dot

systems to find optimal conditions for particle separation or recombination. One of

the caveats of the recombination probability is that it is very heavily dependent on

the form of the electron-hole wave function. If the form of the wave function is not

accurate enough, it can very easily negatively effect the recombination probability.
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This is displayed in both chapter 2 and chapter 5. A simple pictorial representation

of recombination probability is given in Figure 1-5.

1.4.3 Average electron-hole separation

An additional metric for studying electron-hole interaction is average electron-hole

separation as shown below,

⟨𝑟eh⟩ = ⟨Ψeh−XCHF||re − rh||Ψeh−XCHF⟩. (1.3)

The average electron-hole separation will give insight into the spatial distance between

the particles . This property is especially relevant to understand the effect of including

a heterojunction in a quantum dot system. The potential felt by the particles changes

considerably, so it is likely that the spatial separation between the electron and hole

will change as a function of core and shell potential. It is also heavily effected by

the particle size within quantum dot systems as increasing the size of the particle

increases the effective volume that the particles have to reside in.
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Chapter 2

Development and Benchmarking of

Explicitly Correlated Hartree-Fock

(XCHF) Method

2.1 Method developed: Electron-hole explicitly cor-

related Hartree-Fock

In the present work, I present an explicitly correlated Hartree-Fock (eh-XCHF) method

for treating electron-hole correlation . The eh-XCHF method is a variational method

where a geminal function [164, 165] is used to incorporate explicit eh-distance in the

wave function. The explicitly correlated method using geminal functions has been

successfully used to study electron-electron[166], electron-proton [167, 168, 169] and

electron-positron [170] interactions in chemical systems. The eh-XCHF formulation

presented here is different from earlier methods in its requirement to correctly ac-

count for electron-hole exchange interaction. This is especially important for study-

ing optical properties of nanomaterials where eh-exchange interaction is enhanced

[171, 172, 173, 104, 174, 175, 176, 177]. Electron-hole exchange interaction plays
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an important role [173, 151, 178] in understanding optical properties of nanomateri-

als including, dark exciton states,[173, 178, 179, 172, 180] fine structure of excitons

[181, 182], effect on spin relaxation [183, 184], and generation of trions in carbon nan-

otubes [185, 186]. In this work, the key equations of the eh-XCHF method are derived

for a general many-electron many-hole system and benchmark calculations are per-

formed on parabolic quantum dot . The parabolic quantum dot system [187, 188, 189]

has been a test bed for investigation of electron-hole interaction in confined systems

including investigation of electron-phonon coupling [190], third harmonic generation

[191], effect of impurities on exciton binding energies [192], dipole-allowed optical

transitions [193], biexciton formation [194], exciton trapping [187], and spin-orbit in-

teractions in quantum dots [195]. The system consists of two charged particles in

an external potential. The motion of the two charged particles is correlated and the

interaction between them is described by the Coulomb potential . The 1-body exter-

nal potential is described by three-dimensional harmonic oscillator term. This model

system has been studied for investigation of both electron-electron and electron-hole

correlation. For applications in electronic structure theory, the two charged particles

have identical charges of 1 and the system is known as the Hooke’s atom . It has

been used for investigating electron-electron correlation using wave function , density-

matrix and density functional based methods [196, 197, 198]. We use the parabolic

quantum dot system to perform rigorous assessment of the eh-XCHF method for

treating electron-hole correlation. In addition to eh-XCHF calculations, we have also

performed Hartree-Fock (HF) and explicitly correlated full configuration interaction

(R12-FCI ) calculations on the model system. Comparison of ground state energy

and recombination probability between all the three methods has been carried out

to evaluate accuracy of the eh-XCHF method. The theoretical method is outlined in

the section below and the results from benchmark calculations described above are

given in Chapter 2 along with the computational details of the eh-XCHF method and
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benchmark R12-FCI calculation.

2.1.1 Theoretical details of eh-XCHF method

The explicitly correlated ansatz for the wave function is defined as

Ψxc = (1 + 𝐺̂)Φeh
0 (2.1)

where Φeh
0 is the reference electron-hole wave function . Typically, the reference

wave function can be chosen as the product of electron and hole Slater determinants

Φeh
0 = Φe

SDΦh
SD. Electron-hole exchange interaction can be included by replacing the

product in the above expression by the Grassmann or wedge product[199, 200, 201,

202] between the electron and hole functions, Φeh
0 = Φe

SD∧Φh
SD. Both forms have been

successfully used in computational investigation of electron-hole pairs. The selection

of one form over the other is system specific and should be made on a case-by-case

basis. This topic has also been discussed in a review of computational techniques by

Sundholm and coworkers [203]. The derivation of the eh-XCHF method presented

below does not make any a priori assumption about the form of the reference wave

function and is capable of handling both forms on the same footing. The geminal

operator 𝐺̂ is two-body operator that depends on the coordinates of both the electrons

and the holes and is defined as:

𝐺(re, rh) =
𝑁e∑︁
𝑖

𝑁h∑︁
𝑗

𝑔(re𝑖 , r
h
𝑗 ) (2.2)

where 𝑔(re𝑖 , r
h
𝑗 ) depends on the electron-hole inter-particle distance and is expressed

as a linear combination of Gaussian functions,
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𝑔(re𝑖 , r
h
𝑗 ) =

𝑁g∑︁
𝑘

𝑏𝑘𝑒
−𝛾𝑘|re𝑖−rh𝑗 |2 . (2.3)

The expansion coefficients 𝑏𝑘 and the width parameter 𝛾𝑘 are parameters used for

defining the geminal function. The geminal parameters and the constituting electron

and hole orbitals are determined variationally by minimizing the expectation value of

the Hamiltonian .

𝐸 =
⟨Ψxc|𝐻|Ψxc⟩
⟨Ψxc|Ψxc⟩

(2.4)

Interaction between the electrons and the holes are described by an effective many-

body Hamiltonian which can be described by the following general expression: [105,

144, 204, 205, 206]

𝐻 = 𝑇e + 𝑉 ext
e + 𝑉ee + 𝑇h + 𝑉 ext

h + 𝑉hh + 𝑉eh (2.5)

where,
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𝑇e = −ℎ̄2

2𝑚e

∫︀
𝑑re𝜓†(re)∇2𝜓(re)

𝑇h = −ℎ̄2

2𝑚h

∫︀
𝑑rh𝜓†(rh)∇2𝜓(re)

𝑉 ext
e =

∫︀
𝑑re𝜓†(re)𝑣exte 𝜓(re)

𝑉 ext
h =

∫︀
𝑑rh𝜓†(rh)𝑣exth 𝜓(rh)

𝑉ee =
∫︀
𝑑re1𝑑r

e
2𝜓

†(re1)𝜓
†(re2)𝑟

−1
ee 𝜓(re2)𝜓(re1)

𝑉hh =
∫︀
𝑑rh1𝑑r

h
2𝜓

†(rh1)𝜓†(rh2)𝑟−1
hh𝜓(rh2)𝜓(rh1)

𝑉eh = −
∫︀
𝑑re𝑑rh𝜓†(re)𝜓†(rh)𝑟−1

eh 𝜓(rh)𝜓(rh)

(2.6)

To facilitate the actual evaluation of the expectation value , it is advantageous to

introduce the following congruently transformed operators [207, 208]

𝐻̃ = (1 +𝐺)†𝐻(1 +𝐺)

𝑆 = (1 +𝐺)†(1 +𝐺).
(2.7)

Using the above equations, the energy expression can be written as:

𝐸 =
⟨Φeh

0 |𝐻̃|Φeh
0 ⟩

⟨Φeh
0 |𝑆|Φeh

0 ⟩
(2.8)

This expression allows us to evaluate the energy in terms of matrix element of

the transformed operators in Slater determinant basis. Since evaluation of matrix

elements involving Slater determinants can be done using Slater-Condon rules , this

transformation provides a convenient route to the computation of the matrix ele-

ments. In the present work, the transformed operators will be expressed in second

quantization representation. The action of creation and annihilation operators is well

known and is used to simplify the energy expression. Since the geminal operator is
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Hermitian, the transformed Hamiltonian is written as

𝑆 = (1 +𝐺)(1 +𝐺)

= 1 + 2𝐺+𝐺𝐺
(2.9)

𝐻̃ = (1 +𝐺)𝐻(1 +𝐺)

= 𝐻 +𝐺𝐻 +𝐻𝐺+𝐺𝐻𝐺
(2.10)

The expression of the transformed operator in field operator representation is

achieved in two steps. In the first step, the product of the operators is expanded as a

sum of 1-particle, 2-particle,. . . , N-particle operators. The expanded versions of the

transformed operators are described in the following equations. In the second step,

the N-particle operators are written in second-quantized notation. It is important

to preserve the sequence of the steps, since converting the operators first to second-

quantized form and then taking the product will be identical to steps mentioned above

only in the limit of infinite basis [209]. This topic has been discussed in great detail

with examples by Helgaker, Jorgensen, and Olsen [209].

The expressions for the transformed operators are given as:

𝑆 = 1 + 2𝐺+𝐺𝐺

= 1 + 2
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′) +

[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂ [︃
𝑁e∑︀
𝑗=1

𝑁h∑︀
𝑗′=1

𝑔(𝑗, 𝑗′)

]︃
= 1 +

𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑂1(𝑖, 𝑖
′) + 1

2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′=1

𝑂2(𝑖, 𝑗, 𝑖
′) + 1

2!

𝑁e∑︀
𝑖

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂3(𝑖, 𝑖
′, 𝑗′)

+ 1
2!2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂4(𝑖, 𝑗, 𝑖
′, 𝑗′)

(2.11)
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𝐺(𝑇e + 𝑉 ext
e )𝐺 =

[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂ [︂
𝑁e∑︀
𝑘=1

− ℎ̄2

2𝑚e
∇2

𝑘 + 𝑣exte (𝑘)

]︂ [︃
𝑁e∑︀
𝑗=1

𝑁h∑︀
𝑗′=1

𝑔(𝑗, 𝑗′)

]︃
=

𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑂5(𝑖, 𝑖
′) + 1

2!

𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂6(𝑖, 𝑖
′, 𝑗′)

+ 1
2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′=1

𝑂7(𝑖, 𝑗, 𝑖
′) + 1

2!2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂8(𝑖, 𝑗, 𝑖
′, 𝑗′)

+ 1
3!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′=1

𝑂9(𝑖, 𝑖
′) + 1

3!2!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂10(𝑖, 𝑗, 𝑘, 𝑖
′, 𝑗′)

(2.12)

𝐺(𝑇e + 𝑉 ext
e ) + (𝑇e + 𝑉 ext

e )𝐺 =

[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂ [︂
𝑁e∑︀
𝑘=1

− ℎ̄2

2𝑚e
∇2

𝑘 + 𝑣exte (𝑘)

]︂
+

[︂
𝑁e∑︀
𝑖=1

− ℎ̄2

2𝑚e
∇2

𝑖 + 𝑣exte (𝑖)

]︂ [︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂
=

𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑁e∑︀
𝑘=1

𝑔(𝑖, 𝑖′)
[︁
− ℎ̄2

2𝑚e
∇2

𝑘 + 𝑣exte (𝑘)
]︁

+
[︁
− ℎ̄2

2𝑚e
∇2

𝑘 + 𝑣exte (𝑘)
]︁
𝑔(𝑖, 𝑖′)

=
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑂11(𝑖, 𝑖
′) + 1

2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′=1

𝑂12(𝑖, 𝑗, 𝑖
′)

(2.13)

𝐺𝑉ee𝐺 =

[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂[︃
1
2

𝑁𝑒∑︀
𝑘 ̸=𝑙

𝑟−1
𝑘𝑙

]︃[︃
𝑁e∑︀
𝑗=1

𝑁h∑︀
𝑗′=1

𝑔(𝑗, 𝑗′)

]︃
= 1

2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′=1

𝑂13(𝑖, 𝑗, 𝑖
′) + 1

2!2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′ ̸=𝑗′

𝑂14(𝑖, 𝑗, 𝑖
′, 𝑗′)

+ 1
3!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′=1

𝑂15(𝑖, 𝑗, 𝑘, 𝑖
′) + 1

3!2!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂16(𝑖, 𝑗, 𝑘, 𝑖
′, 𝑗′)

+ 1
4!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘 ̸=𝑙

𝑁h∑︀
𝑖′=1

𝑂17(𝑖, 𝑗, 𝑘, 𝑙, 𝑖
′) + 1

4!2!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′ ̸=𝑗′

𝑂18(𝑖, 𝑗, 𝑘, 𝑙, 𝑖
′, 𝑗′)

(2.14)
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𝐺𝑉ee + 𝑉ee𝐺 =

[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂[︃
1
2

𝑁𝑒∑︀
𝑘 ̸=𝑙

𝑟−1
𝑘𝑙

]︃
+

[︃
1
2

𝑁𝑒∑︀
𝑖 ̸=𝑗

𝑟−1
𝑖𝑗

]︃[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂
= 1

2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′=1

𝑂19(𝑖, 𝑗, 𝑖
′) + 1

3!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′=1

𝑂20(𝑖, 𝑗, 𝑘, 𝑖
′)

(2.15)

𝐺𝑉eh𝐺 =

[︂
𝑁e∑︀
𝑖=1

𝑁h∑︀
𝑖′=1

𝑔(𝑖, 𝑖′)

]︂ [︂
𝑁𝑒∑︀
𝑘𝑘′
𝑟−1
𝑘𝑘′

]︂[︃
𝑁e∑︀
𝑗=1

𝑁h∑︀
𝑗′=1

𝑔(𝑗, 𝑗′)

]︃
=

𝑁e∑︀
𝑖𝑗𝑘

𝑁h∑︀
𝑖′𝑗′𝑘′

𝑔(𝑖, 𝑖′)𝑟−1
𝑘𝑘′𝑔(𝑗, 𝑗′)

=
𝑁e∑︀
𝑖

𝑁h∑︀
𝑖′
𝑂21(𝑖, 𝑖

′) + 1
2!

𝑁e∑︀
𝑖

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂22(𝑖, 𝑖
′, 𝑗′) + 1

3!

𝑁e∑︀
𝑖

𝑁h∑︀
𝑖′ ̸=𝑗 ̸=𝑘

𝑂23(𝑖, 𝑖
′, 𝑗′, 𝑘′)

+ 1
2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′
𝑂24(𝑖, 𝑗, 𝑖

′) + 1
2!2!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂25(𝑖, 𝑗, 𝑖
′, 𝑗′) + 1

2!3!

𝑁e∑︀
𝑖 ̸=𝑗

𝑁h∑︀
𝑖′ ̸=𝑗 ̸=𝑘

𝑂26(𝑖, 𝑗, 𝑖
′, 𝑗′, 𝑘′)

+ 1
3!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′
𝑂27(𝑖, 𝑗, 𝑘, 𝑖

′) + 1
3!2!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′ ̸=𝑗

𝑂28(𝑖, 𝑗, 𝑘, 𝑖
′, 𝑗′) + 1

3!3!

𝑁e∑︀
𝑖 ̸=𝑗 ̸=𝑘

𝑁h∑︀
𝑖′ ̸=𝑗 ̸=𝑘

𝑂29(𝑖, 𝑗, 𝑘, 𝑖
′, 𝑗′, 𝑘′)

(2.16)

The expression for the hole operators are obtained in a similar fashion.

It is important to note that the transformed operators 𝑂𝛼, 𝛼 = 1, . . . , 29 must

be completely symmetric when operated on by the permutation operators of the

symmetric group, S𝑛. For a general operator of the form 𝑂𝛼(1, . . .𝑀, 1, . . .𝑀 ′) that

couples 𝑀 number of electrons with 𝑀 ′ number of holes, the complete symmetric

condition is satisfied by the following relationship,

𝒫𝑘𝒫𝑘′𝑂𝛼(1, . . .𝑀, 1′, . . . ,𝑀 ′) = 𝑂𝛼(1, . . .𝑀, 1′, . . . ,𝑀 ′) 𝑘 = 1, . . .𝑀 ! ; 𝑘′ = 1, . . . ,𝑀 ′!

(2.17)

where 𝒫𝑘 and 𝒫 ′
𝑘 are permutation operators in the symmetric group 𝑆𝑀 and 𝑆𝑀 ′ ,

respectively.

The general expression for an N-particle operator in second-quantization and field

operator notation is well known. The general expression of a many-body operator

27



that couples 𝑀 and 𝑀 ′ electrons and holes, respectively, is represented in terms of

electron and hole field operators as:

Ω𝛼 =
∫︀
𝑑(1) . . . 𝑑(𝑀)𝑑(1′) . . . 𝑑(𝑀 ′)

𝜓†(1) . . . 𝜓†(𝑀)𝜓†(1′) . . . 𝜓†(𝑀 ′)𝑂𝛼(1, . . . ,𝑀, 1′, . . . ,𝑀 ′)𝜓(𝑀 ′) . . . 𝜓(1′)𝜓(𝑀) . . . 𝜓(1)

(2.18)

The explicitly correlated wave function is obtained variationally by minimizing

the total energy with respect to the electron and hole molecular orbitals and the

parameters in the geminal operator . Minimizing the total energy with respect to

the electron and hole molecular orbitals {𝜒e
𝑖 , 𝜒

h
𝑖 } results in the following set of Fock

equations :

𝑓 e𝜒e
𝑖 = 𝜀e𝑖𝜒

e
𝑖

𝑓h𝜒h
𝑖 = 𝜀h𝑖 𝜒

h
𝑖

(2.19)

where the electron and hole Fock operators can be defined as:

𝑓 e = − ℎ̄2

2𝑚e
∇2

e + 𝑣exte + 𝑣effe [{𝜒h
𝑖 }]

𝑓h = − ℎ̄2

2𝑚h
∇2

h + 𝑣exth + 𝑣effh [{𝜒e
𝑖}]

(2.20)

The single-particle operator 𝑣effe includes all the terms arising from the geminal

expression and is equal to the Hartree-Fock potential 𝑣HF
e in the limiting case of

𝐺 = 0 . The electronic Fock operator depends on the hole molecular orbitals, and

both electron and hole Fock equations are solved self-consistently till convergence is

achieved. The molecular orbitals are represented as a linear combination of atomic

orbitals and the expansion coefficients are determined variationally. The integrals
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Table 2.1: Material parameters for the CdSe quantum dots used in the electron-hole
Hamiltonian

Property Value (Atomic units) [138]
𝑚e 0.13
𝑚h 0.38
𝜖 6.2

over atomic orbital involving the geminal function are well known and were calculated

using the procedure described by Boys and Persson [210].

The eh-XCHF method is general and can be used to study both single component

and multi-component systems. It has been benchmarked with respect to the Hooke’s

atom in chapter 2, electron-hole pair in a parabolic confining potential in chapter 2

and the Helium atom in chapter 4 to showcase the versatility of the method. The

eh-XCHF method is also used for the development of an adiabatic connection curve

towards the development of an electron-hole correlation functional for use in electron-

hole multi-component density functional theory, the details of this implementation

are given in chapter 9.

After successful benchmarking of the eh-XCHF method with respect to these

simple systems, the method was applied to study electron-hole interaction within

nanoparticles. To study these systems, the effective electron-hole Hamiltonian was

applied and full details for each system of interest are given in chapter 5, chapter 6,

chapter 7, and chapter 8. However, it is important to note that there are several

material-specific parameters that are taken into account so as to denote the material

that makes up the nanoparticle. These parameters include effective mass of both

the electron and hole as well as dielectric constant . The dielectric constant controls

the screening between the electron and hole particles as per the specific material. It

is essential that material parameters are very carefully chosen. A table of example

parameters for a CdSe system is given in Table 2.1. It is also important to note that

all dielectric constants within this work were chosen to be consistent among size of
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particles.

2.2 Details of eh-XCHF calculation

The form of the wave function used in the present calculation is defined to be of the

form:

Ψ(x1,x2) = Ψ𝛼(r1, r2)Ψspin(𝜔1, 𝜔2) 𝛼 = HF,R12 − FCI, eh − XCHF (2.21)

where particles 1 and 2 have opposite spins and Ψspin(𝜔1, 𝜔2) is antisymmetric .

The Hamiltonian for the benchmark system is defined as:

𝐻𝜆 = − 1

2𝑚
∇2

1 −
1

2𝑚
∇2

2 +
1

2
𝑘𝑟21 +

1

2
𝑘𝑟22 + 𝜆

1

|re − rh|
(2.22)

where 𝑚e = 𝑚h = 𝑚 = 1a.u., k is the force constant and all quantities are in

atomic units . For the present calculations the force constant was set to 𝑘 = 1/4. A

scaling parameter 𝜆 was introduced to scale the magnitude of the Coulomb interaction

between the two particles. The Coulomb interaction between the two particles is

represented by 𝜆𝑟−1
12 where, 𝜆 = +1 if charges are identical and 𝜆 = −1 if the particles

are oppositely charged. For the electron-hole system the scaling parameter was set

to 𝜆 = −1.

The explicitly correlated Hartree-Fock (eh-XCHF) method was used to calculate

the ground state energy and electron-hole recombination probability . Gaussian-type

orbitals (GTO) were used for the calculations and the coefficient used in the GTO

basis are presented in Table 3.1. All the GTOs were centered at the minimum of

the parabolic potential . The FCI calculations for the two-electron Hooke’s atom
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have been carried out earlier by Matito and coworkers and the method for generating

even-tempered GTO basis defined earlier was used in the present work. Issues related

to linear dependencies were resolved by performing canonical orthogonalization. The

implementation of the computer program was checked by reproducing the FCI results

obtained by Matito et al.

Since, eh-XCHF is an explicitly correlated method, a fair and accurate comparison

was obtained by performing an explicitly correlated full-configuration interaction cal-

culation using Slater-type orbitals (STOs) . To emphasize this fact, the FCI method

used in this work is labeled as (R12-FCI) and is described in the following subsection.

The analytical results for the two-electron Hooke’s atoms with 𝑘 = 1/4 is well known

[211, 212] and was used to benchmark the R12-FCI implementation. The R12-FCI

energy of 2.00074 Hartree was obtained for the Hooke’s atom which was in good

agreement with the exact analytical result of 2.0 Hartree.

2.3 Details of the R12-FCI calculation

The R12-FCI calculation was performed by transforming the 6D Hamiltonian de-

scribed to a 1D radial Hamiltonian . This was done by first separating out the

center-of-mass coordinate followed by transforming into spherical polar coordinates .

Defining the relative and center-of-mass coordinates as:

R = r1+r2
2

r = r1 − r2

(2.23)

The total Hamiltonian can be written as
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𝐻 = 𝐻R +𝐻r

𝐻R = − 1
2𝑀

∇2
R + 1

2
𝑀𝜔2𝑅2

𝐻r = − 1
2𝜇
∇2

r + 1
2
𝜇𝜔2𝑟2 + 𝜆1

𝑟

(2.24)

where 𝑀 = 𝑚1 +𝑚2 and 𝜇 = 𝑚1𝑚2𝑀
−1 . The total wave function is defined as:

𝐻Ψ = 𝐸Ψ

𝐻RΦR = 𝐸RΦR

𝐻rΦr = 𝐸rΦr

Ψ = ΦRΦr

𝐸 = 𝐸R + 𝐸r

(2.25)

The center-of-mass Hamiltonian is a 3D harmonic oscillator whose eigenvalues and

eigenfunctions are known analytically and is equal to 3ℎ̄𝜔 for the ground state. The

Hamiltonian associated with the relative coordinate was transformed into spherical

polar coordinates, and the radial equation for 𝑙 = 0 is given as:

[︂
− ℎ̄2

2𝜇

(︂
𝜕2

𝜕𝑟2
+

2

𝑟

𝜕

𝜕𝑟

)︂
+

1

2
𝜇𝜔2𝑟2 + 𝜆

1

𝑟

]︂
𝜒(𝑟) = 𝐸𝑟𝜒(𝑟) for𝑙 = 0 (2.26)

The 1D radial Schrodinger equation was solved by expanding the radial wave

function as a linear combination of Slater-type orbitals and performing configuration

interaction calculation
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Table 2.2: STO basis used in the R12-FCI calculations
N Exponent
0 5.8600 × 10−1

1 5.8600 × 10−1

2 5.8600 × 10−1

0 1.5172
1 1.5172
2 1.5172
0 3.9279
1 3.9279
2 3.9279
0 1.0169 ×101

1 1.0169 ×101

2 1.0169 ×101

0 2.6328 ×101

1 2.6328 ×101

2 2.6328 ×101

𝜒(𝑟) =
∑︀
𝑖

𝑐𝑖𝜑
STO
𝑖

𝜑STO(𝑟) = 𝑟𝑛𝑒−𝛼𝑟

(2.27)

Ground state energy was obtained by minimizing both the expansion coefficients

{𝑐𝑖} and the STO exponent {𝛼𝑖}. The STO basis functions used for the R12-FCI

Table 2.3: GTO basis used in HF and eh-XCHF calculations
Type Exponent
S 2.500 × 10−1

S 2.3721 × 10−1

S 3.5522 × 10−1

S 5.3193 × 10−1

S 7.9655 × 10−1

S 1.1928
S 1.7862
S 2.6748
S 4.0054
S 1.6442 × 10−1
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calculations are listed in Table 2.2.

The radial equation can be solved analytically for the limiting cases of 𝜆 = 0

and 𝜔 = 0 . The R12-FCI method can be systematically improved by addition of

more basis functions and will reproduce the exact ground state energy in the limit

of infinite basis functions. The R12-FCI calculation with the STO basis presented in

Table 2.2 was found to reproduce the analytical energies.

2.4 Results and Discussion

2.4.1 Correlation energy from HF and R12-FCI calculations

The Hartree-Fock theory plays an important role in electronic structure theory. The

Hartree-Fock wave function is used as a zeroth order wave function for post-HF cal-

culations such as perturbation theory and configuration interaction calculations. For

application of the HF wave function as a reference wave function in electron-hole

systems it is very important to investigate the quality of the mean-field approxima-

tion versus highly accurate calculations. In the present work, a comparison study

of the quality of the mean-field approximation for electron-hole and electron-electron

system was carried out by performing a series of HF and R12-FCI calculations. The

calculations were performed for 𝐻𝜆 and the coupling parameter 𝜆 was varied from

𝜆 = −1, . . . ,+1. For each value of 𝜆 the difference between the HF and R12-FCI

energies was computed using the following expression,

∆𝐸(𝜆) =
𝐸HF(𝜆) − 𝐸R12−FCI(𝜆)

𝐸R12−FCI(𝜆)
× 100. (2.28)

The difference between the HF and R12-FCI energies is used as a metric to ana-

lyze the quality of mean field approximation for electron-electron versus electron-hole
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Figure 2-1: Relative difference between that HF and R12-FCI energies as a function
of the Coulomb scaling parameter.

system. The result of the computed ∆𝐸 as a function of 𝜆 is presented in Figure 2-1.

It is seen that plot is not symmetric with respect to the coupling parameter.

This implies that the HF approximation is worse for the electron-hole system

as compared to an electron-electron system. It was found that the electron-hole is

larger than the electron-electron system by a factor of 4. This large difference in the

quality of the mean field approximation for identical and oppositely charged particles

can be attributed to the Coulomb interaction term in the Hamiltonian . Because

of the Coulomb hole in the electron-electron system, there is a reduced probability

of finding another electron in the vicinity of the first electron. For the electron-hole

system the situation is reversed and there is an enhanced probability of finding an

oppositely charged particle in the vicinity of the first one. This can be seen clearly by

deriving the Kato cusp condition for the 2-particle density. The Kato cusp condition
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for the ground state wave function for the electron-electron and electron-hole system

is defined as [213]

Ψee(𝑟12) = Ψee(𝑟12 = 0)

[︂
1 +

1

2
𝑟12 +𝑂(𝑟212)

]︂
(2.29)

where we have assumed that the ground state is a S state. Using the above

expression, the 2-particle density can be defined as

𝜌ee(𝑟12) = 𝜌ee(𝑟12 = 0)
[︀
1 + 𝑟12 +𝑂(𝑟212)

]︀
(2.30)

𝜌eh(𝑟12) = 𝜌eh(𝑟12 = 0)
[︀
1 − 𝑟12 +𝑂(𝑟212)

]︀
(2.31)

The above equations indicate that the probability density of finding two elec-

trons increases with increasing 𝑟12 at small inter-particle separation. This is indica-

tive of a Coulomb hole. For the electron-hole system, the probability density of

finding an electron-hole pair decreases at small inter-particle separation which indi-

cates a local enhancement of the 2-particle density in the vicinity of the cusp. Since

𝜌ee(𝑟12)/𝜌ee(0) > 1 and 𝜌eh(𝑟12)/𝜌eh(0) < 1 at small inter-particle separation, the

quality of the eh-wave function at short range, and the electronic wave function at

intermediate range, is important for obtaining accurate results. Similar conclusion

for the electronic wave function has been reported earlier by Prendergast et al. [214].

The Kato cusp condition is generally satisfied by incorporating Slater-type orbital

(STO) functions that depend on 𝑟eh,
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𝑒−𝜍𝑟eh = 1 − 𝜍𝑟eh +𝑂(𝑟2). (2.32)

In this present work, Gaussian type geminal (GTG) functions were used to de-

scribe the form of the wave function at small inter-particle distances,

𝑒−𝜍𝑟eh ≃
𝑁𝑔∑︁
𝑘

𝑏𝑘𝑒
−𝛾𝑘𝑟

2
eh , (2.33)

where {𝑏𝑘, 𝛾𝑘} are variational parameters. The GTG function was introduced by

Boys for explicitly including R12 term in the electronic wave function. The necessary

integrals involved in the implementation of the GTG function are have well-known

analytical expressions and have been derived earlier by Boys [165] and Persson et

al.[210]. The STO is expanded as a linear combination of Gaussian function to avoid

computation of integrals involving STOs. This is a general strategy to avoid compu-

tation of atomic orbital (AO) integrals using STO and has been used successfully in

the field of basis set development [215] and GTG calculations [166, 216].

However, we stress that the expansion in Equation 2.33 is approximate and is not

capable of describing the eh-cusp exactly since the Gaussian functions have zero first

derivative at the cusp. The description of the electron-hole cusp can be systematically

improved by performing post-SCF explicit R12 calculations. In the present work, the

expansion coefficients are obtained variationally by minimizing the total energy .

However, pre-computed values of the expansion coefficients and GTG functions can

also be used in the above expression.
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2.4.2 Energy and recombination probability from eh-XCHF

calculations

The eh-XCHF calculations were performed only for the electron-hole system and

Hamiltonian for the system was obtained by setting 𝑘 = 1/4 in Equation 2.22. The

total eh-XCHF wave function for the system is defined as:

Ψxc(x
e,xh) =

[︀
1 +𝐺(re, rh)

]︀
Φe(re)Φh(rh)Ψspin(𝜔e, 𝜔h) (2.34)

where Ψspin is anti-symmetric and the electron and the hole have opposite spins.

Gaussian-type orbitals (GTO) were used to describe the spatial component of the

wave function and are defined in Table 3.1. The number of parameters 𝑁𝑔 in the

geminal expansion were incrementally increased until convergence was achieved with

respect to energy. At each value of 𝑁𝑔 the set of geminal parameters {𝑏𝑘, 𝛾𝑘} were

determined variationally. The energies and recombination probability from the eh-

XCHF calculation are compared with HF and R12-FCI calculations and results are

plotted in Figure 2-2 and Figure 2-3, respectively,

as a function of 𝑁𝑔. The 𝑁𝑔 = 0 in the plot represents the HF solution since

the eh-XCHF calculation reduces to HF in the limit of G = 0. The value of 𝑁𝑔

was systematically increased and convergence with respect to the total energy was

achieved at 𝑁𝑔 = 7. The geminal parameters were optimized in a sequential process

and parameters optimized for 𝑁𝑔 − 1 step were kept fixed. As a result, for the 𝑁𝑔

step, all parameters from the previous step {𝑏𝑖, 𝛾𝑖; 𝑖 = 1, . . . , 𝑁𝑔 − 1} were kept fixed

and only {𝑏𝑖, 𝛾𝑖; 𝑖 = 𝑁𝑔} was variationally optimized. The list of optimized geminal

parameters are listed in Table 3.2. The HF energy was found to be higher that the

R12-FCI energy by 0.0648 Hartree (1.76 eV). The best eh-XCHF energy with 𝑁𝑔 = 7

is 0.8407 Hartree and is higher than the R12-FCI energy by 0.02 eV. From Figure 2-2,
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Figure 2-2: Convergence of the ground state energy as a function of number of geminal
parameters.
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Figure 2-3: Comparison of the electron-hole recombination enhancement factor from
the eh-XCHF calculation with HF and R12-FCI results.
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Table 2.4: Optimized geminal parameters
k 𝑏𝑘 𝛾𝑘
1 1.2100 0.3500
2 0.4640 3.9600
3 0.5800 0.0900
4 0.2270 1.9000
5 0.2800 0.1000
6 0.1028 1.6700
7 -0.1020 0.3500

it is seen that the eh-XCHF wave function can be systematically improved by addition

of geminal parameters. The eh-XCHF energy for 𝑁𝑔 = 1 is lower than the HF energy

by 0.0545 Hartree (1.48 eV).

This shows the importance of improving the short-range description of the electron-

hole wave function that is missing in the mean-field approximation. The form of the

geminal function with 𝑁𝑔 = 7 is plotted as the function of inter-particle distance and

is presented in Figure 2-4. An exponential function of the form 𝑒−𝜍𝑟eh is fitted to

the geminal function and also shown in Figure 2-4. The width parameter from the

exponential fit was found to be𝜍 = 0.5605 which is close to the theoretical exact value

of 0.5 from the Kato cusp condition [213] .

The quality of the electron-hole wave function can also be analyzed by computing

either the electron-hole recombination rate or the associated recombination probabil-

ity . Both of these quantities are computed from the electron-hole density matrix and

is sensitive to accurate treatment of electron-hole correlation . The general expres-

sion for electron-hole density matrix for arbitrary number of excitons has been derived

earlier by Corni and coworkers [156] for studying transitions from (N+1) to (N) ex-

citonic states [156, 157]. In a separate study, van der Horst et al. used electron-hole

distance probability distribution function [217] to analyze excitonic wave function in

conjugated polymers obtained using the Bethe-Salpeter method. The electron-hole

distance probability distribution function (in atomic uints) is defined as [217]
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Figure 2-4: Comparison of the geminal function with the fitted exponential function
and R12-FCI wave function. The geminal function has been scaled so that the geminal
and the R12-FCI curves can be plotted in the same figure.
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𝑃𝛼
eh =

⟨Ψ𝛼|𝛿(re − rh)|Ψ𝛼⟩
⟨Ψ𝛼|Ψ𝛼⟩

𝛼 = HF,R12 − FCI,XCHF (2.35)

and was used for analyzing HF, R12-FCI, and eh-XCHF wave functions. Since

we are interested in comparison of the correlated wave functions with respect to the

mean-field approximation, we also defined the eh-recombination enhancement factor

𝜂 which is obtained from the 𝑃eh using the following expression,

𝜂𝛼 =
𝑃𝛼
eh

𝑃HF
eh

𝛼 = HF,R12 − FCI,XCHF (2.36)

Results from eh-XCHF calculations with 𝑁𝑔 = 0, . . . , 7 together with the HF

and R12-FCI results are presented in Figure 2-3. It is seen, that the recombination

probability converges as a function of geminal parameters. On comparison of results

from the three methods, it is seen that HF calculation severely underestimates the

recombination probability by a factor of three for both the eh-XCHF and R12-FCI

methods. The recombination probability is very sensitive to form of the wave function

at small electron-hole inter-particle distances. The ground state energies and the eh-

recombination enhancement factor for HF, R12-FCI, and eh-XCHF are summarized

in Table 2.5. The results in this table highlight the challenging aspect of computation

of accurate recombination probability. The energy from the eh-XCHF wave function

is higher than the benchmark by 0.1%. In contrast, the eh-recombination probability

is lower by 16%.

It is seen in Figure 2-2 that the eh-XCHF energy is converged with respect to

number of GTG functions. Analogous to the conventional electronic structure the-

ory, the converged eh-XCHF method can be systematically improved using pertur-

bation theory and configuration interaction [140] calculation using the eh-XCHF as
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Table 2.5: Comparison of calculated ground state energy and electron-hole recom-
bination enhancement factor from HF, R12-FCI, and eh-XCHF calculations for the
parabolic quantum dot. The Hamiltonian for the dot was defined by setting 𝑘 = 1/4
in the Equation 2.22.

Method Energy 𝜂
HF 0.9047 1

R12-FCI 0.8399 3.29
eh-XCHF 0.8407 2.76

the reference wave function. This approach of successive improvement of a correlated

reference wave function is also analogous to a typical diffusion Monte Carlo (DMC)

calculation where correlated wave function from variational Monte Carlo (VMC) is

used as a starting point for a more accurate calculation.

In general, it will not be possible to perform R12-FCI calculation for any given

system due to the lack of a spherically symmetric potential and numerical cost asso-

ciated with using Slater-type orbitals. The eh-XCHF formulation on the other hand

is a general purpose method that does not require any a priori assumption about

the potential and utilizes GTO as opposed to STO as basis functions. The use of

Gaussian type geminal functions in the eh-XCHF method allows analytical evaluation

of the AO integrals.61,108. In electronic structure theory, the resolution of identity

(RI) method [218, 219] has been used successfully for integral evaluation with GTG

[220, 221, 222, 223]. The RI method will be used in the eh-XCHF calculation for

fast evaluation of many-particle integrals involving geminal functions. The eh-XCHF

benchmark calculations presented here are the first in a series of calculations on

various electron-hole systems. Future work using the eh-XCHF method involves in-

vestigation of effect of shell thickness on electron-hole recombination in CdSe/ZnS

multilayered quantum dots and replacing HF by eh-XCHF wave function as the ze-

roth order reference wave function in post-SCF schemes such as MP2 and CI methods

[141].
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2.5 Conclusions about eh-XCHF method

The explicitly correlated Hartree-Fock method for a general many-electron many-hole

system is presented and was used for calculation of ground state energy and electron-

hole recombination probability. The eh-XCHF method is general technique for solv-

ing the electron-hole Schrodinger equation and can be applied to a large variety of

electron-hole system by appropriate selection of the quasi-particle masses and the ex-

ternal potential terms in the effective electron-hole Hamiltonian. In the present work,

the eh-XCHF method was applied to the parabolic quantum dot system which con-

sists of an interacting electron-hole pair confined by the three-dimensional parabolic

potential. Ground state energy and electron-hole recombination probabilities were

computed and the results were found to be in good agreement with the highly ac-

curate explicitly correlated full configuration interaction calculations. Hartree-Fock

calculation was also performed and the HF wave function was found to severely un-

derestimate the electron-hole recombination probability. The accuracy of the HF

wave function was compared for both electron-electron and electron-hole system and

it was found that the HF approximation is worse for the electron-hole system. The

results from these calculations highlight the importance of accuracy of the form of the

electron-hole wave function at small inter-particle distances for electron-hole systems

and the capability of eh-XCHF method to successfully address this issue.
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Chapter 3

Development of Explicitly Correlated

Configuration Interaction

3.1 Motivation for the development of explicitly cor-

related configuration interaction

The understanding the dynamics of electron-hole pair has become crucial for ad-

vances in the field of semiconductor materials . Electron-hole correlation has shown

to be important for understanding optical processes in a wide variety of materials

including quantum dots, [224, 4, 225, 131] carbon nanotubes,[226, 227, 228, 229] solar

cells, [230, 231] biomaterials, [232, 233, 234, 235] and photocatalysts. [236, 237]. There

are various approaches to study electron-hole interaction including effective mass ap-

proximation,[150] configuration interaction (CI),[157, 156, 238, 154, 153, 108, 162]

quantum Monte Carlo (QMC), [239, 240, 163, 241, 242, 144, 145] and many-body

Green’s function approach .[132] These methods have been used to investigate var-

ious properties of quantum dots including exciton binding energy , recombination

rates , and exciton lifetimes . The physics of the electron-hole pair is very different

from the electron-electron interaction found in electronic structure theory.
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The electron and hole are oppositely charged and therefore experience an attrac-

tive Coulomb potential . As a consequence, the quality of the eh-wave function

at small inter-particle distances becomes important for accurate description of the

electron-hole interaction. Typically, this is addressed by accurate description of the

electron-hole cusp and can be incorporated by using Jastrow functions in a QMC

calculation.[239, 240, 163, 241, 242, 144, 145, 243]. However, such correlation func-

tions are complicated mathematical functions and one has to resort to a numerical

procedure such as Monte Carlo to calculate the integrals involved in the energy cal-

culation.

In the present work, the explicitly correlated configuration interaction (XCCI)

method is presented for solving the electron-hole Schrodinger equation . The core

strategy of the XCCI method is to perform a CI calculation using an explicitly cor-

related reference wave function . The XCCI method shares features that are present

in conventional CI and QMC methods. Like conventional CI, the XCCI method is

also variational and is based on a CI expansion. However, unlike the conventional

CI method which uses the mean-field (Hartree-Fock) wave function as the reference

wave function, the XCCI method uses an explicitly correlated reference wave func-

tion. Both XCCI and variational Monte Carlo (VMC) methods use explicitly corre-

lated wave functions and in both methods the wave function is an explicit function

of the electron-hole interparticle distance 𝑟eh. In VMC this is typically achieved by

using a Jastrow correlation function. In the XCCI method, Gaussian-type geminal

(GTG)[164] functions are used for including 𝑟eh. The principle reason for using GTG

as opposed to Slater-type functions or Jastrow functions is that integrals involving

GTG are known analytically[210] and are much faster to compute than integrals

involving Slater and Jastrow functions.

The remainder of the article is organized as follows. The derivation of the XCCI

method for a general many-electron many-hole system is presented in Sec. 3.2. Bench-
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mark calculations were performed on parabolic quantum dot system and the details

of the calculations are discussed in Sec.9.2. The results from the XCCI method were

compared with FCI and the highly accurate R12-FCI calculations and are discussed

in Sec. 9.3.

3.2 Theoretical and computational details of XCCI

method

The underlying idea of the XCCI method is to perform CI calculation using a corre-

lated zeroth-order wave function . In the XCCI method, the zeroth order correlated

wave function is obtained from the electron-hole explicitly correlated Hartree-Fock

(eh-XCHF) method.[9, 244, 168] The derivation of the eh-XCHF method has been

described earlier and only a brief summary is presented here. The eh-XCHF wave

function ansatz obtained by multiplying the mean-field (Hartree-Fock) wave function

with an explicitly correlated function

ΨXCHF = 𝐺ΦeΦh (3.1)

where 𝐺 is a Gaussian-type geminal (GTG) function which is defined as

𝐺(re, rh) =
𝑁e∑︁
𝑖=1

𝑁h∑︁
𝑗=1

𝑁g∑︁
𝑘=1

𝑏𝑘exp[−𝛾𝑘𝑟2𝑖𝑗] (3.2)

The GTG function depends of the 𝑟eh term and is responsible for introduction of

electron-hole inter-particle distance dependence in the the eh-XCHF wave function.

The coefficients 𝑏𝑘 and 𝛾𝑘 are expansion coefficients which are obtained variationally .

The Φe and Φh are electron and hole Slater determinants . The XCHF wave function

is obtained variationally by minimizing the total energy with respect to the electron
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and hole spin-orbitals {𝜒e
𝑖 , 𝜒

h
𝑖 } and the geminal expansion coefficient

𝐸XCHF = min
𝑏𝑘,𝛾𝑘
𝜒e
𝑖
,𝜒h

𝑖

⟨ΨXCHF|𝐻|ΨXCHF⟩
⟨ΨXCHF|ΨXCHF⟩

(3.3)

Using the eh-XCHF wave function as the zeroth-order reference wave function , the

XCCI wave function is defined by the following CI expansion,

ΨXCCI = 𝑐0ΨXCHF +
∑︁
𝑖𝑎

∑︁
𝑖′𝑎′

𝑐𝑎𝑎
′

𝑖𝑖′ 𝐺Φe
𝑎
𝑖 Φh

𝑎′

𝑖′ (3.4)

+
∑︁
𝑖<𝑗
𝑎<𝑏

∑︁
𝑖′<𝑗′
𝑎′<𝑏′

𝑐𝑎𝑏𝑎
′𝑏′

𝑖𝑗𝑖′𝑗′ 𝐺Φe
𝑎𝑏
𝑖𝑗 Φh

𝑎′𝑏′

𝑖′𝑗′ + . . .

The expansion coefficients 𝑐0, 𝑐𝑎𝑎
′

𝑖𝑖′ , 𝑐
𝑎𝑏𝑎′𝑏′

𝑖𝑗𝑖′𝑗′ are obtained variationally by solving the CI

eigenvalue equations. In the above expression the indices 𝑖, 𝑗, . . . are used to represent

occupied orbitals and 𝑎, 𝑏, . . . are used to represent the unoccupied orbitals. Primed

and unprimed indices are used for holes and electrons, respectively. The determinant

Φe
𝑎𝑏
𝑖𝑗 is obtained by replacing the occupied orbitals 𝜒𝑖 and 𝜒𝑗 by 𝜒𝑎 and 𝜒𝑏, respec-

tively. The XCCI wave function can be related to the conventional CI wave function

by setting the geminal function to unity

ΨCI = lim
𝐺→1

ΨXCCI (3.5)

The above equation implies, that the CI energy is an upper bound to the XCCI energy

𝐸exact ≤ 𝐸XCCI ≤ 𝐸CI (3.6)

where the equality relationship holds in the limit of infinite basis. The XCCI method

requires evaluation of the matrix elements of the form ⟨𝐺Φ𝑘|𝐻|𝐺Φ𝑘′⟩. The evalua-
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tion of the matrix elements has been described earlier in the context of the eh-XCHF

method and only the key steps are summarized here. The matrix elements are com-

puted by performing congruent transformation on the Hamiltonian using the geminal

operator

⟨𝐺Φ𝑘|𝐻|𝐺Φ𝑘′⟩ = ⟨Φ𝑘|𝐺†𝐻𝐺|Φ𝑘′⟩ (3.7)

where Φ𝑘 and Φ𝑘′ are product of electron and hole Slater determinants. The trans-

formed Hamiltonian is expanded as a sum of 1-6 particle operators as shown below

𝐺†𝐻𝐺 = 𝑂1 +𝑂2 +𝑂3 +𝑂4 +𝑂5 +𝑂6 (3.8)

The matrix elements involving the operators {⟨Φ𝑘|𝑂𝛼|Φ𝑘′⟩, 𝛼 = 1, . . . , 6} can be com-

puted using the Slater-Condon rules for Slater determinants .[245] The integration

Gaussian-type geminal function over Gaussian-type orbitals (GTOs) is well known

[210] and was implemented for computation of the integrals. The exact form of the

transformed Hamiltonian and the details about the operators are discussed in Ref.

[9].

To test the performance of the XCCI method, benchmark calculations were per-

formed for a parabolic quantum dot system [246, 247, 248, 188, 249, 187, 250]. The

parabolic quantum dot has been used previously as a test bed for new methods and

has used extensively to study various processes in quantum dots including thermo-

dynamic properties [251], the effect of magnetic fields [252] and, more specifically

the effect of electric field on the optical rectification coefficient in a GaAs parabolic

QD [253]. The system consists of an electron-hole pair trapped in a three dimen-

sional isotropic harmonic potential. The motions of the particles are correlated and

the interaction between them is described by attractive Coulomb interaction . The
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Table 3.1: GTO basis used for the FCI and XCCI calculations
Type Exponent
S 2.500 × 10−1

P 2.500 × 10−1

D 2.500 × 10−1

S 6.130 × 10−1

P 6.130 × 10−1

D 6.130 × 10−1

S 1.176 × 100

P 1.176 × 100

D 1.176 × 100

Hamiltonian for the benchmark system for these calculations is as follows,

𝐻 = − 1

2𝑚e

∇2
e −

1

2𝑚h

∇2
h +

1

2
𝑘𝑟2e +

1

2
𝑘𝑟2h −

1

𝑟eh
(3.9)

where 𝑚e = 𝑚h = 1 and all quantities are expressed in atomic units. The force

constant was set to 𝑘 = 0.25 atomic units and was selected for direct comparison

with previously reported [196] results. The XCCI method was used to calculate the

ground state energy of the system and the result was compared with Hartree-Fock

(HF) and full configuration interaction (FCI) calculations. Identical set of Gaussian-

type orbitals (GTOs) were used for HF, FCI and XCCI and the angular momentum

and exponents are presented in Table 3.1.

All the GTOs were centered at the minimum of the harmonic potential well. The

exponents of the GTOs are obtained by minimizing the ground state FCI energy.

In addition to the GTOs, the XCCI calculations also require the geminal coefficient

and we have used the identical geminal coefficients that were used in earlier study on

eh-XCHF. The list of 𝑏𝑘 and 𝛾𝑘 used in the XCCI calculations is presented in Table

3.2.
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Table 3.2: Parameters used in the Gaussian-type geminal function. These parameters
were obtained from Ref. [9]

k 𝑏𝑘 𝛾𝑘
1 1.0000 0.0000
2 1.2100 0.3500
3 0.4640 3.9600
4 0.5800 0.0900
5 0.2270 1.9000
6 0.2800 0.1000
7 0.1028 1.6700
8 -0.1020 0.3500

3.3 Results of benchmark calculations with XCCI

method

The ground state energy from the XCCI calculations are compared with HF and FCI

results in Table 3.3. It is seen that the XCCI energy is lower than the FCI energy

by 0.228 eV. We attribute to this lowering of energy to the better description of the

electron-hole wave function at 𝑟eh distances. To analyze the effect of the electron-

hole cusp on the quality of the eh-wave function, we compared the XCCI energy

with the R12-FCI calculation reported earlier. The principle difference between the

R12-FCI method with the methods presented here (XCCI and FCI) is that the R12-

FCI calculation include the correct exponential form of the electron-hole cusp. The

R12-FCI calculations are inherently more computationally expensive than the XCCI

calculations because of the use STO basis functions . In contrast, the XCCI method

uses GTG functions for approximating the eh-cusp . The integrals involving GTG

functions are much easier to calculate and have been derived earlier by Boys and

Persson. [210] The comparison between XCCI and R12-FCI results from Table 3.3

show that the XCCI energy is in good agreement with the R12-FCI results. These

results indicate that the GTG function in the XCCI wave function provide a good

approximation to the eh-cusp .
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Table 3.3: Ground state energy (in Hartree) from HF, FCI, XCCI, and R12-FCI
calculations

Method Ground State Energy 𝜂(%)
HF 0.9047 0.0000
FCI 0.8488 86.252
XCCI 0.8403 99.156
R12-FCI [9] 0.8399 100.00

1 2 3 4 5 6 7 8
Number of Geminals

0.84

0.86

0.88

0.9

E
ne

rg
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)

XCCI
FCI
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R12-FCI

Figure 3-1: Convergence of the ground state XCCI energy as a function of number
of terms in the Gaussian-type geminal function. Ground state energy from FCI, and
R12-FCI calculations are also shown for comparison.
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We define the electron-hole correlation energy as the energy difference between

the HF and the other methods discussed here

𝐸corr
𝛼 = 𝐸𝛼 − 𝐸HF 𝛼 = FCI,XCCI,R12 − FCI (3.10)

The percent correlation energy recovered by FCI and XCCI method is compared with

the R12-FCI results by defining the following quantity

𝜂 =
𝐸corr

𝛼

𝐸corr
R12−FCI

× 100 (3.11)

and is presented in Table 3.3. It is seen that the XCCI method recovers 99.15% of

the correlation energy.

To investigate the dependence of the XCCI energy on the quality of the geminal

function we have performed a series of XCCI calculation by varying the number of

geminal function from 𝑁g = 1, . . . 8 and the results are presented in Fig. 3-1. The

geminal parameters used in these calculations are listed in Table 3.2. For the 𝑁g = 1

calculations, the geminal parameters were chosen to make 𝐺 = 1 so that the XCCI

wave function becomes identical to the FCI wave function (see Eq. 3.5). As seen

in Fig. 3-1 the XCCI energy coincides with the FCI energy at 𝑁g = 1. Subsequent

addition of geminal parameters makes XCCI energy lower than the FCI energy. We

found that for 𝑁g ≥ 4, the XCCI energy exhibits convergence with respect to addition

of geminal parameters. For comparison, the R12-FCI energy is also shown in Fig. 3-1

and it is seen that the XCCI energy approaches the R12-FCI energy with increasing

number of geminal parameters . In principle, the XCCI and R12-FCI energy will

be identical only in the limit of infinite basis. For any finite basis calculation, we

expect XCCI energy that is converged with respect to number of GTG functions

to be slightly higher than the R12-FCI calculation. We attribute this difference to

approximate treatment of the electron-hole cusp by the GTG functions in the XCCI
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Table 3.4: Comparison of the lowest seven eigenvalues of the Hamiltonian obtained
using the FCI and XCCI method. All quantities are in atomic units

State number FCI XCCI
1 0.8488 0.8403
2 1.3668 1.3406
3 1.3668 1.3406
4 1.3668 1.3406
5 1.6064 1.6062
6 1.6064 1.6062
7 1.6064 1.6062

method. In addition to calculating the ground state energy, the XCCI method is also

capable of calculating accurate excited state energies. The lowest seven eigenvalues

of the Hamiltonian obtained using the XCCI and FCI method are presented in Table

3.4. Both XCCI and FCI methods give the expected degeneracy

of the first two excited states, however in both cases the XCCI energies are lower

that FCI values.

3.4 Conclusions with respect to XCCI

In conclusion, the core concept of the XCCI method is to perform a CI from a corre-

lated wave function as opposed to a mean-field reference wave function. The XCCI

method provides a systematic procedure for improving the short-range description

of the electron-hole wave function. As evident from the benchmark calculation, this

significantly improves estimate of the ground and excited state energies. The use of

the Gaussian-type geminal functions instead of STOs allows for fast evaluation of

the integrals involving basis functions . Comparison between the XCCI and R12-FCI

results indicate that the GTG functions provide a very good approximation to the

eh-cusp.
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Chapter 4

Congruent Transformation of the

Hamiltonian and Application to the

Helium Atom

4.1 Introduction and motivation for congruent trans-

formation of the Hamiltonian

The form of the many-electron wave function in the proximity of the electron-electron

and electron-nuclear coalescence point plays a critical role in accurate determination

of the ground and excited state energies . Although, the precise structure of the many-

electron wave function continues to be elusive, the form of the exact wave function

at the coalescence point is well understood and is given by the Kato cusp condition

[254, 255, 256, 257]. In the many-electron wave function, the electron-nuclear cusp

condition can be incorporated by using Slater-type orbitals (STOs) . For calculations

involving Gaussian-type orbitals (GTOs) , the one-electron basis can be improved it-

eratively by adding GTOs with increasing angular momentum quantum number [258]

The subject of convergence. of single-particle basis has been analyzed extensively us-
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ing both analytical and numerical techniques [259, 260, 261]. The electron-electron

cusp has been the focus of intense research because of its direct relation to the elec-

tron correlation problem and accurate description of the Coulomb and Fermi hole

[262, 263, 264, 214, 265]. However, unlike the electron-nuclear cusp, atom-centered

basis functions are not ideal for accurate description of the many-electron wave func-

tion near the electron-electron cusp [266, 267, 268]. Indeed it has been shown that the

slow convergence of a full configuration interaction (FCI) calculation with respect to

the one-particle basis is related to the inadequate treatment of the electron-electron

cusp [267]. The solution is to include explicit 𝑟12 dependence in the form of the wave

function, and there is a large assortment of quantum chemical methods that have

incorporated this approach. For example, in the variational Monte Carlo (VMC)

method, the Jastrow function is used for including explicit 𝑟12 terms in the trial wave

function [257, 255]. The form of the Jastrow is chosen to ensure that the electron-

electron and electron-nuclear Kato cusp conditions are satisfied. The parameters in

the Jastrow function are obtained by minimizing the linear combination of energy and

its variance. Because of the complicated mathematical form of the Jastrow function

it is not possible to evaluate the integral over the electronic coordinates analytically,

and a stochastic numerical method is used for computation of the energy. Recently,

Morales et al. performed highly accurate multi-determinant VMC calculations on wa-

ter. [269] A detailed review of various applications of Quantum Monte Carlo (QMC)

methods in physics and chemistry can be found in Ref. [270, 271, 159]. Explicitly

correlated methods have also been developed for post Hartree-Fock schemes such

as perturbation theory (MP2-R12), coupled-cluster methods (CC-R12), and mul-

tireference CI schemes (R12-MRCI) . These methods introduce the electron-electron

inter-particle distance directly into the calculation in order to increase the accuracy

of the calculations. The field of explicitly correlated methods for electronic struc-

ture calculation has been reviewed and a detailed description of various methods can
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be found in Ref. [272, 267, 273]. A common feature of the R12 and F12 methods

discussed above is that they all involve analytical computation of the 𝑟12 correlation

function. Recently, Chinnamsetty and coworkers have presented an interesting study

that compared and contrasted QMC with various F12 methods. [274]

A different strategy known as the transcorrelated method was developed by Handy

and Boys in 1969. [275] The basic idea of the transcorrelated method is to remove the

electron-electron Coulomb singularity by performing similarity transformation on the

Hamiltonian using an explicitly correlated function. The method was later extended

by Ten-no to treat the electron-electron cusp using Guassian geminal functions and

was applied to chemical systems. [276, 261] The transcorrelated method has also been

combined with other methods such as QMC [277] and coupled-cluster theory [278]

and has been used to study electron correlation in periodic systems. [279] One of

the defining characteristics of this method is that the transcorrelated Hamiltonian is

not Hermitian and therefore is not required to be bounded from below by the exact

ground state energy. The correlation function can be obtained either by minimizing

the energy variance of the transcorrelated Hamiltonian [280, 281] or by requiring the

correlation function to satisfy the electron-electron cusp condition.

The focus of the present work is to address the non-Hermitian property of the

transcorrelated Hamiltonian by replacing the similarity transformation by congruent

transformation . [282, 283, 284] By performing congruent transformation, we pre-

serve the Hermitian property of the electronic Hamiltonian which allows us to use

a standard electronic structure method such as configuration interaction method to

minimize the total energy . The remainder of the paper describes the theoretical

development and the implementation details of the method. The derivation of the

congruent transformed Hamiltonian is presented in Sec. 4.2. Details of performing

FCI calculations using the congruent transformed Hamiltonian and interfacing it with

existing FCI methods are presented in Sec. 4.2.1 and 4.2.2. Benchmark calculations
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using the congruent transformed Hamiltonian are presented in Sec. 4.3. The analysis

of the results and conclusions are presented in Sec. 4.4.

4.2 Congruent transformed Hamiltonian

The congruent transformed (CT) Hamiltonian 𝐻̃ is defined by performing the follow-

ing transformation [282, 283, 284]

𝐻̃ = 𝐺†𝐻𝐺, (4.1)

where 𝐺 is an explicitly correlated function which will be defined later. The expec-

tation value of the CT Hamiltonian with respect to any trial wave function is given

as

𝐸̃T[ΨT, 𝐺] =
⟨ΨT|𝐻̃|ΨT⟩
⟨ΨT|1̃|ΨT⟩

, (4.2)

where 1̃ = 𝐺†1𝐺. The above expression is mathematically equivalent to calculating

the expectation value of the electronic Hamiltonian using a correlated wave function

and is bounded from below by the exact ground state energy 𝐸exact ≤ 𝐸̃T. The

optimized energy associated with the CT Hamiltonian is obtained by performing a

minimization with respect to the trial wave function and explicitly correlated function,

𝐸CT = min
ΨT

min
𝐺
𝐸̃T[ΨT, 𝐺]. (4.3)

The optimization of the correlation function 𝐺 and the trial wave function ΨT

is conducted in two steps. In the first step, the form of the trial function is kept

fixed to a single Slater determinant and the parameters of the geminal functions are

determined by minimizing the geminal parameters and the molecular orbitals. In the
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second step, the minimized geminal function 𝐺min is kept fixed and the trial wave

function ΨT is minimized. The steps involved are described by the following equation

𝐸̃[𝐺min] = min
𝐺,ΦSD

𝐸̃T[ΦSD, 𝐺], (4.4)

𝐸CT = min
ΨT

𝐸̃T[ΨT, 𝐺min]. (4.5)

The optimization of the correlation function and the trial wave function are described

in the following subsections.

4.2.1 Optimization of the correlation function

The choice of the correlation function 𝐺 plays an important part in the implementa-

tion of the method for practical applications. In principle, a variety of correlated

functions such as two and three-body Jastrow functions can be used. However,

the matrix elements associated with these functions cannot be integrated analyt-

ically and one has to use numerical techniques such as the VMC method to cal-

culate the integrals. In the present work, Gaussian-type geminal (GTG) functions

were used for the correlated functions. The GTG functions were introduced by Boys

[285, 165] and Singer [286], and have been used extensively in explicitly correlated

methods. [287, 288, 289, 290, 168, 291] Slater determinants augmented with GTG

functions have been used to study electron-electron and electron-proton systems. The

integrals involving GTG functions with GTOs can be performed analytically and have

been derived earlier. [164, 210, 285, 165] The form of the correlated function used in

the following calculations is defined as

𝐺 =
𝑁∑︁
𝑖<𝑗

𝑔(𝑖, 𝑗), (4.6)
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𝑔(𝑖, 𝑗) =

𝑁g∑︁
𝑘=1

𝑏𝑘𝑒
−𝛾𝑘𝑟

2
𝑖𝑗 , (4.7)

where 𝑁 is number of electrons and 𝑁g is the number of Gaussian functions. The

geminal coefficients {𝑏𝑘, 𝛾𝑘} in the GTG function are determined variationally. In the

limit of 𝐺→ 1, the energy 𝐸̃[𝐺min] becomes equal to the Hartree-Fock energy.

𝐸HF = lim
𝐺→1

𝐸̃[𝐺min], (4.8)

As a consequence, the HF energy is the upper bound to the geminal minimization

process

𝐸̃[𝐺min] ≤ 𝐸HF. (4.9)

The transformed Hamiltonian is expanded as a sum of 2-6 particle operators as shown

below

𝐻̃ =
∑︁
𝑖<𝑗

∑︁
𝑘

∑︁
𝑚<𝑛

𝑔(𝑚,𝑛)ℎ1(𝑘)𝑔(𝑖, 𝑗) +
∑︁
𝑖<𝑗

∑︁
𝑘<𝑙

∑︁
𝑚<𝑛

𝑔(𝑖, 𝑗)𝑟−1
𝑘𝑙 𝑔(𝑚,𝑛), (4.10)

= 𝑂2 +𝑂3 +𝑂4 +𝑂5 +𝑂6 (4.11)

where, the operators {𝑂𝑛, 𝑛 = 2, . . . , 6} are defined by collecting all two, three, four,

five and six particle operators obtained by expanding the summation in Eq. (4.10).
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Specifically,

𝑂2 =
∑︁
𝑖<𝑗

ℎ2(𝑖, 𝑗), (4.12)

𝑂3 =
∑︁
𝑖<𝑗<𝑘

ℎ3(𝑖, 𝑗, 𝑘), (4.13)

𝑂4 =
∑︁

𝑖<𝑗<𝑘<𝑙

ℎ4(𝑖, 𝑗, 𝑘, 𝑙), (4.14)

𝑂5 =
∑︁

𝑖<𝑗<𝑘<𝑙<𝑚

ℎ5(𝑖, 𝑗, 𝑘, 𝑙,𝑚), (4.15)

𝑂6 =
∑︁

𝑖<𝑗<𝑘<𝑙<𝑚<𝑛

ℎ6(𝑖, 𝑗, 𝑘, 𝑙,𝑚, 𝑛). (4.16)

The exact form of the operators {ℎ𝑛, 𝑛 = 2, . . . , 6} have been derived earlier and are

not duplicated here. It should be emphasized that the operators {ℎ𝑛, 𝑛 = 2, . . . , 6}

are defined so that they are completely symmetric with respect to all 𝑛! permutation

of the indices

𝒫𝑘ℎ𝑛 = ℎ𝑛 where𝒫𝑘 ∈ 𝑆𝑛. (4.17)

The operator 𝒫𝑘 is the permutation operator that belongs to the complete symmetric

group 𝑆𝑛. An important feature of this method is the availability of the analytical

gradients of the total energy with respect to the geminal parameters. The gradients

can be computed analytically and are given by the following expressions

𝜕𝑔(1, 2)

𝜕𝑏𝑘
= 𝑒−𝛾𝑘𝑟

2
12 , (4.18)

𝜕𝑔(1, 2)

𝜕𝛾𝑘
= −𝑏𝑘𝑟212𝑒−𝛾𝑘𝑟

2
12 . (4.19)

The AO integrals involving the gradients of the GTG functions are performed ana-

lytically and are computed with other AO integrals.
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4.2.2 Optimization of the trial wave function

The optimization of the trial wave function ΨT is performed by performing a full con-

figuration interaction (FCI) calculation on the congruent transformed Hamiltonian.

The FCI wave function is constructed by performing all possible excitations from the

reference wave function. [245] This can be represented by the following expression,

ΨFCI = 𝐶0Φ +
𝑁occ∑︁
𝑎

𝑁vir∑︁
𝑝

𝐶𝑝
𝑎Φ𝑝

𝑎 +
𝑁occ∑︁
𝑎<𝑏

𝑁vir∑︁
𝑝<𝑞

𝐶𝑝𝑞
𝑎𝑏Φ𝑝𝑞

𝑎𝑏 +
𝑁occ∑︁
𝑎<𝑏<𝑐

𝑁vir∑︁
𝑝<𝑞<𝑟

𝐶𝑝𝑞𝑟
𝑎𝑏𝑐 Φ𝑝𝑞𝑟

𝑎𝑏𝑐 + . . . , (4.20)

where we have retained 𝑁vir in the expression to emphasize that only a finite num-

ber of terms are evaluated. This point will be a subject of discussion later in the

derivation. The occupied and virtual orbitals are represented by (𝑎, 𝑏, 𝑐, . . . ) and

(𝑝, 𝑞, 𝑟, . . . ), respectively, and the CI coefficients are represented by (𝐶𝑝
𝑎 , . . . ) and are

obtained variationally by minimizing the total energy . The construction of the full

set of excitations and the determination of the CI coefficients are the two principle

computational challenges associated with the FCI method. For very small molecules,

the CI matrix can be explicitly constructed and diagonalized, however, this simple

approach becomes prohibitively expensive as the system size increases. Currently,

there are various computational techniques for efficient calculation of the expansion

coefficients. [292, 293, 294, 295, 214, 296] The calculation requires matrix elements

involving the operators {⟨Φ𝑘|𝑂𝛼|Φ𝑘′⟩, 𝛼 = 2, . . . , 6} which are derived below.

The matrix elements involving the 2-particle operators are evaluated as

⟨Φ0|𝑂2|Φ0⟩ =
1

2!

2!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2

(−1)𝑝𝑘⟨𝑖1𝑖2|ℎ2|𝑃𝑘𝑖1𝑖2⟩, (4.21)

⟨Φ0|𝑂2|Φ𝑝
𝑎⟩ =

1

1!

2!∑︁
𝑘=1

𝑁occ∑︁
𝑖1

(−1)𝑝𝑘⟨𝑎𝑖1|ℎ2|𝑃𝑘𝑝𝑖1⟩, (4.22)

⟨Φ0|𝑂2|Φ𝑝𝑞
𝑎𝑏⟩ =

2!∑︁
𝑘=1

(−1)𝑝𝑘⟨𝑎𝑏|ℎ2|𝑃𝑘𝑝𝑞⟩. (4.23)
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The matrix elements involving the 3-particle operators are evaluated as

⟨Φ0|𝑂3|Φ0⟩ =
1

3!

3!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3

(−1)𝑝𝑘⟨𝑖1𝑖2𝑖3|ℎ3|𝑃𝑘𝑖1𝑖2𝑖3⟩, (4.24)

⟨Φ0|𝑂3|Φ𝑝
𝑎⟩ =

1

2!

3!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2

(−1)𝑝𝑘⟨𝑎𝑖1𝑖2|ℎ3|𝑃𝑘𝑝𝑖1𝑖2⟩, (4.25)

⟨Φ0|𝑂3|Φ𝑝𝑞
𝑎𝑏⟩ =

3!∑︁
𝑘=1

𝑁occ∑︁
𝑖1

(−1)𝑝𝑘⟨𝑎𝑏𝑖1|ℎ3|𝑃𝑘𝑝𝑞𝑖1⟩, (4.26)

⟨Φ0|𝑂3|Φ𝑝𝑞𝑟
𝑎𝑏𝑐⟩ =

3!∑︁
𝑘=1

(−1)𝑝𝑘⟨𝑎𝑏𝑐|ℎ3|𝑃𝑘𝑝𝑞𝑟⟩. (4.27)

The matrix elements involving the 4-particle operators are evaluated as

⟨Φ0|𝑂4|Φ0⟩ =
1

4!

4!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3𝑖4

(−1)𝑝𝑘⟨𝑖1𝑖2𝑖3𝑖4|ℎ4|𝑃𝑘𝑖1𝑖2𝑖3𝑖4⟩, (4.28)

⟨Φ0|𝑂4|Φ𝑝
𝑎⟩ =

1

3!

4!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3

(−1)𝑝𝑘⟨𝑎𝑖1𝑖2𝑖3|ℎ4|𝑃𝑘𝑝𝑖1𝑖2𝑖3⟩, (4.29)

⟨Φ0|𝑂4|Φ𝑝𝑞
𝑎𝑏⟩ =

1

2!

4!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2

(−1)𝑝𝑘⟨𝑎𝑏𝑖1𝑖2|ℎ4|𝑃𝑘𝑝𝑞𝑖1𝑖2⟩, (4.30)

⟨Φ0|𝑂4|Φ𝑝𝑞𝑟
𝑎𝑏𝑐⟩ =

4!∑︁
𝑘=1

𝑁occ∑︁
𝑖1

(−1)𝑝𝑘⟨𝑎𝑏𝑐𝑖1|ℎ4|𝑃𝑘𝑝𝑞𝑟𝑖1⟩, (4.31)

⟨Φ0|𝑂4|Φ𝑝𝑞𝑟𝑠
𝑎𝑏𝑐𝑑⟩ =

4!∑︁
𝑘=1

(−1)𝑝𝑘⟨𝑎𝑏𝑐𝑑|ℎ4|𝑃𝑘𝑝𝑞𝑟𝑠⟩. (4.32)
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The matrix elements involving the 5-particle operators are evaluated as

⟨Φ0|𝑂5|Φ0⟩ =
1

5!

5!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3𝑖4𝑖5

(−1)𝑝𝑘⟨𝑖1𝑖2𝑖3𝑖4𝑖5|ℎ5|𝑃𝑘𝑖1𝑖2𝑖3𝑖4𝑖5⟩, (4.33)

⟨Φ0|𝑂5|Φ𝑝
𝑎⟩ =

1

4!

5!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3𝑖4

(−1)𝑝𝑘⟨𝑎𝑖1𝑖2𝑖3𝑖4|ℎ5|𝑃𝑘𝑝𝑖1𝑖2𝑖3𝑖4⟩, (4.34)

⟨Φ0|𝑂5|Φ𝑝𝑞
𝑎𝑏⟩ =

1

3!

5!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3

(−1)𝑝𝑘⟨𝑎𝑏𝑖1𝑖2𝑖3|ℎ5|𝑃𝑘𝑝𝑞𝑖1𝑖2𝑖3⟩, (4.35)

⟨Φ0|𝑂5|Φ𝑝𝑞𝑟
𝑎𝑏𝑐⟩ =

1

2!

5!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2

(−1)𝑝𝑘⟨𝑎𝑏𝑐𝑖1𝑖2|ℎ5|𝑃𝑘𝑝𝑞𝑟𝑖1𝑖2⟩, (4.36)

⟨Φ0|𝑂5|Φ𝑝𝑞𝑟𝑠
𝑎𝑏𝑐𝑑⟩ =

5!∑︁
𝑘=1

𝑁occ∑︁
𝑖1

(−1)𝑝𝑘⟨𝑎𝑏𝑐𝑑𝑖1|ℎ5|𝑃𝑘𝑝𝑞𝑟𝑠𝑖1⟩, (4.37)

⟨Φ0|𝑂5|Φ𝑝𝑞𝑟𝑠𝑡
𝑎𝑏𝑐𝑑𝑒⟩ =

5!∑︁
𝑘=1

⟨𝑎𝑏𝑐𝑑𝑒|ℎ5|𝑃𝑘𝑝𝑞𝑟𝑠𝑡⟩. (4.38)

The matrix elements involving the 6-particle operators are evaluated as

⟨Φ0|𝑂6|Φ0⟩ =
1

6!

6!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6

(−1)𝑝𝑘⟨𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6|ℎ6|𝑃𝑘𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6⟩, (4.39)

⟨Φ0|𝑂6|Φ𝑝
𝑎⟩ =

1

5!

6!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3𝑖4𝑖5

(−1)𝑝𝑘⟨𝑎𝑖1𝑖2𝑖3𝑖4𝑖5|ℎ6|𝑃𝑘𝑝𝑖1𝑖2𝑖3𝑖4𝑖5⟩, (4.40)

⟨Φ0|𝑂6|Φ𝑝𝑞
𝑎𝑏⟩ =

1

4!

6!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3𝑖4

(−1)𝑝𝑘⟨𝑎𝑏𝑖1𝑖2𝑖3𝑖4|ℎ6|𝑃𝑘𝑝𝑞𝑖1𝑖2𝑖3𝑖4⟩, (4.41)

⟨Φ0|𝑂6|Φ𝑝𝑞𝑟
𝑎𝑏𝑐⟩ =

1

3!

6!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2𝑖3

(−1)𝑝𝑘⟨𝑎𝑏𝑐𝑖1𝑖2𝑖3|ℎ6|𝑃𝑘𝑝𝑞𝑟𝑖1𝑖2𝑖3⟩, (4.42)

⟨Φ0|𝑂6|Φ𝑝𝑞𝑟𝑠
𝑎𝑏𝑐𝑑⟩ =

1

2!

6!∑︁
𝑘=1

𝑁occ∑︁
𝑖1𝑖2

(−1)𝑝𝑘⟨𝑎𝑏𝑐𝑑𝑖1𝑖2|ℎ6|𝑃𝑘𝑝𝑞𝑟𝑠𝑖1𝑖2⟩, (4.43)

⟨Φ0|𝑂6|Φ𝑝𝑞𝑟𝑠𝑡
𝑎𝑏𝑐𝑑𝑒⟩ =

6!∑︁
𝑘=1

𝑁occ∑︁
𝑖1

⟨𝑎𝑏𝑐𝑑𝑒𝑖1|ℎ6|𝑃𝑘𝑝𝑞𝑟𝑠𝑡𝑖1⟩, (4.44)

⟨Φ0|𝑂6|Φ𝑝𝑞𝑟𝑠𝑡𝑢
𝑎𝑏𝑐𝑑𝑒𝑓⟩ =

6!∑︁
𝑘=1

⟨𝑎𝑏𝑐𝑑𝑒𝑓 |ℎ6|𝑃𝑘𝑝𝑞𝑟𝑠𝑡𝑢⟩. (4.45)
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The computation of matrix elements in the above expression requires atomic orbital

integrals involving the GTG functions. One of the advantages of using the GTG

functions is that all the AO integrals needed for the CT Hamiltonian calculation

can be computed analytically. Boys and Singer have derived the integrals involving

GTG functions with s-type GTOs. Persson and Taylor have extended the method for

higher angular momentum by using the Hermite Gaussian expansion approach. [210]

Recently, Hofener and coworkers have also derived the geminal integrals by extending

the Obara-Saika techniques for calculating the GTG integrals. [297]

The solution for the CI coefficients requires diagonalization of the CI Hamiltonian

matrix. However, the lowest eigenvalue and eigenfunction can be obtained without

explicit construction and storage of the CI matrix. There are various efficient methods

such as the Davidson diagonalization to perform this task. [298] Recently, Alavi et

al. have developed the FCIQMC method which allows very efficient evaluation of the

FCI wave function. [299, 300, 301, 302, 303]

In the present calculation, the FCI eigenvector was obtained by performing the

Nesbet update scheme and was selected because of its ease of implementation. [304]

In the Nesbet method, a expansion coefficient 𝑐𝜇 is updated by ∆𝑐𝜇

𝑐𝜇 = 𝑐𝜇 + ∆𝑐𝜇, (4.46)

where the update is calculated as

∆𝑐𝜇 =
𝜎𝜇

𝐸1̃𝜇𝜇 − 𝐻̃𝜇𝜇

, (4.47)

𝜎𝜇 =
∑︁
𝑖

𝐻̃𝜇𝑖𝑐𝑖 − 𝐸
∑︁
𝑖

1̃𝜇𝑖𝑐𝑖. (4.48)
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The energy is updated at each step using

∆𝐸 =
𝜎𝜇∆𝑐𝜇
𝐷 + ∆𝐷

, (4.49)

∆𝐷 = ∆𝑐𝜇

[︃
2
∑︁
𝑖

𝑆𝜇𝑖𝑐𝑖 + 𝑆𝜇𝜇∆𝑐𝜇

]︃
. (4.50)

The FCI energy can be recovered from the CT calculation by setting 𝐺 = 1

𝐸FCI = lim
𝐺→1

𝐸CT. (4.51)

From the above relationship, we expect that the CTH energy calculated with 𝐺min will

be lower than the FCI results. In the following section, we perform CTH calculations

on well-studied two-electron systems and compare calculated energies with reported

benchmark values.

4.3 Calculations and results of benchmark systems

The Hooke’s atom is one of the few correlated two-electron systems for which the

Schrödinger equation can be solved analytically. This feature has made it a testing

ground for a wide variety of methods. [305, 306, 307, 308] The Hooke’s atom consists

of two electrons in a parabolic potential. The Hamiltonian of that system can be

written as

𝐻̂ = −1

2
∇2

1 −
1

2
∇2

2 +
1

2
𝑘𝑟21 +

1

2
𝑘𝑟22 +

1

𝑟12
(4.52)

where, all the quantities are expressed in the atomic units. The interaction between

an electron and the nucleus is described with the harmonic potential. For 𝑘 = 0.5 a.u.,

the Schrödinger equation can be solved exactly and the ground state energy is equal

to 2.0 Hartrees. [196] The Hooke’s atom provides an ideal ground for testing the
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Figure 4-1: Comparison of the exact ground state energy of Hooke’s atom with the
results from CTH and FCI calculations.

CTH method . The CTH calculations were performed using the 6-311G basis and

the geminal parameters were obtained variationally from the solution of Eq. (4.4).

The energy was converged with respect to number of geminal parameters 𝑁g, and

the results are presented in Fig. 4-1. It is seen that the energy was converged after

addition of four geminal parameters and the optimized geminal parameters are listed

in Table 4.1.

Table 4.1: Geminal parameters for Hooke’s atom using the 6-311G basis set
Number 𝑏𝑘 𝛾𝑘
1 1.0000 0.0000
2 -0.6090 0.1050
3 -0.0709 2.350
4 0.0216 0.175
5 -0.0132 1.120
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Table 4.2: Difference between exact and calculated energy Hooke’s atom using the
CTH method

Hartree kcal/mol kJ/mol eV cm−1

0.000296 0.186 0.777 0.00805 65.0

Comparing the energy with the exact result of 2.0 Hartrees, it is seen that the

𝐸̃[𝐺min] is slightly higher by 0.770 mHartrees (or 0.483 kcal/mol) . The optimized

Slater determinant Φ obtained in the previous step is used as the reference wave

function for the CTH calculations and the results are summarized in Fig. 4-1. For

𝐺 = 1, the CTH energy is identical to the FCI energy. However, inclusion of additional

geminal terms makes the CTH energy lower than the energy from the FCI calculation.

It is seen that the CTH energy is in good agreement with the exact analytical results

and is higher by 0.000296 Hartrees, these results are provided in Table 4.2.
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Figure 4-2: Effect of basis set on ground state energy of Helium for HF, FCI, and
CTH methods.

The CTH calculations were also carried out for the helium atom and the results

are presented in Fig. 4-2.

The calculations were performed using different basis functions , and the results

were compared with HF and FCI values. It is seen that for small basis sets, the

𝐸̃ energy is lower than the FCI energy. We expect this because of the inclusion

of the optimized geminal terms. The key result from Fig. 4-2 is that for small

basis sets, the CTH method provides a substantial lowering of energy with respect to

the corresponding FCI values. The CTH calculations with respect to a small basis

provides a wave function that is comparable to the FCI wave function at much larger

basis functions. Since the cost of the FCI expansion increases sharply with the size

of the underlying 1-particle basis, the CTH method provides an appealing alternative

for obtaining accurate results when an FCI calculation is prohibitively expensive. The

dependence of the CTH energies on the number of geminal parameters is shown in
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Figure 4-3: Convergence of the CT Hamiltonian energy of the Helium atom with
respect to the number of geminal functions. The calculations were performed with
6-311G basis set.

Fig. 4-3 and the

optimized geminal parameters for the helium atom are listed in Table 4.3.
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Table 4.3: Geminal parameters for Helium atom using 6-311G
Number 𝑏𝑘 𝛾𝑘

1 1.000000 0.00000
2 -0.320260 0.57816
3 -0.063365 10.3760
4 0.020918 0.83536
5 -0.029282 0.08799

4.4 Discussion and conclusions

The first geminal parameter is always set to 𝑏1 = 1 and 𝛾1 = 0 and is never optimized

during the calculations. When all the other 𝑁g − 1 geminal parameters are set to

zero, these values of 𝑏1 and 𝛾1 represent the 𝐺 = 1 limit. Geminal parameters

from 𝑏2 . . . 𝑏𝑁g and 𝛾2 . . . 𝛾𝑁g are optimized to obtain 𝐺min as described in Eq. (4.4).

This procedure ensures that the optimized energy is always bounded from above

by the HF energy. Figures 4-1 and 4-2 show the effect of inclusion of additional

geminal parameters and it is seen that the second geminal parameter lowers the

energy significantly. This is an important result and clearly indicates the importance

of the geminal function in construction of the congruent transformed Hamiltonian.

The set of {𝑏𝑘} was optimized without any constraint and it is seen from Tables 4.1

and 4.3 that the overal geminal parameter is negative. This is an expected result and

is in agreement with previous work on explicitly correlated methods. [297, 309, 310]

The negative values of geminal parameters indicate the role of the geminal function

in providing a better description of the Coulomb hole.

The analytical forms of the GTG functions are inherently approximate and are

not capable of describing the cusp correctly because their first derivative vanishes in

the limit of 𝑟ee = 0

(︂
𝜕𝐺

𝜕𝑟ee

)︂
𝑟ee=0

= 0. (4.53)
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Table 4.4: Comparison of ground state energy (in Hartrees) of the helium atom

𝐸 function ref
-2.900233 FCI [320]
-2.903041 CTH this work
-2.9037243770341195983115922451944044466969 free ICI [314, 315]

To assess the quality of the CTH energy, it is important to estimate how much

of an error this feature introduces in the calculated energy. For the Hooke’s atom

this can be done in a a straightforward manner since the analytical solution of the

Schrödinger equation is known. From Table 4.2, it is seen that the CTH energy is

close to the exact ground state energy and is higher by 0.296 mHartrees or 0.186

kcal/mol. This difference between the CTH and the exact energy represents the

upper bound in the error that one can expect for this system by approximating the

cusp with GTG functions. For the helium atom , the situation is less straightforward

because we do not have access to the exact solution. Instead, we compared the CTH

energies with other high-level methods from previous studies [311, 312, 313, 314, 315,

316, 317, 318, 319] that include the exact cusp condition in the wave function. In

order to achieve the best CTH energy, the calculation was performed with an aug-

cc-pVTZ basis set and geminal parameters were optimized with respect to the aug-

cc-pVTZ basis. Comparing the CTH method with the highly accurate ICI method

by Nakatsuji [314, 315], it is seen that CTH energy is higher than the ICI energy by

0.429 kcal/mol. The comparison of the CTH calculation to the ICI method and other

highly accurate results can be seen in Table 4.4.

The impact of electron-electron cusp on ground state energy was investigated

in detail by Prendergast [214] and coworker using CI and QMC methods. Their

study concluded that one can still expect to get mHartree level of accuracy even in

situations where the exact cusp condition is not satisfied. Our study using GTG

functions also confirms this observation. The use of GTG functions in the CTH
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method, represents a trade-off between the implementation of exact cusp condition

and analytical expression for computing the Gaussian-type geminal integrals.

One of the objectives of the CTH method is to address the factorial scaling of

the FCI calculation with respect to the basis size. As discussed above, the CTH

method can give results that are comparable to FCI calculation at larger basis func-

tion. As the system size increases, the computation cost of the CTH method will be

dominated by the calculation and storage of the many-particle integrals. Therefore,

additional optimization techniques must be used for efficient implementation of the

CTH method. Some of the many-particle integrals can be factorized as products of

lower dimensional integrals. For example, five and six particle integrals of the form

⟨𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6|𝑔(1, 2)𝑟−1
34 𝑔(5, 6)|𝑗1𝑗2𝑗3𝑗4𝑗5𝑗6⟩ = ⟨𝑖1𝑖2|𝑔(1, 2)|𝑗1𝑗2⟩⟨𝑖3𝑖4|𝑟−1

34 |𝑗3𝑗4⟩ (4.54)

× ⟨𝑖5𝑖6|𝑔(5, 6)|𝑗5𝑗6⟩

can be factored exactly in term to lower dimensional integrals. The many-particle

integrals that cannot be factorized exactly into lower-dimensional integrals can be

approximately factorized by using the resolution of identity (RI) approach that has

been used extensively in R12 and F12 methods. The RI scheme not only reduces

the complexity of evaluating the integrals but also helps in reducing the memory

requirement for storing the integrals. We have implemented the RI-CTH method

and have performed calculation on a series of 10 isoelectronic systems. However,

the implementation details are beyond the present discussion and are presented in a

separation article.

In addition to the RI extension, the CTH method can also be used for compu-

tation of excited state energies . One of the key aspects of the correlation function

used in the congruent transformation is that it is completely symmetric operator and

belongs to the A1 irreducible representation. The congruent transformed Hamilto-

74



nian and identity operators retain their A1 symmetry. Consequently, eigenfunctions

of different symmetry are orthogonal to each other and the CTH method can be

used for computation of excited states with different symmetry that the ground state

wave function. Excited states that are of same symmetry than the ground state pose

additional challenges and will be investigated in future studies.

In conclusion, the congruent transformation of the electronic Hamiltonian using

Gaussian type geminal function is presented as a general method for calculating ac-

curate ground state energy. The form of the congruent transformed Hamiltonian

can be systematically improved by using the geminal function. It was found that a

small number of geminal functions are needed to converge the energy. Furthermore,

addition of just one geminal parameter results in a substantial improvement in the

accuracy of the wave function. For a given finite basis set the CTH energy was found

to be lower that the FCI calculation on untransformed Hamiltonian. The results in-

dicate that the congruent transformed Hamiltonian provides a viable alternative for

obtaining FCI quality energy using a smaller underlying 1-particle basis set.
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Chapter 5

Investigation of Optical Properties of

CdSe Quantum Dots using XCHF

Method

5.1 Introduction and motivation for using explicitly

correlated Hartree-Fock for the study of CdSe

quantum dots

Semiconductor quantum dots and rods have been the focus of intense theoretical

and experimental research because of inherent size-dependent optical and electronic

properties. Generation of bound electron-hole pairs (excitons) and their subsequent

dissociation into free charge carriers are the two important factors that directly im-

pact the light-harvesting efficiency of the semiconductor quantum dots. The disso-

ciation of excitons is a complex process that is influenced by various factors such

as shape and size of the quantum dots, [50, 46, 45, 42, 54, 321] presence of sur-

face defects, [322, 323, 324] surface ligands, [325, 326] and coupling with phonon
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modes. [148, 327, 328, 329, 330, 331, 332, 333] The energetics of the electron-hole

interaction in quantum dots is quantified by the exciton dissociation energy and has

been determined using both theoretical and experimental techniques [334, 58, 335].

Generation of free charge carriers by exciton dissociation has been facilitated by in-

troducing core/shell heterojunctions [336, 62, 337], and applying external and ligand-

induced electric fields . [338, 339, 340, 341, 139, 342]

One of the direct routes for enhancing exciton dissociation is by modifying the

size and shape of quantum dots. Studies on CdSe and other quantum dots have

shown that the exciton binding energy decreases with increasing dot size. [3, 2, 4,

36, 37, 1, 5, 6, 7] The size of the quantum dots has significant impact on the Auger

recombination, [38, 39] multiple exciton generation [40, 41, 42, 43], and blinking ef-

fect in quantum dots [44, 45, 46]. In addition to exciton binding energy, the spatial

distribution of electrons and holes in quantum dots also provides important insight

into the exciton dissociation process. [343, 344] Electron and hole densities 𝜌e(r)

and 𝜌h(r) have been widely used to investigate quasi-particle distribution in quantum

dots. [336, 62] For example in core/shell quantum dots, presence of the heterojunction

induces asymmetric spatial distribution of electrons and holes which, in turn, facili-

tates the exciton dissociation. Asymmetric electron probability density in the shell

region of the core/shell quantum dots has been attributed to fast electron transfer

from the quantum dots. [336, 62, 345, 64]

The central challenge in the theoretical investigation of quantum dots is effi-

cient computational treatment of large number of electrons in the system. For small

clusters where all-electron treatment is feasible, ground state and excited-state cal-

culations have been performed using GW Bethe-Salpeter , [346, 347, 348] density

functional theory (DFT) [349, 350, 351, 352, 353, 354, 355], time-dependent DFT

(TDDFT) [356, 357, 68, 358, 359, 360, 147, 149], and MP2 [361]. For bigger quantum

dots where all-electron treatment is computationally prohibitive, atomistic semiem-
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perical pseudopotential methods have been used extensively. [3, 1, 151, 39, 362] In this

approach, the one-particle Schrödinger equation incorporating the pseudopotential 𝑣ps

[︂
− ℎ̄2

2𝑚
∇2 + 𝑣ps

]︂
𝜑𝑖 = 𝜆𝑖𝜑𝑖, (5.1)

is solved and the eigenfunctions are used in construction of the quasiparticle states

[1, 3]. The quasiparticle states serve as a basis for both configuration interaction (CI)

and perturbation theory calculations. Solution of Eq. (5.1) is generally obtained by

introducing a set of basis functions (typically plane-waves), constructing the Hamilto-

nian matrix in that basis, and diagonalizing it. The computational efficiency of CI has

been greatly improved by using only states near the band gap for construction of the

CI space. [1, 363] This technique alleviates the need to compute the entire eigenspec-

trum of the Hamiltonian matrix, however, successful implementation of this approach

requires computation of selected eigenvalues and eigenfunctions of the Hamiltonian

matrix. Computation of the specific eigenvalues of large matrices is challenging and

various methods such as the folded-spectrum method [364, 365], filter-diagonalization

method [366, 361], and generalized Davidson method [367, 368] have been specifically

developed to address this problem.

The main goal of this article is to compare the effect of dot size on exciton binding

energy and electron-hole recombination probability . The central quantity of interest

for the present work is the electron-hole pair density 𝜌eh(re, rh) . The electron-hole

pair density is defined as the probability density of finding an electron and a hole in

the neighborhood of re and rh, respectively. The pair density is a mathematically

complicated quantity and is generally obtained from an underlying wave function .

Direct construction of the pair-density is also possible as long as 𝑁 − representability

can be enforced [369]. For an interacting electron-hole system, the pair density is not
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equal to the product of electron and hole densities

𝜌eh(re, rh) ̸= 𝜌e(re)𝜌h(rh). (5.2)

Furthermore, the electron-hole pair density contains information about the correlated

spatial distribution of the electrons and hole that cannot be obtained from the product

of individual electron and hole densities. Both electron-hole recombination probability

and exciton binding energy can be computed from the pair density. The electron-hole

interaction energy 𝑉eh is the major component of the exciton binding energy and can

be calculated from the electron-hole pair density using the following expression,

𝑉eh =

∫︁
𝑑re𝑑rh 𝜌eh(re, rh)𝑟−1

eh 𝜖
−1(re, rh), (5.3)

where, 𝜖−1(re, rh) is the inverse dielectric function. The electron-hole recombination

probability, 𝑃eh, is related to the pair density as

𝑃eh =
1

𝑁e𝑁h

∫︁
𝑑re

∫︁ re+
Δ
2

re−Δ
2

𝑑rh 𝜌eh(re, rh), (5.4)

where 𝑁e and 𝑁h are number of electrons and holes, respectively. In the above equa-

tion, we define electron-hole recombination probability as the probability of finding

a hole in a cube of volume ∆3 centered at the electron position. The computation of

the recombination probability is especially demanding because it requires evaluation

of the pair density at small interparticle distances. As a consequence, the form of

the electron-hole wave function near the electron-hole coalescence point is very im-

portant. [9, 140, 138, 146, 145, 370] In the present work, we address this challenge

by using the electron-hole explicitly correlated Hartree-Fock (eh-XCHF) method pre-

sented in earlier chapters. The eh-XCHF method is a variational method where the

wave function depends explicitly on the electron-hole interparticle distance and has

79



been used successfully for investigating electron-hole interaction. [9, 140, 139]

5.2 Theoretical details of eh-XCHF method for the

study of CdSe quantum dots

In the eh-XCHF method the electron-hole wave function is represented by multiplying

the mean-field wave function with an explicitly correlated function as shown in the

following equation

Ψeh−XCHF = 𝐺ΦeΦh, (5.5)

where Φe and Φh are electron and hole Slater determinants and 𝐺 is a Gaussian-type

geminal (GTG) function [165] which is defined as,

𝐺(re, rh) =
𝑁e∑︁
𝑖=1

𝑁h∑︁
𝑗=1

𝑁g∑︁
𝑘=1

𝑏𝑘exp[−𝛾𝑘𝑟2𝑖𝑗]. (5.6)

The GTG function depends on the 𝑟eh term and is responsible for incorporating

electron-hole inter-particle distance dependence in the eh-XCHF wave function. The

coefficients 𝑏𝑘 and 𝛾𝑘 are expansion coefficients which are obtained variationally. The

Gaussian-type geminal functions have been used extensively in explicitly correlated

methods for treating electron-electron correlation in many-electron systems. [266, 371]

They have also been used successfully for treating electron-hole correlation. [9, 140]

The use of Gaussian-type geminal functions offers three principle advantages. First,

the variational determination of the geminal parameters {𝑏𝑘, 𝛾𝑘} results in accurate

description of the wave function near the electron-hole coalescence point. As can be

seen in Eq. (6.16) the electron-hole recombination probability strongly depends on

the form of the electron-hole wave function at small interparticle distances. Conse-
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quently, the use of Gaussian-type geminal functions and the variational determination

of the geminal parameters are crucial for accurate computation of electron-hole re-

combination probability. The importance of the geminal function for the present work

is highlighted in Sec. 5.4.5. Second, the integrals of GTG functions with Gaussian-

type orbitals (GTO) can be performed analytically and have been derived earlier by

Boys[165] and Persson et al. [164] This alleviates the need to approximate the in-

tegrals using numerical methods. The third advantage of the GTG function is that

it allows construction of a compact representation of an infinite-order configuration

interaction expansion. This can be seen explicitly by introduction of the closure

relationship,

𝐺|Ψref⟩ =
∞∑︁
𝑖𝑖′

|Φe
𝑖Φ

h
𝑖′⟩⟨Φe

𝑖Φ
h
𝑖′|⏟  ⏞  

1

𝐺|Ψref⟩. (5.7)

The electron-hole interaction was described using the effective electron-hole Hamiltonian[137,

370, 206, 138, 205, 372, 373, 374, 375, 142, 376, 203] which is defined in the following

equation

𝐻 =
∑︁
𝑖𝑗

⟨𝑖|−ℎ̄
2

2𝑚e

∇2
e + 𝑣eext|𝑗⟩𝑒

†
𝑖𝑒𝑗 (5.8)

+
∑︁
𝑖𝑗

⟨𝑖|−ℎ̄
2

2𝑚h

∇2
h + 𝑣hext|𝑗⟩ℎ

†
𝑖ℎ𝑗

+
∑︁
𝑖𝑗𝑖′𝑗′

⟨𝑖𝑗𝑖′𝑗′|𝜖−1𝑟−1
eh |𝑖𝑗𝑖

′𝑗′⟩𝑒†𝑖𝑒𝑗ℎ
†
𝑖′ℎ𝑗′

+
∑︁
𝑖𝑗𝑘𝑙

𝑤ee
𝑖𝑗𝑘𝑙𝑒

†
𝑖𝑒

†
𝑗𝑒𝑙𝑒𝑘 +

∑︁
𝑖𝑗𝑘𝑙

𝑤hh
𝑖𝑗𝑘𝑙ℎ

†
𝑖ℎ

†
𝑗ℎ𝑙ℎ𝑘.

The effective electron-hole Hamiltonian provides a computationally efficient route for

investigating large systems and in the present work was used for investigating CdSe

clusters in the range of Cd20Se19 to Cd74608Se74837. We have also developed eh-XCHF
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method using a pseudopotential [377], but the current implementation is restricted

to cluster sizes of 200 atoms and cannot be applied to large dot sizes.

The effective Hamiltonian in Eq. (6.3) was used in combination with parabolic

potential which has been used extensively [247, 246, 248, 188, 250, 187, 249, 252,

251, 253] for approximating the confining potential in quantum dots and wires. The

electron and hole external potentials 𝑣𝛼ext were expressed as

𝑣𝛼ext =
1

2
𝑘𝛼|r𝛼|2 𝛼 = e, h. (5.9)

The form of the external potential directly impacts the electron-hole pair density

and is important for accurate computation of the binding energy and recombination

probability. In this work, we have developed a particle number based search procedure

for determining the external potential. The central idea of this method is to find an

external potential such that the computed 1-particle electron and hole densities are

spatially confined within the volume of the quantum dot. Mathematically, this is

implemented by obtaining the force constant 𝑘 by the following minimization process

min
𝑘min
𝛼

(︃
𝑁𝛼 −

∫︁ 𝐷dot
2

0

𝑑𝑟𝑟2
∫︁
𝑑Ω𝜌𝛼(r)[𝑣𝛼ext]

)︃2

, (5.10)

where 𝛼 = e, h, 𝑑Ω = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑, 𝐷dot is the dot diameter, and 𝑘min
𝛼 is the smallest

force constant that satisfies the above minimization conditions. The single-particle

density is a functional of the external potential and is denoted explicitly in the above

equation.

The eh-XCHF wave function is obtained variationally by minimizing the eh-XCHF

energy

𝐸eh−XCHF = min
𝐺,Φe,Φh

⟨Ψeh−XCHF|𝐻|Ψeh−XCHF⟩
⟨Ψeh−XCHF|Ψeh−XCHF⟩

. (5.11)
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Instead of evaluating the above equation directly, it is more efficient to first transform

the operators and then perform the integration over the coordinates. The transformed

operators are obtained by performing congruent transformation [141, 378] which is

defined as follows

𝐻̃ = 𝐺†𝐻𝐺 (5.12)

1̃ = 𝐺†𝐺. (5.13)

The eh-XCHF energy is obtained from the transformed operators using the following

expression

𝐸eh−XCHF =
⟨Φe,Φh|𝐻̃|Φe,Φh⟩
⟨Φe,Φh|1̃|Φe,Φh⟩

. (5.14)

The above equation allows us to reduce the minimization over the electron and hole

Slater determinants in terms of coupled self-consistent field (SCF) equations as shown

below [167]

Fe
𝐺[Ch]Ce = 𝜆eSe

𝐺C
e (5.15)

Fh
𝐺[Ce]Ch = 𝜆hSh

𝐺C
h. (5.16)

This is identical to the Roothaan-Hall equation where Fe
𝐺 and Fe

𝐺 are Fock matrices

for electron and holes, respectively. The subscript 𝐺 in the above expression denotes

that the Fock operators were obtained from the congruent transformed Hamiltonian

and include contribution from the geminal operator. The functional form of the

congruent transformed operators and the Fock operators have been derived earlier and

can be found in previous chapters. The single-particle basis for electrons and holes
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Table 5.1: Material parameters for the CdSe quantum dots used in the electron-hole
Hamiltonian

Property Value (Atomic units) [138]
𝑚e 0.13
𝑚h 0.38
𝜖 6.2

are constructed from the eigenfunctions of zeroth order single-particle Hamiltonian

𝐻𝛼
0 𝜑

𝛼
𝑖 = 𝐸𝛼

𝑖 𝜑
𝛼
𝑖 𝛼 = e, h. (5.17)

where the zeroth-order Hamiltonian is obtained from 𝐻 using the following limiting

condition

𝐻0 = 𝐻e
0 +𝐻h

0 = lim
reh→∞

𝐻. (5.18)

The exciton binding energy is computed using the following expression

𝐸EB = (𝐸e
0 + 𝐸h

0 ) − 𝐸eh−XCHF. (5.19)

5.3 Computational details

The material parameters for the CdSe quantum dots used in the electron-hole Hamil-

tonian in Eq. (6.3) were obtained from Ref. [138] and are presented in Table 5.1. The

single-particle basis was constructed using a set of ten s,p,d GTOs as shown in Eq.

(5.20)

𝜑 = 𝑥𝑛𝑦𝑚𝑧𝑙𝑒−𝛼𝑟2 . (5.20)
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Table 5.2: Parameters for the external potential and the GTOs used in the eh-XCHF
calculation. All values are given in atomic units.

Ddot(nm) 𝑘e 𝑘h 𝛼e 𝛼h

1.24 2.66 × 10−2 9.10 × 10−3 2.94 × 10−2 2.94 × 10−2

1.79 6.22 × 10−3 2.13 × 10−3 1.42 × 10−2 1.42 × 10−2

2.76 1.10 × 10−3 3.76 × 10−4 5.98 × 10−3 5.98 × 10−3

2.98 8.10 × 10−4 2.77 × 10−4 5.13 × 10−3 5.13 × 10−3

3.28 5.52 × 10−4 1.89 × 10−4 4.24 × 10−3 4.24 × 10−3

3.79 3.09 × 10−4 1.06 × 10−4 3.17 × 10−3 3.17 × 10−3

4.80 1.20 × 10−4 4.12 × 10−4 1.98 × 10−3 1.98 × 10−3

6.60 3.38 × 10−5 1.16 × 10−5 1.05 × 10−3 1.05 × 10−3

10.0 6.41 × 10−6 2.19 × 10−6 4.57 × 10−4 4.57 × 10−4

15.0 1.26 × 10−6 4.33 × 10−7 2.03 × 10−4 2.03 × 10−4

20.0 4.01 × 10−7 1.37 × 10−7 1.14 × 10−4 1.14 × 10−4

The exponent of the GTOs and the force constants for the external potential used

in the calculations are presented in Table 5.2. A set of three geminal functions were

used for each dot size, where the geminal parameters were optimized variationally.

The optimized parameters for all the dot sizes are presented in Table 5.3. The first

set of geminal parameters were always set to 𝑏1 = 1 and 𝛾1 = 0 to ensure that the

eh-XCHF energy is always bounded from above by the mean-field energy during the

geminal optimization. [9, 140]

5.4 Results of calculations

5.4.1 Exciton binding energy

The exciton binding energy was computed for a series of CdSe clusters ranging from

Cd20Se19 to Cd74608Se74837. The approximate diameters of these quantum dots are in

the range of 1 to 20nm, respectively and the results are presented in Table 5.4. It

is seen that binding energy decreases as the size of the quantum dot increases. This

trend is in agreement with earlier results. [3, 2, 4] In Figure 5-1, the computed binding

energies are compared with previously reported experimental and theoretical results
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Table 5.3: Optimized geminal parameters obtained by minimizing the eh-XCHF en-
ergy. The first set of geminal parameters were set to 𝑏1 = 1 and 𝑔1 = 0 and the details
are presented in the text. All values are given in atomic units.

Ddot(nm) 𝑏2 𝑏3 𝛾2 𝛾3
1.24 3.06 2.55 × 10−1 1.40 × 10−3 1.79 × 10−1

1.79 2.16 2.69 × 10−1 1.20 × 10−3 9.80 × 10−2

2.76 1.79 3.49 × 10−1 9.00 × 10−4 4.62 × 10−2

2.98 1.69 3.50 × 10−1 9.00 × 10−4 4.21 × 10−2

3.28 2.24 4.46 × 10−1 7.00 × 10−4 2.04 × 10−2

3.79 1.98 4.56 × 10−1 7.00 × 10−4 2.01 × 10−2

4.80 2.43 6.34 × 10−1 6.00 × 10−4 1.94 × 10−2

6.60 2.43 8.05 × 10−1 5.00 × 10−4 1.71 × 10−2

10.0 2.81 9.39 × 10−1 5.00 × 10−4 1.83 × 10−2

15.0 3.35 1.29 4.00 × 10−4 2.00 × 10−4

20.0 3.27 1.38 2.00 × 10−4 3.00 × 10−2

Table 5.4: Exciton binding energy calculated using eh-XCHF method as function of
dot diameter.

Ddot(nm) Cd𝑥Se𝑦 𝐸BE(eV)
1.24 Cd20Se19 0.855
1.79 Cd47Se57 0.595
2.76 Cd199Se195 0.389
2.98 Cd232Se257 0.360
3.28 Cd311Se352 0.329
3.79 Cd513Se515 0.285
4.80 Cd1012Se1063 0.225
6.60 Cd2704Se2661 0.167
10.0 Cd9338Se9363 0.111
15.0 Cd31534Se31509 0.078
20.0 Cd74608Se74837 0.066

86



[3, 2, 4, 1, 5, 6, 7]. For 𝐷dot equal to 1.8, 3.32 and 4.82 nm, Franceschetti and Zunger
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Figure 5-1: Log of binding energy (𝐸𝐵𝐸) versus log of diameter for CdSe quantum
dots. The values from the eh-XCHF calculations are compared with results from ear-
lier studies by Wang et al. [1], Franceschetti et al. [2], Meulenberg et al. [3], Jasieniak
et al. [4], Kucur et al. [5], Inamdar et al. [6], and Querner et al. [7] The details of the
comparison are presented in the text.

have computed binding energies using an atomistic pseudopotential based configura-

tion interaction method, [3] and the exciton binding energies shown in Figure 5-1 were

obtained from the tabulated values in Ref. [3]. In a recent combined experimental and

theoretical investigation, Jasieniak et al. [4] have reported size-dependent valence and

conduction band energies of CdSe quantum dots. The values from the Jasieniak et

al. studies in Figure 5-1 were obtained from the least-square fit equation provided in

Ref. [4]. The remaining data points were obtained from the plot in Ref. [4]. The log-

log plot in Figure 5-1 shows that the computed binding energy is described very well

by a linear-fit and the exciton binding energy scales as 𝐷−𝑛 with respect to the dot
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size. This observation is consistent with the trend observed in earlier studies. [3, 2, 4]

We find that the exciton binding energies from the eh-XCHF calculations are in very

good agreement with the atomistic pseudopotential calculations by Wang et al. [1] and

Franceschetti et al. [3] Comparing between eh-XCHF and Jasieniak et al. [4] results

show that the eh-XCHF values are lower than the Jasieniak et al. values for small

dot sizes, but the difference becomes smaller with increasing dot size. One possible

explanation for this observation is that smaller quantum dots have high surface to

volume ratios and their optical properties are dominated by surface effects [379, 102]

which are not currently included in the eh-XCHF calculations. The plot in Figure 5-1

highlights the ability of the eh-XCHF method to predict exciton binding energies for

large quantum dots.

5.4.2 Electron-hole Coulomb energy

Another important quantity that is directly related to the electron-hole interaction is

the electron-hole Coulomb energy . We have used the definition given by Franceschetti

and Zunger [3] and calculated the electron-hole Coulomb energy using the following

expression

𝐴 =

∫︁
𝑑re𝑑rh 𝜌eh(re, rh)𝑟−1

eh . (5.21)

In Figure 5-2, we have compared the electron-hole Coulomb energy with the pseu-

dopotential+CI calculations by Franceschetti and Zunger and the results were found

to be in good agreement with each other. The Coulomb energy is a very important

quantity because it allows us to directly compare the quality of electron-hole pair

density without introducing any additional approximation due to the choice of the

dielectric function used for computation of the binding energy . The good agreement

between the two methods provides important verification of the implementation of
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Figure 5-2: Log of Coulomb energy (𝐴) for CdSe quantum dots versus log of diameter
of quantum dot.

the eh-XCHF method.

5.4.3 Recombination probability

In addition to exciton binding energies, electron-hole recombination probabilities were

also calculated. Using the expression in Eq. (6.16), the electron-hole pair density

from the eh-XCHF method was used in the computation of electron-hole recombina-

tion probabilities and the results are presented in Figure 5-3. A log-log plot of 𝑃eh

versus 𝐷dot indicates that the recombination probability also follows 𝐷−𝑛
dot dependence

with dot diameter . One of the key results from this study is that the electron-hole

recombination probability decreases at a much faster rate than the exciton binding

energy with increasing dot size. This is illustrated in Figure 5-4, where comparison of

the relative binding energy and recombination probability is presented with respect
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Figure 5-3: Log of recombination probability (Peh) of CdSe quantum dots versus log
of diameter of quantum dot.

to dot size. We see that at large dot sizes, both exciton binding energy and electron-

hole recombination probability show weak dependence on the dot diameter 𝐷. This

is consistent with the expected result that the both of these quantities should become

asymptotically invariant to the dot size. It was found that for a factor of 16.1 change

in the dot diameter, the exciton binding energy and the recombination probability

decrease by a factor of 12.9 and 4.55 × 105, respectively.

The linear regression equations of the Coulomb energy , exciton binding energy

and electron-hole recombination probability as function of dot diameter are summa-

rized in Table 5.5. It is seen that the slope for the recombination is substantially

higher than the binding energy . The absolute value of the slope for both Coulomb

energy and exciton binding energy was found to be lower than one which indicates

that both of these quantities scale sublinearly with respect to 𝐷−1. This is in contrast
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Figure 5-4: Comparison of 𝐸BE and 𝑃eh relative properties versus 𝑟dot.

Table 5.5: Linear regression equation of Coulomb energy, exciton binding energy, and
electron-hole recombination probability with respect to dot diameter

Property Equation
log[A/eV] −0.938 log[D/nm] + 0.7983
log[EBE/eV] −0.938 log[D/nm] + 0.0039
logPeh −4.712 log[D/nm] − 13.308

with the particle in a box model which predicts a slope of −1. The sublinear scaling

with respect to 𝐷−1 obtained in this work is in agreement with the previous results

by Franceschetti et al. [2] and Meulenberg et al. [3], respectively.

5.4.4 Effect of 1-particle basis size

The convergence of the computed exciton binding energy and electron-hole recombi-

nation probability with respect to the size of the 1-particle basis was investigated by
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Table 5.6: Comparison of eh-XCHF binding energies and recombination probabilities
obtained using s and s, p, d GTO basis functions.

Ddot(nm) %∆EBE %∆Peh

1.24 1 3
1.79 1 5
2.76 1 7
2.98 2 8
3.28 2 9
3.79 2 10
4.80 3 14
6.60 3 15
10.0 5 21
15.0 4 7
20.0 2 33

performing eh-XCHF calculation using two different sets of basis functions . The eh-

XCHF calculations were performed using s and s, p, d GTOs and the results from the

these calculations are summarized in Table 5.6. The change from s to s, p, d GTOs

represents a 10-fold increase in the basis size for both electron and hole quasiparti-

cles and it is seen from Table 5.6 that in all cases the change in the exciton binding

energy is less than or equal to 5%. These results indicate that the exciton binding

energies are converged with respect to the basis size. In contrast, the recombination

probabilities were found to more sensitive to the change in the basis size and the

maximum change in the 𝑃eh was found to be 33%. Addition of another set of s,p,d,

GTOs resulted in a maximum difference of 0.2% and 3% in the binding energy and

recombination probability, respectively.

5.4.5 Comparison with uncorrelated wavfunction

In this section, the results from the eh-XCHF calculations are compared with the

exciton binding energies and recombination probabilities obtained using the uncor-

related electron-hole wave function. The uncorrelated electron-hole wave function is

a special case of the eh-XCHF wave function and can be obtained by setting the
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Table 5.7: Comparison of exciton binding energy and recombination probability ob-
tained using the uncorrelated wave function and the eh-XCHF method.

Ddot(nm) %∆EBE %∆Peh

1.24 1 24
1.79 1 37
2.76 2 61
2.98 2 67
3.28 2 69
3.79 2 86
4.80 2 127
6.60 4 202
10.0 5 426
15.0 12 468
20.0 28 822

geminal correlation operator to 𝐺 = 1 as shown in the following equation

Ψ0 = Φe
0Φ

h
0, (5.22)

where Φ𝛼
0 , 𝛼 = e, h are eigenfunctions of the zeroth-order Hamiltonian 𝐻𝛼

0 , 𝛼 = e, h

defined in Eq. (5.18). In order to evaluate the importance of the explicitly correlated

ansatz, we define the following eh-XCHF wave function

Ψ
′

eh−XCHF = 𝐺optΦ
e
0Φ

h
0, (5.23)

where the only difference between Eq. (5.22) and (5.23) is the presence of the 𝐺opt

term. The difference between the exciton binding energy and the recombination

probability computed using the uncorrelated wave function and the eh-XCHF wave

function in Eq. (5.23) are presented in Table 5.7. It is seen that for small dots

with diameters less than 5 nm, the computed exciton binding energies are in very

good agreement with each other. The eh-XCHF exciton binding energy and the

electron-hole recombination probability for the smallest three quantum dots were

found to scale as 𝐷−1.00 and 𝐷−5.67, respectively. The scaling of exciton binding
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energy for the small dots is identical to the particle in a box result of 𝐷−1 and

good agreement between the two methods indicate the dominance of the the strong

confinement effect in small quantum dots . However, in contrast to the binding

energies, the corresponding errors in the recombination probabilities were found to

be much higher. For larger quantum dots, it is seen that the uncorrelated wave

function severely underestimates the electron-hole recombination probability. For

the biggest quantum dots investigated in the present work, it was found the the

uncorrelated wave function underestimates the binding energy and recombination

probability by 28% and 822%, respectively. The uncorrelated wave function is able

to correctly predict that the recombination probability decreases at a faster rate than

the binding energy with respect to size of the quantum dot. Specifically, increasing

the dot size from 1.24 to 20 nm decreases the recombination probability obtained

using the uncorrelated wave function by a factor of 1.7×107. However, this value was

found to be higher by two orders of magnitude than the result of 4.6 × 105 obtained

from the eh-XCHF calculation. Comparison between the two methods indicates that

the accuracy of the uncorrelated wave function decreases significantly in the weak-

confinement region. The results from Table 5.7 show the importance of explicitly

correlated wave function for computation of electron-hole recombination probability

and also highlight the limitation of using exciton binding energy as the sole criteria for

characterizing the quality of the electron-hole wave function. This observation is also

supported by previous study using path integral Monte Carlo (PIMC) method, where

Wimmer and Shumway found that although both CI and PIMC gave comparable

biexciton binding energies, the CI method can underestimate the recombination rates

by a factor of two. [138]
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5.5 Conclusions with respect to the eh-XCHF study

of effect of size on CdSe quantum dots

In conclusion, we have presented a multifaceted study of the effect of dot size on

electron-hole interaction in CdSe quantum dots . The electron-hole explicitly cor-

related Hartree-Fock method was used for computation of exciton binding energy

and electron-hole recombination probability. It was found that both exciton binding

energy and electron-hole recombination probability decrease with increasing dot size

and both quantities scale as 𝐷−𝑛
dot with respect to the diameter of the quantum dot.

The computed exciton binding energies were found to be in good agreement with

previously reported results. One of the significant results from these calculations is

that the electron-hole recombination probability decreases at a substantially higher

rate than the binding energy with increasing dot size. Changing the dot size by a

factor of 16.1 resulted in a decrease in the electron-hole recombination probability

by a factor of 105. Comparison of the explicitly correlated results with independent-

particle approximation showed that the independent-particle approximation seriously

underestimates the recombination probability at large dot sizes. For the 20 nm dot

size, the error in exciton binding energy and electron-hole recombination probabil-

ity computed using the independent-particle approximation were found to be 28%

and 822%, respectively. The results from this study highlight the importance of

electron-hole explicitly correlated wave function and also illustrate the limitations of

using exciton binding energy as the sole metric for characterization of theoretical and

computational methods.
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5.6 Improving the model of the CdSe system: XCHF

+ pseudopotential calculations

The above calculations on the CdSe quantum dot system were performed using

parabolic confining potential. The parabolic quantum dot is a good approximation

to the structure of the quantum dot; however, there are associated problems with

the accuracy of the parabolic confinement. For smaller systems, an all electron-based

treatment is feasible and can be performed using methods such as GW-BSE, DFT, and

TDDFT as mentioned in the beginning of the chapter. However, for large quantum

dots this treatment becomes extremely prohibitve and thus atomistic pseudopotential

methods have been developed to address the issue, as mentioned above.

In the work described here, the eh-XCHF method was coupled with the empirical

pseudopotential developed by Rabani et al. [363]. The form of the potential is as

follows,

𝑣(𝑞) =
𝑎1(𝑞

2 − 𝑎2)

𝑎3exp(𝑎4𝑞2) + 1
(5.24)

Parameters for Cd and Se were used from [363].

The resulting eigenvalue problem is given as follows,

[
−ℎ̄2

2𝑚
∇2 + 𝑣ps(r)]𝜑𝑖 = 𝜖𝑖𝜑𝑖. (5.25)

The Hamiltonian matrix was constructed using distributed Gaussian basis functions

and in turn was diagonalized to obtain the spectrum of the quasiparticles . Geminal

parameters were optimized with respect to the parabolic quantum dot. The eigen-

values of the resulting pseudopotential matrix were used for determination of the

exciton binding energy of three specific quantum dot structures. These QD systems

range in diameter from 1.78 nm to 4.8 nm and contain 104 to 2075 total atoms at
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the largest dot size. The dot diameters in comparison were taken from Ref. [3]. In

[3] Franceschetti et al. have performed pseudopotential calculations using configura-

tion interaction for the dot sizes in question. This method is highly computationally
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Figure 5-5: Exciton binding energy for CdSe quantum dots versus dot diameter
for XCHF method with pseudopotential. Exciton binding energy computed by
Franceschetti et al. using pseudopotential with configuration interaction are pre-
sented for comparison [3].

expensive due to the expense of the configuration interaction calculation. It is ap-

parent in Figure 5-5 that the XCHF method with pseudopotential compares very

well with the pseudopotential + CI method. One of the advantages of the XCHF

method with pseudopotential is that it provides an infinite order expansion in config-

uration interaction space as described in previous chapters. This alleviates the need

for large CI calculation. Therefore, the XCHF method with pseudopotential provides

a much faster and accurate computational route to computation of optical properties

of quantum dots.
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Chapter 6

Investigation of Effect of Size versus

Effect of Heterojunction on

Electron-Hole Dynamics in CdSe/ZnS

Core/Shell Quantum Dots

6.1 Motivation for studying effect of heterojunction

on core/shell quantum dots

Controlling the particle shape [380, 381, 382], size[383, 384], and material composition[24,

149, 385, 386, 387] allow for direct manipulation of optical and electronic properties

of QDs. Applications of nanoparticles include labeling and tracking of biomolecules

[90, 388, 91, 95, 92, 93, 71, 94], light emitting devices [89, 389, 390, 391], hydrogen

generation[85, 86, 87, 392],resonance energy transfer [393, 394, 84, 395, 396], and pho-

tovoltaics [397, 77, 78, 79, 75, 398, 399, 82, 74, 81, 76, 80, 400, 34, 73]. Electronic

excitations in QDs can be represented in quasiparticle representation by formation

of electron-hole (eh) pairs (excitons) . Generation and dissociation of excitons and
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multiexcitons [401, 402, 41, 403, 404] have important applications in solar-to-electric

and solar-to-chemical energy conversion processes [405, 406] . Theoretical investi-

gation of these processes requires accurate treatment of electron-hole correlation in

QDs. One of the metrics used for studying eh-interaction is exciton binding energy ,

[3, 2, 4, 1] which is the energy required to dissociate the bound eh-pair. Both exciton

binding energy and finite excitonic lifetime can be modified by changing the chemical

composition and dot size [3, 2, 4, 36, 37, 1, 139, 407, 408].

There is also technological interest in designing QDs for controlling charge sepa-

ration which can be achieved by changing the size of the QD, modifying the shape,

and introducing a heterojunction into the system [409, 410, 411]. Core/shell quantum

dots are ideal for applications which require transfer of charge carriers to an outside

sink for photovoltaic applications. When a shell is grown on a core material, the

alignment of the band structure changes and thus introduces new features into the

electronic structure of the material. Based on the band alignment between the core

and shell material, the interface can be classified as a type I, type II or quasi-type

II heterojunction [61]. The optical and charge transport properties can be modified

significantly by changing the shell thickness of the nanoparticle and have been used in

experimental studies for controlling charge separation,[412, 63, 413] hole-transfer,[64]

and electron-transfer rates.[65]

In addition to experiments, theoretical approaches have been used to study the op-

tical properties of quantum dots. For smaller quantum dots, an all-electron treatment

can be used with methods like density functional theory (DFT) [349, 350, 351, 352,

353, 354, 355], GW-Bethe-Salpeter [346, 347, 348] and MP2 [361]. However, treatment

of larger quantum dots becomes computationally prohibitive with all-electron theo-

retical methods and traditionally, atomistic semiempirical pseudopotential methods

have been used to address this problem [3, 1, 151, 39, 362].

In this work, we have investigated the effect of the heterojunction on a series
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of CdSe/ZnS quantum dots with diameters 6-15 nm. The excitonic wave function

was obtained using the electron-hole explicitly correlated Hartree-Fock (eh-XCHF)

method and the exciton binding energy , electron-hole recombination probability ,

and electron-hole separation distance were computed for each dot in the series. The

effects of shell thickness , core-size , and dot diameter on the excitonic properties

were analyzed and preferential spatial localization of the quasiparticles was investi-

gated using the 1-particle reduced density. The results from this multi-faceted study

show that the presence of the heterojunction can promote exciton dissociation and

generation of free charge carriers .

The remaining sections of the chapter are organized as follows. The theoretical

and computational implementation details of the eh-XCHF method are summarized

in section 6.2. The results from the calculations are presented in section 6.3 and the

conclusions from the investigation are discussed in section 6.4.

6.2 Theoretical method and challenges associated with

studying core/shell QDs

6.2.1 Form of the electron-hole wave function

The CdSe/ZnS system was studied using the electron-hole explicitly correlated Hartree-

Fock (eh-XCHF) method. The details of the eh-XCHF method have been presented

earlier and only the key features of the method are highlighted here. The electron-hole

wave function in the eh-XCHF method is represented by multiplying a reference wave

function by an explicitly correlated function, as shown in the following expression,

ΨXCHF = 𝐺ΦeΦh. (6.1)
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Where the explicitly correlated function is the Gaussian-type geminal function (GTG)

is shown below,

𝐺(re, rh) =
𝑁e∑︁
𝑖=1

𝑁h∑︁
𝑗=1

𝑁g∑︁
𝑘=1

𝑏𝑘exp[−𝛾𝑘𝑟2𝑖𝑗]. (6.2)

The GTG includes the electron-hole interparticle distance directly in the form of the

wave function and the 𝑏 and 𝛾 parameters are determined variationally by minimizing

the total energy.

There are two important advantages associated with using the Gaussian-type gem-

inal function in the eh-XCHF wave function. These advantages are described in the

previous chapter.

The eh-interaction was described using the electron-hole Hamiltonian which has

been used successfully describe electron hole interaction in quantum dots, [137, 370,

206, 138, 205, 372, 373, 374, 375, 142, 376, 203]

𝐻 =
∑︁
𝑖𝑗

⟨𝑖|−ℎ̄
2

2𝑚e

∇2
e + 𝑣eext|𝑗⟩𝑒

†
𝑖𝑒𝑗 (6.3)

+
∑︁
𝑖𝑗

⟨𝑖|−ℎ̄
2

2𝑚h

∇2
h + 𝑣hext|𝑗⟩ℎ

†
𝑖ℎ𝑗

+
∑︁
𝑖𝑗𝑖′𝑗′

⟨𝑖𝑗𝑖′𝑗′|𝜖−1𝑟−1
eh |𝑖𝑗𝑖

′𝑗′⟩𝑒†𝑖𝑒𝑗ℎ
†
𝑖′ℎ𝑗′

+
∑︁
𝑖𝑗𝑘𝑙

𝑤ee
𝑖𝑗𝑘𝑙𝑒

†
𝑖𝑒

†
𝑗𝑒𝑙𝑒𝑘 +

∑︁
𝑖𝑗𝑘𝑙

𝑤hh
𝑖𝑗𝑘𝑙ℎ

†
𝑖ℎ

†
𝑗ℎ𝑙ℎ𝑘.

The parabolic potential has been extensively used to approximate the confining po-

tential for quantum dot systems [247, 246, 248, 188, 250, 187, 249, 252, 251, 253]

and was used as the confinement potential in the above expression. The confining

potential for the electrons and holes was described as follows,

𝑣𝛼ext =
1

2
𝑘𝛼|r𝛼|2 + 𝑣𝛼mat 𝛼 = e, h. (6.4)
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The force constants, 𝑘𝛼, for the parabolic potential were obtained from Ref. [10].

These force constants were determined using a particle-number based search proce-

dure. The key idea of the method is to find an external potential that ensures that the

single particle electron and hole densities are confined in the volume of the quantum

dot. The force constant, 𝑘𝛼, is obtained via the following minimization procedure,

min
𝑘min
𝛼

(︃
𝑁𝛼 −

∫︁ 𝐷dot
2

0

𝑑𝑟𝑟2
∫︁
𝑑Ω𝜌𝛼(r)[𝑣𝛼ext]

)︃2

, (6.5)

where 𝛼 = e, h, 𝑑Ω = sin 𝜃𝑑𝜃𝑑𝜑, 𝐷dot is the dot diameter, and 𝑘min
𝛼 is the smallest

force constant that satisfies the above minimization condition.

In addition to the parabolic confinement potential, a material potential was used

to describe the core and shell regions

𝑣𝛼mat = 𝑣𝛼CdSe +𝑚(𝑟 − 𝑟core)(𝑣
𝛼
ZnS − 𝑣𝛼CdSe), (6.6)

where 𝛼 = e, h. A masking function [39] 𝑚(𝑟) was used to smoothly transition

between the core and shell materials. This masking function is analogous to the

one developed by Franceschetti et al. for smoothly connecting regions of different

dielectric functions in quantum dots [39]. The function used in the present work is

given by the following expression

𝑚(𝑟) =
(tanh(𝛽𝑟) + 1)

2
, (6.7)

where 𝛽 is a parameter used to control smoothness between core and shell region and

is given in Table 6.1.

The eh-XCHF wave function was obtained from variational minimization of the
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eh-XCHF energy,

𝐸eh−XCHF = min
𝐺,Φe,Φh

⟨Ψeh−XCHF|𝐻|Ψeh−XCHF⟩
⟨Ψeh−XCHF|Ψeh−XCHF⟩

. (6.8)

To facilitate the evaluation of the above equation, the operators were transformed via

congruent transformation [141, 378] as shown in the following equations

𝐻̃ = 𝐺†𝐻𝐺 (6.9)

1̃ = 𝐺†𝐺. (6.10)

The eh-XCHF energy was obtained using the transformed operators as shown below

𝐸eh−XCHF =
⟨ΦeΦh|𝐻̃|ΦeΦh⟩
⟨ΦeΦh|1̃|ΦeΦh⟩

. (6.11)

The above transformation allows us to perform the minimization over the Slater

determinants using coupled self-consistent field (SCF) equations [167] as shown below,

Fe
𝐺[Ch]Ce = 𝜆eSe

𝐺C
e (6.12)

Fh
𝐺[Ce]Ch = 𝜆hSh

𝐺C
h. (6.13)

In the above expression, Fe
𝐺 and Fh

𝐺 are the Fock matrices for the electron and hole

respectively. The subscript 𝐺 denotes that the Fock operators were obtained from

the congruent transformed Hamiltonian and include contribution from the geminal

operator.

6.2.2 Computational Details

The material parameters for the CdSe core-only and CdSe/ZnS core/shell quantum

dots used in the electron-hole Hamiltonian are summarized in Table 6.1. These pa-
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Table 6.1: Material parameters for the CdSe/ZnS quantum dots used in the electron-
hole Hamiltonian. All values are given in atomic units.

Property Value CdSe Value ZnS
𝑚e 0.13 0.25
𝑚h 0.38 1.30
𝜖 6.20 8.90

𝑣emat −0.147 −0.114
𝑣hmat −0.209 −0.176
𝛽 10.0 10.0

rameters were taken from Ref. [62, 1, 414]. The single particle basis for the electron

and hole were constructed as a linear combination of Gaussian-type orbitals functions,

as shown in the following expression,

Φx =

𝑛b∑︁
𝑖=1

𝑐𝑖𝜑𝑖(𝑟) x = e, h. (6.14)

A linear combination of 11 basis functions was used for each particle with angular

momentum value of 0 − 10. The coefficients 𝑐𝑖 and exponents 𝛼 for the GTOs were

found by minimizing the single-component energy for electron and hole, respectively.

A set of three geminal functions were used for each dot and were determined by

minimizing the eh-XCHF energy . To ensure that the eh-XCHF energy is always

bounded from above by the mean-field energy, the first geminal parameters are always

set to 𝑏1 = 1 and 𝛾1 = 0.
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6.3 Results from investigation of CdSe/ZnS core/shell

QDs

6.3.1 Effect of Shell Thickness in CdSe/ZnS QD

The change in exciton binding energy , eh-recombination probability , and electron-

hole separation distance as a function of shell thickness was calculated using the

eh-XCHF method. A series of CdSe/ZnS quantum dots with diameters 6-15 nm were

investigated by adding ZnS shell to a CdSe core with core-diameter of 4.8 nm. The

exciton binding energy 𝐸BE was calculated from the difference between the bound

and the non-interacting electron-hole pair as shown the following equation,

𝐸BE = 𝐸non−interacting − 𝐸exciton. (6.15)

As shown in Figure 6-1, the exciton binding energy was found to decrease with in-

creasing shell thickness . The exciton binding energy of the core-only quantum dot

was found to be 0.264 eV and is in good agreement with both experimental and the-

oretical findings for exciton binding energy [10, 4] . For a factor of three change in

the dot diameter, the exciton binding energy was found to decrease by 46% in the

core/shell dot.

In addition to the exciton binding energy, the electron-hole recombination proba-

bility was calculated from the eh-XCHF wave function using the following expression

𝑃eh =
1

𝑁e𝑁h

∫︁
𝑑re

∫︁ re+
Δ
2

re−Δ
2

𝑑rh 𝜌eh(re, rh). (6.16)

Analogous to the exciton binding energy, the recombination probability was found

to decrease as the shell material was added to the CdSe core. As shown in Figure 6-2,

the recombination probability decreased by 98% as compared to the bare CdSe QD.
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Figure 6-1: Percent change in exciton binding energy as a function of shell thickness
for a CdSe/ZnS core/shell quantum dot. 𝐸core

BE = 0.264 eV.

However, the change in the eh-recombination probability was much higher than the

change in exciton binding energy.

The electron-hole separation distance 𝑟eh was calculated as an additional metric

for investigating the effect of shell thickness on the exciton dissociation process. The

𝑟eh was calculated from the eh-XCHF wave function using the following expression

⟨𝑟eh⟩ = ⟨Ψeh−XCHF||re − rh||Ψeh−XCHF⟩, (6.17)

and the results are presented in Figure 6-3 . It is seen from Figure 6-3 that the spatial

separation increases by 60% with addition of ZnS shell.

The results shown in Figure 6-1-Figure 6-3 indicate that addition of ZnS can

facilitate dissociation of the exciton into free charge carriers. This observation is
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Figure 6-2: Percent change in electron-hole recombination probability as a function
of shell thickness for CdSe/ZnS core/shell quantum dot.

consistent with experimental results on core/shell quantum dots. For example, in

CdSe/ZnS QDs, Zhu et al. have found enhancement in the electron transfer rate

from QD with increasing shell thickness [412]. This phenomenon is not restricted

to CdSe/ZnS and is also seen in other core/shell quantum dots. Htoon et al. have

shown an increase in multiexciton dissociation as a function of shell thickness [415]. In

addition to quantum dot systems, Zhu et al. have shown that dielectric discontinuity

at the surface of organic materials can strongly effect the exciton dissociation [416] .

6.3.2 Exponential scaling with respect to shell thickness

One of the interesting results in core/shell quantum dots is exponential scaling of

experimentally observed quantities as a function of shell thickness. In the present

work, we find that as the shell thickness is increased, the recombination probability
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Figure 6-3: Percent change in electron-hole separation as a function of shell thickness
for a CdSe/ZnS core/shell quantum dot. 𝑟coreeh = 1.18 nm

.

decays exponentially . Exponential fit of the relative recombination probability as a

function of shell thickness is shown in Figure 6-4. These results are consistent with

experimentally observed trends in core/shell quantum dots. For example, in 2010 Zhu

et al. have shown experimentally that there is an exponential decay associated with

both charge-recombination and charge-transfer rates as a function of shell thickness

[412]. Abdellah et al. have also found that the charge injection rate in core/shell

quantum dots displays a very strong exponential dependence [63]. Sun et al. find that

the electron transfer rates in core/shell quantum dots show strong exponential decay

with respect to increasing shell thickness [417]. Although in the present calculations

a direct comparison with the rates are not possible, we find that similar trends exist

between computed and experimentally observed quantities.
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Figure 6-4: Ratio of recombination probability as a function of ZnS shell thickness.
Exponential fit is given as 𝑦 = 𝑒−0.852𝑥.

6.3.3 Preferential localization of quasiparticle density

To further evaluate the spatial separation of the quasiparticles, we have computed

the probability of finding the electron or hole in the core and shell region of the QD.

Starting with the 1-particle reduced density, we define the probability 𝑃𝛼
core of finding

the quasiparticle in the core region as

𝑃𝛼
core =

1

𝑁𝛼

⟨𝜌𝛼(r)𝜃(𝑟core − |r|)⟩ (6.18)

= 1 − 𝑃𝛼
shell with 𝛼 = e, h, (6.19)

where 𝜃(𝑥) is the Heaviside step function and the angular brackets represent inte-

gration over the spatial coordinates. The 𝑃shell for both electron and hole are shown

in Figure 6-5. It is seen that as compared to the hole, the electron is preferentially
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Figure 6-5: (a) Probability of finding an electron and hole within the shell region and
(b) ratio of 𝑃 e

shell/𝑃
h
shell for a CdSe/ZnS quantum dot.

localized in the shell region by a factor of three. This trend is consistent with exper-

imental observations.[412, 61, 63, 66, 418, 419, 65, 413] For example, Zhu et al. have

found that there is an optimum shell thickness for controlling the charge separation

in CdSe/ZnS QDs [412]. In addition, they have also observed preferential localization

of the electron in the shell material for these QDs. [61] Abdellah et al. have also

found that there is an optimal shell thickness for achieving efficient charge transfer

from the core/shell quantum dot system [63]. As a consequence of this, core/shell

quantum dots have been coupled with materials like TiO2 in order to modify the

electron transfer rates [66, 418, 419, 65]. Zhu et al. have engineered core/shell QDs

to increase the charge separation and decreasing the charge recombination. [413]

The results in Figure 6-1-Figure 6-5 provide additional metrics that confirm these

experimental observations.
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6.3.4 Isolating the effect of heterojunction from volume

Addition of multiple monolayers of shell material not only introduces heterojunction

into the quantum dot but also increases the effective volume of the nanoparticle. It

is often difficult to separate the influence of these two contributing quantities on the

properties of the QD system. A useful metric to analyze these effects is to compute

the scaling relationship of the excitonic properties as a function of the dot diameter.

In this work, we isolate the effect of heterojunction by comparing the results between

core/shell and core-only quantum dots with identical dot diameter.

The scaling of the exciton binding energy as a function of dot diameters was an-

alyzed and is presented in Figure 6-6. The exciton binding energy for the CdSe/ZnS

system was found to scale as 𝐷−0.56
dot with respect to the dot diameter 𝐷. This scal-
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Figure 6-6: Exciton binding energy as a function of dot size for quantum dots.

ing behavior is considerably different from the scaling laws obtained in core-only
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quantum dots where the binding energy scaled as 𝐷−0.94
dot [10, 2]. We attribute this

difference in the scaling behavior to the presence of the core/shell heterojunction.

The scaling comparison for the core vs. core shell system was also evaluated for the

eh-recombination probability and average eh-separation distance and the results from

these calculations are presented in Figure 6-7 and Figure 6-8 respectively. In both

cases, the scaling of the CdSe/ZnS properties was found to be different as compared

to the core-only scaling. For 𝑃eh, the core/shell system was found to scale as 𝐷−3.73
dot

where the core-only system scaled as 𝐷−4.71
dot . The average electron hole separation 𝑟eh

scaled as 𝐷0.42
dot for the core/shell system as compared to the 𝐷0.81

dot scaling exhibited in

the core-only system. The significant deviation in the scaling behavior from the core-
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Figure 6-7: Dependence of recombination probability as a function of dot diameter
for quantum dots.

only QDs is consistent with experimental results reported earlier. García-Santamaría

et al. have found that core/shell quantum dots exhibit a breakdown in traditional
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volume scaling laws . They have shown that for a CdSe/CdS core/shell QD system

with large shell thickness, the scaling laws associated with Auger recombination differ

considerably from expected scaling [420].

6.3.5 Effect of core size

To investigate the effect of the core size in core/shell QDs, we have generated a second

set of CdSe/ZnS QDs with a smaller CdSe core of 2.8 nm diameter . To facilitate

direct comparison of excitonic properties between the two sets as a function of dot size,

the dot diameters were selected to be identical to the first set of CdSe/ZnS dots with

4.8 nm core. The probability of finding the electron in the shell region as a function

of dot size is shown in 6-9. It was found that the core size can strongly influence
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Figure 6-8: Average electron-hole separation as a function of dot diameter for quantum
dots.

the quasiparticle localization in the shell region. We find that reducing the size of
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the core by a factor of 1.7 increases the preferential localization of the electron in the

shell region by a factor of 11.3. In contrast, the hole was found to be preferentially

localized in the core with 𝑃 h
core equal to 0.87 and 0.98 for the 15 nm CdSe/ZnS dot

with 2.8 nm and 4.8 nm core-diameters, respectively. The results show that the hole

density in the core is not substantially modified by the presence of the shell. These

results are consistent with the experimental results on giant core/shell quantum dots,

where dots with small cores were found to enhance multiexciton generation [415].

The scaling of exciton binding energy , eh-recombination probability, and average

eh-distance as a function of dot diameter for different core sizes and core-only dots

are presented in Table 6.2. We find that both of the core/shell systems display similar

scaling behavior with respect to dot size. However, as discussed earlier, the excitonic

properties in core-only and core/shell dots exhibit different scaling behavior with

respect to dot size and we attribute the differences to the presence of heterojunction.

Table 6.2: Scaling equations for core/shell and core-only quantum dots.*

Log[Property] Log[𝐸BE/eV] Log[𝑃eh] Log[⟨𝑟eh⟩/nm]
Scaling constants m c m c m c

2.8 nm core-diameter −0.521 −0.147 −3.587 −14.875 0.487 −0.319
4.8 nm core-diameter −0.569 −0.225 −3.730 −15.044 0.422 −0.202

Core-only CdSe −0.938 −0.004 −4.712 −13.308 0.809 −0.476
* Note: Scaling relationships satisfy 𝐴 = 𝑚log[D/nm] + 𝑐, where A is the
property being investigated.

6.4 Conclusion

In conclusion, the effect of shell thickness on excitonic properties in CdSe/ZnS quan-

tum dots was investigated using the electron-hole explicitly correlated Hartree-Fock

method. We found that exciton binding energy and electron-hole recombination prob-

ability decrease by 46% and 98%, respectively with an increase in the shell thickness
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of 5 nm. However, the average electron-hole separation distance was found to increase

by 60% with increasing shell thickness. The electron-hole recombination probability

was found to decrease exponentially with respect to shell thickness. The scaling of the

three excitonic properties as a function of shell thickness illustrates the effectiveness

of introducing core/shell heterojunction for promoting exciton dissociation. Electron

and hole 1-particle densities were computed from the eh-XCHF wave function, and

it was found that as compared to the hole, the electron is preferentially localized in

the shell region by a factor of 3. Consequently, we expect that introduction of shell

should increase dot-to-ligand electron-transfer rates. The core-size of the CdSe/ZnS

quantum dot was found to dramatically alter the preferential localization of the elec-

tron in the shell region. We found that a decrease in CdSe core diameter by a factor

of 1.7 increased the probability of electron localization in the shell by a factor of 11.3.

Based on these results, we conclude that large CdSe/ZnS quantum dots with a small

CdSe core have the necessary characteristics for efficient exciton dissociation and gen-

eration of free charge carrier. This observation is consistent with experimental results

on other core/shell systems mentioned throughout the chapter.
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Chapter 7

Effect of Shape on CdSe Nanocrystals

using XCHF Method

The effect of shape on CdSe nanocrystals via isovolumetric transformation was inves-

tigated in close association with Jeremy Scher. I have contributed to this work by

the development of the method used to study the isovolumetric nanocrystals. Below,

a brief summary of the method and conclusions are presented on the findings of the

effect of shape on transformations of CdSe nanocrystals.

7.1 Brief introduction

In the current work, the challenge associated with isolating nanoparticle shape from

volume was addressed by generating a series of CdSe ellipsoids, each with identical

volume. By generating these nanocrystals with an isovolumetric condition, the effect

of particle shape on excitonic properties can truly be investigated. The isovolumetric

series was generated by varying three semi-axes of the ellipsoid, A, B and C while

keeping the product of the three constant. Generating the particles in this fashion

and computing excitonic properties for each of the respective ellipsoids will allow for

systematic evaluation of the optical properties of particles of different morphologies.
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Table 7.1: System parameters used to calculate properties of CdSe nanocrystals. [10]
Parameter Value

𝜖 6.2
𝑚e 0.13 𝑚0

𝑚h 0.38 𝑚0

In keeping with the isovolumetric conditions described above, 900 ellipsoids were

generated with identical volume. Excitonic properties were computed for each. The

system was studied using the explicitly correated Hartree-Fock method.

7.2 Theoretical approach to studying isovolumetric

nanocrystals

The CdSe nanocrystals in this study were modeled using the electron-hole explicitly

correlated Hartree Fock method. The complete details of this method are outlined in

chapter 2 and chapter 5.

The effective electron-hole Hamiltonian [144, 137, 206, 138, 136] was used,

𝐻̂ =
∑︁
𝑖𝑗

⟨𝑖|−ℎ̄
2

2𝑚e

+ 𝑣eext|𝑗⟩𝑒
†
𝑖𝑒𝑗 (7.1)

+
∑︁
𝑖𝑗

⟨𝑖|−ℎ̄
2

2𝑚h

+ 𝑣hext|𝑗⟩ℎ
†
𝑖ℎ𝑗 (7.2)

+
∑︁
𝑖𝑗𝑖′𝑗′

⟨𝑖𝑗𝑖′𝑗′|𝜖−1𝑟−1
eh |𝑖𝑗𝑖

′𝑗′⟩𝑒†𝑖𝑒𝑗ℎ
†
𝑖′ℎ𝑗′ (7.3)

+
∑︁
𝑖𝑗𝑘𝑙

𝑤ee
𝑖𝑗𝑘𝑙𝑒

†
𝑖𝑒

†
𝑗𝑒𝑙𝑒𝑘 +

∑︁
𝑖𝑗𝑘𝑙

𝑤hh
𝑖𝑗𝑘𝑙ℎ

†
𝑖ℎ

†
𝑗ℎ𝑙ℎ𝑘. (7.4)

The external potential used in this investigation is a parabolic potential for both

the electron and hole,
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𝑣𝛼ext =
1

2
𝑘𝛼|r𝛼|2 𝛼 = e, h. (7.5)

The force constants in the external potential used in the current work are impor-

tant for the accurate calculation of exciton binding energy in these nanocrystals. The

force constants are calculated such that the electron and hole are confined to within

the dot diameter,

min
𝑘𝑚𝑖𝑛
𝛼

=

⎛⎝𝑁𝛼 −
∫︁ 𝐷𝑑𝑜𝑡

2

0

𝑑𝑟𝑟2
∫︁
𝑑Ω𝜌𝛼(r)[𝑣𝛼𝑒𝑥𝑡]

⎞⎠2

, (7.6)

where 𝛼 = e, h, 𝑑Ω = sin 𝑑𝜃𝑑𝜙, 𝐷dot is the diameter of the corresponding spherical

quantum dot, and 𝑘𝛼 is the smallest force constant that satisfies the above minimiza-

tion conditions. An appropriate force constant for the spherical CdSe nanocrystal

was obtained using this approach, and then the force constants corresponding to all

other semi axis lengths were scaled accordin

A force constant that satisfied the above minimization conditions was found for

the CdSe spherical quantum dot. Once this parameter was found, the remaining

force constants for the ellipsoids were found by scaling the spherical force constant as

shown in the following expression,

𝑘𝛼𝑎 =
𝑘𝛼sphere𝑟

2
sphere

𝑎2
, (7.7)

where 𝑎 is the axis length, and 𝑟sphere is the radius of a spherical dot with a force

constant 𝑘𝛼sphere.

The ansatz of the eh-XCHF wave function is a product of electron and hole ref-
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erence wave functions and a correlation function. The electron and hole reference

wave functions are Slater determinants and the correlation function is a Gaussian

type geminal operator

Ψeh−XCHF = 𝐺̂ΦeΦh. (7.8)

The geminal operator 𝐺̂ depends explicitly on electron-hole interparticle distance,

as well as variational parameters 𝑏𝑘 and 𝛾𝑘 as described in the previous chapters.

The eh-XCHF wave function is obtained by variational minimization of the total

energy,

E = min
𝐺̂,Φe,Φh

⟨Ψeh−XCHF|𝐻̂|Ψeh−XCHF⟩
⟨Ψeh−XCHF|Ψeh−XCHF⟩

. (7.9)

Facilitation of the caculation of the minimum energy is achieved by congruent

transformation of the Hamiltonian,

𝐻̃ = 𝐺̂†𝐻̂𝐺̂ (7.10)

1̃ = 𝐺̂†1𝐺̂. (7.11)

E =
⟨ΦeΦh|𝐻̃|ΦeΦh⟩
⟨ΦeΦh|1̃|ΦeΦh⟩

. (7.12)

The three optical properties of interest in this study are the exciton binding energy,

the electron hole recombination probability, and the electron hole separation distance.
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Figure 7-1: Sample set of ellipsoidal CdSe nanocrystals. Each ellipsoid has the same
volume, but exhibits different optical properties. Image was made by Jeremy Scher.

A short summary of the results for exciton binding energy are presented below.

7.3 Results of the study and important conclusions

A sample grid of ellipsoids are given below. In order to investigate the effect of shape

of the CdSe nanocrystals, the ellipsoids were generated isovolumetrically, therefore,

all ellipsoids within the image are of the same volume.

For each of the 900 isovolumetric ellipsoids, the exciton binding energy was cal-

culated. It is clear from these results that the particle shape has a strong effect on

the binding energy. The largest binding energy was displayed by the spherical CdSe

nanoparticle, at 57.154 meV. It was found that the binding energy for the wire like

particle was much smaller than the spherical particle, with a magnitude of 1.279

meV. Local maxima and minima are readily apparently in Figure 7-2. The recombi-

nation probabilit and separation distance were also found to be strongly dependent

one nanocrystal shape .
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Figure 7-2: Contour plot of exciton binding energy vs. the A and B semi axes of a
CdSe ellipsoid. Image made by Jeremy Scher.

7.4 Conclusions

The explicitly correlated eh-XCHF method was used to study optical properties of

CdSe nanocrystal ellipsoids by performing isovolumetric transformations. It is im-

portant to keep in mind that this method is general, and can be used to study a large

variety of electron-hole systems. The exciton binding energy, electron-hole separation

distance, and electron-hole recombination probability of 900 isovolumetric CdSe ellip-

soids. All three properties were found to have a strong dependence on ellipsoid shape.

It was found that the exciton binding energy was maximized in the case of a sphere,

and minimized in a wire with largest aspect ratio, and the electron-hole separation

distance exhibits the opposite trend. The exciton binding energy was found to have

a linear dependence on the inverse of the electron-hole separation distance.
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Chapter 8

Optical signature of formation of

protein corona in the firefly

luciferase-CdSe quantum dot

complex

8.1 Introduction and motivation for studying pro-

tein corona formation

The work described in this chapter was done in collaboration with Shikha Nangia

and Flaviyan Irudayanathan. The optimization of protein structure and all molecular

mechanics calculations were performed by them. I have contributed to this project

by performing the quantum mechanical calculations of the QD-protein complex and

interpreted the data therein.

When quantum dots (QDs) are exposed to biological media, their surfaces adsorb

biomolecules , generally proteins, present in the system.[421] The formation of protein

corona on the surface of quantum dots directly influences their physical, chemical,
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and biochemical properties. In this work, we present theoretical investigation of the

interaction of a 5 nm CdSe (Cd1159Se1183) quantum dot with firefly luciferase enzyme

by analyzing the change in the optical property of the quantum dot due to corona

formation. The objective of this work is to correlate the spectral shift of the QD with

structure and stoichiometry of the protein corona.

Quantum dots are being used as nanoprobes for biological systems because of

their nanoscale dimensions and sensitivity of their optical properties to local chem-

ical environment. For example, CdSe quantum dots have been used for determi-

nation of local pH in cells,[422, 423, 424, 425, 426] and for detection of various

biomolecules such as DNA ,[427] and glucose[428]. They have also been used for

bioimaging [429] including in vivo imaging of tumor cells.[430] Quantum dots func-

tionalized with bioluminescent proteins such as luciferase have been used for mapping

of lymph nodes, [431] detection of nucleic acids, [432] in vivo imaging,[433, 434] photo-

dynamic therapy, [435] and investigation of bioluminescence resonance energy transfer

(BRET). [22, 393, 436, 437, 438] However, there is a growing body of evidence that

shows that it is the QD-protein complex and not the pristine quantum dot that is

important for biological activity.[439, 440, 441, 442, 443, 444]

The computational treatment of the QD-protein complex is challenging because

of the size of the system. This problem is further aggravated for calculation of optical

properties because it requires quantum mechanical description of both the ground

and excited electronic states . For small CdSe quantum dots with 1.3 nm diame-

ter, Anandampillai et al. [445] have investigated the effect of QD-DNA interactions

using density functional theory (DFT). Kim et al. have also studied the effect of

bioconjugation on a CdSe-Adenine complex utilizing DFT methodology. [355] Lig-

ated quantum dot systems have been studied extensively using DFT based approach

[325, 357, 68, 351, 326]. However, an all-electron DFT calculation is computationally

prohibitive for the present system. Our system consists of a 5 nm CdSe quantum dot
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(Cd1159Se1183) with 2342 heavy atoms. Each luciferase enzyme molecule contributes

8423 heavy atoms. The protein corona on the surface was found to consist of seven

enzyme molecules making the total number of heavy atoms in the QD-protein com-

plex equal to 61303. Additionally, the entire QD-protein complex was solvated with

explicit water molecules. The total size of the system presents an imposing challenge

for computational investigation. To surmount the computational bottleneck, a multi-

level approach has been developed by combining the strengths of quantum mechanics,

molecular mechanics, classical molecular dynamics, and Monte Carlo techniques. The

quantum dot was treated quantum mechanically, the protein was treated using molec-

ular mechanics, and the assembly of the protein corona was performed using combined

molecular dynamics/Monte Carlo procedure. The details of the individual steps of

the calculations are discussed below.

8.2 Theoretical details

QM/MM description of QD-protein complex : In the current QM/MM framework,

only the quantum dot was treated quantum mechanically, and the protein corona

surrounding the quantum dot was treated using molecular mechanics force field. The

separation between the QM and the MM region is illustrated in Figure 8-1. One of

the challenging aspects of any QM/MM calculation is the treatment of the QM/MM

boundary and this is a topic of ongoing research [446, 447]. For systems where the

QM and MM atoms are bonded chemically by covalent bonds, the QM/MM boundary

can be treated using either link-atom or frozen-orbital based approaches.[446, 447]

However, the interaction between the protein corona and the quantum dot is known

to be dominated by electrostatic interactions [448]. This non-bonding nature of the

QD-protein interaction allows for a much simpler treatment of the QM/MM boundary.

In the present work, the effect of protein environment was included by performing the

125



Figure 8-1: Separation of quantum mechanical and molecular mechanics region for
the CdSe QD (green) + firefly luciferase protein (ribbon representation) complex.

QM calculation in presence of the electrostatic field generated by the partial charges

on the proteins. The external potential in the QM calculation was modified as shown

in Equation 8.1

𝑣
QM/MM
ext (r) =

∑︁
𝑘∈protein

𝑞𝑘
|R𝑘 − r|

, (8.1)

where, all terms in the above expression are in atomic units, and the magnitude and

position of the partial charges on the protein are given by 𝑞𝑘 and R𝑘, respectively.

QM description of the quantum dot : The pseudopotential approach is a compu-

tationally efficient route for performing QM calculations on large quantum dots, and

we have used the empirical CdSe pseudopotential developed by Rabani et al. for this

work [363]. The surface of the quantum dot was passivated with hydrogen atoms,

and the interactions with the protein corona were included in the QM calculations
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by adding 1-body 𝑣QM/MM
ext term to the pseudopotential Hamiltonian. The resulting

eigenvalue equation is shown in Equation 8.2

[
−ℎ̄2

2𝑚
∇2 + 𝑣ps(r,R

dot) (8.2)

+ 𝑣
QM/MM
ext (r,Rprotein)]𝜑𝑖 = 𝜖𝑖𝜑𝑖.

The pseudopotential Hamiltonian was constructed using distributed Gaussian basis

functions and was diagonalized to obtain the quasiparticle spectrum . The eigenvalues

of the psedupotential matrix were used for determination of the quasiparticle energy

gap (𝐸qp). The quasiparticle energy gap and the optical energy gap are related to

each other via the exciton binding energy, and the relationship between these three

quantities is illustrated in Figure 8-2. The optical energy gap (𝐸opt) was obtained by

1st exciton level Quasiparticle
energy gap

Optical absorption (OA) gap

Exciton binding (EBE) gap

Conduction band

Valence band

Figure 8-2: The relationship between optical energy gap, quasiparticle gap , and
exciton binding energy.

first computing the exciton binding energy (𝐸eh
bind) of the system and then subtracting

the exction binding energy from the quasiparticle energy gap as shown in the following
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equation,

𝐸opt = 𝐸qp − 𝐸eh
bind. (8.3)

The exciton binding energy was computed using the electron-hole explicitly correlated

Hartree-Fock method (eh-XCHF), which uses the following ansatz for the electron-

hole wave function

Ψeh-XCHF = 𝐺Φe
0Φ

h
0. (8.4)

One of the key features of the eh-XCHF is that the presence of the explicitly corre-

lated function 𝐺 alleviates the need for a large CI expansion for treating electron-hole

correlation [141]. In earlier studies, [10] the eh-XCHF method has been used success-

fully for computation of exciton binding energies in CdSe quantum dots. The electron

and hole (1e-1h) basis states in the eh-XCHF wave function were obtained from the

HOMO and LUMO states of the eigenspectrum of the pseudopotential Hamiltonian.

The parameters used in the definition of the correlation function 𝐺 were obtained

from Ref. [449]. The construction of the pseudopotential Hamiltonian requires two

key pieces of information; the magnitude of the partial charges {𝑞𝑘} and their location

{R𝑘}. The determination of these two quantities are discussed below.

MM description of the protein: The protein molecules on the surface of the

CdSe quantum dot were treated classically using molecular mechanics force field

. As shown in Equation 8.1, the QM/MM interaction term is influenced by both

the partial charges and the structure of the protein molecules. We have used the

CHARMM36 force field for determination of the partial charges in the firefly luciferase

enzyme after assigning protonation states and explicit hydrogens using PROPKA

[450]. The CHARMM suite of force fields have been designed specifically for simu-

lating biomolecules and has been used extensively for simulating biomolecules. [451]
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The initial structure of the firefly luciferase enzyme was obtained from the protein

data bank (PDB:4G37) and was equilibrated at 300 K by performing molecular dy-

namics (MD) simulations. One of the key features of the equilibration process was

the use of explicit water molecules for representing the solvent environment within

the MD calculations. This is an important detail, because the solvated structure of

the protein is generally different from its in vacuo structure. By equilibrating the

protein in the presence of explicit water molecules allows us to incorporate the effect

of solvation and temperature in the QM/MM calculations. The equilibration runs

were performed for 10 ns using the NAMD molecular dynamics package [452]. The

equilibrated structure of the single protein molecule was used as the monomeric unit

for the construction of the protein corona.

Formation of luciferase corona: The two main challenges associated with pro-

tein corona formation are the QD-protein interaction and the MD simulation of the

self-assembly process. Earlier studies on protein corona formation have shown that

the electrostatic interaction is the dominant driving force for the corona formation

[453]. For the present calculations, defining the interaction between the quantum dot

and the protein is challenging because of the QM/MM separation. In principle, the

QM subsystem polarizes the MM subsystem and in-turn is also polarized by the MM

subsystem. Ideally, these interactions should be treated in the self-consistent proce-

dure, however, such an approach will make the calculation impractical because of the

large system size. To make the calculations feasible, we have removed the QM/MM

separation and treated the entire QD-protein system classically during the corona

formation. We have used the CdSe force field developed by Rabani [454] for assign-

ment of the partial charges for Cd and Se in the quantum dot . The self-assembly of

the protein corona was performed in the field of the partial charges on the quantum

dot. It is very important to note that the quantum dot was treated classically only

during formation of the protein corona and not during the optical gap calculations .
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The underlying assumption of this approach is that the set of partial charges from

the CdSe force field is a good approximation to the charge distribution obtained from

the QM treatment of the CdSe quantum dot.

All-atom MD simulation of the self-assembly of the protein corona is challenging

due to long timescales and is further exacerbated due to the presence of explicit

water molecules as solvent. To make these calculations tractable, we have used a

combined MD/Monte Carlo approach for this system. In the first step, the initial

structure for the Monte Carlo step was obtained by arranging the protein molecules

on the surface of the quantum dot. To minimize protein-protein steric interactions

in the initial configuration, we have used the best-packing-on-sphere method[455]

such that the center-of-mass between two protein molecules is maximized.[456] In the

second step, the position of Cd and Se atoms in the quantum dot were kept fixed

and the conformational degrees-of-freedom of the luciferase molecules were sampled

using Monte Carlo procedure to obtain the minimum energy structure. In the third

step, the minimized structure was solvated in explicit water, and the entire system

was thermally equilibrated using molecular dynamics simulation at 300 K. In the final

step, the optical gap of the QD-protein complex was calculated using Equation 8.2.

Results : To facilitate the discussion of the results and analysis of the simulations,

we represent the single luciferase bound complex as QD-Lu1. The procedure described

above was repeated starting with the QD-Lu1 complex to generate QD-Lu2. We found

that up to seven luciferase molecules were able to bind with the quantum dot and the

intermediate steps of the corona formation are illustrated in Figure 8-3. Addition of

more luciferase molecules on the QD-Lu7 complex were found to be unfavorable due

to steric crowding. The atomic position of the partial charges (denoted as Rprotein

in Equation 8.2) were used in the QM/MM calculations and the optical gap 𝐸opt for

each of the QD-Lu𝑛 (with 𝑛 = 1, . . . , 7) complexes were calculated.
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Figure 8-3: Progressive growth of CdSe-luciferase protein complex.

8.3 Results and conclusion

The change in the optical gap of the quantum dot due the presence of the protein is

denoted as ∆𝐸opt and is defined as by the following equation

∆𝐸opt = 𝐸opt(QD-Lu𝑛) − 𝐸opt(QD). (8.5)

The change in the optical gap for the series of quantum dot-protein complexes during

the formation of the protein corona is presented in Table 8.1. We find that in all

cases the optical gap in QD-Lu𝑛 complexes are red-shifted as compared to the bare

quantum dot. The magnitude of the shift was found to increase with the increasing

number of luciferase molecules. Although published experimental and computational

results on CdSe-luciferase is not available, similar trends for other systems have been

observed. For example, Anandampillai and coworkers have performed calculations on

small CdSe-DNA clusters [445]. Their results show that the 𝜆max was red-shifted by

12 and 19 nm for dot diameters of 1.1 and 1.3 nm, respectively. Additionally, Xiong

et al. have found that peptide conjugated CdTe quantum dots display a considerable

redshift as compared to the bare quantum dots. [457] In the work done by Paramanik

et al., a red-shift was reported for quantum dots surrounded by DNA. They concluded
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Figure 8-4: Shift in 𝜆max as a function of formation of protein corona around CdSe
quantum dot.

that the shift was mainly driven by strong electrostatic interaction between the QD

and DNA [458]. Based on the reported experimental results, the shift in 𝜆max calcu-

lated in the present work is consistent with experimental findings of QD-biomolecule

systems.

In conclusion, a multilevel strategy for calculating optical gap of large quantum

dot-protein complexes has been presented. This multilevel scheme includes techniques

from quantum mechanical pseudopotential calculations, electron-hole explicitly cor-

related wave function, classical molecular dynamics, and Monte Carlo method and is

specifically designed to address the challenges associated with treating large quantum

dot-protein complexes in aqueous medium. Although the method was applied to the

specific example of CdSe-luciferase complex, the computational strategy developed

here is general and can be applied to other QD-protein complexes.
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Table 8.1: Spectral shift associated with building protein corona around a 5nm CdSe
quantum dot.

QD-protein ∆𝐸opt(meV) ∆𝜆max (nm)
Bare QD 0 0
QD-Lu1 0.17 1
QD-Lu2 4.38 2
QD-Lu3 10.63 4
QD-Lu4 11.02 4
QD-Lu5 14.20 5
QD-Lu6 22.89 7
QD-Lu7 23.61 8
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Chapter 9

Utilization of XCHF Method for

Development of Adiabatic Connection

Curve for Application to

Electron-hole Multi-Component

Density Functional Theory

9.1 Introduction and motivation for development of

electron-hole adiabatic connection curve

Development of functionals within the constrains of density functional theory is often

a difficult and challenging process [459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469].

One of the theoretical routes that is used towards functional development is the adi-

abatic connection method [470, 471, 472, 473, 474, 475, 476, 477, 353, 478, 479].

This method provides the necessary direct link between non-interacting and interact-

ing physical systems [480]. For example, Teale and coworkers in 2009 have used an
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adiabatic connection curve (AC curve) method based on full configuraton interaction

densities for the construction of AC curves for the helium isoelectronic series as well as

the H2O molecule [480]. In 2010, Teale again used the adiabatic connection method

to construct curves for several systems including helium, hydrogen, and beryllium

using differing levels of electronic structure theory including HF, MP2, CCSD and

CCSDT(Q) [481]. Zhang et al. presented the adiabatic connection curve for both the

Hooke’s atom and Helium atom benchmark systems from accurate wave function cal-

culations [472]. Cohen et al. have also used an adiabatic connection method approach

to functional development and they find that functionals resulting from the adiabatic

connection method can improve upon currently widely used functionals, specifically

with respect to single electron systems [482, 483]. Peach et al. have studied the adia-

batic connection method for the 𝐻2 molecule and aso the helium isoelectronic series,

their work has shown that simple approximate forms of the adiabatic connection in-

tegrand can be generated and used. However, these simple forms and the parameters

therein must be strongly based on accurate data for them to be feasible [484, 485].

Though it is clear that this method has been used extensively in the development

of functionals for electronic structure methods, an adiabatic connection curve has

not been constructed for an electron-hole system. The electron-hole adiabatic con-

nection curve is central in the development of an accurate correlation functional for

multi-component electron-hole density functional theory (eh-DFT). The construction

of this curve is challenging because it requires density constrained minimization at

different values of coupling constants. In the present work, the density constraint was

implemented by defining an electron-hole Levy Lieb Lagrangian (eh-LLL). For a given

set of input densities the eh-LLL was constructed and expressed as a functional of the

coupling constant dependent external potential. Thus unconstrained minimization of

the eh-LLL was then performed by varying the eh-wave function, external potential

and Lagranges multipliers. Within this chapter, the electron-hole explicitly correlated
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Hartree-Fock method is used as as the ansatz for the trial wave function towards the

development of the exchange correlation functional for an electron-hole system using

the adiabatic connection method. The theory is described in section 9.2, and results

from this study are described in section 9.3. Though multi-component density func-

tional theory is not at all a new concept [486, 487, 488], this is the first time that the

adiabatic connection curve has been constructed for the electron-hole system.

9.2 Theoretical details

9.2.1 Electron-hole correlation functional

The central concept of the electron-hole density functional theory (eh-DFT) is that

the ground state energy of the eh-Hamiltonian is a functional of electron and hole

densities

𝐸[𝜌e, 𝜌h] = 𝐹 [𝜌e, 𝜌h] + ⟨𝑣exte 𝜌e⟩ + ⟨𝑣exth 𝜌h⟩. (9.1)

where the functional 𝐹 in Equation 9.1 is the exact electron-hole universal functional.

The relationship between the exact eh-functional and the eh-Hamiltonian can be

obtained by the Levy constrained search procedure as shown below

𝐹 [𝜌e, 𝜌h] = min
Ψ→𝜌e,𝜌h

⟨Ψ|𝑇e + 𝑉ee + 𝑇h + 𝑉hh + 𝑉eh|Ψ⟩ (9.2)

In addition to the eh-functional, we also define the corresponding single-component

electron and hole universal functionals 𝐹e and 𝐹h using the Levy procedure

𝐹e[𝜌e] = min
Ψ→𝜌e

⟨Ψ|𝑇e + 𝑉ee|Ψ⟩ (9.3)

𝐹h[𝜌h] = min
Ψ→𝜌h

⟨Ψ|𝑇h + 𝑉hh|Ψ⟩ (9.4)
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In addition to the single and multicomponent universal functionals, the classical

electron-hole Coulomb energy 𝐽eh is defined as

𝐽eh[𝜌e, 𝜌h] = ⟨𝜌e𝜌h𝑟−1
eh ⟩ (9.5)

Using quantities, we define the electron-hole correlation energy 𝐸ehc is the component

of the eh-functional can cannot be obtained by the summation of the single-component

functionals with the classical eh-Coulomb energy.

𝐹 [𝜌e, 𝜌h] = 𝐹e[𝜌e] + 𝐹h[𝜌h] + 𝐽eh[𝜌e, 𝜌h] + 𝐸ehc[𝜌e, 𝜌h]. (9.6)

The definition of the 𝐸ehc is very general and is independent of the specific form

of the eh-Hamiltonian . As long as the single-component external potentials are

expressed as a 1-body operators, the total energy can be written as a functional of the

single-particle densities. One of the key differences between 𝐸ehc and the exchange-

correlation 𝐸xc functional used in electronic structure theory is that 𝐸ehc is defined

using interacting single-component reference, as opposed to non-interacting reference

used in the definition of 𝐸xc. Specifically, in the limit of the zero eh-interaction, the

system still retains full ee- and hh- interactions,

lim
𝑉eh→0

𝐹 [𝜌e, 𝜌h] = 𝐹e[𝜌e] + 𝐹h[𝜌h] (9.7)

This difference is especially relevant for construction of the adiabatic connection curve

and is discussed next.
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9.2.2 Adiabatic connection

To construct the AC curve, we define the coupling parameter 𝜆 that scale the eh-

interaction in the Hamiltonian

𝐻𝜆 = 𝐻e +𝐻h + 𝜆𝑉eh = 𝐻0 + 𝜆𝑉eh. (9.8)

The energy functional associated with the coupling-constant dependent Hamiltonian

is

𝐹 𝜆[𝜌e, 𝜌h] = min
Ψ→𝜌e,𝜌h

⟨Ψ|𝐻𝜆|Ψ⟩ (9.9)

= ⟨Ψ𝜆,min
𝜌e,𝜌h

|𝐻𝜆|Ψ𝜆,min
𝜌e,𝜌h

⟩ (9.10)

𝐸ehc[𝜌e, 𝜌h] = 𝐹 𝜆[𝜌e, 𝜌h] − 𝐹 0[𝜌e, 𝜌h] − 𝐽eh[𝜌e, 𝜌h]. (9.11)

It is apparent that the form of our approximation to the functional takes the form

of an integral expression between the non-interacting and interacting limit and can

therefore be written as,

𝐸ehc[𝜌e, 𝜌h] =

∫︁ 1

0

𝑑𝜆
𝜕𝐹 𝜆[𝜌e, 𝜌h]

𝜕𝜆
− 𝐽eh[𝜌e, 𝜌h]. (9.12)

𝐸ehc[𝜌e, 𝜌h] =

∫︁ 1

0

𝑑𝜆⟨Ψ𝜆,min
𝜌e,𝜌h

|𝑉eh|Ψ𝜆,min
𝜌e,𝜌h

⟩ − 𝐽eh[𝜌e, 𝜌h] (9.13)

Simplification of this expression allows for the definition of the 𝑈xc term. The

138



definition of 𝑈xc is very common among electronic structure adiabatic connection

methods and has been used extensively for development of these adiabatic connection

curves, however, this quantity has yet to be computed for an electron-hole system.

𝑈𝜆
xc[𝜌e, 𝜌h] = ⟨Ψ𝜆,min

𝜌e,𝜌h
|𝑉eh|Ψ𝜆,min

𝜌e,𝜌h
⟩ − 𝐽eh[𝜌e, 𝜌h] (9.14)

The electron-hole correlation functional can be defined in terms of 𝑈xc as follows,

𝐸ehc[𝜌e, 𝜌h] =

∫︁ 1

0

𝑑𝜆𝑈𝜆
xc[𝜌e, 𝜌h]. (9.15)

And therefore, the key to constructing the adiabatic connection curve lies in the

accurate computation of the 𝑈xc quantity at various values of the 𝜆 coupling parameter

between 0 and 1.

9.2.3 Density-constrained minimization

There are several associated challenges that are faced when constructing the adiabatic

connection curve . The first of these challenges results from the density constrained

minimization of the 𝜆 dependent wave function as it must be done for each value of the

coupling parameter. The second challenge faced is the accurate and computationally

efficient description of the wave function at small electron-hole interparticle distance.

These challenges are addressed through the use of a method that has the capability

to both ease the computation of a constrained search minimization and also provide an

accurate and computationally efficient description of the wave function. The solution

that is presented here is to construct the electron-hole Levy-Lieb Lagrangian as shown

in Equation 9.16. Using this form of the electron-hole Levy-Lieb Lagrangian allows for

the unconstrained minimization of the electron-hole wave function thus alleviating the
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constrained minimization problem. However, within the Lagrangian definition there

are associated electron and hole density constraints (𝜂e, 𝜂h) respectively, that ensure

that the target density is achieved.

ℒ[𝜌e, 𝜌h,ΨT,𝑊
𝜆
e ,𝑊

𝜆
h ] =

⟨ΨT|𝐻𝜆 +𝑊 𝜆
e +𝑊 𝜆

h |ΨT⟩
⟨ΨT|ΨT⟩

+

𝜂e⟨(𝜌Te − 𝜌e)
2⟩ + 𝜂h⟨(𝜌Th − 𝜌h)2⟩

(9.16)

where, the trial densities were obtained from the trial wave functions

𝜌Te (re) =
𝑁e

⟨ΨT|ΨT⟩

∫︁
𝑑𝑠e1𝑑x

e
2𝑑x

h
1 . . . 𝑑x

e
𝑁e
𝑑xh

𝑁e
|ΨT|2 (9.17)

min
ΨT,𝑊𝜆

e ,𝑊𝜆
h ,𝜂e,𝜂h

ℒ[𝜌e, 𝜌h,ΨT,𝑊
𝜆
e ,𝑊

𝜆
h ] =⇒ Ψ𝜆,min

𝜌e,𝜌h
(9.18)

9.2.4 Form of the trial eh-wave function

Within the above expression for the eh-LLL, the choice of wave function for ΨT is the

explicitly correlated Hartree-Fock (XCHF) ansatz . The form of the XCHF ansatz is

given as follows,

ΨXCHF(re, rh) = 𝐺Φ0
eh. (9.19)

Where the wave function is composed of a correlation function, 𝐺, and a reference

electron-hole wave function. Here, the reference wave function is a single Slater

determinant for the electrons and for the holes,
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Φ0
𝑒ℎ = ΦeΦh. (9.20)

One of the inherent advantages of the using the XCHF wave function to construct

the adiabatic curve is that it alleviates the need for large CI calculation. This has

been shown in benchmark calculations of the ground state energy of the Helium atom

[141]. The advantage is a result of the inherent compact representation of the infinite

order configuration interaction expansion, as shown below,

𝐺|Ψref⟩ =
∞∑︁
𝑖𝑖′

|Φe
𝑖Φ

h
𝑖′⟩⟨Φe

𝑖Φ
h
𝑖′|⏟  ⏞  

1

𝐺|Ψref⟩. (9.21)

9.2.5 Steps towards the construction of the adiabatic connec-

tion curve

The explicitly correlated Hartree-Fock wave function was used for the construction

of the electron-hole adiabatic connection curve. The steps for the construction of the

curve are summarized below.

As the first step, a fully interacting (𝜆 = 1) calculation was performed using the

XCHF method to obtain the target electron and hole densities. Upon obtaining the

target densities we are able to define the electron-hole Levy Lieb Lagrangian as shown

in Equation 9.16.

min
𝑣ext,𝐺,𝜂e,𝜂h

ℒ[𝜆, 𝜌e, 𝜌h] → ⟨Ψ𝜆,min
𝜌e,𝜌h

|𝑉eh|Ψ𝜆,min
𝜌e,𝜌h

⟩ 𝑣𝜆ext ∈ {𝑍𝜆𝑟−1} (9.22)

The minimization is performed by varying the electron-hole wave function, Lagrange’s

multipliers and external potential. The unconstrained minimization of the eh-LLL is
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performed for 0 ≤ 𝜆 < 1 and therefore at each value of the 𝜆 parameter, a density

constrained wave function is found. Utilizing the density constrained wave functions,

𝑈xc as shown in Equation 9.14 is computed for each value of 𝜆 and thus the adiabatic

curve is constructed.

9.3 Results from the development of the electron-

hole adiabatic connection curve

Within this work, the adiabatic connection curve has been constructed for the electron-

hole system using the electron-hole explicitly correlated Hartree-Fock based adiabatic

connection method. As an important benchmark, the adiabatic connection curves

were constructed for the Hooke’s atom system and for the Helium atom. The results

are described within the following subsections.

As a verification of the ability of the XCHF explicitly correlated wave function

to be used for construction of the adiabatic connection curve a benchmark curve was

constructed for the Hooke’s atom system. The adiabatic curve for the Hooke’s atom

system is well known [8]. It has been cosnstructed here for a confining potential of

𝜔 = 0.5 and for 𝜆 = 0 − 1, at this value of the confining 𝜔, the result for Hooke’s

atom is analytical and is often used to benchmark theoretical methods. The results

of the computation of this curve are shown in Figure 9-1. It is apparent from these

results that the adiabatic curve for Hooke’s atom is very linear in its construction.

The curve given here compares well to results shown for the Hooke’s atom curve

by Magyar and coworkers which was computed using a simulated scaling adiabatic

connection method [8].

In addition to the Hooke’s atom, the adiabatic connection curve was also computed

for the Helium atom so as to compare to a realistic two-electron system. Results were

compared to the Helium curve computed by Teale and coworkers [480] and were
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Figure 9-1: The adiabatic connection curve for Hooke’s atom using the explicitly
correlated Hartree-Fock method. This benchmark curve compares well with previous
results for the Hooke’s atom adiabatic curve from Magyar and coworkers [8].
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Table 9.1: Property of helium adiabatic connection curve
𝜆 Total energy 𝑇𝜆 𝑉𝑒𝑥𝑡 𝑉𝑒𝑒 𝑈𝑥𝑐(𝜆)
0.0 -3.097599974 3.054810884 -6.991375975 1.095 -1.095
0.1 -3.113943181 3.041449133 -6.975423182 1.07949806 -1.11050194
0.2 -3.061846739 3.042661202 -6.971891201 1.060127436 -1.129872564
0.3 -2.983301962 3.027964203 -6.951971439 1.050092815 -1.139907185
0.4 -3.015321113 3.071601549 -6.988453512 1.030847761 -1.159152239
0.5 -3.011422847 3.07225962 -6.977377765 1.019879041 -1.170120959
0.6 -3.012898165 3.071787185 -6.97171452 1.013600981 -1.176399019
0.7 -2.923734131 3.072928564 -6.966728588 1.007614581 -1.182385419
0.8 -2.928809236 3.09828147 -6.982549247 0.998811797 -1.191188203
0.9 -2.822120327 3.099929102 -6.97461846 0.990505938 -1.199494062
1.0 -2.882953965 3.106810668 -6.976945829 0.987181196 -1.202818804

found to be in good agreement. This provides a very important verification of the

capability of the XCHF method to compute the adiabatic curve. Numerical results

for the energetic components are given in Table 9.1.

Upon the successful benchmarking of the Hooke’s atom curve, the electron-hole

adiabatic connection curve was computed for the first time for the electron hole pair

in a parabolic potential. The confining 𝜔 = 0.5. The electron-hole pair in a parabolic

potential is often used as a benchmark system and is the multi-component analogue of

a Hooke’s atom system. The adiabatic connection curve for the electron-hole system

is shown in 9-2. The curve has been fit using a linear least squares method and the

fitting function is given as 𝑦 = −0.158𝑥.

As this is the first time that the adiabatic connection curve has been constructed

there are no existing benchmark results to compare the curve to. However, the inte-

gration of the curve should be equivalent to the ground state energy of the electron-

hole pair in a parabolic potential if the curve has been constructed correctly. The

curve was integrated and thus compared to the ground state energy given by the fully

interacting (𝜆 = 1) XCHF calculation. The energy from integration of the adiabatic

connection curve is given as 0.8484 Hartree and the energy from the ground state cal-

culation using the XCHF method is 0.8402 Hartree. The energies differ by 8.4× 10−2
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Figure 9-2: The adiabatic connection curve for an electron-hole pair in a parabolic
potential, with confining 𝜔 = 0.5. The curve was computed with the eh-XCHF
method and is shown with a linear least squares fit. The fit equation is 𝑦 = −0.158𝑥.
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Figure 9-3: The adiabatic connection curve for an electron-hole pair in a parabolic
potential, with confining 𝜔 = 0.05. The weaker confining limit is shown here for
confirmation of the use of the eh-XCHF method to construct the curve.

Hartree.

In addition to the computation of the curve for 𝜔 = 0.5, it has also been computed

for 𝜔 = 0.05, the weaker confining limit. These results are shown in 9-3. It it

interesting to note that the adiabatic curve for the electron-hole system is less linear

in the weaker confining limit.
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Chapter 10

Conclusions of the present work and

future application

In conclusion, throughout the work presented here, the efficiency, importance and

application of explicitly correlated wave function based methods have been demon-

strated. The method developed within this work, electron-hole explicitly corre-

lated Hartree-Fock, is a general and versatile technique for solving the electron-hole

Schrodinger equation. The method has been applied to study a variety of chemical

systems which include the Helium atom, CdSe quantum dots, CdSe/ZnS quantum

dots and a quantum dot-protein bioconjugate system. In addition to these systems, it

has been used towards the development of an electron-hole correlation functional for

use within electron-hole multi-component density functional theory. The accuracy of

the eh-XCHF wave function has been demonstrated through calculation of the ground

state energy and recombination probability of a parabolic quantum dot system. In

addition to the parabolic quantum dot, the congruent transformation of the Hamilto-

nian using the XCHF method has been benchmarked with respect to computing the

ground state energy of the Helium atom. These calculations highlight the importance

of the accuracy of the wave function at small inter-particle distances and thus the
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ability of the XCHF method to be able to successfully address the problem.

Upon successful benchmarking of the method, XCHF was applied to study the

effect of several influential factors on the excitonic properties of quantum dot sys-

tems. The properties studied in this work were exciton binding energy, electron-hole

recombination probability and average electron hole separation distance. Each of

these properties act as an efficient metric for the study of electron-hole interaction in

quantum dots. In the initial study on CdSe quantum dots, using the XCHF method,

the exciton binding energy and electron-hole recombination probability were found to

be strongly affected by the particle size. The XCHF method compared very well to

both experimental and theoretical results for exciton binding energy in quantum dots

up to and including 20 nm in diameter. This provided important verification of the

XCHF method to treat large quantum dot systems as current theoretical methods

meet their limit at small particle size. It is essential to have a method that is both

computationally efficient and flexible in treating QDs and other nanoparticles. This

has been further shown with respect to the XCHF method with pseudopotential, de-

scribed at the end of Chapter 5. In that implementation, XCHF was able to treat

systems of up to 2075 atoms in its current form and will be able to treat even larger

systems in future work. The excitonic properties in question have also been found to

be strongly effected by heterojunction, shape and the formation of protein corona on

the surface of a quantum dot within this work.

Theoretical methods are often used as predictive tools for the development of

new materials. As in any new technology, there are limitations associated with using

the XCHF method for these predictive purposes, but it is evident from this work

that XCHF has the capability and generality to be applied to assist in new material

development.
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