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On Ranking and Selection from Independent Truncated Normal 
Distributions 

 
William Horrace, Syracuse University 
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Abstract 
 This paper develops probability statements and ranking and selection rules for independent truncated 
normal populations. An application to a broad class of parametric stochastic frontier models is considered, where 
interest centers on making probability statements concerning unobserved firm-level technical inefficiency. In 
particular, probabilistic decision rules allow subsets of firms to be deemed relatively efficient or inefficient at 
prespecified probabilities. An empirical example is provided. r 2004 Elsevier B.V. All rights reserved. 
 
JEL classification: C12; C16; C44; D24 
 

1. Introduction 
 Truncated distributions are common in economics, where non-negative random variables characterize data 
generation processes. On the most fundamental level, price and quantity are assumed to be non-negative. A specific 
distributional class, truncated normal distributions, are commonly used. For example, truncated normal are used in 
the censored and truncated regression models, see Tobin (1958), Amemiya (1974) or Heckman (1976). Recently, 
Hong and Shum (2002) show that the vector of drop-out prices observed in an asymmetric ascending auction may be 
multivariate truncated normal. Additionally, the truncated normal distribution is used to describe technical 
inefficiency in parametric stochastic frontier models, see Greene (2005). The importance (and relative complexity) 
of multivariate truncated normals is illustrated in the sizeable Bayesian literature devoted to computer simulation of 
these random variates, for example, see Geweke (1991). 
 This paper develops probability statements on independent truncated normal distributions that characterize 
the relative magnitude of realizations from the distributions. That is, if is a multivariate truncated 
normal random variable, the goal is to attach probabilities to statements on the relative magnitudes of the Wj when 
they are assumed independent. In particular, this paper presents probabilistic ranking and selection rules to 
determine subsets of the n elements of W that are relatively small or large at prespecified probabilities. The 
proposed rules are based on a non-standard multivariate distribution derived from differences of independent 
truncated normals. While the form of the multivariate distribution is non-standard (complicated by the truncation), 
the probability inequalities are readily calculable. An application to parametric stochastic frontiers models is 
considered; these models yield truncated normal distributions for firm-level technical (in)efficiency, and then 
attempt to characterize the ranks of realizations from these (in)efficiency distributions. The proposed selection rules 
accomplish this task by identifying relatively (in)efficient firms at a prespecified probability, and it is argued that the 
rules are more theoretically justified than current methods for assessing distributional differences in these models. 
 

2. Characterizations of the distribution 
This section presents characterizations of the multivariate truncated normal distribution. 
 
Definition 1. Let be an n-dimensional random variable. W* has a non-singular n-variate normal 
distribution with mean vector and (n x n) positive definite covariance matrix , if it has density 
 

 
 
 
 



Adopt the standard notation: W_  Nð0;RÞ. Let be thetruncation of W* below 
 

 
Definition 2. W has an n-variate truncated normal distribution given by 
 

 
 
Where is an n-dimensional Riemann integral from a to and . One could 
envision truncation of a subset of  this just requires that for certain , the truncation point goes from  to  
in the limit. Other forms of truncation have been suggested by Tallis (1963, 1965) and Beattie (1962). Define 

 vectors:  and  with typical elements  
respectively, and . Then, the characteristic function of W is given by the following result: 
 
Theorem 3. The characteristic function of W is 
 

 
 
The proof is in Section A.1. Tallis (1961) derives a similar formula for the moment generating function of W. The 
derivation hinges on a series of variable transformations that shift W without scaling it. The univariate case  
was first suggested in a problem posed by Horrace and Hernandez (2001). Of course, the characteristic function 
generates the moments of W. Tallis (1961) derives these moments using differentiation of the moment generating 
function when  and R is the correlation matrix associated with . Amemiya (1974) adapts the Tallis 
results for the case where . Weiler (1959) derives them for the case n = 2 using integration of the 
density f W. While most of the results of this paper can be derived for arbitrary truncation below c, this paper is 
concerned with truncation below 0 for each element of W*. Moreover, ranking and selection rules are greatly 
simplified by orthogonality. Therefore, we will always make the following two assumptions. 
 
Assumption A.0. c = 0. 
 
Assumption A.1.  is a diagonal matrix with typical element  
. 
Definition 4.Under A.0 and A.1 the elements of W* are independent, and W has an n-variate truncated normal 
distribution given by 
 

 
 
where   
 

 
 
This leads to a useful formula for the cumulative distribution function. 



Definition 5. Under A.0 and A.1 the cumulative distribution function (c.d.f.) of W is 
 

 
 
The assumptions also lead to a similar simplification of the characteristic function. 

 
Corollary 6. Under A.0 and A.1, the characteristic function of W is 
 

 
 
It is clear from Definition 4 or Corollary 6 that: 

 
Conclusion 7. Wj and Wi are independent if and only if   and   

 
 The result can be generalized to the case where Wj and Wi are uncorrelated vectors of truncated normal 
variates which are individually correlated within themselves. This is identical to the result for multivariate normal 
distributions, see Tong (1990, Theorem 3.3.2). Under A.0 and A.1 the first two moments of the distribution are 
 

 
 

And 
 

 
 
These are widely known results; for example, see Bera and Sharma (1999). A useful monotonicity result is: 
 

 
 
 The proof is in Section A.1. Result (i) of Lemma 8 was indirectly shown by Bera and Sharma (1999). The 
implication is that if I  for fixed   for fixed , then   for . Therefore, in 
certain cases, the relative ranks of  can be assessed by examining the relative ranks of . This is 
potentially useful, if the distribution of some estimates of the  are normal or asymptotically normal. If so, ranking 
inference on the estimates of  would be standard, while ranking inference on the , using the transformation of 
the estimates of  in Eq. (1), would be non-standard. 
 

3. Linear transformations 
 The selection procedures that follow hinge on distributions of differences of truncated normals, so 
understanding the effects of linear transformations on the truncated normal distribution is useful. First, the family of 
multivariate truncated normal distributions (Definition 2) is not closed to linear transformations in general. 
Rescaling and/or summation of elements cause the distribution to loose its truncated normal shape. However, it is 
closed to relocation. Second, even under Assumption A.1, the family of multivariate truncated normal distributions 
(Definition 4) is not closed to linear transformations. However, under A.1 it is closed to relocation and (positive) 
rescaling. (Positive rescaling is only necessary to preserve truncation below the truncation point; negative rescaling 
produces truncation above the truncation point.) Consequently, the sampling distribution for the sample average 



from a random sample of a truncated normal population will not be truncated normal.1 Third, the marginal 
distributions from multivariate truncated normal distributions will not be truncated normal in general, however 
under the independence assumption (A.1) the marginal distributions are truncated normal.1 The consequence of the 
preceding is that ranking and selection rules for differences of independent truncated normals will hinge on non-
standard distributions and, in particular, not truncated normal distributions. For example, under A.0 and A.1, the 
density of the difference  is 
 

 
 
 
where f Wj is the marginal density function for Wj given in Definition 4 with n = 1. The partition of the integral on 
w<0 and w 0 is for computational convenience.2 Notice that , so the density is not truncated at all. 
Also, when  and , the distribution is symmetric about the origin. Consider generalizing Eq. (3) to 
the (n-1)-dimensional case where k is a control index. Define  vector 
 

 
 
 

Let be any realization of , then under A.0 and A.1 the distribution of  is 
 

 
 
where FWj is the marginal distribution function for Wj given by Definition 5 with n = 1. The upper tail probabilities 
are 

                                                           
1 Proofs of all of the preceding facts are in Horrace (2003), available from the author. 
2 If we start with wj and wk, and then transform to w = wj - wk and x = wj , we must have x 0 and x w, so we handle both by integrating 
over x from zero to infinity, when w<0. Conversely, if we let x = wk we need x 0 and x - w and so this is the more convenient transformation 
when w 0. 



 
 

The probabilities given in Eqs. (4) and (5) are general (can be used for any independent, absolutely continuous 
distribution with no probability mass below zero) and are used in the next section to derive the selection rules. The 
equations can be used to construct multivariate probability statements on the . Define a  
and   as the solution in dj = d (for all j) to  Also, define  and   as the solution 
in dj = d (for all j) to  Then,  and k are one-sided confidence bounds similar to the multiple 
comparisons with a control (MCC) intervals suggested by Dunnett (1955), although here there is no sample of which 
to speak. Dunnett made inferential statements for the sampling distribution of population statistics; these statements 
are for individual realizations from the underlying truncated normal populations. Notice that in general 

 
 

4. Selection rules 
 Suppose that we are interested in the relative ranks of a potential realization from the distribution of W 
under A.0 and A.1. Let 
 

_ 
 
be the ranks of the elements of a single potential realization of W. Interest centers on selecting a subset of the 
indices {1; 2; . . . ; n} that contains the index  [n] with a prespecified confidence level and another subset that 
contains [1] with a prespecified confidence level. Consider the following selection rules Rmax and Rmin: 
 

 
 
Furthermore, define corresponding subsets Smax and Smin: 
 

 
 
Notice that monotonicity of   and k in d implies equivalent selection rules 
 

 
 

 
 
 
 



The continuity of  ensures that 
 

 
 
That is, there can only be one minimum or maximum with positive probability. Therefore, probability statements 
such as 
 

 
 
are valid. Of course, when Smax is empty, the probability given in Eq. (7) is just 0; similarly, for Smin. Let us 
always assume: 
 

. 
 
The following is a useful result: 
 
Lemma 9. Smax can have no more that one element. Similarly, Smin can have no more that one element. 
 
Proof. Suppose not. If there were more that one index in Smax, then there would be more than one index that 
satisfies Rmax, so there would be more than one index k where  Therefore, 

 under A.2 in Eq. (7). Contradiction. The proof is completed similarly for Smin.  
 Of course Smax and Smin can be empty, so there are only two states for the subsets: 
empty set or singleton. Given Lemma 9, Eq. (7) becomes 
 

 
 

where (n) and (1) correspond to the indices contained in Smax and Smin, respectively, when the subsets are both 
singletons. That is, Smax =  {(n)} and Smin {(1)}. This leads to the following result: 
Theorem 10. Let   and  and . If Smax in nonempty, then 
the probability of a correct selection conditional on the selection rule Rmax is 
 

 
 
Similarly, if Smin is non-empty, then the probability of a correct selection conditional on the selection rule Rmin is 
 

 
 
Otherwise, there is no inference at the prespecified level. 
Proof. The proof follows directly from Eqs. (6) and (8).  
 For a prespecified confidence level , a correct selection is guaranteed at that level (as 
long as the inference is defined). Theorem 10 is related to the results of Gupta (1965), but Gupta’s results are based 
on a sample of observations. Rizvi (1971) considers ranking and selection statements for the absolute value of 
estimates of  , but the result of Theorem 10 is markedly different3 
 The subsets S_max and S_min contain those single indices with high probability of corresponding to the 
maximal Wj and minimal Wj , respectively. One could consider 

                                                           
3 Rizvi considers ex post truncation (the absolute value of an estimate of  that is normal); here the truncation is ex ante, so normality (and its 
invariance to relocation and rescaling) is not available to simplify the probability statements. 



finding subsets containing indices with low probability of corresponding to the maximal Wj and minimal Wj . 
Therefore, alternative (but not equivalent) rules are 
 

 
 
with corresponding subsets S_max and S_min. (Note the notational subtlety: ‘‘max’’ corresponds to ‘‘maximum 
with high probability’’, while ‘‘ max’’ corresponds to ‘‘maximum with low probability’’ or ‘‘not the 
maximum’’.) Again, monotonicity implies 
 

 
 
A useful result that relates selection rules and subsets is: 
 
Lemma 11. The sets Smax and S_max are non-intersecting. Also, the sets Smin and S_min are non-intersecting. 
 
Proof. Under A.2, monotonicity of  implies so that   Therefore, if Rmax selects , 
then R_max will not select k, because  violates the selection rule:  (and vice versa). The proof is 
completed similarly for Smin and S_min.  
 Here we define the probabilities of correct selection as: and , 
respectively. Then 
 

 
 
 These probabilities are not necessarily bound by the prespecified confidence level, unless Smax and S_max 
are non-empty. 
 
Theorem 12. If Smax is non-empty, the probability of a correct selection conditional on the selection rule 

. If Smin is nonempty, the probability of a correct selection 
conditional on the selection rule R min is . 
 
Proof. When Smax is non-empty, 
 

 
 
because Lemma 11. Therefore, 
 

 
 
by Theorem 10. The proof is completed similarly for S_min. 
 
 Of course, the event  does not necessarily imply the event , so 

 may not be exactly . In fact, the exact value is governed by Eq. (9). When Smax is 
empty, the probability of a correct selection is not bound from below and is determined by Eq. (9), but this does not 
preclude a reasonable probability of correct selection. Examples are provided below: 
 
Example 13. Suppose that under A.0 and A.1, n = 3;  =1;  = 2;  = 3;   Consider  and 

 



: 
 
For  so none of the variables have high or low probability of being the 
maximum or minimum. There is no inference at the prespecified level. 
 
Example 14. Now suppose in the previous example that there is less variability and  0:50. Then 
 

 
 
Smax is still empty, so none of the variables have high probability of being the maximum. However, S_max = {1}, 
since . Therefore, one can conclude that index 1 corresponds to the maximum with low probability. By Eq. 
(9), the probability of a correct selection conditional on R_max is equal to 0:831 + 0:155 = 0:968, which happens to 
be greater than  = 0:831 and 1 – y = 0:95. However, Theorem 12 is not governing this high confidence level, 
because Smax is empty. Instead, the high confidence level is strictly an artifact of these particular distributional 
assumptions. Also, Smin =  and S_min = {3}. 
 
Example 15. Suppose  = 0:50 : 

 

 
  

For y = 0:05; Smax =   ;. However, S _max = {1, 2, 3}. By Eq. (9) the probability of a correct selection 
conditional on R_max is equal to 0.663 which is less than 1 - y. This example demonstrates that the 
probability bounding of Theorem 12 requires Smax not be empty. Also, Smin = ; and S_min = {4}. 
 
Example 16. Suppose  0:15: 

 



 
For y = 0:05; Smax = ;. This illustrates the impact of Lemma 9. The distributions of 3 and 4 are equally probable 
of generating the largest observation, but they are not both in Smax. Now S_max = {1; 2}. Therefore, one can 
conclude that indices 1 and 2 correspond to the maximum with low probability. By Eq. (9), the probability of a 
correct selection conditional on R_max is 0:5 + 0:5 = 1:0. Also, Smin =  and S_min = {3; 4}. 
 
Example 17. Suppose = 0:15: 
 

 
 
For g ¼ 0:05; Smax ¼ f4g, so index 4 corresponds to the maximum with high probability. The probability of a 
correct selection conditional on Rmax is equal to which is consistent with Theorem 10. 
Additionally, S_max = {1; 2; 3} and the probability of a correct selection conditional on R_max is also 

  per Theorem 12. Also, Smin = {1} and S_min = {2; 3; 4}.  It should be noted that all the 
probabilities in Eqs. (7)–(9) could be estimated by rejection sampling from univariate normal variates. Indeed, all 
the preceding examples were verified with rejection sampling simulations. However, rejection sampling can be 
impractical. In fact, the simulations used to verify the examples were only feasible because the probability of 
rejection was low (  large and positive). When rejection sampling is not feasible, there is a growing body of 
literature devoted to efficient sampling from troublesome truncated normal distributions. For example, see Geweke 
(1991). However, even these techniques are subject to potential problems and criticisms. Therefore, if the integration 
in Eqs. (4) and (5) is calculable, then theoretical implementations of these procedures may be superior to simulation 
approaches.4 Also, it is clear from the preceding examples, that the subsets are a convenient way of summarizing 
probabilities. Whether one wishes to report the subsets based on prespecified confidence levels or the actual 
probabilities (  and ), is a matter of taste. 
 

5. Stochastic frontiers 
 
In the literature on productivity and efficiency measurement, a common parametric class of production (cost) 
function estimators imply conditional distributions for technical inefficiency that are independent normal random 
variables, truncated below zero. Consider the specification 
 

 
 
where  is productive output of firm j in period t; g is a production function that maps a vector of productive inputs 

 into output through the unknown parameter vector . (The production function g typically satisfies some 
additional assumptions that are unimportant to the current discussion.) The  are random variables 
representing stochastic shocks to the production process. Let the distribution of be that of an i.i.d. zero-mean 
normal random variable with variance . Furthermore, let 
 

 
 
where the  are positive random variables representing technical inefficiencies, and  is some positive, 
continuous parameterization of t. In this formulation of the production function, smaller u corresponds to better 
                                                           
4 There is also a Bayesian inference literature that has grown out of the stochastic frontier literature. These techniques either directly or indirectly 
provide inference on relative ranks using Bayesian sampling techniques and are a viable alternative to the results presented here. For example, see 
Fernandez et al. (2002), Tsionas (2002), Kim and Schmidt (2000), and Koop et al. (1997). 



production (given inputs) and higher efficiency. Let the distribution of uj be the absolute value of an i.i.d. zeromean 
normal random variable with variance . Additionally, let the  and  be independent across j and across t. 
This parametric ‘‘stochastic frontier’’ model has been extensively studied in various forms originating with Aigner 
et al. (1977) who restrict the model to  and   Jondrow et al. (1982) study a formulation similar 
to Aigner, Lovell, and Schmidt. Battese and Coelli (1988) consider the case where  
jtb. Kumbhakar (1990) extends this to the case where . Battese and Coelli (1992) consider 

, while Cuesta (2000) considers  . Finally, Greene (2005) relaxes the 
parametric form of technical efficiency and allows for heterogeneity in g. In all these formulations, the parametric 
assumptions on vjt and ujt imply that ujt conditional on  is a normal variable truncated below zero (this is 
also the case when ujt is i.i.d. exponential). For example, in the Battese and Coelli (1988) formulation, the 
distribution of uj conditional on  is the truncation below zero of an  variable where 

 
where . Additionally, in all the formulations neither realizations nor estimates of realizations of ujt 
are available; only estimates of the mean and variance of ujt conditional on . Continuing the example, Battese and 
Coelli suggest maximum-likelihood estimates of and   (although alternative consistent estimates, like GLS, 
exist) based on a point estimate of . If it is assumed that the value of the estimate of  equals the true value of , 
then the sampling variability in the estimates of and  can be ignored and the conditional distribution of uj is 
independent truncated normal, and an estimate of firm-level technical efficiency is the mean of the conditional 
truncated distribution: . Indeed, Battese and Coelli (1988, p. 391) state, ‘‘[w]e obtain the conditional 
distribution of the firm effect [uj ], given the value of the random variables, . This 
assumes that the values of the parameter  are known’’. More recent formulations, based on time-varying technical 
inefficiency, suggest as an estimate of technical efficiency in period t. However, the common thread in all 
these parametric formulations is that the sampling variability in the estimates of  and  is ignored 
and the mean of the conditional distribution of u serves as a point estimate of technical inefficiency.5 
 

5.1. Ranking the conditional means 
 Empirical implementations of these parametric models are too many to name here. However, they typically 
assume that  is known and include some sort of ranking of the conditional means, , over j in each period t 
as a proxy for the ranking of the unobserved random variable, ujt. For example, see Horrace and Schmidt (1996). 
Unfortunately,  is a misleading point estimate for ujt. While smaller  may suggest smaller ujt, it may 
not be the case that ujt is small in any particular sample, even if is small. Therefore, using  as a point 
estimate of ujt  may have its limitations. Indeed, a firm j with  may be operating with ujt 
much greater than 0 in any sample, yjt; xjt. 
 That being said, Theorems 10 or 12 are a better way to draw inferences on technical inefficiency (instead of 
examining the rankings of the conditional means). That is, use Theorem 10 to define a set Smin that contains the j 
with the smallest (unobserved) ujt with probability at least . The idea is that these parametric stochastic frontier 
models only produce distributions for ujt, not ujt itself, and as such the conditional mean  can only 
characterize the distribution of ujt, and not the probability of a realization of ujt of specific magnitude. However, 
Theorem 10 may be used to characterize the magnitude of the ujt in a probabilistic sense, and this is all that the data 
can allow. Ultimately, the traditional approach of ranking the conditional means and the new approach suggested 
here are similar in that both follow from the relative magnitudes of the means of the underlying normal 

                                                           
5 This remains an unsolved problem in the stochastic frontier literature. However, as pointed out by a referee, Bayesian approaches 
do address this issue in a meaningful way. 



distributions before truncation. However, the difference in the two approaches is embodied in the fact that the latter 
takes into account the variance of the underlying distribution. As such, using Theorem 10 to identify efficiency is 
theoretically more appealing. 
 

5.2. Texas electrical utility application 
 We examine a formulation of the Eq. (10) with time-invariant technical inefficiency, although the selection 
rules could be applied in the time-varying case on a period-by-period basis. Consider the model of Horrace and 
Schmidt (1996): 
 

 
 

Under the assumptions that  independent, 

generalized least squares (GLS) yields consistent estimates v and   which imply the conditional distribution of 
uj . Specifically, and  are consistent for and   in Eqs. (11) and (12), respectively. Then the usual point 
estimates of technical efficiency based on Battese and Coelli (1988) are 
 

 
 
Horrace and Schmidt (1996) calculate the GLS technical efficiency of 10 Texas electric utility plants from a panel of 
data between 1966 and 1985, where inputs to the production of the logarithm of electricity are capital, labor, and 
fuel. See Kumbhakar (1996) for a complete explanation of the data. Using a Cobb–Douglas specification, Horrace 
and Schmidt (1996) estimate the marginal products of capital, labor, and fuel to be: 0.5882,  -0.0966, and 0.5807, 
respectively (only capital and fuel are significant at the 95% level). They also estimate  = 0:0126. Ranked 

estimates of TEj and  are contained in Table 1. Notice TEj is an increasing function of  for fixed  by 
Lemma 8.  

 Ignoring the sampling variability in  and  per Battese and Coelli (1988), Theorem 10 selects Smin, a 
subset of efficient firms (that have small uj) with at least a 
 

 
 

  

 



confidence level of 1  - . Assuming Smin is non-empty, Theorem 12 selects S_min, a subset of inefficient firms 
(that do not have small uj) with at least a confidence level of 1- . Let  = 0:10. Results for the Texas utilities are 
contained in Table 1.6 The results for  are in the 4th column of the table. Notice that  is a decreasing function 
of . Based on the results the following conclusions can be drawn. First, Smin =  ;, so there is no inference on the 
single most efficient firm at the 90% confidence level. One can conclude that firm 5 is efficient with 71% 
probability and firm 3 is efficient with 29% probability, but these are not very strong inferential statements. 
Additionally, one might conclude that firms 3 or 5 (or both) are efficient with near certainty ð0:71 þ 0:29 ¼ 1Þ. 
Since Smin is empty, there is no guarantee that Theorem 12 will hold, but one can conclude that S_min = {10; 1; 8; 9; 
2; 6; 7; 4} and that these firms are not most efficient with near certainty (0:71 + 0:29 = 1).  is calculated in 
column 5 of the table. Clearly, Smax = {4}, so firm 4 is least efficient with at least 90% confidence (in fact we are 
90.74% confident). Since Smax is nonempty and S_max = {5; 3; 10; 1; 8; 9; 2; 6; 7}, one can conclude from Theorem 
12 that these firms are not least efficient with at least 90% confidence (in fact we are 90.74% confident). A 
comparison to the inference of Horrace and Schmidt (1996, 2000) is in order.  First, in Horrace and Schmidt (1996), 
their GLS specification calculates the same point estimates for TEj as in Table 1. Their confidence intervals, based 
on critical points from univariate truncated normals, implicitly assume that technical efficiency is being measured 
relative to an unknown (out of sample) absolute standard. For instance, their 90% confidence interval for firm 5 is 
[0:9982 2 0:9721; 0:9994], so firm 5 is not operating on the absolutely efficient frontier with 90% probability. The 
inference presented here is for relative efficiency: firm 5 is efficient relative to the other firms with 71.17% 
probability. Of course, at the 90% level the inference determines that firm 5 may not be on the efficient frontier 
(Smin = ), so at least the results of the two different techniques confirm one another. One might conclude that with 
90% probability firm 3 or 5 is the most efficient, 4 is least efficient, and the rest are somewhere in between. This a 
stronger statement than that of the Horrace and Schmidt (1996) intervals, which can only say that all the firms are 
absolutely inefficient. 
 Horrace and Schmidt (2000) calculate confidence intervals using a fixed-effect specification and ‘‘multiple 
comparisons with the best’’ techniques, based on differences of normal (non-truncated) variates. Their inference is 
explicitly for relative differences (similar to the results here) and imply a subset selection criterion for the relatively 
efficient firm. For instance, in that study firm 5 has a 90% confidence interval of [0.9448, 1.000], and the subset of 
firms that may be relatively efficient consists of firms 3 and 5. This is similar, but not identical, to the inference 
here, where at the 90% level no single firm is relatively efficient, but with near certainty firm 3 or 5 (or both) are 
efficient. Specification and distributional differences aside, the inferential differences are also driven by the fact that 
in Horrace and Schmidt (2000) efficiency is a time-invariant estimable parameter, while here efficiency is an 
unobserved error component that (potentially) varies with time. Estimating actual technical efficiency (not just its 
distribution) enables Horrace and Schmidt to identify a non-empty set, similar to Dunnett (1955). 
 

6. Conclusions 
 This paper develops selection rules for performing inference on rankings of firmlevel technical efficiency 
in parametric stochastic frontier models. If we are willing to ignore the sampling variability in estimates of the mean 
and variance that underlie the truncated distributions that characterize technical inefficiency, then the suggested 
selection rules are a better gauge of inefficiency than the commonly used rankings of , because the rules 
take into account the variance of the underlying distributions, while the conditional mean rankings do not. Other 
attempts at incorporating this variance into efficiency analysis have been made: Horrace and Schmidt (1996) use it 
to construct marginal confidence intervals for the conditional distribution of u, and Bera and Sharma (1999) use it as 
a proxy for production risk or uncertainty. However, neither one of these innovations is a substitute for the proposed 
selection rules, because neither exploits the multivariate distribution of the differences to draw inferences about who 
is technically efficient and who is not. If we are unwilling to ignore the sampling variability, then the conditional 
distribution of u is not necessarily truncated normal, and the power of the selection rule is suspect. However, so are 
the usual sample rankings of , the confidence intervals of Horrace and Schmidt (1996), and virtually every 
application of parametric stochastic frontiers that provides firm-level technical efficiency rankings. Therefore 
understanding the nature of this sampling variability should be a high priority in the productivity research agenda. In 

                                                           
6 Initially, the  and  were calculated for each firm using Simpson’s rule in the GAUSS programming language, however the integral would 
not converge due to the small value for . This was not a problem with the probability integral itself, but with the tolerances for the intrinsic 
function in GAUSS for calculating the c.d.f. of a standard normal. Since this is only an exercise, the integration was calculated with rectangles 
(instead of trapezoids) with a width of 0.00001; however, the result should be viewed with caution due to the approximation. 



the context of the selection rule, accommodation of the sampling variability would involve adjusting the power of 
the rule based on some quantification of the variability, but this problem is left for future 
research. Alternatively, the conditional distribution of u could be boot-strapped, then quantiles from the distribution 
of all differences could be simulated to perform inference, but this is no substitute for a well-developed 
distributional theory. Moreover, Bayesian approaches could be adopted that allow for ranking inference while viably 
controlling for sampling variability. Finally, it is interesting to speculate on theoretical and empirical extensions for 
the selection rules. Perhaps, they could be used for inference on truncated normal population parameters, based on 
random observations from the truncated populations. This seems reasonable, but the distributional theory may be 
cumbersome. Also, perhaps the rules could be adapted to allow ranking and selection of various econometric model 
specifications based on some positive acceptance criteria, such as R-squared or ‘‘sum of squared errors’’, insofar as 
these criteria possess positive distributions. This, however, remains to be seen. 
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Appendix A 
A.1. Mathematical appendix 
 
Proof of Theorem 3 The characteristic function of W is 
 

 
 

The proof proceeds with a series of variable transformations where the determinant of the Jacobian always equals 1. 
Let G = W -  then G  
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Proof of Lemma 8. Taking the partial derivative of E(Wj) with respect to  in Eq. (1) 
 



 
 

Now, take the partial derivative w.r.t.  
 

 
 

Which is positive when . When  

 

However, so the difference is positive. Therefore  
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