
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

6-1992

Designing Efficient Maximum-Likelihood Soft-Decision Decoding Designing Efficient Maximum-Likelihood Soft-Decision Decoding

Algorithms for Linear Block Codes Using Algorithm A* Algorithms for Linear Block Codes Using Algorithm A*

Yunghsiang S. Han
Syracuse University

Carlos R.P. Hartmann
Syracuse University, chartman@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Han, Yunghsiang S. and Hartmann, Carlos R.P., "Designing Efficient Maximum-Likelihood Soft-Decision
Decoding Algorithms for Linear Block Codes Using Algorithm A*" (1992). Electrical Engineering and
Computer Science - Technical Reports. 172.
https://surface.syr.edu/eecs_techreports/172

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/172?utm_source=surface.syr.edu%2Feecs_techreports%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-92-10

Designing Efficient Max/mum-Likelihood
Soft-Decision Decoding Algorithms for
Linear Block Codes Using Algorithm A •

Yunghsiang S. Han and Carlos R.P. Hartmann

June 1992

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

Designing Efficient Maximum-Likelihood

Soft-Decision Decoding Algorithms for Linear

Block Codes Using Algorithm A*

Yunghsiang S. Han1

Carlos R. P. Hartmann2

1Y. S. Han is with the School of Computer and Information Science at Syracuse University, Syracuse,

NY 13244-4100 (e-mail: yshan@top.cis.syr.edu).

2C. R. P. Hartmann is with the School of Computer and Information Science at Syracuse University,

Syracuse, NY 13244-4100 (e-mail: hartmann@top.cis.syr.edu).

This work used the computational facilities of the Northeast Parallel Architectures Center (NPAC) at Syra

cuse University.

Abstract

In this report we present a class of efficient maximum-likelihood soft-decision decoding

algorithms for linear block codes. The approach used here is to convert the decoding prob

lem into a search problem through a graph which is a trellis for an equivalent code of the

transmitted code. Algorithm A*, which uses a priority-first search strategy, is employed to

search through this graph. This search is guided by an evaluation function f defined to take

advantage of the information provided by the received vector and the inherent properties of

the transmitted code. This function f is used to drastically reduce the search space and to

make the decoding efforts of this decoding algorithm adaptable to the noise level. For ex

ample, simulation results for the (128,64) binary extended BCH code indicate that for most

real channels the proposed decoding algorithm is at least fifteen orders of magnitude more

efficient in time and in space than that proposed by Wolf. Simulation results for the (104,

52) binary extended quadratic residue code are also given. These simulation results indicate

that the use of Algorithm A* for decoding has resulted not only in an efficient soft-decision

decoding algorithm for hitherto intractable linear block codes, but an algorithm which is in

fact optimal as well.

1 Introduction

Block codes and convolutional codes are two well-known error-control techniques for reliable

transmission of digital information over noisy communication channels. Linear block codes

with coding gains far superior to those of convolutional codes have been known for many

years. However, these block codes have not been used in practice for lack of an efficient

soft-decision decoding algorithm.

This report deals with the maximum-likelihood soft-decision decoding of linear block codes.

By maximum-likelihood decoding, we mean a decoding algorithm which minimizes the prob

ability of decoding to an incorrect codeword when all codewords have equal probability

of being transmitted. By soft-decision we mean that the decoding algorithm can use real

numbers (e.g., the analog output of filters matched to the signals) associated with every

component of the codeword in the decoding procedure. Soft-decision decoding can provide

about 2 dB of additional coding gain when compared to hard-decision decoding.

Our approach to the maximum-likelihood soft-decision decoding of linear block codes

is to convert this problem into a search problem through a graph which is a trellis for a

code equivalent to the transmitted code. In [12] a novel maximum-likelihood soft-decision

decoding algorithm that is applicable to any linear block code, and uses Algorithm A* to

search through this graph, is proposed. Algorithm A*, which uses a priority-first search

strategy, is widely used in Artificial Intelligence search problems [20]. This search is guided

by an evaluation function f defined to take advantage of the information provided by the

received vector and the inherent properties of the transmitted code. This function f is used

to drastically reduce the search space and to make the decoding efforts of this decoding

algorithm adaptable to the noise level.

In this report we introduce a new class off functions. Simulation results for the (104,52)

binary extended quadratic residue code, and the (128,64) binary extended BCH code attested

to the fact that, in general, the decoding algorithm that uses an f function from this class

is at least one order of magnitude more efficient, in time and space, than the decoding

algorithm that uses the f function defined in [12].

1

In Section 2 we review maximum-likelihood decoding of linear block codes and describe

Algorithm A*. In the next section we present our new decoding algorithm and give the

simulation results for the (104,52) and the (128,64) codes. Concluding remarks are presented

in Section 4.

2 Preliminaries

Let Vn,q be the set of all n-tuples over GF(q). A q-ary (n, k) linear block code C is a

subspace of Vn,q of dimension k. C can be characterized by a generator matrix Gorby a

parity-check matrix H. Any set of k linearly independent vectors in C can be used as the

rows of G. On the other hand, any set of n- k linearly independent vectors in CJ.. (null

space of C) can be used as the rows of H. Thus, a vector in V n,q is a codeword in C if and

only if it is a linear combination over G F(q) of the rows of G. Therefore, a codeword in C

can be written as c = u · G where u is a k-tuple over GF(q). Since Cis the null space of

CJ.., any vector v E Vn,q is a codeword of C iff it is orthogonal to every row of H, that is,

v ·HT = 0.

Let c = (Co, c17 ••• , Cn-1), c; E G F(q) be a codeword of C transmitted over a time

discrete memoryless channel with output alphabet B. Furthermore, let.,. = (r0 , rt, ... , rn_t),

r; E Bdenotethereceivedvector,andassumethatPr(r;ICi) > Oforr; E Band£; EGF(q).

Let c be an estimate of the transmitted codeword c.

The maximum-likelihood decoding rule (MLD rule) for a time-discrete memory less chan

nel can be formulated as:

set c = Ct where Ct = (cto, Ctt, ... , Ct(n-1)) E C and

n-1 n-1
II Pr(r;lct;) ~ II Pr(r;ICi;) for all Ci = (Cio, Cit, ... , Ci(n-1)) E C.
j=O j=O

Let S(ci,ct) ~ {0, 1, ... ,n -1} be defined as j E S(ci,ct) iff Ctj =F Cij· Then the MLD

rule can be written as

set c = Ct where Ct E C and

2

""" 1 Pr(r;lct;) > 0 £ all . C
LJ nP(I)-or c,E.

;es(ci,Ct) r r; Ci;

For the binary case, following the formulation given in [13], we define the bit log-likelihood

ratio of ri as
,~,. __ 1 Pr(r;IO)
"''- n Pr(r;l1) ·

Furthermore, let cp = (c/>0 , c/>1 , ••• , cPn-d· By [13, Theorem 5] the MLD rule can be written

as

set c = Ct, where Ct E C and
n-1 n-1

L (c/>;- (-1)c';)2 ~ L (4>;- (-1)c;;? for all Ci E C. (1)
j=O j=O

In the special case where the codewords of C have equal probability of being transmitted,

the MLD rule minimizes the error probability.
n-1

One way to implement the MLD rule is to calculate Pr(rlci) = IIPr(r;ICi;) for every
j=O

codeword inC and select the codeword that maximizes it. In practice this can be done only

for those codes with a small number of codewords, that is, low rate codes or middle-to-high

rate codes with short block length.

However, in 1979 Hwang [13] showed that it is possible to select a codeword maximizing

Pr(rlci) without calculating it for every codeword in a binary code C. He proved that if

a codeword Cit = ci2ffi Ci3 where Ci2 and Ci3 are disjoint codewords, then we can select a

codeword maximizing Pr(rlci) without directly calculating Pr(rlci1). Recently it has been

shown that if the MLD rule is implemented using Hwang's technique, then the codewords

that can be dropped from the computation are only those satisfying the above property

[16, 19]. In 1980 Hwang [14] proposed another approach to reduce the number of codewords

that need to be considered when applying the MLD rule. However, since the k most "reliable"

positions of the received vector may not be linearly independent, it is simple to design an

example where the procedure proposed in [14] will fail to start. Such an example is given in

Appendix A.

Several researchers [6, 25, 22] have presented a technique for decoding linear block codes

that converts the decoding problem into a graph-search problem on a trellis derived from the

3

parity-check matrix of the code. Thus the MLD rule can be implemented by applying the

Viterbi Algorithm [24] to this trellis. Therefore, in practice this breadth-first search scheme

can be applied only to codes with small redundancy, that is, small n - k or codes with a

small number of codewords.

When the decoding problem is converted into a graph-search problem, we are interested

in finding a path from the start node representing the initial condition to a goal node that

represents the termination condition. This path will optimize some criterion that leads us

to construct a codeword that maximizes Pr(rlci), where Ci E C.

Thus, the decoding problem has been mapped to a more general graph-search problem.

In this graph each arc is assigned a cost and the cost of a path is the sum of the costs of the

arcs connecting the nodes in this path. The problem is how to find an optimal path from the

start node to a goal node, that is, a path with minimal (maximal) cost. The algorithm A*,

widely used in Artificial Intelligence, is an efficient procedure for finding an optimal path if

one exists in a graph.

In order to more easily describe Algorithm A*, we first give a general graph-searching

procedure as presented in [20]:

Procedure GRAPHSEARCH

1. Create a search graph, Q, consisting solely of the start node, s. Put s on a list called

OPEN.

2. Create a list called CLOSED that is initially empty.

3. LOOP: if OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove it from OPEN, and put it on CLOSED. Call

this node m.

5. If m is a goal node, exit successfully with the solution obtained by tracing a path along

the pointers from m to s in Q. (Pointers are established in Step 7.)

4

6. Expand node m, generating the set, M, of its successors that are not ancestors of m.

Install these members of M as successors of m in g.

7. Establish a pointer to m from those members of M that were not already in g (i.e.,

not already on either OPEN or CLOSED).Add these members of M to OPEN. For

each member of M that was already on OPEN or CLOSED, decide whether or not to

redirect its pointer tom. For each member of M already on CLOSED, decide for each

of its descendants in g whether or not to redirect its pointer.

8. Reorder the list OPEN, either according to some arbitrary scheme or according to

heuristic merit.

9. Go LOOP.

If the graph being searched is not a tree, it is possible that some of the elements of set

M have already been visited-that is, they are already on list OPEN or list CLOSED. The

problem of determining whether a newly generated node is on these lists can be computa

tionally very expensive. For this reason we may decide to avoid making this test, in which

case the search tree may contain several repeated nodes. These node repetitions lead to

redundant successor computations and there is a trade-off between the computation cost for

testing for repeated nodes and the computation cost for generating a larger search tree. In

steps 6 and 7 of procedure GRAPHSEARCH, testing for repeated nodes is performed.

In an uninformed search procedure no heuristic information from the problem has been

used in reordering the list OPEN in Step 8. In this case, the two well-known search methods

are the breadth-first and depth-first. However, these methods are exhaustive in nature, and

thus in practice are applicable only to graphs with small numbers of nodes and paths.

In many cases it is possible to use some inherent properties of a problem to help reduce

the search. The search procedure using this information is called a heuristic search method.

In many situations it is possible to specify heuristics that reduce considerably the search

effort without compromising the optimality of the solution.

5

One of the well-known heuristic search methods that guarantee to find the optimal solu

tion if one exists is the Algorithm A* [20]. The description of A* given here is taken from

[20]. A* uses a cost function called evaluation function f to guide the search through the

graph. This function f is computed for every node that is added to list OPEN in Step 7 of

the procedure GRAPHSEARCH. In Step 8 of this procedure, we reorder the list OPEN

according to the value of the function f. From now on, in order to simplify the description

of A*, we assume that an optimal path is one that minimizes the cost function.

For every node m, we define the evaluation function f so that its value /(m) at node m

estimates the cost of the minimum cost path that goes through node m. f(m) is computed

as

/(m) = g(m) + h(m),

where g(m) estimates the cost of the minimal cost path from the start node s to node m,

and h(m) estimates the cost of the minimal cost path from node m to a goal node. We call

h the heuristic function.

In A*, the next node to be expanded is the one with the smallest value of f on the list

OPEN since this node imposes the least severe constraints.

Similarly, let /* be a function such that /*(m) at any node m is the actual cost of a

minimum cost path that goes through node m. Analogously,

/*(m) = g*(m) + h*(m),

where g*(m) is the actual cost of a minimum cost path from the start node s to node m,

and h*(m) is the actual cost of a minimum cost path from node m to a goal node.

A* requires that g(m) ~ g*(m) and h(m) ~ h*(m) for every node m of the graph. These

requirements guarantee that A* will find a minimum cost path if one exists; however, if the

graph is finite, then the only condition that must be satisfied to guarantee optimality is

h(m) ~ h*(m) for every node m of the graph [20].

An obvious choice for g(m) is the cost of the path in the search tree from the start node s

to node m given by summing all the arc costs encountered while constructing the minimum

cost path from the start nodes to node m. Note that this path is the lowest cost path from

6

the start node s to node m found so far by the algorithm. The value of g(m) may decrease

if the search tree is altered in Step 7 of procedure GRAPHSEARCH. From now on we

assume that function g is calculated in this way. In this case g(m) ~ g*(m) for every node

m of the graph. Furthermore, if h(m) = 0 for any node m, then A* becomes a version of

Dijkstra's algorithm [9].

To define h(m) ~ h*(m), we use the properties of the problem. It can be shown (20] that

if we have two evaluation functions JI(m) = 9t(m) + ht(m) and h(m) = g2(m) + h2(m)

satisfying h1(m) < h2(m) ~ h*(m) for every node m, the A* using evaluation function h will

never expand more nodes than the A* using evaluation function ft. Furthermore, if there

exists a unique optimal path, then the above results hold when h1 (m) < h2 (m) < h*(m) is

satisfied for every node m. Also, if h(m) > 0 for any node m, then A*, using this function

h, will never expand more nodes than the above version of Dijkstra's algorithm.

The monotone restriction is a reasonable restriction that when imposed on h can sub

stantially decrease the computation time and storage of A*. In (20], the function h is said

to satisfy the monotone restriction if and only if for all nodes mi and mj, such that node ffij

is a successor of node mi,

0 < h(m·)- h(m-) < c(m· m·) -I J- t!J

with h(t) = 0, where tis any goal node and c(mi, mi) is the arc cost between node mi and

node mi.

If the monotone restriction is satisfied, then it can be shown [20] that A* has already

found an optimal path from the start node to the node it selects to expand. Thus there is

no need for A* to check if the newly generated nodes are on the list CLOSED and we do not

have to store this list. Furthermore, we do not have to update the parentage in the search

tree of any successors of the node A* selects to expand. Also, if the monotone restriction is

satisfied, the f values of the sequence of nodes expanded by A* is non decreasing [20].

In the proof of the above results [20], the conditions that are imposed by the monotone

restriction, namely 0 ~ h(mi) - h(mj) and h(t) = 0, have not been used. So the only

7

requirement for this proof is that

(2)

We will show that the h function we use in the next section will satisfy this inequality, so

we can still use the above result to speed up the decoding procedure. It is easy to find an

example to show that this h function does not satisfy 0 :5 h(mi)- h(m;).

Another property of A* [20, Pro b. 2.6] that will be used in our decoding algorithm is

as follows: Algorithm A* still finds the optimal path (if one exists) if it removes from list

OPEN any node m for which f(m) > UB, where UB is an upper bound on the cost of an

optimal path.

From the description of A* it is clear that the most important factor in the efficiency of

A* is the selection of the heuristic function h and, consequently, the evaluation function f.

3 Decoding algorithm

For ease of explanation we will assume from now on that the received vector is cp instead of

r.

Our decoding algorithm, guided by an evaluation function J, searches through a graph

that is a trellis for a code C*, which is equivalent to code C. C* is obtained from C

by permuting the positions of codewords of C in such a way that the first k positions of

codewords in C* correspond to the "most reliable linearly independent" positions in the

received vector cp. In Appendix B we give an algorithm to obtain G* from G. G* is a

generator matrix of C* whose first k columns form the k x k identity matrix. The time

complexity of this algorithm is also discussed in this appendix.

In our decoding algorithm the vector cp* = (¢>~, ¢>~, ... , ¢>~_ 1) is used as the "received

vector." It is obtained by permuting the positions of cp in the same manner in which the

columns of G can be permuted to obtain G*.

8

3.1 Construction of trellis

We now give a short description of a trellis [1) for the code C* where the search will be

performed. We remark here that even though we will describe the complete trellis, our de

coding algorithm will construct only a very small subgraph of this trellis during the decoding

procedure. Let H* be a parity-check matrix of C*, and let hi*, 0 ::; i < n be the column

vectors of H*. Furthermore, let c* = (c~, c~, ... , c~_1) be a codeword of C*. With respect

to this codeword, we recursively define the states Bt, -1 $ t < n, as follows:

B-t = 0

and
t

Bt =Bt-l+ c;h; = l:C:hr, 0 $ t < n.
i=O

Clearly, Bn-t = 0 for all codewords of C*. The above recursive equation can be used to draw

a trellis diagram. In this trellis, s_1 = 0 identifies the start node which is at Ievel-l; Bn-t =

0 identifies the goal node which is at level n- 1; and each state Bt, 0 $ t < n- 1 identifies a

node at level t. Furthermore, each transition (arc) is labelled with the appropriate codeword

bit c;. A more detailed description of a trellis for a linear block code can be found in [25).

Note that the trellis defined here corresponds to the expurgated trellis of [25).

3.2 Evaluation function

As we pointed out before, the selection of evaluation function f is of the utmost importance,

since it determines the search effort of A*. We now describe the function f we use in our

decoding algorithm.

In order to define function f, we need first to specify the arc costs. In the trellis of C*,

the cost of the arc from Bt-1 to Bt = Bt-1 + c;h*t is assigned the value(¢>;- (-1Yi) 2 • Thus

the solution of the decoding problem is converted into finding a path from the start node
n-1

to the goal node, that is, a codeword c* = (c(j, c~, ... , c~_ 1) such that L(¢>i - (-l)ct? is
i=O

minimum among all paths from the start node to the goal node.

9

Now we define function f for every node min the trellis as follows:

f(m) = g(m) + h(m).

As previously noted, g(m) is the lowest cost path from the start node to node m found

so far by the algorithm, where the cost of a path from the start node to node m is obtained

by summing all the arc costs encountered while constructing this path.

We now define a class of heuristic functions. Furthermore, if a function h belongs to

this class it will satisfy h(m) =:; h*(m) for every node m. Recall that h*(m) is the cost of a

minimum cost path from node m to the goal node. In order to define a function h which is

a "good" estimator of h"' we must use properties of the linear block code which are invariant

under any permutation of the positions of the codewords.

Let HW = { wiiO ~ i =:; I} be the set of all distinct Hamming weights that codewords of

C may have. Furthermore, assume w0 < w1 < · · · < wr. Our heuristic functions are defined

to take into consideration the fact that the Hamming distance between any two codewords

of C* must belong to HW, and the linear property of C*.

Let Be• be a given subset of C*, and Pi (Be•) be the set that contains all the subsets of

Be· of cardinality i, 0 ~ i =:; ISe•l, where I Be· I is the cardinality of Be·. For a given Be· we

now define our heuristic function, h(i), of order i, 0 =:; i =:; I Be· I·

1. For nodes at Ievell, -1 =:; l < k- 1:

Let m be a node at Ievell, and v0 , Vt, ... , Vt be the labels of the lowest cost path P:n
from the start node to node m found so far by the algorithm. Furthermore, let Vt =

(vt+t, Vt+2, ... , Vn-t) be a binary (n-l-1)-tuple and v = (v0 , v~, ... , Vt, Vt+I, Vt+2 , ... , Vn-1).

Denote by dH(z,y) the Hamming distance between z andy, and by WH(z) = dH(z,O).

If Be· = 0, then h<0>(m) = 0. Otherwise, let }i E Pi(Be·), and

T(m, Yi) = {vtl'Vc"' E }i, dH(v,c"') E HW}.

Note that 0 =:; Wn(vt) ~ (n -l- 1) for all VtE T(m, Yi). Also note that T(m, Yi) =f: 0

for any }i E Pi(Se·). This can easily be seen by constructing a "t E T(m, l'i) as

10

follows. Consider the binary n-tuple u · G* = (c:J,ci, ... ,ci,ci+I···,c:_1), where u

= (v0 , Vt, • •• , Vt, 0, ... , 0) is a binary k-tuple. Clearly, ci = Vi for 0 < i < l. Thus,

Vt = (c;+l,ct+2 , ... ,c:_1) E T(m,}i).

Finally, we define h(i) as

2. For nodes at Ievell, k- 1 ~ l < n:

Because of the linear property of C* and the fact that the first k columns of G* are

linearly independent, there is only one path from any node at level k- 1 to the goal

node. Furthermore, we can easily determine the labels vZ, vz+l, ... 'v:-1 of this path
n-1 2

using G* and calculate its cost E (<Pi- (-1)vt) . In view of the above fact, we define
i=k

function h(i) as follows:

n-1

h(i>(m) = E (<~>:- < -1)tJ:r,
i=l+1

where v;+l, v;+2 , ••• , v:_1 are the labels of the only path P m from node m to the goal

node.

Note that if node m is the goal node, then h(il(m) = 0. Furthermore, h(i)(m) = h*(m)

since there is only one path from node m to the goal node and h(i>(m) is the cost of

this path.

Obviously, h(i)(m) ~ h*(m) for any node min the trellis.

For a given Be· and i, the evaluation function f is f(m) = g(m) + h(i>(m).

It is very important that the time complexity for calculating h(i)(m) be "reasonable," for

otherwise the time taken by the decoding algorithm is spent calculating h(i)(m), even though

there are only a few nodes to be visited (open) in the trellis. In Appendix C we present an

algorithm to calculate h<1>(m) for node mat Ievell, -1 ~ l < k- 1 whose time complexity

is O(ISc·l x n).

11

We now give properties of heuristic function h(i) that will be used to speed up the decoding

procedure. The proofs of properties 1 and 2 are given in Appendix D. Properties 3 and 4

are immediate consequences of the definition of function h(i).

Property 1. For a given Be•

where node mt is an immediate successor of node m;, and c(m;, mt) is our arc cost from

node m; to node mt.

Property 2. For a given Be· and i, if nodes mn and mt2 are immediate successors of

node m;, then

Now let Be· and Bh. be nonempty subsets of c•, and h(i)(h'(i)) be the ith order heuristic

function corresponding to Be·(Bh.).

Property 3. If Be· ~ Bh. and 0 :5 i :5 IBe•l, then

h(i)(m) ~ h'(i)(m) for every node m.

Property 4. If 0 :5 i :5 j :5 IBe•l, then

Mi>(m) :5 h(j)(m) for every node m.

We remark here that the decoding algorithm using function h(j) (h'(i)) will not open and

store more nodes than the decoding algorithm using function M i) (h (i)) . However, the time

complexity for calculating h(j>(m) (h'(i)(m)) will be higher than that of h(i)(m) (h<i>(m)).

For the special case of Be· = {0}, the first-order heuristic function is the heuristic

function proposed in [12).

When a first-order heuristic function h(t) is used, the time and space complexities of the

algorithm proposed here are O(IBe·l x n x N(r)) and O(n x M(r)), respectively, where

N(r)

M(r)

the number of nodes visited during the decoding of r,

the maximum number of nodes that need to be stored

during the decoding of r.

12

The derivation of these results is similar to that of the time and space complexities given in

[12] for the algorithm proposed there.

For long block codes it may be impossible to determine the set HW. However, our al

gorithm will still find the optimal solution even if in the computation of function h the

algorithm considers all the Hamming weights of any superset of HW. The algorithm using a

superset of HW may visit more nodes than that using HW. Furthermore, in most cases the

received vector is closed to a unique codeword. In this case, as pointed out in Section 2, the

algorithm will not open fewer nodes if it uses a proper superset of HW instead of HW in the

computation of heuristic function.

3.3 Speed-up techniques

In this subsection we present some properties of the decoding algorithm that can be used to

speed up the decoding procedure. In order to simplify the presentation of these techniques

we assume that function h belongs to the class of heuristic functions defined above.

By Property 1, function h satisfies the property,

where node m; is an immediate successor of node mi and c(mi, m;) is our arc cost from node

mi to node m;. Then, as we pointed out before, we do not need to store the list CLOSED

and we do not have to update the parentage in the search tree of any successors of the node

that our algorithm selects to expand.

By Property 2, when our algorithm expands a node m at level l < k - 2, we need

to compute the value of function f for only one of its successors. This is because the

value of function f for the other successor is equal to that of node m and we can easily

determine which successor has the value f(m). Thus our algorithm is a depth-first search

type Algorithm A*.

Furthermore, since our function h satisfies Inequality 2, by the remark in the previous

section, the f values of the sequence of nodes expanded by our algorithm is nondecreasing.

Let node m1 at level R < k - 2 be the first node of list OPEN. Consider the sequence of

13

nodes that the algorithm will follow from node m1 to node m 2 which is at level k - 2. Due

to the above properties, the value of the function f at every one of these nodes is equal

to f(m1). Furthermore, the labels of the path corresponding to this sequence of nodes

can be easily determined by the first k- l- 2 positions of the binary (n- l- 1)-tuple
n-1 2

(v;+l, ... , vk_2 , vL1, ... , v~_1) used to calculate h(m1) = L (¢;- (-1t:) . Thus, we do
i=l+1

not have to visit the nodes of this sequence. This reduces considerably the total number of

nodes visited.

Our algorithm will search the trellis only up to level k- 1 since we can construct the only

path from any node m at level k - 1 to the goal node using G*. The labels of the combined

paths from the start node to node m, and from node m to the goal node, correspond to a

codeword. So the cost of this path, which is equal to /(m), can be used as an upper bound

on the cost of an optimal path. As noted in Section 2, we can use this upper bound to reduce

the size of list OPEN. Furthermore, since there is a codeword whose corresponding path in

the trellis has cost equal to f(m), then we need to keep only one node on list OPEN whose

f value is equal to the upper bound.

The trellis search can be stopped at any time when we know that a codeword c; =

(c:O, c;1 , ... , cl(n-1)) generated satisfies Inequality 1. The following criterion can be used to

indicate this fact.
n-1

Criterion. If h(il(s_1) = L: (<Pi- (-1r;;f, then c; satisfies Inequality 1.
j=O

Recall that s_ 1 is the start node.

The validity of this criterion is based on the fact that, since C* C T (s_ 1 , Yi), then
n-1

h(i) (s-1) < L (<Pi- (-1t;jr for any c; E C*.
j=O

Note that the decision criterion introduced in [23] is equivalent to the above criterion for

the special case, Sc· = { c;}. It is easy to show that if a codeword c; satisfies the criterion

given by Inequalities 3. 7 a and 3. 7b in [11], then it will also satisfy the criterion given in [23].

It is important to mention that the set Sc• does not need to be fixed during the decoding

of cp. In the case where Sc• is allowed to change, we have an adaptive decoding procedure.

However, we cannot any longer guarantee that Inequality 2 will be satisfied.

14

4 Simulation results for the AWGN channel

In this section we present simulation results for the (104, 52) binary extended quadratic

residue code and the (128, 64) binary extended BCH code when these codes are transmitted

over the Additive White Gaussian Noise (AWGN) channel. We assume that antipodal sig

naling is used in the transmission so that the Ph components of the transmitted codeword

c and received vector r are

respectively, where E is the signal energy per channel bit and ei is a noise sample of a

Gaussian process with single-sided noise power per hertz N0 • The variance of ei is N0 /2 and

the SNR for the channel is 1 = E/N0 • In order to account for the redundancy in codes of

different rates, we used the SNR per transmitted information bit /b = Eb/N0 = 1n/k in our

simulation.

We do not know HW for these two codes, so we use a superset for them. For (104,52) we

know that dmm = 20 and that the Hamming weight of any codeword is divisible by 4 [17].

Thus, for this code the superset used is {xl(x is divisible by 4 and 20 ~ x ~ 84) or (x = 0)

or (x = 104)}. For (128,64), the superset used is {xl (xis even and 22 ~ x ~ 106) or (x = 0)

or (x = 128)}.

We have implemented our adaptive decoding algorithm for the case i = 1, that is, we use

a first-order heuristic function. Furthermore, the set Sc• has cardinality 1 and is updated

according to the following rule: for every codeword c* 1 generated during the decoding of cp,
if the value of M1>(s_1) calculated with respect to c*1 is greater than the value of M1>(s_ 1)

calculated with respect to the codeword in Sc·, then set Sa· = { c* 1 }. The rationality behind

this rule is that, for any node m, M1>(m) 2:: h<1>(s_1) whenever these values are calculated

with respect to the same set Sc•.

Simulation results attested to the fact that the efficiency of this decoding algorithm

depends strongly on the selection of the initial set S0 •.

In our implementation this initial set is constructed by considering the codeword c*

15

obtained as follows. Let u = (uo,u11 ... ,uk-1) where

Ui = { 0 if cPi 2:: 0;

1 if c/>i < 0;

and cp* = (¢>0, c/>i, ... , ¢>'k_1 , c/>'k, ... , ¢>:_1). Now we let Be· = { c*}, where c* = u · G*.

In the implementation of our decoding algorithm we have decided not to check for re

peated nodes. In this situation the graph becomes a decision tree. Thus, we do not have to

keep list CLOSED. Furthermore, list OPEN is always kept ordered according to the values

f of its nodes. In this case, the time complexity and the space complexity of our algorithm

are O(n x N(r)) and O(n x M(r)), respectively. Recall that

N(r) - the number of nodes visited during the decoding of r;

M(r) - maximum number of nodes stored on list OPEN during the decoding of r.

The values of N(r) and M(r) will strongly depend upon the signal to noise ratio (SNR). Up

to now we do not have a "good" estimator of these values; however, they are upperbounded

by 2k+l - 1. So, in the worst case, the time and space complexities of our algorithm are

O(n x 2k), which are, under the condition k ~ (n- k), equal to those of Wolf's algorithm

[25], which are O(n x min(2k, 2n-k)) [8].

First, we give simulation results for the (104,52) code. Quadratic residue codes are

known to be very good codes that are very difficult to decode even when only hard-decision

decoding is employed [4, 7, 5, 21]. Some quadratic residue codes have been decoded by using

information-set decoding algorithms [3]. However, these algorithms are sub-optimal, that

is, do not implement the MLD rule. Thus, the only two maximum-likelihood soft-decision

decoding algorithms known to us that can be used to decode the (104,52) code are Wolf's

algorithm [25] and Hwang's algorithm [13].

It is very hard for us to compare the performance of our algorithm with that of Hwang

because he found the subset of codewords that must be stored for implementing the MLD

rule only for very short codes [13, Table I]. However, we observe that the complexities of

Wolf's algorithm are approximately the same as those of Hwang's for the codes presented in

Table I of [13]. Thus, we will compare the performance of our algorithm to that of Wolf.

16

The simulation results for the (104, 52) code for /b equal to 5 dB, 6 dB, 7 dB, and 8

dB are given in Table 1. These results were obtained by simulating 35,000 samples for each

SNR. Note that the time and space complexities of Wolf's algorithm are proportional to

252 ~ 4.50 X 1015 •

Table 1: Simulation for the (104, 52) code

/b II 5 dB II 6 dB II 7 dB 8 dB II
max ave max ave max ave max ave

N(r) 142123 19 2918 1 221 1 0 0

C(r) 32823 5 519 2 35 2 1 1

M(r) 13122 4 1912 1 155 1 0 0

where

N(r) = the number of nodes visited during the decoding of r;

C(r) = number of codewords constructed in order to decide on the closest codeword to r;

M(r) =maximum number of nodes stored on list OPEN during the decoding of r;

max = maximum value among 35,000 samples;

ave = average value among 35,000 samples;

Since during simulation no decoding errors occurred for any of the above SNRs, the bit

error probability is estimated using the following formula [11):

(3)

where nd is the number of codewords of Hamming weight dmm. The value of nd was calculated

using the results presented in [18]. Table 2 gives an estimate of the bit error probability and

coding gain for above SNRs.

17

Table 2: Bit error probability and coding gain for the (104,52) code

5 dB 6dB 7 dB 8 dB

pb 2.028 X 10-to• 5.023 x w-14• 1.494 x w-1s· 3.079 x w-24•

CG 7.90 8.35 8.80 9.05

Pb = bit error probability;

CG = coding gain (dB);

* Calculate using (3).

We now give the simulation results for the (128,64) code. Since an algebraic decoder

which corrects up to 10-bit errors can be constructed for this code, the maximum-likelihood

soft-decision decoding algorithm recently proposed in [15] can be implemented. However, in

this paper simulation results are given only for very short codes up to length 23. Sub-optimal

decoding procedures for this code have been proposed in [10, 3]. Note that the time and

space complexities of Wolf's algorithm is proportional to 264 ~ 1.84 x 1019•

The simulation results for the (128,64) code for 'Yb equal to 5 dB, 6 dB, 7 dB, and 8

dB are given in Table 3. These results were obtained by simulating 35,000 samples for each

SNR.

Table 3: Simulation for the (128, 64) code

,b II 5 dB II 6 dB II 7 dB 8 dB II
max ave max ave max ave max ave

N(r) 216052 42 13603 2 1143 1 0 0

C(r) 38219 8 1817 2 91 2 1 1

M(r) 16626 7 856 1 965 1 0 0

Table 4 gives only an estimate of the bit error probability and coding gain for above

SNRs because no decoding error occurred during simulation.

18

Table 4: Bit error probability and coding gain for the (128,64) code

5 dB 6 dB 7 dB 8 dB

pb 1.57 X IQ-12 * 1. 71 X IQ-16* 1.82 X IQ-2U 1.02 X IQ-2H

CG 8.85 9.22 9.50 9.70

When calculating H using (3), the value of nd = 243,840 was taken from [2].

Simulation results for these codes indicate that a drastic reduction on the search space is

achieved for the majority of practical communication systems where the probability of error

is less than 10-3 (/b greater than 6.8 dB) [7] even when the algorithm uses a superset of

HW.

Simulation results showed that our adaptive decoding algorithm described in this section

is at least one order of magnitude more efficient, in time and space, than that proposed in

[12), where Sc· = {0} during the entire decoding procedure.

5 Conclusion

In this report we have proposed a novel decoding technique. Simulation results for the

above linear block codes attest to the fact that this decoding technique drastically reduced

the search space, especially for the majority of practical communication systems where the

probability of error is less than IQ-3 (/b greater than 6.8 dB) [7]. For example, the results

of Table 3 at 6 dB indicates that for the 35,000 samples tried, this decoding algorithm is

approximately 15 orders of magnitude more efficient, in time and space, than Wolf's. Thus,

this decoding procedure has not only resulted in an efficient soft-decision decoding algorithm

for hitherto intractable linear block codes, but an algorithm which is in fact optimal as well.

We would like to emphasize here the flexibility of this decoding algorithm. For example:

1. It is applicable to any linear block code.

2. It does not require the availability of a hard decision decoder.

19

3. In order to make it more efficient to decode a particular code, we can design a heuristic

function that takes advantage of the specific properties of this code.

4. Any stopping criterion can be easily incorporated into it.

Furthermore, we would like to point out that the algorithm present in this report is

suitable for a parallel implementation. One of the reasons is that when calculating h(i)(m)

for node m, the algorithm has determined the labels of the path from node m to a node

at level k - 2 that it will follow, so the successors of the nodes in this path can be open

simultaneously and processed independently. This will reduce substantially the idle time of

processors and the overhead due to processor communication. Thus, we expect a very good

speed-up from a parallel version of our algorithm.

This decoding approach will impact both the theoretical and practical branches of coding

theory. Theoreticians will be challenged to identify and construct classes of linear codes

whose properties maximize the efficiency of this decoding procedure. And practitioners will

want to find the most efficient way to implement this algorithm in a fast, single-purpose

processor using sequential/parallel structures.

Acknowledgment

The authors would like to thank Elaine Weinman for her invaluable help in the preparation

of this manuscript.

Appendix A

In this appendix we will give an example to illustrate our claim that Hwang's algorithm [14]

has a fallacy. For the following example his algorithm will fail to start.

20

Consider the (8,4) extended binary Hamming code generated by

1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1
G=

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

Let r be the received vector and cp = (t/>0, 4>1, ..• , 4>7) the channel measurement information

vector of r [14]. Assume that 4>o < 0, t/>1 < 0, t/>2 < 0, 4>3 > 0, 4>4 > 0, 4>s > 0, 4>6 > 0, t/>1 > 0,

and

In order for the first k positions in cp to have the largest absolute values among all the compo

nents of cp, we must swap positions 3 and 4 in c/J and obtain cp' = (4>o, t/>1, t/>2, 4>4, 4>3, 4>s, 4>6, t/>1).

Corresponding to this exchange we have

1 0 0 1 0 1 1 0

G'=
0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

which generates code C'.

To start the algorithm we must construct a codeword c'1 = (~0 , ~1 , ••• , ~7) of C' such

that

(-1Y~o X 4>o > 0, (-l)c~1 X t/>1 > 0, (-1Y~2 X t/>2 > 0 and (-1Y~3 X 4>4 > 0.

Thus, ~0 = 1, ~1 = 1, ~2 = 1, and c~3 = 0. However, (1, 1, 1, 1, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1, 1, 1)

are the only codewords inC' whose first three bits are ones. Thus, the algorithm will fail in

Step 1. The fallacy is in the assumption that any k positions whose components have the

largest absolute values among all the components of cp are linearly independent.

21

Appendix B

Let 4> = (¢>0, ¢>~, ... , <l>n-l) be the received vector. If l</>il > 1</>jl, then we consider that </>i is

more "reliable" than </>j, where lxl is the absolute value of x. Let l/>1 = (</>~, </>~, ... , </>~_ 1) be

a vector obtained by permuting the positions of 4> such that I</>~ I ~ I </>~+ 1 1 for 0 :::; i < n - 1.

The k x n matrix G 1 is obtained from G by applying this same permutation to the columns

of G. In order to give an algorithm to obtain G*, the generator matrix of C*, from G 1 , we

first introduce some definitions.

Let A be an r x m matrix. Given a setS= {i1 ,i2 , .•• ,is} C {0, 1, 2, ... ,m -1} we say

that Sis a sub-information set of A iff the columns of A indexed by i 1 , i 2 , .•• , is are linearly

independent. Furthermore, we define the SW operator. For 0:::; i,j < m, SW(A,i,j) is the

r x m matrix obtained from A by swapping columns i and j of A.

The following is an algorithm to obtain G* from G 1 for 2 :::; k < n.

1. i ~ 1; j ~ 1; S = { 0}; G~ ~ G 1•

2. If S U {j} is a sub-information set of G~, then G~ ~ SW(G~, i,j);

else

j ~ j + 1;

go to 2.

3. s ~ s u {i}.

4. If lSI = k, then stop;

else

i ~ i + 1;

j ~ j + 1;

go to 2.

5. Transform G~ into G* by row operation such that the

first k columns of G* form a k x k identity matrix.

The time complexity of the procedure to construct G* is O(k2 x n); however, many of

the operations performed during this construction can be done in parallel. In this case, the

22

time complexity becomes O(k x n).

Appendix C

In this appendix we present an algorithm to calculate M1>(m') for node m' at Ievell, -1 ~

l < k- 1, whose time complexity is O(ISc•l x n).

In the particular case i = 1,

T(m', {c*}) = {11;ldH(11',c*) E HW}, where c* ESc··

Recall that 111 = (v~, vL ... , v;, Vt+H ... , v~_1), where v~, v~, ... , v; are the labels of the

lowest cost path P:n, from the start node to node m' found so far by the algorithm, and

11~ = (vi+l, v;+2 , ••• , v~_1) is a binary (n -l-1)-tuple.

We now define

h(m', c*) = min
11;eT(m',{C*})

Thus, we may write

M1>(m') = max {h(m',c*)}.
c*eSco

We now show how we can determine h(m',c*) from the procedure to find h(m,O),

where the path P:n from the starting node to node m can be constructed from c* =

(cQ, ct, ... , ci, c;+l, ... , c:_1) and the path P:n,.
Let t/J*(c*) = ((-1)~ c/>0, (-1)ct cf>t, ... , (-1)ci cf>£, (-1tt+lcf>t+l, ... , (-1)c~-14>:_1) and v~E9

l!Q, v~ E9 ct, ... , v; E9 c; the labels of P:n, where E9 denotes modulo-2 addition. Note that

t/J* (0) = t/J*. We may calculate h(m', c*) with respect to t/J* and h(m, 0) with respect to

t/J*(c*).

Lemma Cl. h(m', c*) = h(m, 0).

PROOF. Let 11 = 111 E9 c* = (vo,v~, ... ,vt,Vt+b···,vn-1),11t = (vt+bvl+2, ... ,Vn-t), and

c; = (c;+l,cl+2 , ••• ,c:_1). Recall that for a binary tuple 11~ = (vi+l,vt+2, ... ,v~_1) we

construct 111 = (v~,v~, ... ,vi,vi+l,vt+2, ... ,v~_1). First, we note that 11~ E T(m',{c*})

23

iff dH(v',c*) E HW iff dH(v' ffi c*,O) E HW iff dH(v,O) E HW iff Vt E T(m,{O}) iff

v; ffi c; E T(m, {0}). Thus v~ E T(m1, { c*}) iff v~ ffi c; E T(m, {0}).

Now we show that h(m', c*) = h(m, 0):

h(m', c*) = min
v~ eT(m' ,{ c*})

= I min * { E ((-1r: <Pi- (-l)v:Ei)c:r}.
VtET(m',{C }) i=l+l

Since v; E T(m', {c*} iff Vt = v; ffi c; E T(m, {0}), we may consider minimization over

vectors in T(m, {0}) instead of in T(m', { c*}). Thus

h(m',c*) = min E ((-l)c:<P:- (-1tir = h(m,O). {
n-1 }

VtET(m,{O}) i=l+l

0

We now present an algorithm to calculate h(m, 0) whose time complexity is O(n) with

respect to any </>*(c*). For easy notation, we denote h(m,O) by h(m), </>*(c*) by r* =

(r0, ri, ... , r[, r[+l, ... , r:_1), and T(m, {0}) by T(m).

Let vector Ut = (Uto, Ut1 , • •• , Ut(n-t-2)) be obtained by permuting the positions of

(r;+l, r[+2, ... , r:_1) in such a manner that Uti< Ut(i+l) for 0 ~ i < n -I!.- 2.

Our algorithm computes h(m) using Ut instead of r*. This is possible because of the

property

h(m) = min {I: (ut(i-t-1) - (-1tir}.
VtET(m) i=l+1

This property is easily proved because if Vt E T(m), then all binary vectors of the same

Hamming weight as Vt are contained in T(m) and Ut is obtained by applying a permutation

1ft to the components of (r;+l, ri+2 , ••• , r:_1).

We now prove some technique lemmas. Consider the set Tw of all binary (n-1!.-1)-tuples

of Hamming weight w. Furthermore, let Vp = (vp0, Vpt, ... , Vp(w-1)! Vpw, ... , Vp(n-t-2)) E Tw,

where Vpi = 1, 0 :5 i <wand Vpi = 0, w :5 i < n -I!.- 1.

Lemma C2. If v = (vo, v~, ... , Vn-t-2) E Tw, then

24

n-t-2 n-t-2
'.L: (uti- (-1)vp;? < '.L: (uti- (-1)v;)2 •

i=O i=O

PROOF.
n-t-2 n-t-2

Dt - '.L: (uti- (-1)vp;)2 - I: (uti- (-1)v;)2

i=O i=O

Let S = {xlvz = 0 and 0 < x < w} and S' = {xlvz = 1 and w ~ x < n -l- 1}.

Since Vp = (1,1, ... ,1,0,0, ... ,0) and WH(v) = WH(vp), then lSI = IS'I· So Dt -

4 (L:uti- '.L: Uti) < 0 since lSI= IS'I and Uti~ Utj, i E Sand j E S'. 0
iES iES'

Let St = {xlutz < 0} and v~ = (v~,v~1 , ••• ,v~(w'-l)'v~w''···,v~(n-t-2)) E Tw'' where

v~i = 1, 0 ~ i < w' and v~i = 0, w' ~ i < n -l-1.

Lemma C3. If w' < w ~ IStl, then

n-i-2 n-t-2
I: (uti- (-1tpi)2 < I:
i=O i=O

PROOF.
n-t-2 n-t-2

D2 - I: (Uti - (-1)Vpi? - L: (Uti - (-1)v~i r
i=O i=O
w-1

- 4L: Uti< 0 since Uti< 0,0:5 i < w.
i=w'

0

Lemma C4. If IStl < w < w', then

n-t-2 n-t-2
E (uti- (-1tpi)2 ~ E (uti- (-1t~f.
i=O i=O

25

The proof of this lemma is similar to that in Lemma C3.

Let c~, ct, ... , c; be the labels of the path P:n from the start node to node m at Ievell

found so far by the decoding algorithm. Furthermore, let c;+ll c;+2, ... , c~_1 be the labels of

a path Pm from node mat level C to the goal node and let W(P:n) be the number of labels

of P:n whose values are 1. Note that W(Pm) can only have values that belong to the set

Q = {wi- W(P:n)IO ~ Wi- W(P:n) ~ n -l-1 and 0 ~ i ~ J}.

Let J E {0, 1, ... , J} such that WJ- W(P~J is the smallest value in Q. Analogously, let

I' E {0, 1, ... ,1} such that WJI- W(P:n) is the largest value in Q.

By Lemma C2, our algorithm to compute h(m) needs to consider only vectors of the

form Vp = (vpo,vpb···,Vp(n-l-2)) = (1,1, ... ,1,0,0, ... ,0) with Hamming weights Wi

W(P:n), J ~ i ~ I'. Furthermore, by Lemmas C3 and C4, we need to consider only the

following cases:

Case 1. !Btl < (wJ- W(P:n)). So,

n-t-2
h(m) = L (uti- (-1tpi)2

i=O

where Wn(vp) = WJ- W(P~J.

Case 2. !Btl ~ (wl'- W(P:n)). So,

n-l-2
h(m) = L (u.ei- (-1)"pi)2 ,

i=O

where Wn(vp) = Wf'- W(P:n).

Case 3.
n-t-2

Wi1 - W(P:n) ~ IStl < Wi1+I- W(P:n). So, h(m) = min{A17 A2}, where
n-t-2

A1 = L (uti- (-1)"pi)2 and WH(vp) = Wi1 - W(P~J, and A2 = L (uti- (-1)11p;)2

i=O i=O
and Wn(vp) = Wi1+I- W(P:n).

Thus, given u.e and IStl, the time complexity of computing h(m) is O(n).

26

Appendix D

D 1. Proof of Property 1

Let node m2 at Ievell be an immediate successor of node m1• Furthermore, let c; be the

label of the arc from node m1 to node m 2 and c(m~, m2) = (<Pi - (-1 y;) 2. We now prove

that h(il(m1) ~ h{il(m2) + c(m~, m2).

(a) l < k - 1. Let Yi E Pi(Sc•). Furthermore, let v; - (v[+1 , v[+2, ... , v~_1) E

T(m2, Yi) such that

Thus, h(il(m2) + c(m11 m2) ?: h(il(m1)·

(b) l = k-1. h(il(m1) ~ h*(m1) and h(i)(m2) = h*(m2). Since h*(m1)-c(m11m2) ~

h*(m2), then h(il(m1) ~ h*(m2) + c(m11 m2) = h{il(m2) + c(m~, m2).

(c) l > k -1. h(i)(m1) = h*(m1) and h(il(m2) = h*(m2). Since h*(m1)- c(m17 m2) =
h*(m2), then h(il(m1) = h(i)(m2) + c(mt, m 2).

D2. Proof of Property 2
n-1

Consider node mt at Ievell, -1 ~ l < k-2. Furthermore, let h(i>(mt) = 2: (<Pi- (-1)11~) 2
i=i+1

where (v[+l, vi+2 , ••• , v~_1) E T(mt, Z) for some Z E ~(Sc·). Now consider the path

Pmt = (mt, mt+b ... , mk-2) from node mt to node mk-2 at level k- 2 whose labels are

v[+l, v[+2 , ••• , vL2. We now show that if mt+1 is a node in this path at Ievell + 1, then

27

n-1

Bydefinitionf(mt) = g(mt)+h<'>(mt) = g(mt)+(<Pi+l- (-1)11t+1)
2 + L (<Pi- (-1)11:)

2 =
i=l+2

n-1

g (mt+l) + L (<Pi- (-lt:). Since (v~+2 , v~+3 , ••• , v~_1) E T(mt+l, Z), then
i=l+2

otherwise

Analogously, we can conclude that

n-1

h<'>(mt+I) = L (<Pi- (-1)11~) 2 •
i=l+2

References

[1) L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear

Codes for Minimizing Symbol Error Rate," IEEE Trans. on Information Theory,

pp. 284-287, March 1974.

[2) L. D. Baumert and L. R. Welch, "Minimum-Weight Codewords in the (128,64)

BCH Code," DSN Progress Report 42-42, Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA, September and October 1977.

[3) L. D. Baumert and R. J. McEliece, "Soft Decision Decoding of Block Codes,"

DSN Progress Report 42-4 7, Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, July and August 1978.

[4) E. R. Berlekamp, Algebraic Coding Theory. New York, NY: McGraw-Hill Book

Co., 1968.

28

[5] R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison

Wesley Publishing Co., 1983.

[6] R.W. D. Booth, M.A. Herro, and G. Solomon, "Convolutional Coding Techniques

for Certain Quadratic Residue Codes," in Proc. 1975 Int. Telemetering Conf., pp.

168-177, 1975.

[7] G. C. Clark, Jr., and J. B. Cain, Error-Correction Coding for Digital Communi

cations. New York, NY: Plenum Press, 1981.

[8] J. H. Conway and N. J. A. Sloane, "Soft Decoding Techniques for Codes and

Lattices, Including the Golay Code and the Leech Lattice," IEEE Tran. on Infor

mation Theory, pp. 41-50, January 1986.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

Cambridge, MA: The MIT Press, 1991.

[10] B. G. Dorsch, "A Decoding Algorithm for Binary Block Codes and J-ary Output

Channels," IEEE Trans. Information Theory, pp. 391-394, May 1974.

[11] G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: The M.I.T. Press, 1966.

[12] Y. S. Han, C. R. P. Hartmann, and C-C. Chen, "Efficient Maximum-Likelihood

Soft-Decision Decoding of Linear Block Codes Using Algorithm A*," Technical

Report SU-CIS-91-42, School of Computer and Information Science, Syracuse Uni

versity, Syracuse, NY 13244, December 1991.

[13] T.-Y. Hwang, "Decoding Linear Block Codes for Minimizing Word Error Rate,"

IEEE Trans. on Information Theory, pp. 733-737, November 1979.

[14] T.-Y. Hwang, "Efficient Optimal Decoding of Linear Block Codes," IEEE Trans.

on Information Theory, pp. 603-606, September 1980.

29

[15] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, "An Efficient Maximum

Likelihood-Decoding Algorithm for Linear Block Codes with Algebraic Decoder,"

submitted for publication to IEEE Trans. Information Theory.

[16] L. B. Levitin, M. Naidjate, and C. R. P. Hartmann, "Generalized Identity-Guards

Algorithm for Minimum Distance Decoding of Group Codes in Metric Space,"

presented at the 1990 IEEE International Symposium on Information Theory, San

Diego, CA, January 1990.

[17] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.

New York, NY: Elsevier Science Publishing Company, Inc., 1977.

[18] C. L. Mallows and N. J. A. Sloane, "An Upper Bound for Self-Dual Codes," In

formation and Control, 22, pp. 188-200, 1973.

[19] M. Naidjate, "Generalized Minimum Distance Decoding Algorithms for Group

Codes in Metric Spaces," Ph.D. dissertation, Boston University, Boston, MA, 1991.

[20] N. J. Nilsson, Principle of Artificial Intelligence. Palo Alto, CA: Tioga Publishing

Co., 1980.

[21] I. S. Reed, T. K. Truong, X. Chen, and X. Yin, "The Algebraic Decoding of

the (41,21,9) Quadratic Residue Code," IEEE Trans. on Information Theory, pp.

974-986, May 1992.

[22] G. Solomon and H. C. A. van Tilborg, "A Connection Between Block and Convo

lutional Codes," SIAM J. Appl. Math., pp. 358-369, 1979.

[23) D. J. Taipale and M. B. Pursley, "An Improvement to Generalized-Minimum

Distance Decoding," IEEE Trans. on Information Theory, pp. 167-172, January

1991.

30

[24] A. J. Viterbi, "Error Bound for Convolutional Codes and an Asymptotically Op

timum Decoding Algorithm," IEEE Trans. on Information Theory, pp. 260-269,

April1967.

[25] J. K. Wolf, "Efficient Maximum Likelihood Decoding of Linear Block Codes Using

a Trellis," IEEE Trans. on Information Theory, pp. 76-80, January 1978.

31

	Designing Efficient Maximum-Likelihood Soft-Decision Decoding Algorithms for Linear Block Codes Using Algorithm A*
	Recommended Citation

	SU-CIS-92-10_001c
	SU-CIS-92-10_002c
	SU-CIS-92-10_003c
	SU-CIS-92-10_004c
	SU-CIS-92-10_005c
	SU-CIS-92-10_006c
	SU-CIS-92-10_007c
	SU-CIS-92-10_008c
	SU-CIS-92-10_009c
	SU-CIS-92-10_010c
	SU-CIS-92-10_011c
	SU-CIS-92-10_012c
	SU-CIS-92-10_013c
	SU-CIS-92-10_014c
	SU-CIS-92-10_015c
	SU-CIS-92-10_016c
	SU-CIS-92-10_017c
	SU-CIS-92-10_018c
	SU-CIS-92-10_019c
	SU-CIS-92-10_020c
	SU-CIS-92-10_021c
	SU-CIS-92-10_022c
	SU-CIS-92-10_023c
	SU-CIS-92-10_024c
	SU-CIS-92-10_025c
	SU-CIS-92-10_026c
	SU-CIS-92-10_027c
	SU-CIS-92-10_028c
	SU-CIS-92-10_029c
	SU-CIS-92-10_030c
	SU-CIS-92-10_031c
	SU-CIS-92-10_032c
	SU-CIS-92-10_033c
	SU-CIS-92-10_034c

