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This tutorial describes simulated annealing, an optimization method based on the 
principles of statistical mechanics. Simulated annealing finds near-optimal solu­
tions to optimization problems that cannot be solved exactly because they are NP­
complete. The method is illustrated by a Pascal algorithm for the traveling sales­
person problem. The performance of the algorithm was measured on a Computing 
Surface. 

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Probabilis­
tic algorithms (Monte Carlo) 
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INTRODUCTION 

This tutorial describes simulated annealing, an optimization method based on the 
principles of statistical mechanics. The method imitates the process by which melted 
metal forms an atomic lattice with minimal energy when it is cooled slowly. Simulated 
annealing finds near-optimal solutions to optimization problems, which cannot be 
solved exactly in reasonable amounts of computing time. 

Simulated annealing was introduced by Kirkpatrick et al. [1983]. The method has 
been applied to a large number of optimization problems in science and engineering 
[Aarts and Korst 1989]. 

The traveling salesperson problem is probably the most famous combinatorial 
optimization problem: A salesperson must visit each of n cities once and return to 
the initial city. The aim is to find the shortest possible tour [Lawler et al. 1985]. 

The traveling salesperson and many other optimization problems belong to the 
class of NP-complete problems for which no efficient algorithms are believed to exist 
[Garey and Johnson 1979]. For these intractable problems we must be satisfied with 
approximation algorithms that find near-optimal solutions. 

We will explain simulated annealing by developing a Pascal algorithm for the 
traveling salesperson problem. In a few minutes this algorithm finds a near-optimal 
tour of 100 cities by· sampling fewer than one million of the 5 x 10150 possible tours! 

1. NAIVETE 

For the traveling salesperson, the most obvious idea is to examine all the (n- 1)!/2 
possible tours. Suppose this computation takes n! p,s. In that case, we can find a 
minimum tour of 15 cities in about two weeks. However, a 24-city problem would 
require 20 billion years, which is about four times the age of Earth [Sagan 1980]. So 
exhaustive search is out of the question except for very small problems. 

Since it is impractical to consider all possible tours of n cities, we will examine 
only a random sample of tours. The idea is to make random changes of an initial 
tour in the hope of finding shorter and shorter tours. This statistical approach is an 
example of the Monte Carlo method of computing. 

Consider first a greedy search, which always makes the choice that looks best at 
the moment. The initial tour is a randomly chosen sequence of then cities. We now 
randomly select two cities and exchange them in the tour. The new tour is accepted 
if it is shorter than the previous one. The random exchange of cities continues until 
the tour no longer decreases. 

Unfortunately, there is no guarantee that this algorithm will even come close to 
finding an optimum solution. In most cases, it will be trapped in a local minimum in 
the huge solution space. 

2. ANNEALING 

Annealing is the process of heating a metal until it melts and then lowering the 
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temperature slowly to allow the atoms sufficient time to form a uniform lattice with 
minimal energy. If the metal is cooled too quickly, the atoms form a slightly irregular 
lattice with higher energy due to internal stress. 

Annealing can be viewed as a stochastic process which finds an arrangement of 
atoms that minimizes their energy. At high temperatures the atoms move freely 
and will often move to positions that temporarily increase the total energy. As the 
temperature is lowered, the atoms gradually move toward a regular lattice and will 
only occasionally increase their energy. 

The occasional increase of energy plays a crucial role in annealing. These uphill 
changes enable the atoms to escape from local minima by increasing their energy 
temporarily. At high temperatures such jumps occur with high probability. At low 
temperatures they seldom occur. 

The temperature must be lowered slowly to maintain thermal equilibrium. 'When 
the atoms are in equilibrium at temperature T, the probability that their total energy 
is E is proportional to e-E/kT, where k is Bolzmann's constant [Feynman et al. 1989]. 
Consequently, the probability that the energy is E + dE can be expressed as follows: 

Prob(E +dE)= Prob(E) e-dE/kT 

In other words, the probability that the energy changes from E toE+ dE is e-dE/kT. 

As the temperature decreases, so does the probability of energy increases. 
Simulated annealing is a computational method that imitates nature's way of 

finding a system configuration with minimum energy. We will discuss this method in 
the context of the traveling salesperson problem. To emphasize the analogy between 
real and simulated annealing, we will use the terminology of statistical mechanics: 
Each tour is a possible configuration of the cities. The tour length represents the 
energy of the configuration. A variable T plays the role of temperature. Since T is a 
fictional entity, we replace Bolzmann's constant k by 1. 

The aim is to lower the temperature slowly while changing the configuration until 
we reach near-minimal energy. 

3. CONFIGURATIONS 

In a plane a city is defined by two real coordinates: 

type city= 
record x, y: real end 

Algorithm 1 defines the Euclidean distance between two cities p and q. 
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function distance(p, q: city) 
: real; 

var dx, dy: real; 
begin 

dx := q.x - p.x; 
dy := q.y - p.y; 
distance:= 

sqrt( dx*dx + dy*dy) 
end 

Algorithm 1 

A tour of n cities is defined by an array of cities: 

type tour= 
array [l..n] of city 

4 

The salesperson visits the cities in numerical order 1, 2, ... , n before returning to 
city number 1. 

The length of a tour is the sum of the distances between successive cities (Algo­
rithm 2). 

4. COOLING 

function length( var a: tour) 
: real; 

var i: integer; sum: real; 
begin 

sum:= distance(a[n], a[l]); 
for i := 1 to n - 1 do 

sum:= sum+ 
distance( a[i], a[i + 1]); 

length:= sum 
end 

Algorithm 2 

Simulated annealing begins at a high temperature Tmax, which is lowered in a fixed 
number of steps. At each step we keep the temperature T constant while searching for 
a shorter tour. The temperature is then reduced by a factor alpha, which is slightly 
less than 1 (Algorithm 3). 
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procedure anneal(var a: tour; 
Tmax, alpha: real; steps, 
attempts, changes: integer); 

var T: real; k: integer; 
begin 

T:= Tmax; 
fork := 1 to steps do 
begin 

search( a, T, attempts, 
changes); 

T := alpha*T 
end 

end 

Algorithm 3 

The parameters of the search procedure will be explained below. 

5. SEARCHING 

5 

In order to reach near-equilibrium at a given temperature T, we must examine many 
possible tours before lowering the temperature further. Algorithm 4 defines the Monte 
Carlo search for a shorter tour at temperature T. 

The search procedure randomly selects two cities ai and ai and considers the 
possibility of exchanging them: 

select(a, i, j, dE) 

The select procedure also computes the resulting energy change dE. 
The function value 

accept( dE, T) 

defines whether or not the energy change dE will be accepted at temperature T. 
If the energy change is accepted, the tour is changed by exchanging cities ai and 

change( a, i, j) 

The search continues until a fixed number of changes have been accepted. At high 
temperatures most changes are accepted, and the tour looks quite random. At low 
temperatures most random changes are likely to be rejected since they increase a tour 
that is already fairly short. To limit the search for shorter tours at low temperatures, 
the search algorithm also limits the total number of attempts. 
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procedure search(var a: tour; 
T: real; attempts, changes: 
integer); 

var i, j, na, nc: integer; 
dE: real; 

begin 
na := 0; nc := 0; 
while (na <attempts) 

and (nc < changes) do 
begin 

select( a, i, j, dE); 
if accept( dE, T) then 
begin 

change( a, i, j); 
nc := nc + 1 

end; 
na := na + 1 

end 
end 

Algorithm 4 

6. REARRANGEMENT 

6 

Preliminary experiments showed that random city exchanges produced longer tours 
than the random path reversals suggested by Lin [1965]. Our final algorithm uses a 
variant of Lin's idea. 

In a tour 

we randomly pick two cities ai and ai. The successors of these cities are denoted a,i 
and a,j, respectively: 

A new tour is generated by reversing the order of the cities from a,i to ai: 

The select procedure generates two random city indices i and j and computes the 
energy change dE that will be caused by reversing the path from city number si to 
city number j (Algorithm 5). 
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procedure select(var a: tour; 
var si, j: integer; var dE: 
real); 

var i, sj: integer; 
begin 

generate(i, j); 
si := i mod n + 1; 
sj := j mod n + 1; 
if i <> j then 

dE := distance(a[i], aU]) 
+ distance(a[si], a[sj]) 
- distance( a[i], a[ si]) 
- distance(aU], a[sj]) 

else dE := 0.0 
end 

Algorithm 5 
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The energy change is computed in constant time using the coordinates of the two 
cities and their successors. There is no need to compute the total length of any tour 
(except the final one). 

The change procedure defines a path reversal of cities number i through j (Algo­
rithm 6). The number of cities on the path is denoted nii· The path is reversed by 
swapping pairs of cities, starting at both ends of the path and working toward the 
middle. If nij is odd, the middle city is left alone. 

procedure change(var a: tour; 
i, j: integer); 

var k, nij: integer; 
begin 

nij := (j - i + n) mod n + 1; 
for k := 1 to nij div 2 do 

swap(a[(i + k - 2) mod n + 1], 
a[(j - k + n) mod n + I]) 

end 

Algorithm 6 

Algorithm 7.1 defines the criterion for accepting an energy change dE at temper­
ature T. A tour of shorter (or unchanged) length is always accepted. A longer tour 
is accepted with probability e-dE/T. The latter possibility is simulated by comparing 
the probability with a random number between 0 and 1. 
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function accept( dE, T: real) 
: Boolean; 

begin 
if dE > 0.0 then 

accept := exp( -dE/T) > random 
else accept := true 

end 

Algorithm 7.1 
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Moscato and Fontanari [1989] found a simpler deterministic criterion that works 
just as well (Algorithm 7.2). This is the criterion used in our experiments. 

7. PARAMETERS 

function accept( dE, T: real) 
: Boolean; 

begin accept := dE < T end 

Algorithm 7.2 

The choice of annealing parameters requires educated guessing and experimentation. 
Consider a volume uniformly filled with atoms of the same type and imagine that 

the volume is divided into subvolumes. When the atoms form a lattice during anneal­
ing, the same stochastic process takes place in every subvolume. From a macroscopic 
point of view, it is as if every subvolume goes through the same average sequence of 
energy changes. 

For simulated annealing, this intuitive argument suggests that the total number 
of attempted and accepted energy changes should be proportional to the number of 
cities, that is, O(n). 

The initial temperature T max must be high enough to ensure that most energy 
changes are accepted. However, once the initial tour is random, it is a waste of 
computer time to attempt to make it "more random." So Tmax should not be too 
high. 

vVe will assume that the cities are placed on a square area. \Vhen you compare 
different tours, it is obviously the relative distances between cities that matter. \Ve 
can therefore select a square of any dimension without changing the computation. 
We will use a square of n units. This choice makes the average density of cities 
independent of the problem size n. 

On a square of area n, the distance between two successive cities cannot exceed 
the length of the diagonal, which is 0 (yin). A path reversal changes two distances in 
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the tour. Assuming that the initial tour is random, the average energy change caused 
by an initial path reversal is 

We will use an initial temperature of the same order of magnitude to make sure 
that most initial changes will be accepted: 

The final temperature Tmin must be so low that most energy increases will be 
rejected when we have found a near-optimal tour. Beyond that point, nothing is 
gained by considering further changes. So Tmin should not be too low. 

If n cities are uniformly distributed on a square of area n, the average distances 
from each city to its nearest neighbors are 0(1). This is easy to see if you subdivide 
the square into n subsquares of area 1 and place a city on each subsquare. 

When we are close to an optimal solution, the smallest possible energy increase is 
comparable to the distance between neighboring cities: 

dEmin = 0(1) 

Most energy increases will be rejected if the final temperature is of the same order 
of magnitude: 

Tmin = 0(1) 

At this point the algorithm soon gets trapped in a local (near-optimal) minimum. 
After the last search the final temperature is 

Tmin = Tmax a/phasteps-1 

The termination condition Tmin = 0(1) is satisfied when 

(1/alpha)steps-1 = O(Tmax) 

By taking the logarithm on both sides we find 

steps - O(log(Tmax)) 
0 (log ( y'n)) 
O(logn) 

These considerations and the folklore of simulated annealing led to the following 
cooling schedule: 

Tmax - sqrt(n) 
alpha - 0.95 
steps 20 ln(n) 
attempts - 100 n 
changes 10 n 
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The procedure call 

anneal(a, sqrt(n), 0.95, 
trunc(20*ln(n)), 100*n, 10*n) 

replaces an initial tour a by a near-optimum tour (see Algorithm 3). 

8. COMPLEXITY 

10 

Simulated annealing goes through O(log n) temperature steps. For each temperature 
the search examines 0( n) attempted and accepted changes. The computation rejects 
a change of the current tour in 0(1) time. H a change is accepted, the average path 
reversal involves 0( n) city exchanges. Consequently, the run time Tn of simulated 
annealing has the complexity 

Tn = O((n2 + n) log n)) 

Since most steps take place at low temperatures, where most changes are rejected, 
the 0( n log n) term is not negligible compared to the 0( n 2 log n) term. 

9. EXPERIMENTS 

We reprogrammed simulated annealing in occam and tested it on a Computing Surface 
with T800 transputers using the random number generator of Park and Miller [1988]. 

The first test case was a square grid of n cities separated by horizontal and vertical 
distances of length 1 (Fig. 1). 

Fig. 1 A city grid 

A tour of the cities consists of n distances, each of which is at least of length 1. So 
every tour is at least of length n. If n is the square of an even number, an optimal tour 
of length n exists (see Fig. 1). This test case, which has a known optimal solution, 
gives an idea of the accuracy of simulated annealing. 

Since the algorithm is probabilistic in nature, we tried each experiment ten times 
with different initial values of the random number generator. The trials were per­
formed in parallel on a Computing Surface with ten transputers [Brinch Hansen 1992]. 

Table I shows measured (and estimated) run times Tn (in minutes) for grids of 
100 to 2500 cities. It also shows the shortest, average, and longest tours obtained 
from ten trials. The shortest tours are 0 to 4 percent longer than the optimal tours. 
The longest tours are 1 percent longer than the shortest ones. 
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Table I. City Grid 
n Tn m Emin Eaver Emax 

100 2 (2) 100 101 101 
400 14 (14) 406 407 410 
900 50 (48) 921 924 927 

1600 130 (129) 1651 1657 1665 
2500 280 (290) 2602 2611 2619 

The second test case was a random distribution of n cities on a square area of n 
units. 

Table II. Random Cities 
n Tn m Emin Eaver Emax 
100 2 (2) 76 78 80 
400 14 (14) 307 310 314 
900 50 (48) 717 723 728 

1600 129 (129) 1276 1288 1297 
2500 280 (290) 2009 2022 2037 

The empirical formula 

Tn = (0.26n + 240)nln(n) ms 

defines the estimated run times shown in parentheses in Tables I and II. 

10. SUMMARY 

Simulated annealing is an effective method for finding near-optimal solutions to opti­
mization problems that cannot be solved exactly. When the method is applied to the 
NP-complete problem of the traveling salesperson, it finds short tours of hundreds of 
cities in 2-50 minutes. 

Simulated annealing exploits an interesting analogy between combinatorial opti­
mization and the statistical behavior of a physical system that slowly moves toward 
a state of minimal energy. It is yet another example of a fundamental computation 
with a subtle theory and a simple algorithm. 
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