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Abstract

Transient electromagnetic scattering by a thdimiaxial dielectric sphere is explored

using three well-known methods: Debye series, Mrees, and ray tracing theory.

In the first approach, the general solutions fog tmpulse and step responses of a
uniaxial sphere are evaluated using the inversdéacapgransformation of the generalized
Mie series solution. Following high frequency seattg solution of a large uniaxial
sphere, the Mie series summation is split intohtigl frequency (HF) and low frequency
terms where the HF term is replaced by its asyng&tpression allowing a significant

reduction in computation time of the numerical Braioh integral.

In the second approach, the generalized Debéessfor a radially uniaxial dielectric
sphere is introduced and the Mie series coeffisiaare replaced by their equivalent
Debye series formulations. The results are thehexpfo examine the transient response
of each individual Debye term allowing the idemfiion of impulse returns in the

transient response of the uniaxial sphere.

In the third approach, the ray tracing thearyai uniaxial sphere is investigated to
evaluate the propagation path as well as the atriwe of the ordinary and extraordinary
returns in the transient response of the uniaxibeee. This is achieved by extracting the
reflection and transmission angles of a plane wabiguely incident on the radially
oriented air-uniaxial and uniaxial-air boundariasd expressing the phase velocities as
well as the refractive indices of the ordinary andraordinary waves in terms of the
incident angle, optic axis and propagation diractibhe results indicate a satisfactory

agreement between Debye series , Mie series arnda@gg methods.
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Chapter 1 Prior work

1.1 Motivation

The transient electromagnetic wave scattering byadaally uniaxial dielectric sphere
using three well-known methods, the generalizecehnsMie theory, Debye series and
ray tracing is the subject of this dissertatione Tork is motivated by the increasing use
of ultra-short pulse RADAR technology on targetntiecation and the broad application
of anisotropic materials in the field of scatterirgyg., cloaking of the targets in which

RCS reduction became a challenge in recent years.

The existing frequency domain scattering solutiovts]e offering numerous applications
on particle sizing and target identifications, failprovide a physical interpretation and
simple explanation of the scattering mechanism @albg in the case of anisotropic
material in which electric permittivity is charaged by a square matrix with the
elements determined by constitutive relations efrttedium. To overcome this difficulty,
the time domain solution sounds a promising apgraglcere both scattering amplitude
and phase responses are used to generate theentamdectromagnetic scattering
response by different objects and therefore mdienmation can be extracted using this
solution. It is known that the transient scattersiodution can be derived by either solving
the problem directly in time domain using numeritathniques, e.g., FDTD or by
inverse Laplace transformation of the frequency aiomsolution. This dissertation
concerns the second approach in which two well-kndrgquency domain solutions,
generalized Mie and Debye series, are introducedntestigate the influence of

uniaxiality on the transient scattering responseasious uniaxial dielectric spheres.
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1.2 Introduction

The electromagnetic scattering of plane wavesrigotropic and isotropic dielectric
spheres has been an attractive subject over thdgrasiecades. A rigorous solution for
scattering from an isotropic sphere was first depetl by Lorenz and Mie in the form of
an infinite series of partial wave contributiong. [This is achieved by expressing the
incident and scattered electromagnetic waves imgeof infinite series of spherical
Bessel and Hankel functions and extracting the-lwsdwn Mie series coefficients by
deriving the tangential electric and magnetic fietonponents both inside and outside of
the sphere. Wong and Chen [2] developed a genedalitie series scattering solution for
the anisotropic dielectric sphere by deriving tpléesical potential wave functions in a
radially uniaxial sphere and computing the scattevave amplitudes in the uniaxial-air
boundary surface of the sphere. A significant défee between backscattering by the
uniaxial and isotropic dielectric spheres were regabin their paper. However, as stated
in the paper, there is no general rule for scaiedy the non-absorbing uniaxial
dielectric sphere and therefore further work irs threa was required. This difficulty is
partially resolved by introducing other methods.,etgy tracing Debye series solution.
By means of the Debye series formulation, the Miges scattering wave amplitudés,
and c,, are decomposed into a series of partial waveribenions that are diffracted,
reflected and refracted following by P-1 internafleéctions in the sphere of Fig. 1.1.
Lock and Laven used this theory to investigatedmetribution of different p-waves on
the scattering from dielectric and coated dielecspheres [3]. Investigating each
individual term of the Debye series can also impr@ur understanding of complex

scattering processes e.g., the mechanisms causengttospheric optical phenomena
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such as primary/secondary rainbow, corona and glasywell as the deformation of
intricate ripples in the curve associated withdiistRCS of the dielectric sphere in Fig.

1.2 [4].

In [5] the calculation of scattering from a watkeoplet using the Debye series resulted
the better understanding of light scattering byesilal particles, e.g., the colored rings of
glories seem to be generated by rays that havere#lented once within the water drops

while the bright white central feature is mainlyedio higher-order terms.

P=0ray

Fig. 1. 1. A plane wave approaching a uniaxialetigic sphere

However, there are a number of processes tmatotde examined by Debye series in
the frequency domain such as the separation of gemal wave contributions that

belong to the same term of the Debye series an@ saattering angle but travel along



different path lengths as shown in Fig. 1.3. Thgpes of problems have been solved by
time domain approach where a short electromagmpetise is incident upon the sphere

and the delay time is measured for each individefkcted ray [6]-[7].

Perhaps the first attempt to calculate the titomain response waveform in the radar
scattering context was that of Kennaugh who eséthéte impulse response of the field
scattered from a perfectly conducting sphere usimgxtremely simple approximation
[8]-9]. The first order approximation to the impulse resgmonof a perfectly conducting
sphere was proposed in his paper using the Raysaigtiering approximation in the low
frequency region and the geometric optics soluinote high frequency region. Aly and
Wong [10] obtained the transient response of aedigt sphere using a high frequency
scattering approximation. They have shown thathilgd frequency asymptotic form of
the frequency domain representation can be appbgdnd a certain point of the contour
of the inverse Laplace transformation integral whiesults in a significant reduction of
computation time. According to the high frequencwatiering solution of an isotropic
sphere, [11], the infinite Mie series summation banreplaced by a rapidly converging
contour integral using the modified Watson transfation method. The resulting
function is then split into the geometric opticdadiffracted field contributions. The
coefficients associated with the geometric optiogtipn (high frequency solution) are
replaced by their equivalent Debye series formoilatind the results are simplified and

then computed using the saddle point method.

The time domain backscattering by perfectly ecmtihg and dielectric spheres
illuminated by modulated pulse trains is also iriigeded by Rheinstein [12]. Using the

Fourier series method, the scattering of a tranhdt®h wave was estimated and various
4



returns were observed in his solutions. Howeves, &chievements were not fully
understood due to employing Lorenz-Mie theory whighovides no physical

interpretation of the scattering mechanisms.

10 r

—89=10, 8r=35

10

—
<
b
T

(3]

Bistatic RCS

10'2 1 1 1 1 ! ! 1 1 1 ]
0 20 40 60 80 100 120 140 160 180 200

0 (degree)

Fig. 1. 2. Bistatic RCS of uniaxial dielectric sphealculated using Mie series, and
koa = 100 [4].

To overcome this difficulty, Lock and Laven [pf} estimated the signature of various
scattering processes from the isotropic diele@phbere using the time domain Debye
series formulation. This allows the calculatioroafy a single term of the Debye series at
each time rather than the entire Mie series timmaln solution which leads to the
identification of each individual return in the rigent scattering response of the

dielectric sphere.
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Fig. 1. 3. Pictorial representation of p=1 wavepi&tut wave

The time domain scattering solution using Miel &ebye series was also studied for
various isotropic bodies of revolution. The transielectromagnetic wave scattering by
arbitrarily shaped cylindrical conducting strucufer different observation points was
investigated in [13]. The solution was achievediriyoducing an integral equation that
was numerically computed in the time domain. Theéhoa was particularly well suited
for computing electromagnetic impulse response ioftef numbers of cylindrical

scatterers with arbitrary shaped cross section.



The time domain scattering by a thin dielectoated sphere and a plate coated with a
thin dielectric layer is also investigated by Strf and Gaunaurd [14]. After deriving the
frequency domain solution of the dielectric coasptiere, the time domain scattering by
this object is computed using the inverse discFeterier transformation and the results
are compared with the time domain scattering bydbeducting plate coated with the
same dielectric material. The transient scattebinghe coated sphere is also studied by
Laven and Lock using the Debye series solution.[EFof the fixed core and coating
radii, the Debye series terms that most stronghtrdaute to the scattered intensity were
identified for different angles of observation. $tachievement, which was obtained by
investigating each individual Debye term, offeredaod physical interpretation of the

scattering from dielectric coated sphere.

The Mie and Debye theories are successful iordesg several certain features of the
transient EM scattering by isotropic sphere howelamk of a simple graphical
computation to determine the features of impulgerns, e.g., arrival time, travel path,
velocity, refractive index, etc., indicates thae thay tracing modeling is needed for

uniaxial dielectric sphere.

In the past, ray tracing has been frequently usedescribe many complex scattering
problems. In 1637, Descartes used ray tracing tierstand the formation of primary and
secondary rainbows [1]. Newton subsequently extéride theory to explain the colors
of the rainbow. In[4], [6], and [7]the ray tracirdpng with the Debye series solution is
applied to compute the arrival time of each indiabray of order p in the transient
response of the isotropic dielectric sphere andpgse a simple description for the

formation of optical phenomena such as primary aadondary rainbow, glory and
7



corona. Ray tracing is also studied for the antgotr plane parallel-plates by Simon in
[16]. This was achieved by computation of the m&@fen and refraction wave angles in
the air-anisotropic medium and the possible rdfkectases in anisotropic-air boundaries
reported in [17]. For the most general form of th&action and reflection in the air-

anisotropic boundary, the readers are encouragexiiore [18]-[19].

To improve our understanding of scattering fritv@ anisotropic sphere, the transient
scattering by the uniaxial sphere using both Mig Bebye series along with ray tracing

is investigated in this dissertation.

In Chapter 2, the Maxwell equations in a ragtialhiaxial medium are introduced and
the scalar potential wave equations representingadE TM waves are evaluated. The
vector potential\ andF both inside and outside of a uniaxial sphere &e derived in
this chapter and the general formulations for ttadtering and traveling wave amplitudes

are obtained.

In Chapter 3, in addition to exploring the bigtaRadar Cross Section (RCS) of a
uniaxial dielectric sphere using Lorenz-Mie theadilye generalized Debye series for a
radially uniaxial sphere is introduced. It is showmat the generalized Mie series
coefficientsb, andc, are the decomposition of a series of partial wawm@ributions that
are diffracted, reflected and refracted followingg1 internal reflections in the sphere.
The monostatic and bistatic RCS are then examioe@dch term of the Debye series,

and compared with those of computed in isotropseca

In Chapter 4, the Watson transformation methodriefly studied and it is used to
transform the slowly converging Mie series summatigo a rapidly converging contour

8



integral. Applying the Debye’s asymptotic formular falternative spherical Hankel
functions, the problem reduces to a form that carcemputed using the saddle point
method. An approximate formula for high frequen@chkscattering from the uniaxial
dielectric sphere is proposed and the results @rgared with those computed using the

Lorenz-Mie theory.

In Chapter 5, the impulse and step responsagadially uniaxial sphere are calculated
using the inverse Laplace transformation and the BBries-asymptotic combination
method. The time domain Debye series is also ioted to evaluate the impulse

response of each individual term of the Debye serie

In Chapter 6, the ray tracing is introduced inuiaxial dielectric sphere. The
generalized Snell's laws for air-uniaxial and umadvair boundaries of the sphere are
briefly studied and the general formulations foloegy and refractive indices of ordinary
and extraordinary waves are derived. The ray tgafonordinary and extraordinary wave
returns of order p=1-2 are also investigated amdrésults are applied to obtain the
general formulations for computing the arrival tsy# extraordinary and ordinary waves
in the uniaxial sphere. The results are validatgddiisfactory agreement between Mie,

Debye and ray tracing methods.



Chapter 2 Electromagnetic scattering by a radially uniaxialsphere
2.1 Introduction

Electromagnetic plane wave scattering by a Hydimiaxial dielectric sphere is studied
in this chapter. Starting from the Maxwell equasipthe general solutions for TEnd
TM, scalar potentials in an unbounded radially uniamadium are evaluated and the
electric and magnetic field components are exptegsderms of alternative spherical

Bessel and Hankel functions, similar to the isat@ase, but with the order of functions

determined by the anisotropic ratibR = 2—9). Proceeding with the solution for a uniaxial

dielectric sphere immersed in an unbounded aioreghe electric and magnetic vector
potentials both inside and outside of the spheeedarived, and the tangential electric
and magnetic field components are computed. Aftplyang the boundary conditions on
the interface of the uniaxial sphere, the scatteand traveling wave amplitudes are

extracted and the results are compared with thasguated for the isotropic sphere.

This chapter is organized as follows: In Sectib@ the constitutive relations for a
radially uniaxial medium are substituted into tloeiree free Maxwell equations and the
scalar potential wave equations for TE and TM waaresobtained. Sections 2.3 and 2.4
propose the general solutions for the scalar paientive equations using the separation
of variables method. In Section 2.5, the vectoeptalsA andF are calculated and the
results are applied to compute tBeandH field components. In Section 2.6, the vector
potentialsA andF both inside and outside of a uniaxial sphere areséd and the general

formulas for the scattering and traveling wave amgés are extracted.

10



2.2 The derivation of Maxwell equations in a edighi uniaxial medium

Consider a radially uniaxial medium charactetibg the constitutive relations

D= (¢ E)
(2-1)
B = ﬂoH
(2-2)
whereg is the permittivity tensor given by
& 0 0
0 0 g (2-3)

andu, andeg, are, respectively, the permeability and permilyivof free space. The

source-free Maxwell equations are

VxE=—jwB
(2-4)
VxH=jwD.
(2-5)
Substitution of (2-1) into (2-4) and (2-2) i@5) give
Vx (g1 D)=—jwB
(2-6)
VXB=jwuyD.
(2-7)

2.2.1 A TM solution of Maxwell equations in a radialliyiaxial medium

In a source free region, the magnetic flux dgrisi solenoidal and can be represented

as the curl of the vector potentfal Therefore

11



B™ =V xA

(2-8)
Substituting (2-8) into (2-6) and (2-7), we obttie following
Vx{(E1-D™) + jwAd} = 0. (2-9)
and
D™M=—"7VxVxA (2-10)
JwHo
Equation (2-9) implies that
(E1-D™) + jwA = -V¢p™ (2-11)

where¢p™ is an arbitrary scalar function of 8, and¢g. Multiplication of (2-11) by

gives
D™ +jwe-A=—-2-(Vop™). (2-12)
Substitution of (2-10) into (2-12) yields
VXVXA+ jouyé- (V™) —k2i/eg-A=0 (2-13)
wherek3 = w?uys,. Let
A =7ry™, (2-14)
Using vector identities in [20], it can be shotlat

™™
VXVx@Fry™) = ?(_%M (2-15)

06?

12



™ 2 ™ 2 ™
L ay™) 1 9%y ))+§(ga (ry ))

" r2tan @ 96  r?sin?f  0¢? r 0drdf
L gL 2™
rsinf d¢adr
] a(pTM ~ 16¢TM R 1 a(pTM
V™ = p 0(- : 2-16
¢ r or + <r 00 +é rsin 8 d¢ ( )

with 4 given by (2-14), and after use of (2-3), (2-15p0 g2-16), ther-, 8-, andg-

components of (2-13) are the respective equations

_LOEy™) 1 aey™) 1 0Mu™) L
r2 962 r2tanf 96 r2sin2  d¢2 o
(2-17)
0 ™
+].a),u0€0£7-7 =0
1 aZ(Tl/)TM) 1 6¢TM
——+j — = 2-1
r 0rdo T ®HoEE <r a6 ) 0 (2-18)
1 aZ(erM) ) 1 6¢TM
rsinf Jd¢ar TI@loZE (r sinf d¢ >_ 0. (2-19)
Equations (2-18) and (2-19) will be satisfied if
™
p™ = — 1 o0y )_ (2-20)

jougEog 0T

Substitution of the partial derivative with resptor of (2-20) into (2-17) leads to

13



19%(ry™) 1 aryp™) 1 3*(ry™)
rz 062 r?tanf 06 r2sin?0  d¢?

(2-21)
62
— (_) arz( wTM) _ kzgr lpTM =0.
Equation (2-21) can be expressed as
1 62 ™ 1 a ™ 1 62 ™ 1 62
N2 algz T Zsinzg lge T sz g alpz ( )rarz(‘/’TM)
r T4 sin r4sin ¢ (2-22)
+ k2e,p™) = 0.
Knowing thattan 6 = s::le one can observe in (2-22) that
aleTM 1 alpTM 1 0 alpTM
= —( sin@ : 2-23
962 tano 96  sin0do <S‘“ 26 (2-23)
02 awTM
5 ™) ——;( = ) (2-24)

Substitution of (2-23) and (2-24) into (2-22yes, after deletion of the factor ef-,

g\ 10 [  op™ 1 0 o™ 1 0xp™
(—)—— r + sin @ + -
gg/ T2 0r or r2sin 0 96 a0 r2sin?20 0d¢?

+ ke, p™ = 0. (2-25)

Equation (2-25) is the wave equationddi™ and recast as

r2or

10 oY™
(E—r>—— <r2 L ) + V2Y™ + k2eyp™ = 0 (2-26)
&g ar
where

14



1 0 alpTM 1 aleTM
v2yy™ — —(sin @ ) 2-27
i r2sinf 06 (sm 26 > + r2sin?0 0d¢? ( )
Equation (2-27) can also be rewritten as
10 Y™
20TM _ g2 TM _ _— = [ .2 _
Ve ™ =v=y i (r Em ) (2-28)
where, from the last of (A-12) in [21],
10 oy™ 1 d oy™
viyYy™ = ——[r? L + ——(sin 0 L
r2or or r2sin 6 06 26
1 aZl/)TM (2_29)

+r2 sin2@ d¢?

2.2.2 A TE solution of Maxwell equations subject to thenstitutive
relations

In a source free region, the electric flux dgn& solenoidal and can be represented as

the curl of the vector potenti&l. Therefore

D™ = -V xF (2-30)
1
BTE = JZV X (E1-VxF) (2-31)

substituting (2-30) into (2-6) and (2-7), we obt#ie following solution to (2-6) and

(2-7)

V x (BTE + jwuy,F) = 0. (2-32)

Equation (2-32) implies that
15



B™ + jouoF = —p Vo™

(2-33)

whereg™E is an arbitrary scalar function of 8, and¢. Use of (2-33) in (2-31) gives

2

_ k
VX (EL-VXF)+ jou,VeTE —S—OF = 0.

0

Let
F = #ryTE,
Substitution of (2-35) into (2-34) gives

- ks
7 x (8717 x Fry™) ) + jou VT - E—Z?rszE = 0.

From the third of (A-12) in [21],

d

Vx @y’ = érsin 00dp

.10
TEY _ £ TE
(™) = o (rp"™)
which reduces to

al/)TE Aal/)TE
sin @ da¢p © 86

Vx(PryTE) =0

Multiplying (2-38) byg~! whereé is given by (2-3), we obtain

1 awTE 1 al/)TE

g1 (7 x Gry™) =0

Using the third of (A-12) in [21] to evaluateethburl of (2-39), we obtain

16
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1
EpEgT Sin O

v x (5—1 (v (f‘rl,bTE))) s

a( oYt d 1 oyTE ~ 1 0 /[ oyY'E
| —==|sin 6 ——| = +0 —\r
00 00 d¢p \sin 8 d¢p E9EQT OT 00
iy 1 o r oY'e
¢£0£9r or\sin 8 d¢ ) (2-40)

Equation (2-16) witlp™ replaced byp™E is

B Aa¢TE ~ 16¢)TE R 1 ad)TE
veTt =7 ar +6 (? 200 > +é <r sin 8 d¢ ) (2-41)

Ther-, 8-, and¢-components of (2-36) are, after use of (2-40) é&»dll), the

respective equations

1 0 - ealpTE N 0 1 alpTE y 6¢TE
ggrsin 6\ 00 S Y58 d¢ \sin 6 d¢p J@Hof0 5, (2-42)

— kiryTE =0
LofowT), . (1)6¢TE—0 (2-43)
gpT OT 4 00 J@Hoto r) 960
1 0( r oy’ L ( 1 >6¢TE_O (2-44)
ggr dr \sin 8 0d¢ JOHo®o 1 5in g ap

Equations (2-42)—(2-44) are rewritten as

17



T 1 9 sin 0 oyYTE 1 oxYTE _ jwHoEos oPpTE
gg \r?sin 6060 a0 r2sin20 0d¢? r ar
+ k(z)EglpTE> =0 (2-45)
1 0 /0
ee_r%(a (ryp™) +iw#o€o€9¢TE> =0 (2-46)
1 d (0
R TE) = 2-47
536 G U + Jwtesosad T ) = 0 (2-47)

Equations (2-46) and (2-47) will be satisfied if
_ d
]w#05059¢TE = - ar (Tl/’TE)- (2-48)

Discarding the factor 0#81 in (2-45) and then substituting the partial demxeawith
0

respect to- of (2-48) into the resulting equation, we obtain

1 0?2
r dr?

TE v
(rp )+rzsin 060( 08

(2-49)
1 62 TE

+ : id
r2sin20 0d¢?

+ k(z)Egll)TE = 0.

Modifying (2-24) by replacingg™ by yTE and then substituting the modified (2-24)

into (2-49), we obtain

10/( 0y 1 o (. oY’ 1 oxTE
——\r + ———|sin 6 + ,
r2or ar r2sin 6 96 a0 r2sin20 0d¢?

(2-50)

+ k(z)Sgl/JTE = 0.

18



Equation (2-50) is the wave equation{oi®.

2.3 A general solution fogpy™ using the method of separation of variables

By introducing the electric anisotropy ratio
AR == (2-51)

(2-25) can be written as

1 d Y™ 1 d oy™ 1 92y™
<r2 v >+ —(sin@ v >+ L

(AR)2 or or r2sin 6 00 20 r2sin?0 0d¢?
+ k2ep™ = 0, (2-52)
Substituting
Y™ = R(H(O)D(¢) (2-53)

into (2-52) and dividing the resulting equation®¥d, we obtain [[21], Section 6-1]

1 d(ZdR>+ 1 d(_ 9dH)+ 1 d?o
(AR)r?R dr "ar) Trzsing Hao\"" Y d6) T r2sin20 @ do?
t kZe, = 0. (2-54)

Multiplying (2-54) byr? sin? 8, we obtain

sin?6 d dR\ sin 8 d dH\ 1d%®
(AR)RE(rZ E) + 7 %<Sin %> + EW + k(z)ETT‘Z sin?0 = 0. (2-55)
2
In (2-55),id—¢ has to be a constant. Let
@ dp?

19



1d?®

—_——_— = — 2_ 2'56
dagr - ™ (2-56)
Multiplying (2-56) by®, we obtain
d*o
— 20 = 0. 2-57
ip? +m‘d =0 ( )

Substituting (2-56) into (2-55) and then diviglithe resulting equation syn? 6, gives

2

1 d dR 1 d dH m
o\ @ ——(sin 0 —) - ——+kfer?=0. (258
(AR)R dr (r dr) T Hsino a0 (S'“ 0 dg) g Tkier?=0.  (2:58)

Seeking to derive the associated Legendre equdfR1], Appendix E] we let

dH m?

d
— (i )= = _ 2-59
70 (sm 0 dH) " n(n+1). ( )

1
H sin 6

Multiplying (2-59) byH, we obtain the associated Legendre equation wiki¢f21],

Appendix E]
! d(' edH)+ r- ™ V=0 (2-60)
sngag S 0 H\ It D =g JH =0,
Substituting (2-59) into (2-58) yields
! d<2dR> +1) + kZe,r? =0 2-61
AR\ ar) "Mt D+ ket =0. (2-61)
The product of (2-61) wittAR)R is
d /. dR
E(rz dg)) + ((AR)k2&,7% — n(n + 1)(AR)R(r) = 0. (2-62)

20



Substituting (2-51) for the firgAR)in (2-62) gives

%(rz diir)) + (kiegr? — n(n + 1)(AR))R(r) = 0. (2-63)
Substitution of
X
r= P (2-64)
into (2-63) obtains
%( 2 d};g)) + (x2 —n(m+ 1)(AR)R(r) = 0 (2-65)

wherer is given by (2-64). IfAR= 1, then (2-65) would be the differential equation fo
the spherical Bessel functions of argumentand of ordern [[24], Formula

10.1.1].Therefore, iIAR= 1, a solution of (2-65) would be

R(r) = jn(koy/ea T) (2-66)

wherej, is the spherical Bessel of the first kindAR #+ 1, then there is a new variahle

that satisfies
n(n+ 1)(AR) =v(v+1). (2-67)

Equation (2-67) is rewritten as

2

(v + %) - %+ n(n + 1)(4R). (2-68)

Taking the square root of both sides of (2-88),have

21



V=

N| =

+ \/n(n + 1)(AR) + %. (2-69)

Choosing the positive square root in (2-69)h&d, v is positive whem is positive, we

obtain

v= —% + \/n(n +1)(AR) + %. (2-70)

Substitution of (2-67) into (2-64) gives

;—x<x2 Z—I;) + (x?—v(v+1))R =0. (2-71)

Since (2-71) is (2-65) witlAR) replaced by 1 and replaced by, it follows that a
solution of (2-71) is obtained by replacingin the solution (2-66) of (2-65) by.

Therefore, a solution of (2-71) is

R = jy(ko\[eg T) (2-72)

2.4 The wave functiongg™ andy™E

Using the results obtained in sections 2.2 aB¢dthe general solutions for both scalar

potentialsp™ andy ™ are proposed in this section.

2.4.1 The wave functionp™
In Section 2.2.1p™ was shown to satisfy (2-25)

(2-25), which repeated here, is
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e\ 10 [  op™ 1 0 o™ 1 o%p™
(—)——-r + sin 0 + -
gg/ T2 0r or r2sin 6 00 a0 r2sin?2 0 0¢?

+ ke, ™ = 0. (2-73)

From the development (2-52)—(2-72), it is evidémat general solutions of (2-73) for

TM(i -
Y™ arew{e,oggm given by

YIMD = b0 (koyf2g IR (cos 8){cos (mg), sin (m)} (2-74)

wherev is given by (2-7O)b1(,1) = Jjy, bf,z) =9, b1(,3) = h(l), andbff) = hf,z). Here,j,
andy, are, respectively, the spherical Bessel functiohshe first and second kinds,
hf,l) = jy + jy, and hf,z) =jy —jw . For(i=1,23,4), the spherical Bessel function

b (x) is given by [[22], (D-20)]

b (x) = \/7 B, () (2-75)

whereBY =, B® =v,, B® = HM, andB™ = H® and],, is the cylindrical Bessel
function of the first kind of ordet, Y,, is the cylindrical Bessel function of the second
kind, H"” = J,, + jY,,, andH® = J, — j¥,. Also, {{P™ n =0,1,2,..},m < n} are the
associated Legendre polynomials. In (2-74), thesastijt {e, o} stands for either the

™) ;

subscript e or the subscript o. Téhedependence ap,,,,  is cos (m¢) and theg-

dependence opZ,“,f,S” is sin (m¢). The most general TM wave functiomi$™ given by

TM(),, TM TM(i), TM(i
= ALl'O Z Z e‘m?ELl) emTS.l) + OmT(ll)womT(ll)) (2-76)

i=1mn
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TM(i) TM(i)

. TM(i .
wherea,,,,” anda,,,,’ are arbitrary complex constants (‘) andz/;om,(j) are given

by (2-74). The facton, was put in (2-76) becaugeof (2-14) should be proportional to

Ho-

2.4.2 The wave functionp™E

The wave functionp™ satisfies (2-50) which is similar to (2-52) Repegtthe
development of (2-52)—(2-72), starting from (2-Gttead of (2-52), we observe that the
equations foH (6) and®(¢) are the same as those obtained starting from Y D&2hat

the equation foR(r) is the equation for the spherical Bessel functiohsargument

ko\/€s ) and orden. Therefore, we obtain
Yponimn = bY (ko[2g )BT (cos B){cos (m¢p), sin (me)} (2-77)

where b,(f) = jn b,(f) =V, , b,(f) = hfll) , and b,(f) = hflz) . Here, j, and y, are,
respectively, the spherical Bessel functions offitst and second kindﬁ,fll) = jn + JjVn

and h,(f) = jn—Jjyn . Also, {{B",n=0,12,..},m <n} are the associated Legendre

polynomials. In (2-77), the subscrip¢, o} stands for either the subscript e or the

subscript 0. The-dependence ng,];:l( is cos (m¢) and thep-dependence QPTE(l)

omn

sin (m¢). The most general TE wave function/i§¢ given by

4
TE TE TE TE
_8050 Z em(r? emgll)-l_ om(;L) omg?) (2'78)
i=1mn
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WhereaeT,}fl(,? andaz,i(,? are arbitrary complex constants ap&f,ﬁ) andlpg,fl(,f) are given

by (2-77). The factog,ey was put in (2-78) becaugeof (2-35) should be proportional

to gp&p.

2.5 The calculation of the andH field components of the TE and TM
waves using the vector potentidlandF

Using the derived scalar potentigis™ andy ™ in the sections 2.4.1 and 2.4.2, the
electricand magnetidield components corresponding to TE and TM wawescderived

in this section.

2.5.1 The TM field components

Substitution of (2-14) into (2-8) and (2-10) gsv

B™ =1 x (+4,) (2-79)
1
D™ = —V xVx(#4,) (2-80)
JWHo
A, =1yYp™, (2-81)

Expressions are needed for the vectors on gi-hiand sides of (2-79) and (2-80)Alf

was a general vector function given by
A=7A, + 04 + PAy, (2-82)

then [[21], (A-12)]
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VXA 1 [ (A 9 aAg] 1[ 1 04, 6(A)]
B rr sin 6 106 o Sin d¢ sin 8 d¢p Or e
+ ¢ [ (rAg ] (2-83)
With A4 = 74, (2-83) reduces to
vV x (FA —é( - aA) ‘(16A) 2-84
(FA-) = rsin 6 0¢ ¢r69 (2-84)

EvaluatingZ x V x (#A,) by first substituting (2-84) foF x (#4,) and then using

(2-83) to do the outside curl operationirk 7 x (#*4,.), we obtain

R P! 0 _sineaAr)_E)( 1 E)Ar)]
VXV X(PA) =T —— ag( r 90) ap\rsmoap/l T

0= () o (a5 @89)

which reduces to

R 1 ) 04, 1 %4,
VXV x(PA)=r (sm )

r2sin 6| 060 26 sin 8 d¢?
1024, . 1 024,
+6 - + ¢ —; :
r draf rsin 6 drd¢ (2-86)

Equation (2-86) is equivalent to
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VXVXx(FA,)

[ 1% 1 94, 1 924,
~T1772962 " r2tan 0 90  r?sin?@ d¢p?

Lo (LA (1 0
r drof ¢ rsin 6 d¢par )

In retrospect, the present derivation of (2-&7hardly necessary because (2-87) is

(2-87)

easier to obtain by replacimgy™ in (2-15) byA,.. The term in the square brackets in (2-

87) needs to be simplified. Using (2-81) to replegpé™ in (2-21) byA,, we obtain

1 924, 1 94, 1 azAr_<sr>62Ar

2 - - = ke, A,. 2-88
r2 9602 r?tan 6 96 r?sin?60 0¢? o012 + ko&r Ay ( )

€o

Substitution of (2-88) into (2-87) gives

VXVX(PA, =7 (ET>62A’+k2 A |+8 Lo%A,
(FAr =7 gg) 0r2 0&rfir r 0rd0

- 1 0%4 -
+d . r\ (2-89)
rsin 6 dgar

Substitution of (2-84) into (2-79) and substduatof (2-89) into (2-80) give

BT™ _ 9( 1 aAr) _$ (EOAT)
rsin 8 d¢ r 060 (2-90)
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1 g\ 0%4 10%A
™ _ A r r 2 A T
= - A o=
b Jjou, r ((89) arz koer r) * (r 6r69>

[ 1 024, ]
+¢< >} (2-91)

rsin 6 d¢par

whered, is obtained by (2-81) anp™ is given by (2-76) whergy, "\ is given by (2-

{e,o}mn

74). Detailed expressions fB'™M andD™ are obtained by expandidg in (2-90) and

(2-91). Substitution of (2-76) into (2-81) gives

4
TM( i TM(i i
Ar = o Z Z(aems)As?&mn + aomr(ll)As,z)mn) (2'92)
i=1mn
where
® — ), TM(D)
Ar,{e,o}mn - rlp{e,o}mn (2'93)

and the subscride, o} stands for eithee or 0. Substitution of (2-74) into (2-93) gives

O

1
r.{e,o}mn kO \/8_9

B} (koy[eg T)PT (cos 6){cos (m@),sin (m)}  (2-94)

whereééi) (x) is the alternative spherical Bessel function gilbgrn[21], (6-23)]
BY(x) = xbP (x) (2-95)

Wherebf) is the spherical Bessel function given by (2-7SQbstitution of (2-75) into

(2-95) gives
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BO(x) = / - B o 12(%) (2-96)

whereB(l)1 /(%) is the cylindrical Bessel function described ie #entence that contains

(2-75). Substitution of (2-92) into (2-90) and (2}Qives

— Z Z{ aTM(l) a‘47("l)¢3mrl ¢ ~1 a‘47("l)emn
— Ho emn r sin 8 ¢ r 00

i=1mn
a0 (5L romn _ 5 104rom), (2-97)
omn rsin 8 0d¢ r 020

1\ ™(@) 0”4, ®
r.emn
DTM = ]zz Z{ emnl ( (g) T + kgfrArl'emn

i=1mn
5 (197 Aremn) (2 azAi‘lmn)
r 0drdf rsin 8 d¢ar

2 4D
TM(l)( <_>a Ar omn +k(2)€ A(l)
T
€

omn arz romn

9 lazASlmTl + d’)‘ 1 azA‘E”lB)mn )}
r 0rof rsin 8 d¢or ' (2-98)
Seeking to simplify the coefficients pfin (2-98), we go back to (2-53) wh el,\f)ggm

could beR(r)H (8)®(¢). Multiplying (2-61) byt oo, and using (2-51), we obtain
: , Wieopn
e,o;mn [ [
()5 ( = ) by, = nuk DU, (2:99)

Replacingy™ in (2-24) by we obtain

{e,o}mn’
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 Vieomn) _ 07

e,oymn _ e TM(l) ]
ar( ar ) =T or2 (rw{e,o}mn)' (2-100)
Substituting (2-100) into (2-99) and then diwigiithe resulting equation by we obtain

2 40
(?) O Arfeopmn ke a® Mt D o (2-101)
7]

012 r{eoymn ~ 72 r,{e,oymn

whereA® is given by (2-93). Substitution of (2-101) in®$8) gives

r.{e,o}mn

ZZ{ MO (n(n+1)A(1) )+9 lazAiflmn
]w emn r,emn T arag

i=1mn

+$ 1 azAS?amn ) + TM(l)( <—n(7’l D A(i) )
rsin @ d¢or @omn romn

10%Anpmn\ |, (1 9*Arom
__ _romn _ (2-102)
g (r draf té rsin 8 Jd¢or )}

Using (2-2) and (2-1), respective§™ andE™ can be written as

1
H™ = —B™ (2-103)
Ho

1 _
E™ = 8—(5-1 - D™), (2-104)
0
Equation (2-102) is recast as
D™ = #(DF¥ + DIY) + 6(Dge + Day) + ¢(Dgle + DGl (2-105)

where
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TM(i) n(n +1)
D, {e o} = Z Z ( Qe 0ymn Ar,{e,o}mn (2-106)

i=1mn
4 2 2@
1 TM(l) 1 a AT‘ {e o}mn
Dg fe.0) = jo Z Z (a{e“’}””‘ T 0rde (3107
i=1mn
4 ®
M _ 1 TM() 1 04 Ae,0ymn (2-108)
¢{e,0} — Jw 2 ’ a{e,o}mn rsin 6 d¢por .
1=1mn

Use of (2-51) in (2-67) gives

an+1) = v(%l)sr (2-109)
0

Substituting (2-109) into (2-106), we obtain ttilowing alternative expression for

D™

r,{e,0}"

1 n viv+Der
™ _ TM(i) r o)
DT,{E,O} - ]_wz Z (a{e,o}mn Tzé‘g AT,{e,o}rrm)' (2-110)

Substitution of (2-97) into (2-103) gives

Z Z{ TM(i) aAE’ )emn d) ~1 aAg"l)emn
emn r sin @ 0¢ r 00

i=1mn

+a

omn -

rsin @ 0d¢ r 96

TM(D) 9 1 aAS)omn 1 aAs)omn
(2-111)

Substituting (2-93) into (2-111) gives
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™) ™)
H™ = Z Z o (gL MPeomn _ é Mol (2-112)
e.opmn sm 0 0d¢ 06

i=1e0mn

where inclusion of,., has allowed the separate even and odd expressigAsl11)

to be written as one expression. Substitution ef4Rinto (2-112) gives

4
_ TM() 0]
= Z Z e 0y Mo oymn V)) (2-113)

i=1eo0mn

where
ME e v) = b(”(kr)(e = P (cos 6)
dP™(c .
(= sin (), cos ()}~ T D o (me,sin (mpyp @D
where
k =k, \/g_e (2-115)
and, using (2-51) in (2-70),
1 nn+1le 1 i
v__§+j—€r +7 (2-116)
Using the identity
et b rai= (—a+Vb+a?)(a+ Vb +a?) _ b , (2-117)

a+ Vb + a? a+ Vb + a?

(2-116) is expressed as
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_ nn+ 1)egg
g (% N \/n(n + ey N %) (2-118)

&r

The right-hand side of (2-118) is less suscéptib roundoff error than the right-hand
side of (2-116). Substituting (2-3) and (2-105)ii2-104) and then doing the indicated

scalar multiplication, we obtain

1 DTM + DTM ADTM + DTM D +D
E™ — —(f‘ T.e 7,0 +0 0,e 0,0 + ¢ ¢.e ¢o> (2_119)
€o &r € &p
Substitution of (2-110), (2-107), and (2-108pi2-119) gives
™ _ TM(J) V(V +1) o
E JwepeEg Z Z {a{e O}mn 72 Ar,{e,o}mn
i=1 e,omn
(2-120)
1 aZAS)e oymn ~ 1 aZAS)e oymn
+ §-__nrleomn (eojmn,,
r 0rdf rsin 8 d¢or

where inclusion opl., has allowed each pair even and odd expressio(%119) to

be written as one expression. Substitution of (RH® (2-120) gives

_ TM(D) V(V +1D v
ETM ](UE € Z Z { a{e o}mn( l/){e o}mn
0<0 i=1eo0,mn

(2-121)

.1 02 ™) R 1 92 ™
o r droo (ﬁp{e"’}mn) o rsin 6 d¢or (Tlp{e'o}mn))},

Substitution of (2-74) into (2-121) gives, aftese of (2-115),
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Ho (api® ND ) (2-122)

8089 {e oymn”" {e,o}mn
i= 1eomn
where
NO (kv prv )b(‘) kr)P(cos 6
{oroymn(k,v) = #—=———=bP (k)P (cos 6){cos (meh), sin (m¢)}

de( 0)

1d
+-— o dr (rb(l)(k ))( {cos (me),sin (m¢)} (2-123)

+ d;%ﬂ{"(cos 0){—sin (m¢), cos (mg¢)}).

2.5.2 The TE field of the vector potential F

Substitution of (2-35)into (2-30) and (2-31yes

D™E = -V x (PE,) (2-124)
1 _
BTE = i Vx (&1 (Vx(PE))) (2-125)
where
F. = ryTE, (2-126)

Expressions are needed for the vectors on ¢-hiand sides of (2-124) and (2-125).

Replacingd, by F,. in (2-84), we obtain

=0 ey ) -5 (125)

With € given by (2-3) and witlr x (7E.) given by (2-127),
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1. (V x (FF, )—9( ! aFr) A( ! az~;> (2-128)
¢ (Fh)) = goEpT Sin O ¢ ¢ gocqr 00 /)

Since the right-hand side of (2-128) is the picidf1/gye9 with the right-hand side of

(2-84) with A, replaced by, it follows thatV x (?‘1 (7 x (?Fr))) is given by the

product ofl/(gye9) With the right-hand side of (2-87) withy. replaced by, as follows

7x (51 (7 x 7))

B A( 1 ) 1 0%E, 1 OE 1 9%
=T £0€p r2 062 r?tan 6 00 r?sin? 6 d¢? (2-129)

Lo LB - 1 9%E
£oEpT 0T 00 ¢ gopT Sin B dpar |

The term in the square brackets in (2-129) néztie simplified. In (2-49),

0 alpTE alpTE azlpTE

— | si = i . 2-1
(sm 0 ) cos 6 50 + sin 6 FYE (2-130)

Substitution of (2-130) into (2-49) gives

1O ey T 10WT 1 9
r 0r? r2tan 0 00 r2 002 r?sin? 6 0¢? (2-131)

+ k(z)Sgl/JTE = 0.
Multiplying (2-131) byr and then rearranging terms, we obtain

1 92E, 1  OF 1 0°F _0%F,
r20602 r2tan 0 90 r2sin? 6 0¢p2  Or?

+ kieyF, (2-132)

wherekF,. is given by (2-126). Substitution of (2-132) iff129) gives
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7x (51 (Vx 7))
—A(1> 62Fr+k2 E|+6 L R
=T gocp/ \ 012 0oty ggEgT 0T 00 (2-133)

. 1 0%E
¢ £opT Sin B dgpor )

Substitution of (2-127) into (2-124) and suhsgidn of (2-133) into (2-125) give

D" = -4 - aﬁ;> + ‘(1 aFT) (2-134)
B rsin 6 d¢ ¢ r 00

1 [d%F _(10%E\ ./ 1 0%E
BTE = {# + kiegE |+ 0| - + ¢ }  (2-135)
jweysg arz | OO T 0rdf rsin 8 d¢or

whereE, is given by (2-126) ang™E is obtained by (2-78) whelﬁz{TE(i) is given by

e,ojmn

(2-77).

Detailed expressions f@&'E andB™E are now obtained by expandifgin (2-134) and

(2-135). Substitution of (2-78) into (2-126) gives

4

TE(Q [ TE(i i
E’ = oo Z Z(aem(rll)F;”(,:e)mn + aom(rll)F;”(,;)mn) (2-136)
i=1mmn
where
@ _ ., TEQ@)
Fr teoymn = T¥(eoymn (2-137)

where the subscride,o} stands for either e or o. Either e is chosen aih Isales of

(2-137) or o is chosen on both sides of (2-137hs8tution of (2-77) into (2-137) gives
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; 1
) )
Fr,l{e,o}mn kO\/S_B n (2-138)
WhereB,Si) is the alternative Bessel function given by [(2;46-23)]
BY(x) = xbP (x) (2-139)
whereb,(li) is the spherical Bessel function given by [(2-ZDy20)]
b (x) = / B, (%) (2-140)

andB,Si)(x) is the cylindrical Bessel function described in7&). Substitution of (2-140)

into (2-139) gives

B () = \/; Bo1 /(). (2-141)

Substitution of (2-136) into (2-134) and (2-1¥®)Ids

4 @ @
~ 1 OF 10F,
TE _ TED| _45 r.emn r.emn
D™= 2ogq Z Z{aemn o (r sin 8 d¢ ) té (r 00 )

i=1mn

+ aTE(i) _9 1 aF;"(i))mn + ¢ 1 aF;"(iJ)mn }
omn rsin 6 a¢ r ag (2-142)

BTE — 1
jw

0] 2 (D
TE 9%F, 197 Fremn
?:1 Zm,n{ aem(rll)( < SO+ kO SGEF?T”") + 0 (r a:;;"") +

I 1 a2F1E,ie)mn TE(i) 0 Frglgmn @) 1 azFﬁlgmn
¢ <rsin 0 opar )) + Gomn (7 ( + kOgQFTOWl) +0 (r oro0 ) +
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5 < 1 %>)}- (2-143)

rsin 8 0d¢or

The coefficients of in (2-143) need to be simplified. When the devalept (2-52)—

(2-72) was repeated, starting from (2-50) for tikeChse, we obtained, instead of (2-61),

d dR
—(r? - = 2-144
™ ( dr) n(n+1) + kigpr? = 0. ( )

| =

TE(i)

te,0}mn+ WE ODtain

Multiplying (2-24) byy

al/)TE(l) ' ]
e <r e Omn) +k2egr? D =+ DY) (2-145)

or {e,o}mn {e,o}mn

TE(7)
{e,o}mn’

Replacingy™ in (2-144) by we obtain

a2/ oylF® 52 |
e {e oymn TE(i) )
or <r or " 512 ( Ve, o}mn)' (2-146)

Substituting (2-146) into (2-145) and then dingl the resulting equation by, we

obtain
9F, _n(n+1)
__rieoimn 42 @ _MRT ) e (2-147)
or2 0800 (e,0ymn r2 r.{e,o}mn
whereF,?, . is given by (2-137). Substitution of (2-147) ir{@143) gives

ZZ{ 0@ (1D r0,,) (2-148)

i=1mmn
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1D (1 0o, e, M@+ D)
6 r 0rdf +é rsin 8 Jd¢adr )+ Ao (F —Fromn

v (12 Fomn ), (L OFiom
r 0rof ¢ rsin  d¢or )}

Using (2-2) and (2-1), respectivel!t andE™E can now be calculated by

HTE — iBTE
Ho

ETE — (5—1 . DTE)_
Equation (2-142) is recast as
D™ =6(Dg% + Dg5) + ¢(Dgk + Dy

where

4 @
oTE TE(D) -1 OF, {e,oymn
6,{e 0} = €0€0 Heoymnisin g o

i=1mmn

@
D TE(l) 1 aF {e o}ymn
¢) {e O} - 6089 {e o}mn r ag .

i=1mmn

Substitution of (2-148) into (2-149) gives
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(2-152)

(2-153)



ZZ{ TE(l) (n(n + 1) F(L) ) + 0 1 62F;’(le)mn
]O)Ho Aemn r.emn T‘ 9roo

i=1mn

~ 1 aZF;'(:e)mn LTED nn+1)
+¢ rsin 0 a¢a ) omn( T—Fr,omn

(2-154)
(10%Eomn o 1 0%Em
Q| = —_Lomn
+ (r drao +é rsin 8 d¢ar )}
Substituting (2-137) into (2-154), we obtain
Z Z (a L TE® n(n+1)lpTE(l)
](UMO {e, o}mn r {e,o}mn
i= 1 eomn (2_155)

51 07 TE(i) ~ 1 a2 TE(D)
+o7 r 0rdo ( Ve, O}m”) té rsin 6 dpor (rl/){e’o}mn))}

where inclusion of,., has allowed the separate even and odd expressi¢@sl54)

to be written as one expression. Substitution ef{Rinto (2-155) gives, after use of

(2-115),
& 89
= ;)1 (afeopmnV{eopmn (k) (2-156)
0 i=1e, Omn
whereN{, . (k,n) is given by (2-123) with replaced by.. The same procedure can

be applied for calculating™®. Substituting (2-3) and (2-151) into (2-150) ahdrt doing

the scalar multiplication, we obtain
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1 /. -
E™ = ——(8(Dfs + DFE) + (0% + D)) (2-157)

Substitution of (2-152) and (2-153) into (2-15R)es

® ®
ETE — Z Z JEO (a 1 OF; {eoymn é= 10F, {e,0ymn (2-158)
eoymn r sin@  d¢ r 00

i=1e,0,mn

where inclusion of,, has allowed each pair of even and odd expressio(%158)

to be written as one expression. Substitution €#3?2) into (2-158) gives

TE(i) TE(i)
BT = Z D | s | LMoo _ g Wieoimn (2-159)
Ueoymn Sln 0 0¢ 06 '

i=1e,0mn

Substitution of (2-77) into (2-159) gives

TE
Z Z ( feoimn M&)o}mn(k,n)» (2-160)

i=1eo0mn

wherek is given by (2-115) ansr®

{e,o}mn

(k,n) is given by (2-114) withv replaced by n .

2.6 The derivation of the generalized Mie series cogdfits in a radially
uniaxial sphere

Consider a radially uniaxial dielectric spherghwadiusa immersed in an incident x-

polarized time harmonic plane wave traveling inZfagrection as shown in Fig.2.1.

Ei — dxe—jkoz — axe—jkorcosa (2-161)
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i— 5 i —Jjkoz -
H'=a,—e (2-162)
Mo

The sphere is comprised of permeabiligyand permittivity tensor of the form.

& 0 O
F=¢, [o £ o] (2-163)
0 0 &g

wheregg is the permittivity in air and; and gy are the relative electric permittivities

parallel and perpendicular to the optic axis, respely.

Using the spherical to Cartesian coordinatesfiamation, the radial component Bf

is given by
El = sin 6 cos ¢p e Jkorcos @ (2-164)
The partial derivative with respectéoof [[21], (6-90)] is

dP,(cos 0)

= (2-165)

—jrsin @ elTcos & = Zj" Cn+ 1)j,(n

n=0

Since%PO(cos f) = 0, the summation in (2-165) starts rat= 1. Substituting the
complex conjugate of (2-165) withreplaced byk,r into (2-164) gives

Ei cos ¢ - dP,(cos 0)
T ket ae

n=1

JTh@2n+ D (ker)

(2-166)

From [[21], (E-25)],
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dB,(cos 0)

= p? 2-167
70 P, (cos 0) ( )
and therefore (2-166) simplifies to
. Eycos ¢ _ 1
B = Z J7 (20 + 1)), (kyr)PL(cos 6). (2-168)
0

The radial component @f! also obtains by

Eysin ¢
=2 ¢ Zj‘" 2n + 1)j,(kor)Bl(cos ). (2-169)
jnokor e}

Fig. 2. 1. A plane wave approaching a uniaxialetiic sphere

As outlined in previous sections, the incidetdctic and magnetic fields can be
expressed as a superposition of. BBd TM fields. The TE fields are constructed by
letting A=0 andF = a,F,. and the TMfields are generated by= @, A, and F=0. Using
(2-10) and the-component of (2-89) with, = &g = 1, it can be shown that

43



i 1 9’ 2 i
Er = j(JJ‘LlOEO m + kO Ar (2-170)

Substituting (2-8) and (2-78) into (2-174}, is given by AL = rd,.¢k,, where [2]

From (2-14) , (2-76) witl{i, v, gg) = (i,n,&g), A = r¢p-.,, where

Biw = o ) jn(koT)PI(c0s 0) (abms cos (mp) + g sin () (2-171)
mn

so that (2-170) becomes

i1 d® o m TM ()
B = e ) (G * K u(kar)Bi (cos 6) (afy cos (mo)
mn

(2-172)
+ dgmy sin (m))
where
Jn(x) = 2jin () (2-173)
Substitution of (2-168) into (2-172) leads to
(e’ aomn) = (agiy”,0) (2-174)

And
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ez )17t DJaCkar) P (eos 0)
0 n=1

(2-175)

_ TM(i d?
M) NP )
Ae1n —+k kor))P, 0).
Jjwegk ] el ((drz O)Jn( 0 )) n(cos )

The set of function§Pl(cos 8),n = 1,3, ...} is an orthogonal set so that (2-184) implies

that
aTM(i) 2 A
Tezra) @ Dialkor) = 2o (G + kDIn(kor)) Pi(cos 6) - (2:176)
oKo

with ko = w./lee, , the solution of (2-185) far’@ is

eln

T _ ﬁ By @0 + Dja(kor) o177
b 12 (L 4 k3 lkor))

Now, f,, (k,r) satisfies (2-147) witlag = 1 which is

dZ
((d_+k0>]n(k0 )) ( * l)Jn(kO ) (2'178)

Substitution of (2-187) into (2-186) gives

™(@) _ E_OEOj‘”(Zn +1) ]
Aein = = \/; n(n+ 1) (2 179)

In view of (2-173), (2-174), and (2-179), (2-17Ecbmes, upon use 8f = w./ty&
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C

¢lTM =

0s ¢ Z a,.j, (ko) PL(cos 0) (2-180)
WMo =

i "(2n+1)

Where a,, = D

. A similar procedure can be applied to compeite using

E! = r¢k, where

. sin¢ = .
Ohe =" ) auin(kor) B (cos ) (2-181)
0 n=1

The scattered fields representing Téhd TE waves are constructed using scalar
potentialsp7,, and¢iz. The forms ofpz, and¢gs; are similar to (2-180)and (2-181)

but the radial components are replaced by the HduRketions of second kind as follows

cos
Pm = —¢Z buh? (kor) B (cos 6) (2-182)
@ n=1
sin ¢
brE = 0)77¢ Z cuh? (kor)PL(cos 0) (2-183)
0 n=1

whereb,, andc,, are well-known generalized Mie series coefficiesutsl are obtained by
writing boundary conditions in the interface of tingaxial dielectric sphere. The Bessel
and Hankel functions in (2-180)—(2-183) are altéueaspherical Bessel and Hankel

functions which are related to regular Bessel aadKél functions by (2-96).

As suggested in [2] and previous sections, #wor potentialé, AL anda,E! inside

the uniaxial sphere are-a,¢t,, andra, . respectively where
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cos ¢ = )
Bhw =" > dujy (kr)B} (cos 6) (2-184)
n=1

sin¢ - . )
enjn(kr)B; (cos 0) (2-185)
Wio £

¢§‘E =

wherev andk are given by (2-115) and (2-116). The sphericahponents of E andH

inside and outside the sphere are now given by

p 1 0° 2\ 4
B = e (g ) 4 (2-186)
gL oA 1 oF (2-187)
6 Jjopgepr 0rdl  gyrsing 0¢
1 0242 1 oF!
EP = L 2-188
? jwpee,rsinf ordg + &, 00 ( )
1 0?2
p_ 2\ pp
B = (W tk, >Fr (2-189)
1 04A% 1 0%EP
P _ r r 2-190
Ho o7 Sin @ d¢p +ja)uoepr droe ( )
1 0AY 1 02Ef
HE = — . 4 2-191
¢ Uor 06 +jw,u0£pr sin 0 drdg ( )

where the superscripp=i, s, ort and ¢, is gp&y ande, for inside and outside the sphere

respectively. Note that, = ko\/E_g for inside the sphere arig, = k, for outside the

sphere. The unknown coefficierits, c¢,,, d,, ande,,, are now determined by satisfying the
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boundary conditions which require the continuitytbé tangential components of the

electric and magnetic fields at the boundary serfafcuniaxial sphere

E(a) + E5(a) = Ef(a) (2-192)
Ey(a) + Ej(a) = E5(a) (2-193)
Hj(a) + Hi(a) = Hi(a) (2-194)
Hj(a) + Hj(a) = Hj(a). (2-195)

Applying the boundary conditions of (2-192)—(@5), one can derive the unknown

coefficients as follows

b _—V/Eelnod)]y(Veokoa) +Ji(Veakoa)in(koa)

= 7 = — — n 2-196
Jean® (o (foako) — 1o (Yoekom) AP (cga) (2:199)

Tl (k) + ETa (ko))
" AP (kea)a(eokoa) — veoln(VeEokoa) B (kpa) (2-197)

NES
n= " — (Y . = — dp
Jeo AP (o), ({eokoa) — T (y/eekoa) HP (koa) (2-198)

j
- T 7 N N Py an
AP (koa)Tn(y/2okoa) — v/2elh (y/eekoa) HY (koa) (2-199)

where each prime in the equations represents ttieatlee with respect to the argument.
The E and H components can now be obtained by iygp{2-196)—(2-199) and (2-180)—

(2-185) to (2-185)—(2-191).
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Chapter 3 The generalized Debye series in a radially uniaxi dielectric
sphere

In this chapter, we examine the electromagnaiane wave scattering by a uniaxial
dielectric sphere using the generalized Debye séhieory. With the aim of Debye series
formulation, the generalized Mie series coeffickeate replaced by infinite series of
partial wave contributions that are diffracted,leefed and refracted following by p-1
internal reflections in the sphere. In additioreiploring the bistatic Radar Cross Section
(RCS) of the positive/negative uniaxial dielectsggheres using Lorenz-Mie theory, the
first three terms of the generalized Debye seriesiavestigated and the results are
applied to improve our understanding of the scatjemechanism from a uniaxial

dielectric sphere.

3.1 Introduction

The majority of materials are anisotropic. Cajste.g., calcite, sapphire, and stacked
dielectric layers, [25] are among the materialst thee naturally and artificially
anisotropic. In recent years, the analysis andatherization of anisotropic materials has
been a great subject, due to the recent advanaeaterial science, technology and their
applications in electromagnetic scattering and avi@ve engineering [2]. Among those
investigations, scattering of electromagnetic waligsuniaxial dielectric spheres has
attracted considerable attention due to their diapkeatures [26], [27]. Backscattering
from a uniaxial dielectric sphere was first studibgd Wong et. al. [2] using the
generalized Mie series equation. A significant aefiéhce between backscattering in

uniaxial and isotropic dielectric spheres was rgggbin his paper. However, as stated in
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the paper, there is no general rule for scattebpgion-absorbing uniaxial dielectric
spheres and therefore further work in this area regsired. The Mie series solution,
while offering an exact mathematical solution floe scattering problem, fails to provide
a physical description of the problem. To overcamme difficulty, the Debye series is
used to investigate scattering from an isotropieleditric sphere [28]. In addition to
exploring the bistatic Radar Cross Section (RCSa afmiaxial dielectric sphere using
Lorenz-Mie theory, the generalized Debye seriasti®duced in the second section. It is
shown that the generalized Mie series coefficigptandc, are the decomposition of a
series of partial wave contributions that are dited, reflected and refracted following
by p-1 internal reflections in the sphere [6]. Thenostatic and bistatic RCSs are then

examined for each term of the Debye series, angaoed with the isotropic case.

3.2 Formulation of the generalized Debye series

In this work, we consider a radially uniaxia¢ldictric sphere with radiusimmersed in

an incident x-polarized time harmonic plane waaéting in the z-direction as shown in

Fig.3.1.
E; = G, /%07 = g, ejkorcose 3.1)
The sphere is comprised of permeabiligyand permittivity tensor of the form
) e 0 O
=aff ol ©2)

wheregg is the permittivity in air and, andey are the electric permittivities parallel and

perpendicular to the optic axis respectively.
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Fig. 3. 1. A plane wave approaching a uniaxialetigic sphere

The electric and magnetic fields are evaluatedsdalar potentials ap(r, 8, ¢) that

satisfy (2-26) and (2-50). These equations areatepienere as follows

& 10 0Yry

- (r2 =)+ V2 k2 =0

€9 rz ar (T' ar ) + tlpTM + OST‘IPTM (3_3)
10 0Yrg
(2 1TE 2 2 _
25 (r Ee ) + Vg + koeore =0 (3-4)

where k=w/c and V= V2 — izi (r? i). The solutions for the scalar wave equations (3-
2 0r or

3) and (3-4) are (2-76) and (2-78) respectivelye Tiagnetic and electric vector

potentials are written a& = ra, ;) andF = ra, ;5 and therefore
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oi) =2 Aamee rreosn(and)

wherev = \/n(n + 1)AR + i — % andB, andB, are the alternative spherical Bessel or

Hankel functions of the first and the second kinﬂargument\/e_gkor and are related to
the regular Bessel/Hankel functions by (2-141) ARds the anisotropy ratio defined by

AR =22, In our notation the spherical Hankel functionstw second and first kinds are

Er
employed for outgoing and incoming waves respelgtiveonsider a single incoming
TM/TE spherical wave with unit amplitude,,,, = 1/C,,, = 1 incident on the uniaxial
sphere [28],

{Fr(r' 6 ‘l’)} = {5V AL Kr) B (cos o) oo )

A (1,0,9) €0 sinme (3-6)

When this partial wave hits the boundary inteefatr = a, theT2! portion of the
incident wave is transmitted into the sphere amdrémaining portionR22, is reflected
back into the air region as shown in Fig. 3.1. Thmplete TE and TM waves in the two

regions are expressed as

AL(r,0,9)) _ Lo () A (Jegkor)

{Frl(T, 0, d))} = Lmn {5059}7}%1 F [ﬁT(ll)(\/g_gkOr) f(6,¢) Ka o
AX(r,0,¢)) _ Hoy [0 7 5
{E’Z(T‘, 0, ¢)} = ; {80} [Hn (kor) + R%Z H%(kor)] f6,p)r=a a9
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WhereI:I]El) andﬁ,(ll) indicate the TM and TE spherical incoming wavepeetively and

f(6,¢) = P™(cos9) {Z?Ijng)} To determine the unknown coefficiedt§' andR?22, the

tangential electric and magnetield boundary conditions are applied.

Starting from the TM wave, the tangential electand magnetic fields can be
determined by setting F=0 and substituting the ratigivector potential# of (3-7) and
(3-8) into (2-187) and (2-181) as follows

1 02T T2 AL (Jegkor) £(6,0))

14 _
Eo  jwlEeEg dro6 (3-9)

1 dEma s TE B (Jeokor) £(6,9))
Uo7 Sin O d¢ (3-10)

A
Hi" =

a1 P Cmntto| AV (ko) + RE B (kor)| (6, )

E; = -
o JwloeEg oroo (3-11)
A _ 1 0 (Sim,n to| ALY (eqr)+REZ AP ()| £ (0,0)
6 = Lorsing 2% ' (3-12)

Writing the boundary conditions at the interfat¢he uniaxial sphere yields

A A

Eg" =E§ lr=a (3-13)
A A

Hé = Hg r=a- (3_14)

Substituting (3-9)—(3-12) into (3-13) and (3-iiNe

1 (BB (Jegkoa)f (6, 9))
&g dadb

3-15
02(| A" (ko) + RZ* AP (koa) £ (6, $)) o1

dadf

53



(T2 A& (feakoa)f (6, 9))

d¢
~ ~ 3-16
0| A" (koa) + RZ* AP (ko) | £ (6, $)) (340
= 5% :
Equations (3-15) and (3-16) imply that
1 A ~(1) Y A ~('
_T21 H(l) k — H(l) k _I_RZZ H(z) k
\/8_9 n v (\/5_0 Oa) [ n ( Oa) n n ( Oa)] (3_17)
T2 A (Jegkoa) = Ay (koa) + RE AP (ko) (3-18)

where each prime in (3-17) indicates the partisivaéive with respect to the argument of

the Hankel function. Multiplying (3-17) b§® (k,a) and (3-18) byi®" (k,a) give

1 ~(1) —
— TP A (Jegkoa) AR (koa)

e
= A2 (ko) [ (ko) + RE A (ko) (3-19)

TZlAﬁl(\/e_k )I:I‘z’(k — 02" (k Dk 224752
n v eKod )y Oa) - n( Oa) Hn ( Oa) +Rn Hn ( Oa) . (3_20)

Subtracting
(3-19) from (3-20) yields
~ ~(! 1 ~
Tn?lA H%(\/S_Gkoa)HT(lZ) (koa) — _Hﬁl) (\/S_Gkoa)H‘ing)(kOa)
e

(3-21)

= AP (ko) AP (koa) — AL (koa) A (koa).
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Using the Wronskian relationship, the right hame of (3-21) is simplified te2j and
we find that the transmission coefficiefd!" of the TM wave is

2j\/eq

(el (koA (fegkoa) + AP (feskoa) AP (ko) (322)

Substituting (3-22) into (3-17), we find that

214 _
;- =

[~A (ko) AP (ko) + AL (ko) ALY (ko) | A (/2gkoa)
— 2P (ko) AP (fegkoa) + AL (J2gkoa) A (koa)

= [A% (koa) + R A (ko) | (3-23)

which yields

JeoPS (ko)A ((fegkoa) — B ((f2gkoa) A (ko)
Vel (koA (Jegkoa) + B (Jegkoa) B (ko) 24

The same procedure can be applied to calculaettansmission and reflection

224 _
R;* =

coefficients corresponding to thEE wave. SettingA=0 and substituting the electric

vector potential§ of (3-7) and (3-8) into (2-187) and (2-190) yield

F ~
F 1 0|ZmncozeT B (Jegkor) £(6.9))
o - €9€pT SN O d¢p (3-25)
F ~
HlF _ 1 62 [Zm,n 8OEGTr%l H151) (\/gkor) f(9, ¢)]
o - JwloEgEYT drdo (3-26)
1 3 [Smaeo[ A Gker) + RETEY (eor)| £ 6. 0]
o - €7 sinf ¢ (3-27)
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o1 0[S AV (ker) + RETAP (ker)| £(6, 9)]
H j—

O 7 jwpge,r oroo ' (3-28)
Writing the boundary conditions at the interfa¢einiaxial sphere yield
F F
Eg =Ef lr=a (3-29)
F F
Hg = H§ |r=q- (3-30)
Substituting (3-25)—(3-28) into (3-29) and (3-8Wve
o|r2" B (Jeokoa)f (6, )]
d¢
_ _ (3-31)
o[ (ko) + R AP (o] £ 0, )]
02 11" A" ((egkoa)f (6,¢)]
dadb
2@ 22F 73(2)
[Pk + RE AP (0|0, 9)] 63
dad6
Integrating (3-31) ovep and (3-32) oveé yield
T2 AP (Jegkoa) = A (koa) + RF A (ko) (3-33)
JeaT2" B (Jegkoa) = AL (koa) + RZZ“ A (ko) (3-34)

where each prime in (3-34) indicates the partigivaéive with respect to the argument of

the Hankel function. Multiplying (3-33) b2 (k,a) and (3-34) byi? (k,a) give
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121" A (egkoa) AL (koa)

= B (koa) | A" (koa) + REZ" P (ko) | (3-35)

F ~(1)' =~
Jea T2 B (egkoa) By (koa)
= A% (kya) [ﬁr(ll) (koa) + R22" AP (kor)]. (3-36)

Subtracting (3-35)from (3-36) yields

121 [ g B ((eakoa) A (koa) -

Hnlebr0aln2 t0a=Hn2k0aln1 %0a—Hn2 i0aknli0a (3-37)

Using the Wronskian relationship, the right hamde of (3-37) is simplified toj2and
we find that the transmission coefficiefg!” of the TE wave is
2j
—A® (koa) By (JEgkoa) + e Hy (JEoko@) AL (koa) (3-38)

Substituting of the solution of (3-37) fo}!" into (3-33)yields

21F _
;- =

et _ A (ko)A (fegkoa) = eol( (feokoa) AL (koa)
—AP (ko) AP (J2gkoa) + e AL (V2o koa) AR (koa)

(3-39)

The same procedure can be applied for the shadenwdaoy by assuming an incident
outgoing TE/TM wave of unit amplitude hits the bdary interface at r=a in Fig. 3.1.
TheT,}? portion leaves the sphere, and the remaining porip' reflects back into it.

The complete TE and TM waves in the two regions are
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ooy

- zmn {egge}

forr<a andforrxa they are given by

(17 (Veokoa)] |, o)
B2 (Jeokoa))

(A" (Jegkoa) (3-40)
A ferton) £6,$)

{A%(r, 0, ¢)} _ Z {1;3} ng{?] AD (kyr) £(0, )

F?(r,6,¢) (3-41)

Whereﬁ,(lz) andﬁéz) indicate the TE and TM outgoing waves respectivEhe two linear
equations obtained from boundary condition yielus rieflected and refracted amplitude
waves. Starting from the TM wave, the tangentialclc and magnetic fields can be

determined by setting F=0 and substituting thetatezector potential# of (3-31) and

(3-32) into (2-186)—(2-191) as follows

E
1 d(Ena uo[(ﬁéa(@ koa) + RAV AV (/&g koa)] £6,9)) (3-42)
B Jwpogog drdo
Hy
1 A uo| (AP (Jegkoa) + REASY (Jegkoa) | F(6,4))  (3-43)
B Uo7 sin O do

58



g1 A2 (B o T B (ko) £(6, )

O T jwus, drd6 (3-44)

1 d@mn T2 B (kor) £(6,0))
UoT Sin O do (3-45)

A
HE =

Writing the boundary conditions at the shadowrimtary of uniaxial sphere yield

A A

E; = Eg r=a (3_46)
A A

Hg" = Hj |r=a (3-47)

Substituting (3-42)—(3-45) into (3-46) and (3-4ve

1 d2(| (B (Jegkoa) + RE AV ((f2gkoa) | £ (6, 9))

P drd6
(3-48)
_dAT AP (kor) £ (6, 9))
B drdo
d(|(AP (Jegkoa) + RE AV ((f2gkoa) | £ (6, 9))
do
_ A P (k)£ (6, 9)) (3-49)
de
Integrating (3-48) ove# and (3-49) ovep yield
L 72 114 5@’ _ m1245@)"
= (B (Veokoa) + RAVH® (Jegkoa)| = TH2* AP (kor) (350)
(AP (Jeakoa) + RE* AP (Jeokoa)| = T2 AP (kor) (3-51)
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where prime in (3-50)—(3-51) indicates the pariativative with respect to the argument
of Hankel functions. Multiplying (3-50) bi{" (,/£gkoa) and (3-51) b A,Sl)’(\/g_gkoa)

give

A (Jeokoa) + RE AL (egkoa)| A (VEgkoe) =

o (3-52)

Ta? ﬁr(12) (kor)ﬁél)(\/s_ekoa)

(AP (Vegkoa) + RY“ AP (Jegkoa)|ASY (Vegkoa) =

452) 70’ (3-53)

TW%Z Hn (kOr)Hv (\/8_9k0a)

Subtracting (3-52) from (3-53) yields
12 [AP (eg) A (2okoa) — Ve (kor) A (fEgkoa)] =

(3-54)

A (Vegkoa) B (eokoa) = A (fegkoa) B (egkoa)

Using Wronskian relationship, the right handesad (3-54) is simplified t&®] and we
found the transmission coefficient of TM Waﬂ,bzA is
2j
— S AP (ko) AP (Jegkor) + AL (Jegkod) AP (koa) ~ (3-55)

Substituting (3-55) into (3-52) we found

124 _
T, =

(AP (Jeakoa) + REV A (Jegkoa)]

_ 2jJea AP (kor) (3-56)
— S A (ko) AP (fegkor) + AL (J2akoa) AP (ko)

which yields to
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A2 (ko) AP (Jegkoa) — AP ((fegkoa) A? (ko)
—Jeo A (ko)A (fegkoa) + AV (Jegkoa) AP (koa)

The same procedure can be applied to calculaetitansmission and reflection

A
114 _
Ry,” =

(3-57)

coefficients corresponding {BE wave. SettingA=0 and substituting the magnetic vector

potentialsF of (3-40) and (3-41) into (2-186)—(2-191) yields

F
Eg

1 d[Zmncoze[AP (Veokoa) + RE A ((egkoa) | £(6, )| (3-58)

- €9€p? Sin O do

1 @2 |Znote|[ A7 (Veskoa) + REHP ((egkoa) | £(6,4)] (3-59)

a JwHoEoERT drd@

1 d|Zm T2 B Ueor) 6, 0))|

EgF - gorsinf do (3-60)
or 1 [T T A Gor) 16, 0)]
? 7 jwmogor drdo (3-61)
Writing the boundary conditions at the interfa¢¢he uniaxial sphere yield
£} =B 362)
1" = 13"l (3:63)

Substituting (3-58)—(3-61) into (3-62)—(3-63y@i
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d|AP (fegkoa) + RE AP ((egkoa)f (6, 9))]

d¢
~ (3-64)
d[T" B (ko) £ (6, 0)
- i
d2[AP ((Jfegkoa) + RE A (egkoa)f (6, 9)]
drdo
~ (3-65)
d?[ T3 B (kor) (6, )
B drdé
Integrating (3-64) ovep and (3-65) oveé yield
AP (Jegkoa) + REVAY (egkoa) = T2 AP (kor) (3-66)

Jeo [AP (Veakoa) + RE“AD (Jeakoa)] = T2 AP (ko) (3-67)

where prime in (3-66) and (3-67) indicates the iphrderivative with respect to the
argument of Hankel functions. Multiplying (3-66) @1),(\/8_9k0a) and (3-67) by

A (Jegkoa) give

A (Jskoa)[ AP (Jeakoa) + RE" AL (Jfe0koa)]

. . (3-68)
= T2 AP (ko) B (fegkoa)
(1) 7@’ 11F ()’
AY (Jegkoa) [Hn (Veakoa) + REV A (\/s_gkoa)]
(3-69)

1 IS
= — T2 AP (ko) AP (J2gkoa)

N

Subtracting (3-68) from (3-69) yields
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ﬁr(zl)(\/g_ekoa)ﬁ1(12) (Veakoa) — iy (\/E_Gkoa)ﬁvgm(\/gkoa) -

1 R N PN 3-70
12" | =AU BV (Jfegkoa) — AP (ko) ALY ((f2gkoa) oo

e

Using Wronskian relationship, the left hand sidg3-70) is simplified to2j and we

found the transmission coefficient of TE W&WﬁF is

12F 2j\/€q
T,” =

8% (ko) A (Jegkor) + e AL (Jegkor) B o) BTD)

The Fresnel coefficients can be expressed as

)

T2
5
_ ) -
7@’ ﬁél) ko 1 1:1\151)’ koa)| -2
—{‘/f_G}H,(l) (koa) (ﬁ(l)((\/\/ei_ek ;))} +{ Se} "(1)’(\/8_(9 a)}Hr(z )(koa)
n R Hn (\/S_gkoa)
(Vo) A o) f eatoc) -{ 1 | A (eakoc) AL (koa)
1 n 0 ﬁ(l)(\/é‘_gk a) €0 ﬁ(l),(\/_k ) n 0 (3_73)
= " 0 n €gkoa
- ~(2)! ﬁ(l) ko 1 H(l), k, 0
~(VEo) B ) ;g)(wri ;)>}+{ ) (e a>}H£>(koa)
n 6o Hn (\/S_gkoa)
(1
= 7 {Js_e} (3-74)
72) ﬁél) ko 1 H,El)’ ko@)) (s
—{‘/f_G}H,(l) (koa) (ﬁ(l)((\/\/ei_ek ;))} +{ Se} "(1)’(\/8_(9 a)}Hr(z )(koa)
n R Hn (\/S_gkoa)
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7 7@’
(Vo A (o) [H” wg_ek(’“)}—{ - }[H (JE_G""“)}ﬁ,S”(kOa)

_ A7 (Jeokoa))  WEOI AP (fegkoa) (3-75)
- . AD([eok A ([eokoa)) -
_{\/8_9} Hr(lZ) (koa) (A(l) (\/_ a) { } oy (\/_ Oa) 1(12)(k0a)
1 (Veakoa) a,” (Jegkoa)

To show the equality of Debye and Mie series, fisg found the quantit)[(l —

Kn224F)(1—-Kn11AF)—7Tn21A4AF7n124F and then divide it td —4711A4Fas follows

() () () 12lF)

(1 =R =Ry = TV T,
Bl &70)
=1— R+ R +REPRYT = T2VT,?
() p1al#) S (S I
The termr22 RIVF — T2 T12\ s written as

azﬁ(l)'(k a)ﬁ(zy(k a) ﬁél)(\/g_gkoa)ﬁéz)(\/gkoa)
mO O A (Jeakoa) AP (fegkoa)
n 6o n 6o

Diay

gl it

A (zakoa) AP ((fegkoa)

aBHr(zl)' (koa)ﬁ,(lz)(koa) [Ij(l) @ }
_ " (Vegkoa)Hn” (Jegkoa) (3-77)
D,
(7
ﬁg’(\/g_ekoa)ﬁf(\/f_ekoa)}
Ay (J/eakoa) Bz (/egkoa)
"B

«BAY (koa) AP (kya)
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B2AWY (ko) A? (koa) AV (egkoa)HP ((fegkoa)
A (Jeako@) A (f2skoa)
2

’y

+

raal®) _ LHR Geo@) B Geor) — B (o) A (k)] (3-78)

)

T2 :
D
()

; {ﬁ,&”(\/e_gkoa)ﬁv(”'(@koa)} _{ﬁf),(\/s_ekoa)ﬁél)(\/s_ekoa)}]
AP (Jerko) A (Veskoa)) (AL (Jeako@) A (Eakoa)

X .
{7
where
— &€
a_{\/l_e} (3-79)
_{ 1 (3-80)
=l
and
(1
_ _{Jeo) g’ (A,” (Jeakoa)
gy = =AY o)y
+{ 1 } ﬁ,gl),(\/f_ekoa) A9 (kya) (3-81)
Vel |79 (fepkoa)

(3-78) can be simplified to
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aBAP (ko) A" (kor)

ﬁéz>(¢e—ekoa)ﬁ5”’<¢e—ekoa>}
1 (Jegkoa) By (Jegkoa)
2

i

(#1208

1217 _
T, =

21
Ty

A (eokoa) AV (\/gkoa)}
B (Jeakoa) " (Vegko)
2

’y

aBAP (koa) ALV (km[

ﬁ52>(¢e—akoa)ﬁ9>’(¢akoa)} (3-82)
B (Jegkod) B (egkoa)
2

’y

aBHP (koa)ﬁé”(km[

AP (eokoa) AV (\/gkoa)}
B (Jeakoa) By (Vegkoa)
2

’H

aBHP (koa)ﬁé”(km[
_|_

Subtracting (3-82) from (3-77) yields

66



g it _ ol ol

1y S AWV ( [eakoa)AP (Jegk
O‘ZHr(ll) (koa)Hf) (koa){:zl)(\/f—e oa) Azzz)(\/f—e oa)}
_ Hy” (Vegkoa)Hn” (\egkoa)

Diay

A2 (Jeakoa) AV (/2gkoa)
D 2
B

~(2) A(l)’
_ 1Y’ H;”(/egkoa)H JEgk
aBAP (koa) M (kor){ v (Veokot) o™ (V2o Oa)}

@ — (3-83)
A(z)’ ~(1) Hv (,/S@koa)Hv (1/€9k0a)
aBHn (koa)Hn (kor) ’\(2)’ ~(1)
H, (,/sekoa)Hn (,/eekoa)

Diay

82AC (ko) AP (ko ){H (Verkoa)H? (Jeako a)}

+ H(l) (\/_koa)H(z) (\/_k a)
g0
(3-83) is simplified to
peol® puil®) _ sl pral®
( ) 7(2)'
[DA] —aﬁr(ll)l(koa) (\/_9 ot ) A(l)(koa) Ho ,(\/gkoa)
Bl AP egk)) A Wkl @ee

Diay

which can also be expressed as
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padl® gual®) _ panlf) ot
( ) 72’
—aﬁ,S”’(kO@[ v )} B (ko) | ,(@“’“)}
_ (Veakoa) A (Jegkoa) (3-85)
gt
The terml — (R,le{g} + R}ll{g}) is given by
1— (R,%Z{é} n erzl{é})
77(1) 77(2)
D—« Hr(ll),(koa) [Tzl)(@koa)} + Hr(lZ),(koa) 1:1\122)(\/8_9k0a)}]
_ " (J/eskoa) H,” (Jeokoa)
D
{5
3-86
A5 (y/zgkoa) A% (y/2gkoa) o
—B |Hn” (ko )[ e } GO S }]
i A ((feskoa) A (Jeskoa)
D
(&)
Adding (3-85) and (3-86) yields
1— <er12{}§} n RT111{}3}> N R%Z{Ié}R%l{é} _ Tnz1{'§}Tn12{}3} _ (3.67)
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| —— |
I

o ﬁél),(koa)[

AD (fzakoa) + ﬁ,@wg—@koa)}
AL ((fzakoa) + AP (JZskoa)

H(l)(\/_koa)+H(2)(\/_k0a)}

+ AP (kya )[

A ((Jegkoa) + AL (Jegkoa)

00 o (P8 (Veskaa) + A (Jeghoa)
+8|AD (kya )[H(l) (Jeako a)+H(2) (Veako a)}
y (1) (Jerkoa) H(z) (Jeokoa)

+ 8P (koa ){ @ (\/\/:k ?) :H(w (Veako a)}

which is simplified to
1— <er12{}3} n RT111{}§}> N R%Z{é}R%l{é} _ TnZl{é}TT}Z{g}

[—4af,’1(koa) L]” (‘/S_”koa)} + 4p], (ko) {f’ (‘/S_ekoa)}l (3-88)

_ o (Vegkoa) n(Jegkoa)
Py
The terml — R,%l{é} is expressed as
' ! k
—20A? (koa) Jo(Veokoa )} 2BAP (koa) {7(‘/8_9 Oa)} (3-89)
u(JZoko) ' (Jeokoa)

%)

Dividing (3-88) over (3-89) yields
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!

- {0} e {i”ws_ek"a)} oy }{;Eﬁtog} T (ko)
e fe e

!

} A9 (ka)

(3-90)

where b,, and c, are recognized as the well-known generalized Meazies
coefficients and are identical to (2-196) and (Z-18espectively. Equation (3-90)
not only represents the equality of Mie and Debgdes but also indicates that the
Debye series is not an approximate solution analires a summation of infinite
reflected, refracted and diffracted waves that raféected p-1 times in the sphere.
The bistatic RCS of the uniaxial dielectric sphextearacterized by, = 2,¢5 =
2.5 evaluated using Lorenz-Mie theory and the summatbthe first eight Debye
terms is plotted in Fig. 3.2. The results represemsiatisfactory agreement between
two methods and it can be shown that by increasihegnumber of terms in the
Debye series, they will be eventually identical.

In Fig. 3.3, one can observe that in spite ofkvaniaxiality, a significant impact
on bistatic RCS is achieved and depending on tpe,tpositive/negative, and the
angle of observation, the scattering intensityaasiderably different when compare
to the isotropic case. Looking at each individuab®e term in Fig. 3.4 provides a
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physical insight as to which transmitted, reflected refracted rays most greatly

affect the bistatic RCS of the uniaxial dielectshere.

10° -

The first 8 Debye terms
Mie series
10°
B oot
o
)
=
S8 5
w 10 -
om
I
10° |
10'2 1 ] 1 ] ] ] ] ] ]
0 20 40 60 80 100 120 140 160 180
e (Degree)

Fig. 3. 2. The bistatic RCS of a uniaxial dielecsphere calculated using Mie and Debye
seriesky,a = 100
A comparison of P-rays, Fig. 3.4, for positivaiaxial and isotropic dielectric
spheres reveals that the uniaxiality has minimurpaat on p=0 rays, and the bistatic
RCS of the both cases are almost identical. Notg 0 ray, originates from

geometrical optics reflection and therefore nevamegirate into the sphere.

For the p=1 ray, the intensity is significarglyppressed for the angles smaller thah 40
For the p=2 ray, a considerable improvement is eskeon backscattering region and
the intensity is roughly strengthened up to 10 §insempared to the isotropic sphere.
Therefore, by investigating each individual termDefbye series, one can determine the

effect of uniaxiality on p-rays and consequentty bbserved bistatic RCS differences in

Fig. 3.3 can be explained.
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Fig. 3. 3. The comparison between bistatic RCSosftwe, negative uniaxial and
isotropic dielectric spherekga = 10

The logarithmic polar pattern of the Debye sefier the positive uniaxial dielectric
sphere is plotted in Fig. 3.5. The results indicthiat fork,a = 100 the beam width
corresponding to the p=0 lobe is about 1° and #fiep=0 return, p=1 and 4 rays are the
next dominant rays in the forward scattering dimettrespectively. On the other hand,
p=2, 6 and O rays have the maximum intensity orkdxattering direction. Knowing
which terms contribute to the back and forwardtecaiy directions, not only provides a
physical interpretation of the problem, but alsmyld be useful in the field of cloaking in

which reducing the RCS intensity of the objectsapee a challenge in recent years.
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Fig. 3. 4. The comparison of the first three teohBebye series for positive uniaxial and
isotropic dielectric spherekga = 10

‘ P=0 P=1 p=2 P=3 P=4 P=5 P=6 p=7 ‘

90

Fig. 3. 5. The logarithmic pattern of the firste8rhs of Debye series for positive uniaxial
dielectric spherégy,a = 100
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3.3 Conclusion

Lorenz-Mie theory offers a general solution for tbeattering by uniaxial dielectric
spheres, but fails to deliver a physical descriptaf the monostatic/bistatic RCS
differences of the problem when compared to thérapac sphere. To address the
problem, this chapter develops the generalized Betwries for a uniaxial dielectric
sphere. To validate our calculations, we examired listatic RCS of uniaxial sphere
using Lorenz-Mie theory and compared the resulbwlie summation of the first eight
Debye terms with excellent agreement. By investigathe Debye series of a positive
uniaxial dielectric sphere, not only the causebisfatic RCS differences of the uniaxial
and isotropic spheres are identified, but the damtirrays of the back and forward
scattering directions are recognized. The resuight be of value in the field of cloaking

of targets in which uniaxial materials are useddgrade the scattering from objects.
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Chapter 4 High frequency scattering from a radially uniaxid dielectric
sphere

The high frequency backscattering by a large unladielectric sphere is presented in
this chapter. The term high frequency impligs > 1 whereK anda arethe propagation
constant and radius of the sphere respectivelyndJtbie modified Watson transformation
we transform the slowly convergent generalized Bkeies summation for a uniaxial
dielectric sphere into a rapidly convergent contimiegral. The Mie series coefficients
are replaced by their equivalent Debye series ftatimns derived in the preceding
chapter. With the aid of Debye’s asymptotic formidathe alternative Hankel function,
the contour integral is simplified and then computsing the saddle point method. An
expression for the high frequency backscattereld fie proposed and the monostatic
radar cross section (RCS) of a large uniaxial dtele sphere is computed. The high
frequency backscattering of various lossy uniagmieres is investigated and the results

are then compared with those computed using Lofingztheory.

4.1 Introduction

Many materials exhibit anisotropic characteristics. @algs e.g., calcite, sapphire, and
stacked multilayer dielectric materials are amomge of the materials that are naturally
and artificially anisotropic [25]. In recent yeaithe analysis and characterization of
anisotropic materials has been a great subjecttalube recent advances in material
science and technology and their applications iactebmagnetic scattering and
microwave engineering [22]. Among those investigadi the scattering from anisotropic

dielectric or coated dielectric sphere has attthamgnificant attention due to their
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cloaking features [29], [27] and [30]. The exacluson of the backscattered field by a
radially uniaxial dielectric sphere was first sedliby Wong and Chen in [2]. After
modifying spherical potential wave functions inaaially uniaxial medium, they derived
the generalized Mie coefficient by applying the hdary conditions at the air-uniaxial
interface. However, the Mie solution for the is@im dielectric or coated dielectric

sphere suffers from slow convergence at high freges as reported by many
researchers [31], [32]. To overcome this difficulitye Watson method [33] was applied
to transform the slowly converging Mie series suriomainto a rapidly converging

contour integral and high frequency approximati@swlerived. High frequency solution
of EM backscattering is of great interest in tinmamain scattering calculation where it is
used to approximate the improper Bromwich integadwing a significant reduction of

the computation time [10].

High frequency scattering of perfectly conductintiglectric, and coated dielectric
spheres is well understood. Electromagnetic scagfdyy a large perfectly conducting
sphere was first studied by Senior and Goodricl}. [Béda and Plonus [11] found the
geometric optics and diffracted field contributidnsm the isotropic dielectric sphere by
applying the Debye series and Watson transformatietnods to the Mie series solution.
Weston and Hemenger [35] obtained the asymptotigiea for the backscattered field
from the coated dielectric sphere by approximatthg dielectric portion with an
equivalent impedance boundary. A high-frequencylyasisa of EM scattering from a
conducting sphere coated with a composite mateaalderived by Kim using the Debye

series and Watson transformation methods [36].

Although the majority of dielectric materials argisotropic, to the best of author’s
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knowledge the asymptotic solution for the backseatt field from a radially uniaxial
dielectric sphere has not yet been investigate&eltion 4.2, the generalized Mie series
is briefly studied and the modified Watson trangfation is used to transform the slowly
converging Mie series summation into a rapidly @nging contour integral. In Section
4.3, the generalized Debye series for the uniakiglkectric sphere is introduced and the
Mie series coefficients are replaced by their egjent Debye series formulations.
Applying Debye’s asymptotic formula for the altetima spherical Hankel function, the
Debye series reduces to a form that can be comqusied the saddle point method. An
approximate formula for high frequency backscatgrirom the uniaxial dielectric
sphere is proposed in Section 4.4 and the res@tsaanpared with those computed using

the Lorentz-Mie theory.

4.2 Mie series and Watson transformation

Consider a radially uniaxial dielectric spherghwadiusa immersed in an incident x-
polarized time harmonic plane wave as shown in Eidj, traveling in the z-direction

where the incident wave is defined by

E. =@ e—jkoz =4 e—jkorcosel
i X X (4_ 1)

The sphere is comprised of permeabiligyand permittivity tensor of the form

(4-2)

wheregg is the permittivity in air and;, and gy are the electric relative permittivities

parallel and perpendicular to the optic axis respely.
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P=0ray

YYYYYY

Fig. 4. 1. A plane wave approaching a uniaxialetigic sphere

Following the backscattering solution of a rdigliainiaxial dielectric sphere in the
presence of a plane electromagnetic wave repantg?],ithe electric and magnetic vector

potentialsd; andFE? given by the right-hand sides of (2-173) and (3)1vespectively:

s _C0s9 N 2 1
A = " Z b,H; (kor)P; (cos ) (4-3)
n=1
sin ¢ <
E’ = HZ(kor)P} 0).
T 1, cnHy (kor) By (cos 60) (4-4)

n=1

Substituting (4-3) and (4-4) into (2-177)—(2-179thwthe superscripp replaced bys,

with 4 replaced by,, and withk,, replaced by, gives
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0

ES = 1 _-I—kz)(COquib ﬁz(k T)Pl(cos 0))
T JwpgEy 0?2 0 w ’ nfn (Kol ) Fn 45)
n=

ES = 1 0° coSd)i b, H2 (ko) P1( 0)
o _jwuoeorarae w ] np (Kol ) (COS
n=

1 0 (sing = ) ) “6)
~ grsinfdp ( wno cnHy (kor) By (cos 9))
1 92 [cosp~m .
ES = Z b. H2(k pl 9
¢ jwugeorsing araqb( w ’ nHy (ko) By (cos ))
n=

1 0 (sing = ) ) @

£or 06 ( wny L cnHy (kor) Py (cos 9))

n=

Becaus%% P1(cos 6) = —sin 8 PY (cos ), the relationship [21, p.295] Implies that

n

/ -1
sin 6 P} (cos 6) — n(n +1)
(4-8)
Also [21, p. 245]
Pl(cos 6) g-m (—1)"
sing 2 n(n+1) (4-9)

Substituting (4-8) and (4-9) into (4-6) and (4-R)as the back scattering fields
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n

E; = ! <COS ¢ Z b iHz(kor) (_21) n(n + 1))

 jwogor

n

1 [cos¢ T (-1
- — HZ(k
EOT( w7, L Cn n( 07‘) 2

n(n + 1))

n

-1 sin ¢ = d . (-1
S _ _ g2
E _ja)yosor( w an dr Hi Cleor)
n=

sin¢
eor < WMo z Hz(kor)

n(n + 1))

In the field [21, (D-24) and (6-24)],
Hz(kor) _]n+1 —jkor

d ij2 N —jkor
an(kor) = jTkoe /%o

d
(d_+k0 )Hz(kor) _( kO +k 2)]n+1 —]kOT‘ = 0

so that (4-5), (4-10), and (4-11) become

ES=0
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) n(n + 1)).

(4-10)

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)



cos ¢ e ~JkoT
By="0 Z(b g

kot — (1 (4-16)
sin ¢ e ko =™t
ES = TZ(bn —¢e) j"n(n + 1),
n=1 (4-17)
The previous equations are recast as
—jkor
E =— S(m)(cos¢p g + sing ay)
jkor o ¢ (4-18)
= 1 _b,—c
S =) (-1 D
e 27" an (4-19)
J(2n+1)

where a,, = and  and ¢ are the well-known generalized Mie series

nn+1)

coefficients which are defined as follows

/et (P} LA

G iRt LTS

where v = Jn(n + 1)AR + i —% and anisotropic ratidR = i— . To overcome the

r

(4-20)

n

difficulties associated with slowly converging Miseries, we employ Watson
transformation in (4-19). In order to use this noeth(4-19) is first modified to sum up

from n=0. Then the n=0 term is subtracted agaimfesgen function series solution as
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follows:

)

1 N 1 by — ¢y
S(m) = 50 (o = €0) + ) (D™

a (4-21)

Because b, — ¢, contains the factar,, the singularity of% caused by, not being
0

defined at n=0 is removable.

Applying the Watson transformation to the infingieries in (4-21), we obtain

B 1 js(bp — cp)
S(m) = 55 o= c0) = j Zancos(s) (4-22)

wheren = s — 1/2 and contoulC encloses the positive real axis of the complelaae
as shown in Fig. 4.2. The polesééjﬁ lie in the fourth quadrant of the complgyplane,

shaded regions in Fig. 4.2.

Because the closed contour in Fig. 4.2 consisting;¢ C, andCs, does not encircle any

poles of 22&n—cn)

, the integral of2n=) ar6und this closed contour is zero so that
2aycos(ms) 2aycos(ms)

| jsbu—c)

2a,, cos(ms)
c

_ f js(bs — c5) ds + f js(bs — cs) i

2 cos(ms) 2 cos(ms)
C1 Co

(4- 23)

N ij(bs —S)

2 cos(ms)
C3
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The integral ovefC; vanishes and the integral over the parCegbver the arc of the half
circle in the fourth quadrant vanishes [37]-[39]tkat the integral ove€s reduces to
21j Y, Residues due to the poles of the integrand in the fourth quadrant

Therefore, (4-25) reduces to

_f js(by — cp) p ij(bs —cy) I

2a,, cos(rs) 5= 2 cos(ms)
¢ & (4- 24)

+2mj Z Residues due to the poles of the integrand in the fourth quadrant

Substituting of (4- 24) into (4-22) gives

js(b, — ¢,)

1
S(m) = 2a, (bo — o) + J- 2a,, cos(ms)

C1
(4-25)
+ 2mj Z Residues due to the poles of the integrand

The asymptotic high frequency solution for the nefm and line integral of pat@;
gives the geometric optics solution for the far Ksaattered field. The residue series

represents the creeping wave contribution to tlokdzattering field.

In the next section, the general Debye series isolus applied to simplify and then

calculate the n=0 term along with the line integrsdociated with pat;.
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Fig. 4. 2. The contout, C,, C,, andCs in the complex s-plan€; is the straight line
close to the imaginary axi€; is in the first quadran€s is in the fourth quadrant.
C+C;+Cy+C3 is a closed contour.

4.3 The formulation of geometric optics backsmatg from the uniaxial
sphere

As illustrated in the previous chapter, the p=0ntén Debye series solution represents
the contribution due to the reflection from thefaoe of the sphere and the remaining p-

waves are the contributions arising from P-1 reitecin the sphere [28].

Using (3-89), we obtain

An (4-26)
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where

1
I, =5 [RE* — R (4-27)

1 1
L, = _E[rpnA _prnF] -5

(4-28)

TrflATY}ZA T%1FT#2F
1-R ) \1-RF

Substituting (4- 24) into the integrand of the gred along the patle; in (4- 23), we

obtain
s(h. —
j]S(S—CS)dS =1l +1,
2 cos(ms) (4-29)
C1
Where
jsly
= | ——— 4-30
lo _[ 2 cos(ms) ds ( )
C1
jsh,
- | 2P 4-31
by f 2 cos(ms) ds ( )

c1
where thd, corresponds to the portion of the incident waa teflects back at the front
surface of the sphere afigirepresents the portion of the incident wave tmiers the
sphere and after number of reflections, it reenem# from sphere. Using the Debye
asymptotic formulas for the Hankel functions giwerj40]—[42] for large argumentand

indexv « x,
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1) 1 , -1 jx(sint-tcost)-jZ j -2
H, (x)—(znxsmr) ze +(1 +a+0(x )

1 1 L T
HS(Z) (x) — (E X Sin T)—Ee—]x(sm‘c—‘ccosT)+]Z(1 _ 8]

S+ 0(x)

, 1 2 . 9
Hs(l) (x) =jsint <§nx sin T) e]x(Sl"T_”O”)_’Z(l - Z{Z + 0(x72))

@~ .. (] .
H” (x) = —jsint Enxsmr

2 T i9
—jx(sint—-t cosr)+]Z 1+ ]
) ¢ A+ 20

+0(x7?)

wheres=n+1/2ors =v+1/2 wheren =0,1,2, ... and

1 1
v-—§+ n(n+1)(AR)+Z
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(4-32)

(4-33)

(4-34)

(4-35)

(4-36)

(4-37)

(4-38)



~(1 !
A% 12 (ko)

~(1
Hs(—)1/2 (koa)

= jsin(t)

With s = n + 1/2 andkoa replaced by/EqKoa, (4-38) and (4-39) become

1Y ([egkoa) _
1.7 (Jegkoa)

—jsin(t,)

A (Fokoh)
A, (/Eokon)

= jsin(t,)
where

1
n+7

\/e_gkoa

COST, =

~(2)’
H JEokoa
v_(Vesako )— —jsin(t,)

HIEZ) (Veokoa) B

A (Je5kea)
;" (Jegkoa)

= jsin(z,)

where

vVts

\/s_gkoa

COST, =

87

(4-39)

(4-40)

(4-41)

(4-42)

(4-43)

(4-44)

(4-45)



Using [21, (D-21)], (4-32) and (4-33), we obtain

H(11/2(x)

i7(2)
Hs 1/2 (x)

ezjx(sinr—rcosr)—j% (1 _L_I_ O(X_Z))
4x (4-46)

2
Hs( )1/2(")

PO
Hs 1/2 (x)

—2jx(sinr—rcost)+j£( L -2 )
=e 2 1+4x+0(x ) (4-47)

The reflection and transmission coefficients (8§72)—(3-75) can be expressed as

follows:

1

A (Jeakoa)
1

A0 (J53k00)

Multiplying and dividing the numerator and denontoreof (3-73) by and

then factorinﬁél)(koa)out of the resulting numerator and factorﬁl,ﬁ)(koa) our of

the resulting denominator yield

/ H\él)’(\/gkoa) \
77 (D' ~(
{JE_G}HA—%) o) —{ 3 } - (Veoko) | | gy o
17 ko) o B, (Jeokoa)
@ _ \AD (Vzgkoa) )
/ Hél)’(\/‘?—@koa)
- () 2 (ko) A4 A ((fzskoa)
170 W) A (k)

k ﬁr(zl) (\/E_Gkoa) J

22
Rn

(4-48)
AP (ko)

Multiplying the numerator and denominator of (3-?@% and then factoring
n oa
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A ((fegk AD( ek
Alzz)(\/g_a 0@) out of the resulting numerator and factorrg )(‘/_ 0®) out of the
i (Veokoa) (Veakoa)
resulting denominator yield
[ AP (Jegkoa) \
{Ja—e}ﬁ,@kkoa)_{ L AP (Jeakoa) @u—koa)
L 1 VAP (ko) Weod | ' ( f5koa) ) A2 (Jzke a)
= kﬁr(f) (\/S_Bko a) ) (4_49)
( 7 (k) |
_{Je_e}ﬁi”’(ko@ HH Hé”(ﬁkoa) ﬁ,&ﬂ(@koa)}
L 1 VAP (o)~ Weod | 30" zproa) [ 1AL (Veokoa)
k1:1\15})(\/‘9_9](0(0}

Using (3-21) and (3-37), we obtain

(=

T2
- [VEo} @ ko A o) + AP (ko AL (ky)
~ { JE_@}H@)’(kOa) AP (e koa)} { } (2 \/_koa)} e )- (4-50)
1 n (1)(\/_k0a) (1) (\/_k a)

Deriving the numerator and denominator of (4- by)l-l(z)(koa) and then factoring

,°(fegkoa)
1 (Jfeakoa)

ﬁ,(ll)(koa)out of resulting numerator and faCtOt’I{‘\ } yield
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72 (0}
(o e B
/ (H )(\/_ koa)\\
_{\/_}H(z) (koa) | { } At )(\/_koa)}l
1) AP (koa) AY'(Jegkoa)
L nl)(\/_koa)J/

T —

H,El) (\/S_gkoa) (4-51)
1," (Jegkoa)

Using (3-54) and (3-70) we obtain

12
Ty

{#
(=) ﬁﬁ”we‘ekoa)ﬁw(@koa)—ﬁ52>’<¢e—ekoa>ﬁsﬂ<@koa>}
_ D k) B (k) - B (oo B Weakod))

¢y} a A(1) .a ,
MR

Multiplying the numerator and denominator of (4-53)

1
A (Voo (eokon) |
1 an
A (Jeakaa) 1Y) ([Eokon)

A2 (koa)

=(2)

) B, ((Jegk . . .

then factorlngi A((Z):: O)a)j out of the resulting denominator yeild
HTL oa

A, (Jegkoa)
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A" (eokoa) _ A" (f2koa)

{1} 2,"(Jeokoa)  H,”(egkoa)
Vool | B0 (Jeakon) AP (Jogkoa)
2 AP (Jegkoa) AP (Jeokoa))
A (fegkoa)

(VR e (1) A," (feokoo)
1P oa) o) 3O (opkga)

U:LSD (\/gkoa) )

e

H\r(zZ)(koa)

(4-53)

Substituting (4-38)~(4-41), (4-43), (4-44), (4-48)d (4-47)into (4-48), (4-49), (4-51)

and (4-52) give

(Nsint — sin(r,,)\l
A - :
R%Z _ 4 N sint + sin(t,) ¥ erkoa(sin(‘c)—‘ccosr)—jg
R22" Lsinr — Nsin(z,,) J

sint + N sin(7,)

__J 2 (4-54)
(1 ke 0((koa)™?)

( sint, — Nsint \

sint, + Nsin(t)
{R}llA} - .erNkoa(sin(rv)—rv cosrv)—jg

R1Y —sint + N sint, ( (4-55)

Nsint, +sint

i i .TT
\. elekoa(Sln(Tn)—Tn €os Tp)~J5 )
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21F
Ty

2Nsint
721" _ {N sint + sint,
o 2sint

l

sint+ Nsinty

2sint,

712 _ | Nsint +sint,
TT}ZF - 2N sinty

sint+ Nsinty
where N = \/eg. Combining (4-27) and (4-54), of (4-30) can be written as

N sint — sin(t,) sint — Nsin(z,)

f

ﬁél) (koa)

ﬁél) (Nkoa)}

[
|

Hr(12) (Nkoa)

ﬁél) (Nkoa)

ﬁéz) (Nkoa)}

ﬁ152) (koa)

lw (@) f1(koa)

L f ISl sinT T sin(t,)  sint + N sin(t,)
0 =

4 cos(ms)

— 00

Equation (4-28) is expressed as

1 4 F
I, =5 " - 1)

Where

prsA — T,%lAT,}ZA(l _ R7111A)—1

FpSF — T,leTT}ZF(l _ R,lllF)_l

Substituting of (4- 59) into (4-31) gives
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ds

(4-56)

(4-57)

(4-58)

(4- 59)

(4- 60)

(4- 61)



. T —jsirs* = 13" .
p 4 cos(ms) (4-62)

—00

Wheref; (kga) =1 _ﬁ + 0((k0a)‘2), and w(t) = ezjkoa(sin(r)—rcosr)—jE and
0

Substituting (4-55)—(4-57) into (4- 60) and (4- @iyes

A 4N sintsinTt,
r; Ji
P (N SinT + sint,)?

P |1

sint, — Nsint -1 (4-63)
_2 TP WAk

sint, + Nsin(t)

4N sintsinty,

FS = jP [1
P " (sint + Nsin Tn)zj ()

—sint + Nsint, (4-64)

_ o “Lip(o)| WAk

Nsint, +sint

ej25n'

where P(x) = e~2/Nkoa(sin®—xcosx) Expressing cosms = and ¢ =

2eiS™

2kya(sin(t) — T cos T) + sm, the integrals in (4-58) and (4-62) are expreseea form

that can be computed using the saddle point methbd. conditionsp’ = 0|,—, and

o' = ﬁ yield the saddle point of s=0 and after applying siaddle point technique,
0%¥s=0
we obtain
AR~ 1 1. js?
I N_\/1+W N-1 eIZkOaf(k )J‘ sekoa
= a —
’ N + 1+M N+12 T 1+ esem (4-65)
4(Nkoa)?
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js?

1 4 P t® gekoa
L, = E([‘g — ['1(7) )eJZkoaf(kOa)f_ mds (4-66)
AR -1

04 _

4N\/1 + INrea)?

p 2
AR —1

; AR—1 +1-AR ____;V1-AR
— 24 _ 1
] 2]k0a(JN Falkgn)? | Zkoa cos 2Nk0a)

je
' AR —1
\/1 +—5—3— N . AR-1__V1-AR ___,VI-AR
—2ik 24 _ 1
1—j 4% kial) o~ NG e = S <o o) (4-67)
1+ gz + N
4N 'e—Zijoa
rpOF:(N+1)2 .5V—1 —
L—jyre M (4-68)

The solution of the integrals in (4-65) and @)-& obtained using Scott's method

[43]. Settingu = —2jsmt andd = 47t2]k - the integral can be expressed as follows [11]:
0

2

ue o w2 71
j du = —j2n%koa — — — / + 0((kga)™?)
1+e ¢ 6 240kya (4-69)

Substituting (4-69) into (4-65)—(4-66) gives

AR -1
o IN= 1+
ka[ 4(koa)? N—l].
== Roa)_ e?otg(koa)

Io
4 AR—1 N+ 1J (4-70)
=

Jjkoa a Fq
I = [0% — 19" |ei2kot g (k,a
P 4 [p p ] g(koa) (4-71)

4
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whereg(kya) =1 —ﬁ + 0((kga)~?). Setting AR=1, (4-70) and (4-71) reduce to
0
front and rear axial returns reported in [11].
Then = 0 term of (4-25) can be treated in the same proeedReplacing terms and

by by their equivalent Debye series, the equation lbanapproximated using Debye

asymptotic formulas, and after some tedious baigttforward algebra we obtained

[N—JLFAR_l

1 i i(Nkga)? N-—1

—_ — —_- — j2kga 0

Z(bo Co) 1€ f(koa)IN ; R —1 +N+1
l T iR )2

(4-72)

+ [ -]

Substituting (4-70)—(4-72) into (4-25), the backsmrad fields are expressed as

Ej =
AR-1

—eJkr [N~ M ko . N- /

° J‘“Ti)zﬂ | [(ko@)g (koa) + f1(koa)]e/* %[ cos ¢ dp +
T o = @)
singag

s —e_jkr OA OF ]2k a A

B = 222 19" — 10" (ko) g ko) + F (koa)]e/245% [[cos ¢ g +
singag e

where Ej and E; represent the total front and back axial backecedt fieleds
respectively. For the fixed values okya and & , (4-73) suggests that
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increasing/decreasing the anisotropic ratio leads the backscattering field
reduction/enhancement at high frequencies. Howearereasingk,a degrades the
uniaxiality effect and for large values kfa the backscattering eventually reduces to
isotropic case reported in [11]. To show the accyraf the proposed equation, we
compared the high frequency monostatic RCS of tissyl uniaxial dielectric spheres
with those computed using Lorentz-Mie theory. Tloenmalized monostatic RCS of the
lossless case characterized dgy= 10, &, = 20 calculated by Lorentz-Mie theory is
depicted in Fig. 4.3. However, the plot does natvenge at high frequencies due to the

peaks and nulls generated by the interferenceeoitiernal partial waves.

For lossy dielectric sphere, these oscillatidasot persist and the solution converges
at high frequencies [10]. The monostatic RCS ofltissy uniaxial dielectric sphere with
o = 0.2,0.5and0.75 is shown in Figs. 4.4. The results indicate timat backscattered
field of the lossy uniaxial sphere converges agueacy increases and is equal to high

frequency formula derived in (4-73).
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Fig. 4. 3. The monostatic RCS of lossless uniakigectric sphere
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Fig. 4. 4. The monostatic RCS of the lossy uniadielectric sphere witr = 0.2,0.5
and0.75
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4.4 Conclusion

High frequency backscattering by a uniaxialeliglic sphere in the presence of a plane
electromagnetic wave is presented in this papee géneralized Debye series for a
uniaxial sphere is introduced and it is shown thatgeneralized Mie series coefficients
can be written in terms of infinite partial wavést are reflected, refracted or diffracted
after a number of reflections in the sphere. Anrapipate solution for high frequency
backscattered field is proposed in a form conveanfen numerical computation. The
results reveal that the uniaxiality influences thgh frequency backscattered fields and
increasing anisotropic ratio of the uniaxial spheoald reduce the geometric optics
portion of the backscattered field. This could Wevalue in the field of cloaking of
targets where uniaxial dielectric coating is useduppress the scattering from various
objects. High frequency monostatic RCS of lossyaxial spheres are studied and
compared with those calculated using Lorentz-Maotly. The results are confirmed by
good agreement between the proposed formula andMibeseries solution at high

frequencies.
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Chapter 5 Transient Electromagnetic Scattering by a Radiall
Uniaxial Dielectric Sphere: The Generalized Mie andDebye Series
Solutions

In this chapter a theoretical study is carried t determine the scattering of a
transient electromagnetics wave by a radially uaiadielectric sphere. This is achieved
by inverse Laplace transformation of the frequenioynain scattering solution. To
improve understanding of the scattering mechanrem f&a uniaxial dielectric sphere two
different frequency domain solutions are employedhe first approach, the impulse and
step responses of a uniaxial dielectric spherecaatuated by the Mie series solution.
Following the high frequency scattering solutioradérge uniaxial sphere, the Mie series
summation is split into high frequency (HF) and lraquency terms where the HF term
is replaced by its asymptotic expression allowingjgmificant reduction in computation
time of the numerical Bromwich integral. In the @ed approach, the generalized Debye
series solution is introduced and the generalizéel ddries coefficients are replaced by
their equivalent Debye series formulations. Thailtesare then applied to evaluate the
transient response of each individual Debye tedowahg the identification of impulse
returns in the transient response of a uniaxialesph The effect of variation in
permittivity on the arrival time as well as ampties of each impulse return is studied
and the results are compared with those computed) ke Mie series solution. The

numerical results obtained from both methods ammplete agreement.

5.1 Introduction

The electromagnetic plane wave scattering psofresn a dielectric sphere has been an

attractive subject over the past few decades. éroigs solution for this problem was first
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developed by Lorenz and Mie in the form of an iténseries of partial wave
contributions [44] and [2]. Although the solutios exact, it does not allow for
construction of a physical model of the scattenqmmgcess. However, this difficulty is
partially resolved by introducing other methods.,emgy tracing and Debye series
solution. By the means of the Debye series formanatach of the Mie series scattered
wave amplitudesy, andc,, is decomposed into a series of partial wave duoutions that
are due to rays which are diffracted, reflected aafdchcted. The ray characterized by its

value of P in Fig. 5.1 has undergone P-1 intereféctions inside the sphere.

P=0ray

YYIYN®

Fig. 5. 1. A plane wave approaching a uniaxialetigic sphere

Investigating each individual term of the Debyeieseican improve our understanding

of complex scattering processes e.g., the mechaneausing the atmospheric optical
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phenomena such as primary/secondary rainbow, casodaglory [5], as well as the
deformation of intricate ripples in the curve asated with the bistatic RCS of the

dielectric sphere in Fig. 5.2, [45].

However, there are a number of scattering problégmrascannot be examined by Debye
series in the frequency domain such as the separafigeometrical wave contributions
that belong to the same term of the Debye seridssaattering angle but travel along
different path lengths as shown in Fig. 5.3. Thgpes of problems have been solved by
time domain approach where a short electromagmpetige is incident upon the sphere

and the delay time is measured for each individefécted ray [6]-[7].

In recent years, considerable attention has beeando the transient response of various
bodies of revolution [4] and [46]. Perhaps thetfatempt to calculate the time domain
response waveform in the radar scattering contest that of Kennaugh who estimated
the impulse response of the field scattered froperdectly conducting sphere using an
extremely simple approximation [8]-[9]. Aly and Wypr{10] obtained the transient
response of a dielectric sphere using a high frecyescattering approximation. They
have shown that the high frequency asymptotic fasi the frequency domain
representation can be applied beyond a certairt pbthe contour of the inverse Laplace
transformation integral which results in a sigrafit reduction of computation time.
Rheinstein [12] investigated the time domain baakscing by perfectly conducting and
dielectric spheres illuminated by modulated putaens. Using the Fourier series method
the scattering of transient EM wave was estimateti\arious returns were observed in
his solutions. However, his achievements were athy understood due to employing

Lorenz-Mie theory which provides no physical intefation of the scattering
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mechanisms.

—89=10, 8r=35

Bistatic RCS

10'2 1 | | | | 1 1 1 | ]
0 20 40 60 80 100 120 140 160 180 200

0 (degree)

Fig. 5. 2. Bistatic RCS of uniaxial dielectric sphealculated using Mie series, and
koa = 100 [45]

To overcome this difficulty, Lock and Laven [6]-[@ktimated the signature of various
scattering processes from an isotropic dielectqphese using the Debye series
formulation. This allows the calculation of onlysigle term of the Debye series at each
time rather than the entire Mie series time domsaaiution which leads to the

identification of each individual return in the nsaent scattering response of the

dielectric sphere.

Although the majority of dielectric materialseaanisotropic, to the best of our
knowledge, the transient response of a uniaxidediec sphere using the Mie/Debye

series has not yet been investigated. In this enafite generalized Mie series solution
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along with the high frequency approximation fromadially uniaxial dielectric sphere is

briefly studied. Using the inverse Laplace transfation and the Mie series-asymptotic
combination method [10], the impulse and step reses of a radially uniaxial sphere are
calculated in the Second 5.2. In the Section 518, generalized Debye series for the
uniaxial sphere is introduced and the results ppfied to evaluate the impulse response

of each individual term of the Debye series.

1rv+lvw

YYYYYY

Fig. 5. 3. Pictorial representation of p=1 wavegi&tut wave
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5.2 Mie Series and Watson transformation

Consider a radially uniaxial dielectric spherghwadiusa immersed in an incident x-
polarized time harmonic plane wave as shown in Eigraveling in the-direction where

the incident wave is defined by

— 5 p—Jjkoz — 5 ,—jkorcosf
E; = d,e /"% = g, e /%o

(5-1)
The sphere has permeabiliy and permittivity tensor
[sr 0 0
(C_=‘ = EO 0 89 0] _
0 0 &g (5 2)

where gy is the permittivity of free space angd ande, are the relative permittivities

parallel and perpendicular to the optic axis, respely.

Following the backscattering solution of a réigliainiaxial dielectric sphere in the
presence of a plane electromagnetic wave derivéhapter 4, the far-field components
are given by

—jkr

B = == S(m)(cos ¢ g +sin b ) (5-3)

S(m) = Z %jnn(n + 1)(bn — cn) (5-4)
n=1

where R and g are the well-known generalized Mie series coedfits for TM and TE

waves, respectively, and defined as follows
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wherea, = D)

v= Jn(n + 1)AR + % — % and the anisotropic ratidR is defined

by AR = 22, The backscattering transient respoBég) can be evaluated from (5-1) and

Er

(5-3) using the inverse Laplace transformation

1 o+joo
E(t =—_j E(s)estds
O =53] FO 56

WhereE(s) is given by

E*(s)
Ei(s) (5-7)

E(s) =

Substituting (5-1) and (5-3) into (5-7) and caltm@ the backscattering direction

(0 = ¢ =m) gives

Lo (D™ n(n + 1) (by — cn)
2rs/c (5-8)

E(s) =

Wheres = jw andc is velocity of light. Equation (5-8) can be exmed as

71 Ve (D™ (n + 1) (bn — cn) estd(as/o)

g—joo 2_S g (5'9)
c C

TE(t) = E

Introducing the normalized variables &f= (¢ + jw)a/c andt = [E - E]i (5-9)can be

written as
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r_ _ 1 (otieye (- + 1)(b, —c,) _.
c 210 )5 joo 25 (5-10)

whereE(r, 5) represents the normalized backscattered field raisdthe distance from

origin to the observation point amdrepresents the loss associated with the dielectric

sphere.

The Bromwich integral of (5-10) is determined fnymerical techniques such as FFT,
Simpson method, etc. However, the computation tae be substantially reduced by
employing the asymptotic representation in higlgdency region [10]. According to the
Aly and Wong’'s method, the integral in (5-10) isitten as the summation of integrals

over high and low frequency regions as follows:

r_ 1 o—jA B o+jA B
EE(E) = E[l F;(5)e’tds + f Fi;(5)etds

o—joo o—jA
oro (5-11)
+f Fj(§)e“d§l
o+jA
where Fy, corresponds to the generalized Mie series solutind F; represents the
asymptotic expression in a high frequency regidre ¢onvergence result of (5-11) relies

on the choice ofA. For the uniaxial sphere, we found tiat 30 is adequate and

increasing this value has no more influence onsteam scattering response of the
uniaxial sphere. Adding and subtracting the téfr_ﬁ.]'EAFj(E, 0)estds from (5-11), the

transient scattering response is expressed as

rs I U—Hﬁsfs— Sra S -1/pS(s
B0 = eEE) - RENS + L EE) 5-12)

o-J
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where L1 denotes the inverse Laplace transform operatioh @an be calculated

analytically.

Following the high frequency scattering approiion for a radially uniaxial dielectric
sphere proposed in [47], the generalized Mie sesigsmation is replaced by a rapidly
converging contour integral using the modified Wat$ransformation. The solution is
then split into the geometric optics and diffracfeeld contributions. The coefficients
associated with the geometric optics portion apéaed by their equivalent Debye series
formulation. The results are simplified and thempated using the saddle point method.

An expression for the high frequency backscattéietd is proposed as follows

[vo 1o 2Rl |
F5(5,6) = ! #kya) b 1‘ e*g(s)
’ 4 AR—1 N+1 (5-13)
N+ 1 e

where N = /ey and AR = ‘Z—" andg(s) =1—-0((5)"Y). For the choice ofA= 30,

(5.13) can be approximated as

1IN-—-1 __
Fu(5,0) ~ — o7 (5-14)

Substituting (5-14) into (5-12), we obtain

ro o+jA , IN-1
—_ ) = S S(s - (s S— -—— t
~E5(6,0) L L (Fin(5,0) —Fi(5,0))d5 — 557 86(+2) (545
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where the second term of (5-15) displays the doution of the geometrical optics
portion. The integral of (5-15) is carried out wgimumerical techniques with the limits
determined by asymptotic solution. The transiespoase of the isotropic and uniaxial
dielectric spheres characterizeddgy= 10, &. = 10 and 35 for the first four returns are

plotted in Fig. 5.4.
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Fig. 5. 4. Transient scattering from isotropic améxial spheres using the Mie series
solution

The main features of the transient response fratnagic sphere are already identified in
[10]. As observed, the first return from isotropied uniaxial spheres due to paraxial rays
reflected from the front surface of sphere, geoiratioptics reflection (GO), appears at

t = —2. The optical path of all other returns will beeefnced to this return. After GO
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return, the second impulse from isotropic/uniaxdphere arrives at= m. This return

accounts for the arrival of the exterior creepirgves which originate from the incident
rays traveling along the exterior surface of théesp. Comparing the signature of
isotropic sphere with that of obtained from uni&sighere reveals that the arrival time of
the surface waves has weak dependence on the alitia¥iowever, the energy coupled
to these waves is found to be a strong functios,. @is well agy [10]. As observed in

Fig. 5.5, the amplitude of the exterior creepingves reduces/strengthens with

increasing/decreasing for a fixed value oty.

The third and fourth returns from isotropic sphare generated by short cut and upper
apex waves respectively as shown in Fig. 5.6, hed arrival time can be expressed as

[10]

(5-16)

fuq = 49 =2 (5-17)

The shortcut and upper apex waves are alsacatetl as negative and positive smeared
impulse returns from the uniaxial sphere respelstipat their magnitudes are degraded
when compared to those obtained from the isotrgpleere. However, there are some
unknown returns in the response of positive/negativiaxial sphere arriving after/before
shortcut and upper apex waves. By varypgwe found that the arrival time of shortcut
and upper apex waves are not sensitive to anisgtimpt depending on the type of

uniaixality the location of unknown waves move fard/backward along time axis
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which concludes the strong dependency of unknowwmeweao the variation of, .
However, there is no general rule of characterizimgunknown returns in terms of the
arrival time, the magnitude and origin of these esmvusing Mie series solution.

Therefore further studies are required to improweunderstanding of unknown waves.
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Fig. 5. 5. The effect of, variation on creeping wave

The transient response of uniaxial dielectribesp in the presence of other incident
fields such as short electromagnetic pulse, stefgagon, ramp excitation, etc. can now
be evaluated by convolution theorem. The step respmf a uniaxial and isotropic
spheres characterized by=10,¢,=35 and 10 are depicted in Fig. 5.7. It is obsethad
several positive/negative jumps appear in the segponse of uniaxial as well as
isotropic spheres accounting for the arrival ofrgetrical optics, shortcut and upper apex

waves, respectively [10]. It is of interest to nttat there are some additional positive
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and negative jumps appeartaB and 12.6. These jumps are corresponding to wmkno

returns that appear in impulse response of uniaplére.

YYyYyYyYTyYYy

Fig. 5. 6. Pictorial representation of shortcut apger apex waves

In order to identify the unknown returns andvide a physical interpretation of the
problem, the generalized Debye series for uniag@iere is introduced in the next
section and this method is applied to charactezaeh individual return that appears in

transient response of uniaxial sphere.
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Fig. 5. 7. Impulse and step responses of isotrapituniaxial sphere

5.3 The transient scattering response of thexialigphere using
generalized Debye series solution

To improve our understanding of the scattering @ssdrom uniaxial dielectric sphere,
the transient response of a uniaxial sphere isuated using Debye series solution. This
can be achieved by replacing the Mie series coeffis of (5-5) by their equivalent
Debye series summation of (3-90) and evaluating ttla@sient response of each
individual term of Debye series using numerical hteques. This leads to the
identification of each individual return in the msaent response of uniaxial dielectric

sphere rather than the entire Mie series time dosalution.

The first three terms of the generalized Debgmes are depicted in Fig. 5.8. The
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sphere is characterized by=10, £,=35, and5=0.07. Except for P=0 wave, two impulse
returns for each internally reflected wave of orderare observed in backscattered
direction confirming the birefringency phenomenam the uniaxial medium. This

suggests the existence of ordinary and extraorginaves in the transient response of

the uniaxial dielectric sphere.

For P=1, the ordinary wave (O-wave) represeimns ghortcut wave appearing in the
isotropic sphere response and arrives at 6.5 wédnlsaordinary wave (E-wave) arrives at
8. The time delay between these returns is injtidlle to the possible velocity and

shortcut path differences of E- and O-waves.
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Fig. 5. 8. The first three terms of Debye seriesafaniaxial sphere characterized by
89:10, 8,-:35
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For P=2, the O-wave appears at 10.65 whichestidal to the arrival time of upper

apex waves by ray tracing theory in (5-17) white&t E-wave appears at 12.6.

The uniaxial sphere is characterized éh¥10 ande,=2, 15, 25, 35, and 50. By
increasing e, the arrival time of E-wave returns is signifidgnincreased whilst
variation ofe,. has no influence on the arrival time of O-waveunetwhich is equal to
t=6.65. These results were also observed earlihreniransient response of the uniaxial
sphere using Lorentz-Mie theory. Note that incregs}. reduces the E-wave amplitudes

and has a small effect on O-wave amplitudes. Toeltieeare summarized in Table 5.1.
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Fig. 5. 9. The effect of, variation on P=1-2 E-waves

It is also of interest to note that the E-wagtims arrive before O-wave returns with
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relatively larger amplitude when sphere is negativexiale, < &g. This implies that the
velocity and traveling path associated with E-waiesegative uniaxial sphere are

faster/shorter when compared to the positive ualadse.

TABLE 5.1

The arrival time of the first three impulse retufosvariouse, values

P=1 Arrival Time P=2 Arrival Time
gg | & | P=0Arrival Time O-Wave | E-Wave| O-Wave E-Wave
10 2 -2 6.65 4.1 10.65 10.3
10 | 10 -2 6.65 6.65 10.65 10.65
10 15 -2 6.65 7 10.65 11.2
10 | 25 -2 6.65 7.6 10.65 121
10 | 35 -2 6.65 8 10.65 12.6
10 | 50 -2 6.65 8.1 10.65 13.2

5.4 Conclusion

The scattering of a transient electromagnetiwevhy a radially uniaxial dielectric
sphere is evaluated using two well-known methoadsehz-Mie theory and Debye series

formulation. In the first approach, the time domarattering by a uniaxial dielectric
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sphere is computed using the Mie series soluti@hthe results are compared with those
obtained for the isotropic dielectric sphere. Exdepsome unknown waves, the impulse
returns of isotropic sphere are replicated in #sponse of the uniaxial dielectric sphere.
However, the Mie series solution does not providg physical interpretation of the
problem and subsequently the characteristics ofnowmk returns were not fully
understood using this method. To overcome thiscditfy, the generalized Debye series
for the uniaxial sphere is introduced and the tesalle applied to study each individual
term in the Debye series. This allows the iderdtfmn of unknown returns observed in
the Mie series solution. The results confirm thefiingency phenomenon in the uniaxial
sphere and unknown returns are equivalent to exlirsery waves. The effect af.

variation on P=1-2 waves are also investigated.
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Chapter 6 Transient Electromagnetic Scattering by a Radiall
Uniaxial Dielectric Sphere: Ray Tracing Theory

Ray tracing theory for a radially uniaxial dietiec sphere illuminated by an incident
beam of parallel rays is presented in this papefleBtion and transmission of plane
waves obliquely incident on the spherical interfdmetween air-uniaxial is briefly
examined and the general formulations for phaseciteds as well as the refractive
indices of the ordinary and extraordinary waveppgating in a birefringent medium are
investigated. The ray tracing method is implemeréedoth ordinary and extraordinary
rays and the results are applied to evaluate thpggation paths and arrival times of the
shortcut and upper apex wave returns appearingeiriransient scattering response of a
uniaxial dielectric sphere. The effect of the viaoia in relative permittivity on the arrival
times of P=1 waves is studied and the resultsefdly tracing method are compared with

those computed using Mie and Debye series solutidiisgood agreement.

6.1 Introduction

The process of electromagnetic scattering byrapa and nonisotropic dielectric
spheres has been an attractive subject over thie f@asdecades. A rigorous EM
scattering solution by an isotropic dielectric sghis introduced in [1]. Wong and Chen
[2] developed a generalized Mie series scatteroigtion for the anisotropic dielectric
sphere by deriving the spherical potential wavefioms in a radially uniaxial sphere and
computing the scattering wave coefficients in theial-air boundary surface. Although
the Mie series solution is exact, the lack of carging a physical model of the scattering

process along with its computational complexityitgnthe application of this method on
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describing the mechanisms causing many optical g@hena such as primary/secondary
rainbow, corona and glory. These difficulties wegatially resolved by introducing the

Debye series method for plane wave scattering bysatmopic dielectric sphere [5].

According to this method, the Mie series coeffitsenan be represented by an infinite
series of partial wave contributions that are difted, reflected and refracted following
by p-1 internal reflections in the sphere as shawfig. 6.1. This procedure was also
applied to a radially uniaxial dielectric sphere tgriving the magnetic and electric
vector potentials both inside and outside the splard calculating the generalized
Fresnel coefficients at the air-uniaxial boundantgiface of the sphere in [45]. However,
there are a number of scattering problems that atabe examined by a frequency
domain solution of the Mie and Debye series methayd$s consequently, other powerful
methods such as time domain representations d¥flidend Debye series solutions were

introduced.

The time domain response waveform in the radartesoag context was first
introduced by Kennaugh who estimated the impwdspanse of the field scattered from
a perfectly conducting sphere using an extremehpk approximation [8] and [9]. Aly
and Wong [10] obtained the transient response dafietectric sphere using a high
frequency scattering approximation. This problens atso studied by Lock and Laven
[6] and [7] using the Debye series formulation. sThllowed the identification of each

individual impulse return observed in the transresponse of a dielectric sphere.

The transient scattering response of a radiallyxial dielectric sphere for the first
four impulse returns was also studied by authonsgusorentz-Mie theory in [48]. The

result revealed the presence of some unknown etiarithe transient response of the
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uniaxial sphere arriving after/before shortcut apger apex waves. To characterize the
unknown returns, the problem was investigated usivegDebye series method. It was
shown that two impulse returns appear for eachrnatly reflected wave of order P
confirming the birefringency phenomenon in the ui@hsphere. Although the Mie and
Debye theories were successful in describing seypardicular features of the transient
EM scattering by the uniaxial sphere, lack of a pengraphical computation for
determining the features of impulse returns, eagrival time, travel path, velocity,

refractive index, etc., required the ray tracingdelong in the uniaxial dielectric sphere.

In the past, ray tracing has been frequently usedescribe many complex scattering
problems. In 1637, Descartes used ray tracing tienstand the formation of primary and
secondary rainbows [49]. Newton subsequently edddrihe theory to explain the colors
of the rainbow. Laven [4] applied ray tracing alongh the Debye series solution to
compute the arrival time of each individual rayoodler P in the transient response of the
isotropic dielectric sphere and proposed a simpkrdption of the formation of optical
phenomena such as glory and corona. Ray tracirsgalé® studied for an anisotropic
plane parallel plate by Simon in [50]. This wasiaehd by computation of the reflection
and refraction wave angles in the air-anisotromid anisotropic-air boundaries in [51].
Although ray tracing cannot match the accuracy o &hd Debye theories, it remains a
valuable tool because it can provide intuitive exjltions of many features of the field

scattered by a sphere without requiring the usmofplicated mathematics.

To improve our understanding of the impulse retwinserved in the transient response
of the uniaxial dielectric sphere, ray tracing Ire tuniaxial sphere is introduced in this

dissertation. In the following section, the genieged Snell’s laws for the air-uniaxial and
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uniaxial-air boundaries of the sphere are briefilydged and general formulas for velocity
and refractive indices of ordinary and extraordynamaves are derived. Ray tracing for
ordinary and extraordinary wave returns of ordet Rre investigated in the Section 6.3
and the results are applied to propose generalulations for computing the arrival

times of extraordinary and ordinary waves in theawal sphere. The results are

validated by good agreement between Mie, Debyeraytracing methods.

6.2 Waves and Rays in a birefringent medium

Consider a radially uniaxial dielectric sphere widldiusa immersed in an incident x-
polarized time harmonic plane wave traveling in zhdirection where the incident wave

is defined by

— A p—Jjkoz — 5 ,—JjkorcosO
E; =d,e /"% =g, e 1%

(6-1)
The sphere has permeabiliiyand a permittivity tensor of the form
& 0 0
0 0 &g (6-2)

wheregy is the relative permittivity in the air argd andey are the relative permittivities
parallel and perpendicular to the optic axis respely. The EM wave in the air region is
modeled as a beam of parallel rays incident onsgiteere as shown in Fig. 6.1. Each
individual ray is characterized by its impact facto The central ray in Fig. 6.1 is
denoted by b=0, whilgt = 1 represent the edge rays tangential to the tofattdm of

the dielectric sphere respectively.

When an incoming ray encounters the interface efutiaxial sphere at r=a, two rays,
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namely, ordinary and extraordinary waves propaneiele the sphere and after a number
of reflections, they are transmitted out of the esph The solution of the Maxwell

equations in a radially uniaxial sphere yields possible phase velocities as follows [51]

u' =u,
(6-3)

u'’ = \/ug + (ug —u2)(5.7)2 (6.4)

whereu’ andu’’ are the velocities of the ordinary and extraordinays respectively.

1 1 . . .
,uZ = andS is the unit vector normal to the wave front. lbfsinterest
Ho€o€g Ho€oér

ug
to note that the value of' varies between, andu,. ForS || r andS L r this value is

equal tou, andu, respectively whilst the velocity of the ordinamaveu’ is constant

and independent of the wave propagation direction.

Following the constitutive relationship of the muipal E andH components in this
medium, the electric field components of the ordinwaveE’ andD’ lie in a plane
perpendicular to the optic axis. Therefore the wmttors representing the wave
propagationS and energy flowr, of the ordinary wave are in the same direction as

shown in Fig. 6.2.
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Fig. 6.2.Wave and ray in a radially uniaxial sphere

The extraordinary wave however is linearly piaked by bothE” andD' perpendicular

to the unit vectof but these components are no longer in the saraetidin. As a result,
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the directions of wave propagati@®and energy flowR, are not parallel and the angle

between them is given by [51]

nZ + (nZ —n?) cos 6,>

Jn¢ + (né —nf)(cos 6,)* (6-5)

1

n =4 cos”

where the positive/negative sign refers to neg4ingtive uniaxiality and, is the angle
between unit normal vect& and optic axis as shown in Fig. 6.2. A ray velocity is also
defined in [51] due to the optical path differerafethe wave and energy flux (ray) as

follows

~ cos n (6-6)
6.3 Reflection and refraction in the air-uniabalundary of the uniaxial sphere

We define a local coordinate system- 6’ with origin located at the point of ray
incidence on the boundary surface of the uniaxilese. The' axis is parallel to the
radius of the sphere at the point of incidence thied’ — 6’ plane is assumed to be the

plane of incidence in our local coordinate system.

Consider a linearly polarized plane wave with & uactor ofS; normal to the incident
wave front wherd; is the incident angle as shown in Fig. 6.3. Weoteibys,., S,, and
S. the unit vectors normal to the reflected wave tframd refracted wave fronts of the
ordinary and extraordinary waves whéyes defined as the reflected wave angle, &nd
and@, are the refracted angles of the ordinary and esdiaary waves respectivelR,

andR,, are also defined as the unit vectors normal ¢odtfdinary and extraordinary ray
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fronts. Writing the electric and magnetic field Indary conditions at the air-uniaxial

interface and applying the phase matching conditiare found

$.0'=S,.0'
(6-7)
1
—(S,.0") = (5;.0")
Uo (6-8)
L (5000 = (5.0
pr e T (6-9)

where the first equation is recognized as Snedig and the second and third equations

are known as the generalized Snell’s law [51].

Fig. 6.3. Incident wave approaching the air-unibixiterface

Note thatS,.8' = sin 8, where wherd, is shown in Fig. 6.3. Applying (6-3)—(6-5) to

(6-7)—(6-9),6, andé, for a givend; are expressed as
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sinf; = n, sin 6, ( )
6-10

sinfd; = N"' sin 6, ( :
6-11

wheren, = c/u,, n, = c/u, andc is the speed of light amdl" = c/u" which can be

written as follows:

_ NeNy
JnZ + (n2 — n2)cos?, (6-12)
Substituting (6-12) into (6-11) gives
JnZn2 — nZsin? 6,
cosf, =
JnZnZ + (n2 — n2) sin? 6 (6-13)
or
) N, sin 6;
sinf, =
Jnzn2 + (nZ — n2) sin? 6, (6-14)

6.4 Internal reflection in the uniaxial-air balamny interface of a uniaxial
sphere

Following the reflection and transmission in theubdary of uniaxial-air media
reported by Simon [51], four possible internal eéeflon cases in the boundary surface of

the uniaxial dielectric sphere should be considered
1. The incident and reflected waves are ordinary (@&ve)

2. The incident wave is ordinary and reflected wavexisaordinary (O-E wave)
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3. The incident wave is extraordinary, and the reidavave is ordinary(E-O wave )

4. The incident and reflected waves are both extraargi(E-E wave)

6.4.1 The incident and reflected waves are ordinary

Let u, be the phase velocity of the incident and refléetaves and leb, andS, be the
unit vectors normal to the incident and reflecteavev fronts in Fig. 6.4. Applying the
phase matching conditions of the tangential elediids yields

00 S0
Uop Uop (6-15)

which implies tha8, andf, are identical.
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Fig. 6.4. The incident and refracted waves arenangiin a uniaxial-air boundary surface
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6.4.2 The incident wave is extraordinary and reflectede is ordinary

We defineS, andR, as the unit vectors normal to the incident wavd eay fronts
respectively and’’ , v'" as their corresponding phase velocities in Fig,mandu, are
also employed as the unit vector normal to theectdid wave and its phase velocity
respectively. Applying the boundary conditions give

5.0 5,0
u” u,, (6-16)

Substituting (6-4) into (6-16) and deriving the Bsgcorrespond t§,.r’ ands,.r’,

the (6-16) becomes

N"'sin6, = n,.sin 6,
(6-17)

Fig. 6.5. The incident and reflected waves area@xtlinary and ordinary respectively
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Therefore g, for a givend, is found by the following equation

Ne

JnZ + (n2 — n2)cos?0,

sin @, =

(6-18)

6.4.3 The incident wave is ordinary and reflected wizvextraordinary:

We denote by, andu, the refractive index and velocity of incident avaliy wave and
by S, andu, the refractive index and phase velocity of théeméd extraordinary wave

in Fig. 6.6.

Fig. 6.6. The incident and reflected waves arenangi and extraordinary respectively
Applying the boundary condition at the uniaxialdaoundary, we found

n,sinf, = N'' sin 6, (6.19)
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wheref, andf,, are the incident and reflection angles respegtiiefiuation (6-19) can

be written as

\Jn2 —nZsinZ @,

cos 0, =
¢ \/ng + (nZ2 —n2)sin? 6, (6-20)
or
g N, sin 8,
sin @, =
¢ JnZ + (n2 —n2)sin2 9, (6-21)

6.4.4 The Incident wave is extraordinary and reflectedave is
extraordinary:

Using the phase matching condition in the boundatgrface of the uniaxial sphere,

we obtain

N"sinf, = N'' sin 6,
(6-22)

wheref, and6, are incident angle and reflection angles showRign 6.7. Equation (6-

22) implies that incident and reflection angleshiis case are identical.
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Fig. 6.7. The incident and reflected waves are bathaordinary

6.5 Waves and rays propagating in a radiallyxuaiagphere

Using the results obtained in the previous sectimaay tracing for the shortcut waves
in a radially uniaxial sphere is evaluated. Ourestigations reveal that unlike other types
of uniaxial media, the extraordinary wave and rathp no longer propagate on a straight
line when traveling in a radially uniaxial sphengedto the continuous variation of the
angle between wave propagation and optic axis, &), 6.(m), 6,.(k) in Fig. 6.8
Consequently the energy flux and wave propagatiamet on plane curves, which
depending on the type of uniaxiality, positive/n@gg are concave /convex curve toward
the center of the sphere.
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To determine the wave and ray paths correspondinthé extraordinary wave, the
propagation path is split intdl equal sections and introducing a fictitious bougda
between each segments, the sphere is divided nmadi dielectric rings as shown in Fig.

6.9.

Fig. 6.8. Extraordinary wave and ray in a uniaxi@lectric sphere

Assuming negligible variation of, andn over the sections, the rings can now be
characterized by electric permittivity tensoredbut different optic axis directions, e.g.,
r'(1), r'(2), r'(3) in Fig. 6.9. Starting from the incident point ofcharay on the

boundary surface of air-uniaxial, the refractiomlanis obtained using (6-13) or (6-14)

where the incident angle is acquiredéyy= gb in which b represents the impact factor.
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Using (6-5) the angle betwedti’ andD' of the first segment is computed and by
updating the wave and ray paths in the first sactibey are now preserved as the
incident wave and ray for the second medium, m##& $ame procedure is applied to
determine the refraction angle as well as the ambgieveenE’”’ andD"” of the next
segments. Applying boundary conditions on thetfaiis interfaces, the refraction angles
of the segments are given by

Se(m).0'(m)  S.(m+1).0'(m+1)
u'(m) u'(m+1) (6-23)

where m represents the segment number 8p@m) andr’'(m) are the unit vectors
normal to the wave fronts and fictitious boundari#sthe m™ segment respectively.
Substituting (6-4) into (6-23) and deriving the ksgcorresponding t§,.(m).08'(m)
andS.(m+ 1).6'(m + 1), (6-23) becomes

sin(6,(m) + 6,(m)) _ sinf, (m+ 1)

Jn2 + (n2 — n2)cos26,(m) - JnZ + (n2 —n2)cos?20,(m + 1)
whereé,(m) + 6,(m) andf,(m + 1) are the incident and refraction angles at the
boundary of m—m+1 media respectively and

(6-24)

x(m+1) —x(m)
6-25

z(m+ 1) —z(m) ( )

where &(m), z(m)) are the Cartesian coordinates of the pointshenvave propagation

0,(m) = tan™?!
path. Using (6-24) the refraction angle of thel medium is expressed by

cosf,(m+1)

_ |nécos?8,(m) + nj (cos2(6,(m) + 6,(m)) — cos26,(m))
| 13— (2 —n2)(cos?(B.(m) + 6,(m)) — cos?,(m))

(6-26)
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Fig. 6.9. Updating the wave and ray propagatioh pgtdividing the propagation path

into N equal segments

6.5.1 The travel time of the shortcut waves in thekisaattering direction

Following the ray tracing theory in the isotromielectric sphere, the shortcut wave
(P=1) comes from the incident tangential rays whoggact parameters abe= *1. By
traveling along the surface of dielectric sphelese rays enter the sphere at the lit-
shadow boundary region by critical angle. Afterssing the dielectric sphere, they
tangentially emerge on the other side of the boyndarface and regenerate the surface

waves as demonstrated in Fig. 6.10.
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Fig. 6.10. The two possible examples of p=1 raysniaxial dielectric sphere

In the uniaxial sphere, however, two shortcut@gnamely ordinary and extraordinary
propagate in the sphere and it is found that tmeynat necessarily generated by incident
tangential rays. As shown in Fig. 6.11, the inctdeay generating the backscattered
shortcut wave varies kg values. It is of interest to note that the incidangle of these
rays in the negative and weak positive uniaxiakselis still the same as for the isotropic

sphere and is equal ’%;0 However, larger values ef significantly reduce the angle of

the incident ray generating the back scatteredsiovave as summarized in Table 6.1.

134



210

180

150

120

90

60

30

e =10, =2

/ 6 T
P e.=10.¢ =4

[} T

89:10,8r:6

89210,8r=8

| 88=10,8r=10
| 89210,8r:12
89210,8r214

ae=10,8r=16
86=10,8r=18
SBZIO,SIZZO
89:10,8r222

88:10,8r:24

_89:10981,:26

15 30 45 60 75 90

Fig. 6.11. Incident angle versus scattering anpte@shortcut waves

Table 6.1

The incident and scattering angles of the shom@yte in various uniaxial spheres

gg | & | Incidentangle @ scattering Angle
(Degree) (Degree)
10| 2 90 180
10 | 4 90 180
10 6 90 180
10 | 8 90 180
10 | 10 90 180
10 | 12 90 180
10 | 14 90 180
10 | 16 84 180
10 | 18 71.5 180
10 | 20 66 180
10 | 22 59 180
10 | 24 52 180
10 | 26 48 180
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The effect of variation i@, on the wave and ray paths is shown in Fig. 6. Rg.
6. 13. It is found that, by increasing/decreasing Vvalue ofe,, the curvature of the
extraordinary wave and ray grow rapidly and thereetbe path lengths corresponding to
the extraordinary wave and ray increase accordiniglywever, this variation has no
influence on the ordinary wave path length and essalt the arrival time corresponding

to these waves does not depend on the valag of

For the ordinary wave, the ray and wave propagatine same direction and therefore

their arrival time for the back scattering direatis identical and expressed as [10]

£=2(eg — 1) + (m — 2cos™(6,,))

(6-27)
where the first and second terms represent thelirgvtime of shortcut and surface wave
respectively and), = sin"'1/n,. However, the arrival times of the extraordinary

waves/rays are no longer identical to those ofotigenary waves. By varying the relative
permittivities of the uniaxial sphere, we foundttktze arrival time of the extraordinary

ray is extremely sensitive to bath andey.

Using the Cartesian coordinates of N points len extraordinary wave and ray paths

and assuming a negligible phase velocity variaitomg each segment, the normalized

arrival time of the extraordinary backscattered @awhose incident angle grscan be

derived by
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( _1 zr(N)
tan~! ()
N
+ Z N""(m) cosn(m)+/Ax2(m) + Az2(m), x(N) <0
_] m=1 (6-28)
T | )
5 + |tan z.(N)
N
+ Z N"(m) cosn(m) / Ax2(m) + Az2(m), x-(N) >0
\ m=1

where the first and second terms are associatdd tivt surface and shortcut wave
travel times respectivelyAx,(m) =x,(m+1)—x,.(m) , Az.(m)=2z.(m+1)—
z,.(m), where &, (M), z,. (M)) are the Cartesian coordinates of the pointsherray path
andN'"' (m) andn(m) are determined by (6-4)— (6-5). Note that Et and it can also be

determined by the geometrical path along the nomwele front. Using the relation

betweenu'” andv” in (6-6) and knowing that

JAx2(m) + Az%(m)
JAXZ(m) + AzZ(m) (6-29)

cosn(m) =

(6-28) can also be expressed as

( . z(N)
tan 1x(N)
N
+ Z N (m) JAxZ(m) + Az2(m), x(N) < 0
= Tl (6-30)
5 + |tan Z(V)
N
+ Z N (m) JAxZ(m) + AzZ(m), x(N) > 0
\ m=1
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where each term in the summation of (6-30) repitsdtie travel time along a segment of
the wave path and (x{, z(m)) are the Cartesian coordinates of the pointshenvtave
path. For high positive uniaxiality where the baksered shortcut wave is generated by
incident wave with impact parameter |6f < 1, the normalized arrival time can be

expressed as

N
t =—cos6; + Z N"'(m) cos n(m) /Ax2(m) + Az2(m)

m=1

(6-31)

or

N
t =—cosb; + Z N (m)/Ax2(m) + Az2(m)

m=1

(6-32)

where 6; is the incident angle of the wave generating thekbcattered shortcut wave.

Fig. 6. 12. The shortcut wave and ray in variougatige uniaxial spheres (solid line
represents the wave propagation path and dottedsliray path)
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Fig. 6. 13. The shortcut wave and ray in variousitpe@ uniaxial spheres (solid line
represents the wave propagation path and dotteddliray path)

To validate (6-28)—(6-32), the arrival times of tRel ray for different values @f. are
evaluated for N=2300 and compared with those coetpusing Mie and Debye series

theories with good agreement as summarized in TaBle

Table 6.2
The Arrival Time of the Shortcut Wave for variogjsvalues

P=1 Mie and Debye series Methods P=1 Ray tracintpide

g | & | O-Wave E-Wave O-Wave E-Wave

=
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10, 2 6.65 4.11 6.65 4.10
10, 3 6.65 4.78 6.65 4.81
10| 4 6.65 5.33 6.65 5.31
10| 5 6.65 5.63 6.65 5.66
10, 6 6.65 5.91 6.65 5.94
10 7 6.65 6.18 6.65 6.17
10| 8 6.65 6.37 6.65 6.35
10, 9 6.65 6.54 6.65 6.51
10| 10 6.65 6.65 6.65 6.65
10| 12 6.65 6.85 6.65 6.86
10| 14 6.65 7.04 6.65 7.04
10| 16 6.65 7.23 6.65 7.26
10| 18 6.65 7.32 6.65 7.36
10| 20 6.65 7.51 6.65 7.55
10 | 22 6.65 7.60 6.65 7.61
10 24 6.65 7.61 6.65 7.62
10 | 26 6.65 7.69 6.65 7.68
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6.6 Conclusion

Ray tracing theory for a radially uniaxial digtiec sphere is implemented in this paper.
The phase velocities as well as the refractivecesliof the ordinary and extraordinary
waves and rays in a radially birefringent mediura lariefly studied and the results are
applied to evaluate the arrival times and propagapaths of the shortcut wave returns.
The effect of the variation in relative permittiess on the properties of these returns is
investigated and it is found that the extraordinaaye and ray no longer propagate on a
straight line when traveling in a radially uniaxiaiedium. The curvature of the
extraordinary wave and ray paths grow rapidly wvittreasing/decreasing,. indicating
increased/decreased path lengths of the extrasydimave and ray. The angle of the
incident ray whose scattering angle is in the baskwdirection is computed for various
dielectric constants and its travel time is comguéad compared with that obtained

using Mie and Debye series solutions with satisigcagreement.
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