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Fixed-Connectivity Membranes

Mark Bowick
Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA.

The statistical mechanics of flexible surfaces with internal elasticity and shape fluctuations is
summarized. Phantom and self-avoiding isotropic and anisotropic membranes are discussed, with
emphasis on the universal negative Poisson ratio common to the low-temperature phase of phantom
membranes and all strictly self-avoiding membranes in the absence of attractive interactions. The
study of crystalline order on the frozen surface of spherical membranes is also treated.

I. INTRODUCTION

The statistical mechanics of polymers, which are one-dimensional chains or loops to a first approximation, has
proven to be a rich and fascinating field.[1, 2, 3] The success of physical methods applied to polymers relies on
universality – many of the macroscopic length scale properties of polymers are independent of microscopic details
such as the chemical identity of the monomers and their interaction potential.[4]

Membranes are two-dimensional (2D) generalizations of polymers. The generalization of polymer statistical me-
chanics to membranes, surfaces fluctuating in three dimensions, has proven to be very rich because of the richer
spectrum of shape and elastic deformations available. In contrast to polymers, there are distinct universality classes
of membranes distinguished by the nature of their short-range order. There are crystalline, fluid and hexatic membrane
analogues of the corresponding phases of strictly two-dimensional systems (monolayers) where shape fluctuations are
frozen.[5, 6, 7]

FIG. 1: Esfera (Sphere) 1976: Gertrude Goldschmidt (Gego). Stainless steel wire - 97 × 88 cm (Patricia Phelps de Cisneros
Collection, Caracas, Venezuela).

The closest membrane analogue to a polymer is a 2D fishnet-like mesh of nodes with a fixed coordination number
for each node. A fixed-connectivity membrane with spherical topology from the world of art[8] is shown in Fig.1.

Bonds are assumed to be unbreakable while the nodes themselves live in flat d-dimensional Euclidean space Rd, with
a physical membrane corresponding to the case d = 3. The intrinsic crystalline order of fixed-connectivity membranes
with, say, typical coordination number 6, leads to the alternative terminology crystalline membranes. They are also
referred to as polymerized or tethered membranes. In general the Hamiltonian for a fixed-connectivity membrane
will include both intrinsic elastic contributions (compression and shear) and shape (bending) contributions, since the
membrane undergoes both types of deformation.[9, 10]

Flexible membranes are an important member of the enormous class of soft condensed matter systems.[3, 11, 12, 13]
Soft matter responds easily to external forces and has physical properties that are often dominated by the entropy of
thermal or other statistical fluctuations.

This chapter will describe the properties of fixed-connectivity membranes with focus on the universal negative
Poisson ratio that illustrates the novel elastic behavior of the extended (flat) phase of physical membranes, the
tubular phase of anisotropic membranes and ordering on frozen curved membrane topographies.

http://arXiv.org/abs/cond-mat/0412581v1
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II. PHYSICAL EXAMPLES OF MEMBRANES

One can polymerize suitable chiral oligomeric precursors to form molecular sheets.[14] This approach is based
directly on the idea of creating an intrinsically two-dimensional polymer. Alternatively one can permanently cross-
link fluid-like Langmuir-Blodgett films or amphiphilic layers by adding certain functional groups to the hydrocarbon
tails and/or the polar heads,[15, 16] as shown schematically in Fig.2.

FIG. 2: Making a fixed-connectivity membrane by polymerizing a fluid membrane.

FIG. 3: An electron micrograph of a 0.5 micron square region of a red blood cell cytoskeleton at magnification 365,000:1. The
skeleton is negatively stained and has been artificially spread to a surface area nine to ten times as great as in the native
membrane. Image courtesy of Daniel Branton (Dept. of Biology, Harvard University).

The 2D-cytoskeletons of certain cell membranes are beautiful and naturally occurring fixed-connectivity membranes
that are essential to the function and stability of the cell as a whole.[17, 18, 19, 20, 21] The simplest and most
thoroughly studied example is the cytoskeleton of mammalian erythrocytes (red blood cells). The human body has
roughly 5 × 1013 red blood cells. The red blood cell cytoskeleton is a protein network whose links are spectrin
tetramers (of length approximately 200 nm) meeting at junctions composed of short actin filaments (of length 37
nm and typically 13 actin monomers long)[22, 23, 24] (see Fig.3 and Fig.4). There are roughly 70,000 triangular
faces in the entire mesh which is bound as a whole by ankyrin and other proteins to the cytoplasmic side of the
other key component of the cell membrane, the fluid phospholipid bilayer. Without the cytoskeleton the lipid bilayer
would disintegrate into a thousand little vesicles and certainly the red blood cell would not be capable of the shape
deformations required to squeeze through narrow capillaries.

There are also inorganic realizations of fixed-connectivity membranes. Graphitic oxide (GO) membranes are micron
size sheets of solid carbon, with thicknesses on the order of 10Å, formed by exfoliating carbon with a strong oxidizing
agent. Their structure in an aqueous suspension has been examined by several groups.[25, 26, 27] Metal dichalcogenides
such as MoS2 have also been observed to form rag-like sheets.[28] Finally similar structures occur in the large sheet
molecules, shown in Fig.5, and believed to be an ingredient in glassy B2O3.

III. PHASE DIAGRAMS

Let us consider the general class of D-dimensional elastic and flexible manifolds fluctuating in d-dimensional Eu-
clidean space. Such manifolds are described by a d-dimensional vector ~r(x), where x labels the D-dimensional internal
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FIG. 4: An extended view of the spectrin/actin network which forms the cytoskeleton of the red blood cell membrane. Image
courtesy of Daniel Branton.

Boron

Oxygen

FIG. 5: The sheet molecule B2O3.

coordinates, as illustrated in Fig.6. A physical membrane, of course, corresponds to the case (D = 2, d = 3).

z

x

y

r(x  )α

xα

FIG. 6: The parametrization of a membrane with internal coordinates x and bulk coordinates ~r(x).

The Landau free energy of a membrane must be invariant under global translations, so the order parameter is given
by derivatives of the embedding ~r, viz. the tangent vectors ~tα = ∂~r

∂xα , with α = 1, · · · , D. Invariance under rotations
in both the internal and bulk space limits the Landau free energy to the form [5, 29, 30]

F (~r) =

∫

dDx

[

t

2
(∂α~r)

2 + u(∂α~r∂β~r)
2 + v(∂α~r∂

α~r)2 +
κ

2
(∂2~r)2

]

+
b

2

∫

dDx dDy δd (~r(x) − ~r(y)) , (1)

where higher order terms are irrelevant in the long wavelength limit. The physics of Eq.(1) depends on the elastic



4

moduli t, u and v, the bending rigidity κ and the strength of self-avoidance b. The limit b = 0 describes a phantom
membrane that may self-intersect with no energy cost.
For small deformations from a reference ground state one may write ~r(x) as

~r(x) =
(

ζx + u(x),~h(x)
)

, (2)

where u(x) are D “internal” phonon modes and ~h(x) d − D “out-of-plane” height fluctuations. The case ζ = 0
corresponds to a mean field isotropic crumpled phase for which typical equilibrium membrane configurations have
fractal Hausdorff dimension dH (dH = ∞ for phantom membranes) and there is no distinction between the internal
phonons and the height modes. The crumpled phase is illustrated in Fig.7(a).

The regime ζ 6= 0 describes a membrane which is “flat” up to small fluctuations. The full rotational symmetry of

the free energy is spontaneously broken. The fields ~h are the Goldstone modes and scale differently than the phonon
fields u. Fig.7(c) is a visualization of a typical configuration in the “flat” phase.

FIG. 7: Typical configurations of phantom membranes: (a) the crumpled phase, (b) the critical crumpling phase and (c) the
flat or bulk-orientationally-ordered phase. Images are from the simulations of Ref.31.

Phantom membranes are by far the easiest to treat analytically and numerically. They may even be physically
realizable by synthesizing membranes from strands that cut and repair themselves on a sufficiently short time scale
that they access self-intersecting configurations. One can also view the analysis of the phantom membrane as the first
step in understanding the more physical self-avoiding membrane. Combined analytical and numerical studies have
yielded a thorough understanding of the phase diagram of phantom fixed-connectivity membranes.

A. Phantom Membranes

The phantom membrane free energy is

F (~r) =

∫

dDx

[

t

2
(∂α~r)

2 + u(∂α~r∂β~r)
2 + v(∂α~r∂

α~r)2 +
κ

2
(∂2~r)2

]

. (3)

The mean field effective potential, using the expansion of Eq.(2), is

V (ζ) = Dζ2

(

t

2
+ (u+ vD)ζ2

)

, (4)
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with minima

ζ2 =

{

0 : t ≥ 0
− t

4(u+vD) : t < 0 . (5)

This implies a “flat” (extended) phase for t < 0 and a crumpled phase for t > 0, separated by a continuous crumpling
transition at t = 0, as sketched in Fig.8.

flat phase

t >0

f

t< 0

0

crumpled phase

T cr T

f

FIG. 8: The mean field free energy density f of fixed-connectivity membranes as a function of the order parameter t together
with a schematic of the low temperature flat ordered phase and the high temperature crumpled disordered phase.

Of course anything is possible in mean field theory but a variety of analytic and numerical calculations indicates the
true phase diagram of phantom membranes is qualitatively like Fig.9.[9] The crumpled phase is described by a line of
equivalent Gaussian fixed points (GFPs). There is a crumpling transition line in the κ− t plane containing an infrared
stable fixed point (CTFP) which describes the long wavelength properties of the crumpling transition. Finally, for
large enough values of κ and negative values of t, the system is in a “flat” phase whose properties are dictated by an
infrared stable flat phase fixed point (FLFP).

FLFP

CTFP

crumpled phase

flat phase

crumpling transition line

GFP

t

1/κ

FIG. 9: Schematic plot of the phase diagram for phantom membranes.

1. The crumpled phase

In the crumpled phase, the free energy Eq.(3), for D ≥ 2, simplifies to

F (~r) =
t

2

∫

dDx (∂α~r)
2 + irrelevant terms , (6)
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since the model is completely equivalent to a linear sigma model with O(d) internal symmetry in D ≥ 2 dimensions
and therefore all derivative operators in ~r are irrelevant by power counting.[32, 33] The parameter t labels equivalent
gaussian fixed points, as depicted in Fig.9. In renormalization group language there is a marginal direction for positive
t. The large distance properties of this phase are described by simple gaussian fixed points with the exact connected
2-point function:

G(x) ∼
{

|x|2−D : D 6= 2
log |x| : D = 2 .

(7)

The associated critical exponents may also be computed exactly. The Hausdorff (fractal) dimension dH , or equivalently
the size exponent ν = D/dH , is given (for the physical case D = 2) by

dH = ∞ (ν = 0) ⇒ R2
G ∼ logL , (8)

where R2
G is the radius of gyration and L is the linear membrane size. This result is confirmed by numerical simulations

of fixed-connectivity membranes in the crumpled phase where the logarithmic behavior of the radius of gyration is
accurately checked.[31],[34]−[45]

2. The Crumpling Transition

Near the crumpling transition the membrane free energy is given by

F (~r) =

∫

dDx

[

1

2
(∂2~r)2 + u(∂α~r∂β~r)

2 + v̂(∂α~r∂
α~r)2

]

, (9)

where the bending rigidity has been scaled out and v̂ = v− u
D

. By naive power counting the directions defined by the
couplings u and v̂ are relevant for D ≤ 4 and the model is amenable to an ε = 4 −D-expansion. The β functions are
given by[9]

βu(uR, vR) = −εuR +
1

8π2

{(

d

3
+

65

12

)

u2
R + 6uRvR +

4

3
v2

R

}

(10)

and

βv(uR, vR) = −εvR +
1

8π2

{

21

16
u2

R +
21

2
uRvR + (4d+ 5)v2

R

}

. (11)

These two coupled beta functions have a fixed point only for d > 219.[29] This suggests that the crumpling transition
is first order for d = 3. Other analyses, however, indicate a continuous crumpling transition. A revealing extreme
limit of membranes was studied by David and Guitter.[46] This is the limit of infinite elastic constants in the flat
phase. Since the elastic terms in the Hamiltonian scale like q2 in momentum space, as compared to q4 for the bending
energy, this limit exposes the dominant infrared behavior of the membrane. In this “stretchless” limit the elastic
strain tensor uαβ must vanish and the Hamiltonian is constrained, very much in analogy to a nonlinear sigma model.
The Hamiltonian becomes

HNL =

∫

dDσ
κ

2
(∆~r)2 , (12)

together with the constraint ∂α~r∂β~r = δαβ . Remarkably, the β-function for the inverse bending rigidity α = 1/κ may
be computed within a large-d expansion, giving

β(α) = q
∂α

∂q
=

2

d
α−

(

1

4π
+

const.

d

)

α2 . (13)
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For d = ∞ there is no stable fixed point and the membrane is always crumpled. To next order in 1/d, however,
Eq.(13) reveals an ultraviolet stable fixed point at α = 8π/d, corresponding to a continuous crumpling transition.
The size exponent at the transition is found to be[47]

dH =
2d

d− 1
=⇒ ν = 1 − 1

d
= 2/3 (for d = 3) . (14)

Le Doussal and Radzihovsky[48] analyzed the Schwinger-Dyson equations for the model of Eq.(9) keeping up to four
point vertices. The result for the Hausdorff dimension and size exponent is

dH = 2.73 =⇒ ν = 0.73 . (15)

Finally Monte Carlo Renormalization Group simulations[49] of the crumpling transition find a continuous transition
with exponents

dH = 2.77(10) =⇒ ν = 0.71(3) . (16)

Thus three independent analyses find a continuous crumpling transition with a consistent size exponent.

0

0.5

1

1.5

2

2.5

3

C
V

0.2 0.3 0.4 0.5 0.6
(1+κ)

162

322

462

642

κ

FIG. 10: Plot of the specific heat observable from the simulations of Ref.31. The growth of the specific heat peak with system
size indicates a continuous transition.

Further evidence for the crumpling transition being continuous is provided by numerous numerical simulations[9, 44,
45] where the analysis of observables like the specific heat (see Fig.10) or the radius of gyration radius give textbook
continuous phase transitions, although the value of the exponents at the transition are difficult to determine precisely.

3. The Flat Phase

h(x,y)

u
u

y

z

x

x

y

r(x  )α

FIG. 11: Membrane coordinates appropriate for analyzing fluctuations in the flat phase.
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In a flat membrane (see Fig.11), it is natural to introduce the strain tensor

uαβ = ∂αuβ + ∂βuα + ∂αh∂βh . (17)

The free energy Eq.(3) in these variables becomes

F (u, h) =

∫

dDx

[

κ̂

2
(∂α∂βh)

2 + µuαβu
αβ +

λ

2
(uα

α)2
]

, (18)

where irrelevant higher derivative terms have been dropped. One recognizes the standard Landau free energy of
elasticity theory,[50] with Lamé coefficients µ and λ, plus an extrinsic curvature term, with bending rigidity κ̂. These
couplings are related to the original ones in Eq.(3) by µ = uζ4−D, λ = 2vζ4−D, κ̂ = κζ4−D and t = −4(µ+ D

2 λ)ζ
D−2.

The large distance properties of the flat phase for fixed-connectivity membranes are completely described by the free
energy of Eq.(18). Since the bending rigidity may be scaled out at the crumpling transition, the free energy becomes
a function of µ

κ2 and λ
κ2 . The β-functions for the couplings µ and λ in the ε-expansion are[51, 52]

βµ(µR, λR) = −εµR +
µ2

R

8π2

(

dc

3
+ 20A

)

; (19)

βλ(µR, λR) = −ελR +
1

8π2

(

dc

3
µ2

R + 2(dc + 10A)λRµR + 2dcλ
2
R

)

,

where dc is the codimension d−D and A = µR+λR

2µR+λR
. These coupled β-functions possess four fixed points (see Fig.12)

whose values are shown in Table I.

µ

λ

FLFP
1

3

FLP

FLP

2

FLP

FIG. 12: Phase diagram for the phantom flat phase. There are three infra-red unstable fixed points, labelled by FLP1, FLP2
and FLP3, but the physics of the flat phase is governed by the infra-red stable fixed point (FLFP).

The phase diagram revealed by the ε-expansion is thus a little more complex than that sketched in Fig.9. The three
additional fixed points are infra-red unstable, however, and can only be reached for very specific values of the Lamé
coefficients.

4. The properties of the flat phase

Fig.7(c) shows a typical equilibrium configuration for a membrane that has developed a preferred orientation in
the bulk - the surface normals clearly have long-range order. In this phase the membrane is a rough extended
two-dimensional structure. The rotational symmetry of the full free energy is spontaneously broken from O(d) to
O(d −D) ×O(D). The remnant rotational symmetry is realized in Eq.(18) as
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hi(x) → hi(x) +Aiαxα ; (20)

uα(x) → uα −Aiαhi −
1

2
δijAiαAβjxβ ,

where Aiα is a D× (d−D) matrix. This relation provides Ward identities which greatly simplify the renormalization
of the theory.
The phonon and height propagators in the infrared limit are given by

Γuu(~p) ∼ |~p|2+ηu ; (21)

Γhh(~p) ≡ |~p|4κ(~p) ∼ |~p|4−η ,

where the last equation defines the anomalous bending rigidity κ(~p) ∼ |~p|−η. The two scaling exponents ηu and η are
related by the scaling relation[51]

ηu = 4 −D − 2η , (22)

which follows from the Ward identities (Eq.(20)) associated with the remnant rotational symmetry . The roughness
exponent ζ, which measures the growth with system size of the rms height fluctuations transverse to the flat directions,
is determined from η by the further scaling relation

ζ =
4 −D − η

2
. (23)

The long wavelength properties of the flat phase are described by the FLFP (see Fig.12). Since the FLFP occurs
at non-zero renormalized values of the Lamé coefficients, the associated critical exponents are clearly non-Gaussian.
These key critical exponents have also been determined by independent methods.
Large scale simulation of membranes in the flat phase model were performed in Ref.[31] The results obtained for the
critical exponents are very accurate:

ηu = 0.50(1) ; η = 0.750(5) ; ζ = 0.64(2) . (24)

A review of numerical results may be found in Refs.[44, 45].
The SCSA approximation[48] gives a beautiful result for general d:

η(d) =
4

dc +
√

16 − 2dc + d2
c

, (25)

which for d = 3 gives

ηu = 0.358 ; η = 0.821 ; ζ = 0.59 . (26)

Finally the large-d expansion[46] gives

η =
2

d
=⇒ η(3) = 2/3 . (27)

TABLE I: The fixed points and critical exponents of the flat phase.

FP µ∗

R λ∗

R η ηu

FLP1 0 0 0 0

FLP2 0 2ε/dc 0 0

FLP3 12ε
20+dc

−6ε
20+dc

ε
2+dc/10

ε
1+20/dc

FLFP 12ε
24+dc

−4ε
24+dc

ε
2+dc/12

ε
1+24/dc
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The numerical simulations are in qualitative agreement with both the SCSA and large-d analytical estimates.
On the experimental side we are fortunate to have two measurements of the key critical exponents for the flat phase
of fixed-connectivity membranes. The static structure factor of the red blood cell cytoskeleton has been measured
by small-angle x-ray and light scattering, yielding a roughness exponent of ζ = 0.65(10).[24] Freeze-fracture electron
microscopy and static light scattering of the conformations of graphitic oxide sheets reveal flat sheets with a fractal
dimension dH = 2.15(6). Both these measured values are in good agreement with the best analytic and numerical
predictions, but the errors are still too large to discriminate between different analytic calculations and to accurately
substantiate the numerical simulations.
The Poisson ratio[50] of a phantom fixed-connectivity membrane (which measures the transverse elongation due to a
longitudinal stress) is universal and within the SCSA approximation is given by

σ(D) = − 1

D + 1
=⇒ σ(2) = −1/3 . (28)

This result has also been checked in numerical simulations.[53, 54] Rather remarkably, it turns out to be negative.
While Ref.[53] finds σ ≈ −0.15 the latter simulation[54] finds σ ≈ −0.32. Materials with a negative Poisson ratio
have been dubbed auxetics[55]. The wide variety of potential applications of auxetic materials suggests a fascinating
role for flexible fixed-connectivity membranes in materials science (see Sect. IV).

A final critical regime of a flat membrane is achieved by subjecting the membrane to external tension.[47] This gives
rise to a low temperature phase in which the membrane has a domain structure, with distinct domains corresponding
to flat phases with different bulk orientations. This describes, physically, a buckled membrane whose equilibrium
shape is no longer planar.

B. Self-avoiding Membranes

Physically realistic fixed-connectivity membranes will have large energy barriers to self-intersection. That is they
will generally be self-avoiding. Self-avoidance is familiar in the physics of polymer chains and may be treated by
including the Edwards-type delta-function repulsion of the Hamiltonian in Eq.(1). A detailed summary of our current
understanding is given in Refs.[9, 10] The essential finding is that self-avoidance eliminates all but the flat phase.

1. Numerical simulations

Numerical simulations are currently essential in understanding the statistical mechanics of self-avoiding membranes
because the treatment of nonlinear elasticity together with non-local self-avoidance is currently beyond the realm of
analytic techniques.

Two discretizations of membranes have been adopted to incorporate self-avoidance. The balls and springs class of
models begins with a network of N particles in a intrinsically triangular array and interacting via a nearest-neighbor
elastic potential

VNN (~r) =

{

0 for |~r| ≤ b

∞ for |~r| > b
, (29)

where the free parameter b plays the role of a tethering length. An additional hard sphere steric repulsion forbids any

node to be closer than a distance σ from any other node:

Vsteric(~r) =

{

∞ for |~r| ≤ σ

0 for |~r| > σ
. (30)

Early simulations[34, 35] of this class of model gave a first estimate of the fractal dimension for physical membranes
compatible with the Flory estimate dH = 2(d+D)/(2+D) = 2.5.[36] The system sizes simulated, however, were quite
small and subsequent simulations for larger systems found that the membrane is flat.[56, 57] This result is remarkable
when one recalls that there is no explicit bending rigidity.

A plausible explanation[58] for the loss of the crumpled phase is that next-to-nearest neighbor excluded volume
effects induce a positive bending rigidity, driving the model to the FLFP. The structure function of the self-avoiding
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model has been computed numerically[59] and found to compare well with the analytical structure function for the
flat phase of phantom fixed-connectivity membranes. In particular the roughness exponents are comparable.

The induced bending rigidity may be lowered by taking a smaller excluded volume.[60] The flat phase persists to
very small values of σ with eventual signs of a crumpled phase, probably due to effective loss of self-avoidance. A
more comprehensive study,[61] in which the hard sphere radius is taken to zero with an excluded volume potential
which is a function of the internal distance along the lattice, concluded that self-avoidance implies flatness in the
thermodynamic limit of large membranes.

Self-avoidance may also be implemented by modelling impenetrable triangular meshes. This has the advantage that
there is no restriction on the bending angle between adjacent cells and therefore no induced bending rigidity.[62]

The first simulations of the plaquette model[63] found a Hausdorff dimension in rough agreement in agreement with
the Flory estimate 2.5 but this has not held up in subsequent work. A subsequent simulation[64] found dH ≈ 2.3 and
extensive recent work employing more sophisticated algorithms and extending to much larger membranes confirm the
loss of the crumpled phase.[62]

Some insight into the lack of a crumpled phase for self-avoiding fixed-connectivity membranes is offered by the study
of folding. [65]−[71] Folding corresponds to the limit of infinite elastic constants[46] with the further approximation
that the space of bending angles is discretized. One quickly discovers that the reflection symmetries of the allowed
folding vertices forbid local folding (crumpling) of surfaces. There is therefore essentially no entropy for crumpling.
There is, however, local unfolding and the resulting statistical mechanical models are non-trivial. The lack of local
folding is the discrete equivalent of the long-range curvature-curvature interactions that stabilize the flat phase. The
dual effect of the integrity of the surface (time-independent connectivity) and self-avoidance is so powerful that
crumpling seems to be impossible in low embedding dimensions.

2. The properties of the self-avoiding fixed point

OO0

0 GF

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��
�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
����

�
�
�
�
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�

��
��
��
��

�
�
�
�
����

�
�
�

�
�
�

��
��
��
����

�
�
�

�
�
�

����

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
�
�
�

�
�
�

����

�
�
�

�
�
�

��

�
�
�
���

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

����

������

������

��
�
�
�
�

��

�
�
�

�
�
�

��

�
�
�

�
�
�
����

�
�
�

�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

����

�
�
�

�
�
�

��
��
��
��

���
�
�

�
�
�

��

�
�
�

�
�
�

�
�
�

�
�
�����

��
��
��

��
��
��
��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

b

CT FL

κ

SA

FIG. 13: The conjectured phase diagram for self-avoiding fixed-connectivity membranes in 3 dimensions. With any degree of
self-avoidance the renormalization group flows are to the flat phase fixed point of the phantom model (FL).

For the physically relevant case d = 3 numerical simulations thus find that there is no crumpled phase. Furthermore,
the flat phase is identical to the flat phase of the phantom membrane.[62] The roughness exponent ζSA from numerical
simulations of self-avoidance at d = 3 using ball-and-spring models[72] and impenetrable plaquette models[62] and
the roughness exponent at the FLFP, Eq.(24), compare extremely well

ζSA = 0.64(4) , ζ = 0.64(2) . (31)

The numerical evidence thus strongly indicates that the SAFP is exactly the same as the FLFP and that the crumpled
self-avoiding phase is absent in the presence of purely repulsive potentials (see Fig.13). This conjecture is strengthened
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by the finding that the Poisson ratio of self-avoiding membranes is the same as that of flat phantom membranes.[73]
(see Sect.IV). This identification of fixed points enhances the significance of the FLFP treated earlier.

IV. POISSON RATIO AND AUXETICS

In the classical theory of elasticity[50] an arbitrary deformation of a D-dimensional elastic body may be decomposed
into a pure shear and a pure compression:

uij = [uij −
1

D
(Tr u)δij ] +

1

D
(Tru)δij , (32)

where Tr denotes the trace and the term in square brackets is a pure shear (volume-preserving but shape changing)
while the second term is a pure compression (shape-preserving but volume-changing). The elastic free energy is then
given by

Fel = µ

[

uij −
1

D
(Tr u)δij

]2

+
1

2
K (Tru)

2
, (33)

where µ is the shear modulus and K is the bulk modulus. This free energy may be written equivalently as

Fel = µuijuij +
1

2
λ (Tru)

2
, (34)

with the elastic Lamé coefficient λ related to the bulk and shear moduli by

K = λ+
2µ

D
. (35)

For the physical membrane, D = 2, this reads K = λ + µ. Thermodynamic stability requires that both K and µ be
positive, otherwise the free energy could be spontaneously lowered by pure compressional or pure shear deformations,
respectively.

The Poisson ratio σ is defined as the ratio of transverse contractile strain to longitudinal tensile strain for an elastic
body subject to a uniform applied tension T. For tension applied uniformly in, say, the x-direction

σ = − δy/y

δx/x
, (36)

the Poisson ratio is easily found to be

σ =
K − µ

K + µ
, (37)

for D = 2, and

σ =
1

2

(

3K − 2µ

3K + µ

)

(38)

for D = 3. Thermodynamic stability is only possible for −1 ≤ σ ≤ 1 for D = 2 and −1 ≤ σ ≤ 1
2 for D = 3. The upper

bounds (1 and 1/2 respectively) are approached for materials that have vanishing shear modulus compared to their
bulk modulus (rubber-like) and the lower bounds (-1) for materials with negligible bulk modulus in comparison to their
shear modulus (“anti-rubber”)[74]. Clearly, the Poisson ratio may be negative (auxetic) for K < µ (D=2) and K < 2

3µ
(D=3). Most materials get thinner when stretched and fatter when squashed – auxetic materials are uncommon. The
earliest known example, dating from more than a century ago, is that of a pyrite (FeS2) crystal[75], which has a
Poisson ratio, in certain crystallographic directions, of σ ≈ −0.14. More recently, some isotropic polyester foams have
been created with Poisson ratios as large as σ ∼ −0.7[77, 78]. The potential of auxetic materials in materials science
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is nicely reviewed in Ref.[79]. One of the rare naturally occurring auxetics is SiO2 in its α-crystobalite phase.[80, 81]
Cristobalite is one of the three distinct crystalline forms of SiO2, together with quartz and tridymite. Its Poisson ratio
reaches a maximum negative value of −0.5 in some directions, with orientationally-averaged values for single-phased
aggregates of −0.16.

The underlying mechanism driving fixed-connectivity membranes auxetic (σ = −1/3) has schematic similarities
to that illustrated in Fig.14. Submitting a membrane to tension will suppress its out-of-plane fluctuations, forcing
it entropically to expand in both in-plane directions. More physically, the out-of-plane undulations renormalize the
elastic constants (the Lamé coefficients), in such a way that the long-wavelength bulk modulus is less than the
shear modulus, which is the signature of a two-dimensional auxetic material. The soft matter origin of the universal
negative Poisson ratio of fixed-connectivity membranes provides a fundamentally new paradigm for the design of novel
materials. The best current experimental measurements of the Poisson ratio of the red blood cell cytoskeleton[82]
find σ ≈ +1/3 from separate determinations of the bulk and shear modulus. The cytoskeleton still has the fluid
lipid bilayer attached, however, and this may influence the pure cytoskeletal elasticity. A direct measurement of the
Poisson ratio for a flexible fixed-connectivity membrane remains an important and challenging task.

(b)(a)

T

T

T

T T

T

T

T

FIG. 14: Mechanical model of an auxetic material: (a) in the absence of applied stress and (b) under applied lateral stress T .
The lateral stretching accompanying the applied stress forces the material out in the transverse dimension.

Auxetic materials have desirable mechanical properties such as higher in-plane indentation resistance, transverse
shear modulus and bending stiffness. They have clear applications as sealants, gaskets and fasteners. They may also
be promising materials for artificial arteries, since they can expand to accommodate sudden increases in blood flow.

We can model a realistic fixed-connectivity membrane with an elastic free energy and either large bending rigidity or
self-avoidance. This is of practical importance in modelling since, for example, we may replace the more complicated
non-local self-avoidance term with a large bending rigidity.

It would be very interesting to know if nature utilizes the auxetic character of the red-blood cell spectrin cytoskeleton
in the elastic deformations of red blood cells as they pass through fine blood capillaries. As such cells deform, the
membrane skeleton can unfold, which might help to transport large molecules or expose reactive chemical groups.[83]

V. ANISOTROPIC MEMBRANES

An anisotropic membrane is a fixed-connectivity membrane in which the elastic moduli or the bending rigidity
in one distinguished direction are different from those in the remaining D − 1 directions. Such a membrane may
be described by a d-dimensional vector ~r(x⊥, y), where now the D dimensional internal coordinates are split into
D − 1 x⊥ coordinates and the orthogonal distinguished direction y.

Requiring invariance under translations, O(d) rotations in the embedding space and O(D − 1) rotations in the
internal space, the equivalent of Eq.(1) becomes
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F (~r(x)) =
1

2

∫

dD−1x⊥ dy
[

κ⊥(∂2
⊥~r)

2 + κy(∂2
y~r)

2

+κ⊥y∂
2
y~r · ∂2

⊥
~r + t⊥(∂⊥α ~r)

2 + ty(∂y~r)
2

+
u⊥⊥

2
(∂⊥α ~r · ∂⊥β ~r)2 +

uyy

2
(∂y~r · ∂y~r)

2

+u⊥y(∂
⊥

α ~r · ∂y~r)
2 +

v⊥⊥

2
(∂⊥α ~r · ∂⊥α ~r)2

+v⊥y(∂⊥α ~r)
2(∂y~r)

2
]

+
b

2

∫

dDx

∫

dDx′δd(~r(x) − ~r(x′)) . (39)

This model has eleven free parameters – three distinct bending rigidities, κ⊥, κy and κ⊥y, seven elastic moduli,
t⊥, ty, u⊥⊥, uyy, u⊥y, v⊥⊥ and v⊥y, and the strength of self-avoidance coupling b.

As before we decompose displacements as

~r(x) =
(

ζ⊥x⊥ + u⊥(x), ζyy + uy(x), ~h(x)
)

, (40)

with u⊥ being the D − 1–dimensional intrinsic phonon modes, uy the intrinsic phonon mode in the distinguished

direction y and ~h the d −D-dimensional out-of-plane fluctuation mode. If ζ⊥ = ζy = 0, the membrane is crumpled
and if both ζ⊥ and ζy do not vanish the membrane is flat. There is, however, the possibility that ζ⊥ = 0 and ζy 6= 0
or ζ⊥ 6= 0 and ζy = 0. This describes a tubular phase, in which the membrane is crumpled in some internal directions
but flat in the remaining ones.[84, 85]. Fig.15 displays a typical equilibrium configuration from the tubular phase,
along with the low and high-temperature flat and crumpled phases for a phantom anisotropic membrane.

Let’s deal with the phantom anisotropic membrane first. Both analytical[86] and numerical work[87] has established
that the phase diagram contains a crumpled, tubular and flat phase. The crumpled and flat phases are equivalent
to the isotropic ones, so anisotropy turns out to be an irrelevant interaction in those phases. The new physics is
contained in the tubular phase.

A. Phantom Tubular Phase

1. The Phase diagram

We first describe the mean field theory phase diagram and then the effect of fluctuations. There are two situations
depending on the value of a certain function ∆, which depends on the elastic constants u⊥⊥, v⊥y, uyy and v⊥⊥.[84,
85, 86]

For ∆ > 0 the mean field solution exhibits crumpled, flat and tubular phases. When ty > 0 and t⊥ > 0 the model
is crumpled. Lowering the temperature so that one of the t couplings becomes negative drives the membrane to the
tubular phase (either a ⊥ or y-tubule). Lowering the temperature still further flattens the membrane. For ∆ < 0
the flat phase disappears from the mean field solution, leaving only the crumpled and tubular phases separated by a
continuous transition. Tubular phases are the stable low temperature stable phases in this regime. This mean field
result is summarized in Fig.16.

Beyond mean field theory, the Ginzburg criterion applied to this particular model suggests that the phase diagram is
stable for physical membranes D = 2 at any embedding dimension d. The mean field description should be qualitative
correct even for the full model.

Numerical simulations have spectacularly confirmed this beautiful analytic prediction.[87] Changing the temperature
generates a sequence of continuous phase transitions crumpled-to-tubular and tubular-to-flat, in total agreement with
the ∆ > 0 case above (see Fig.16).

2. The Crumpled Anisotropic Phase

In this phase ty > 0 and t⊥ > 0, and the free energy Eq.(39) reduces , for D ≥ 2, to

F (~r(x)) =
1

2

∫

dD−1x⊥dy
[

t⊥(∂⊥α ~r)
2 + ty(∂y~r)

2
]

+ Irrelevant Terms . (41)
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FIG. 16: The phase diagram for anisotropic phantom membranes.

By redefining the y coordinate to be y′ = t⊥
ty
y this reduces to Eq.(6), with t ≡ t⊥. Anisotropy is clearly irrelevant in

the crumpled phase.

3. The Flat Phase

In the flat phase intrinsic anisotropies are only apparent at short-distances and therefore should be irrelevant in
the infrared limit. This argument may be made more precise.[88] The flat phase is thus equivalent to the flat phase
of isotropic membranes.
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B. The Tubular Phase

We now turn to the study of the novel tubular phase, both in the phantom case and with self-avoidance. Since the
physically relevant case for membranes is D = 2 the y-tubular and ⊥-tubular phase are the same.

The key critical exponents characterizing the tubular phase are the size (or Flory) exponent ν, giving the scaling
of the tubular diameter Rg with the extended (Ly) and transverse (L⊥) sizes of the membrane, and the roughness
exponent ζ associated with the growth of height fluctuations hrms (see Fig.17):

Rg(L⊥, Ly) ∝ Lν
⊥SR(Ly/L

z
⊥) ; (42)

hrms(L⊥, Ly) ∝ Lζ
ySh(Ly/L

z
⊥
) ,

where SR and Sh are scaling functions[84, 85] and z is the anisotropy exponent.

gR rmsh

L

FIG. 17: A schematic illustration of a tubular configuration indicating the radius of gyration Rg and the height fluctuations
hrms.

The general free energy described in Eq.(39) may be simplified considerably in a y-tubular phase.[89, 90]:

F (u,~h) =
1

2

∫

dD−1x⊥dy
[

κ(∂2
y
~h)2 + t(∂α

~h)2

+g⊥(∂αu+ ∂α
~h∂y

~h)2

+ gy(∂yu+
1

2
(∂y

~h)2)2
]

+
b

2

∫

dydD−1x⊥d
D−1x′

⊥δ
d−1(~h(x⊥, y) − ~h(x′

⊥, y)) , (43)

reducing the number of free couplings to five. The coupling g⊥, furthermore, is irrelevant by standard power counting.
The most natural assumption is to set it to zero. In that case the phase diagram one obtains is shown in Fig.18.
Without self-avoidance, i.e. b = 0, the Gaussian Fixed Point (GFP) is unstable and the long-wavelength behavior of
the membrane is controlled by the tubular phase fixed point (TPFP). Any amount of self-avoidance, however, leads
to a new fixed point, the Self-avoiding Tubular fixed point (SAFP), which describes the large distance properties of
self-avoiding tubules.

Radzihovsky and Toner advocate a different scenario.[85] For sufficiently small embedding dimensions d, including
the physical d = 3 case, these authors suggest the existence of a new bending rigidity renormalized fixed point (BRFP),
which is the infra-red fixed point describing the actual properties of self-avoiding tubules (see Fig. 19).

Here we follow the arguments presented in Refs.[89, 90] and consider the model defined by Eq.(43) with the g⊥-term
set to zero. One can prove then than there are some general scaling relations among the critical exponents. All three
exponents may be expressed in terms of a single exponent

ζ =
3

2
+

1 −D

2z
;

ν = ζz . (44)

Remarkably, the phantom case, as described by Eq.(43), can be solved exactly. The result for the size exponent is

νph(D) =
5 − 2D

4
, νph(2) =

1

4
(45)
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FIG. 18: The phase diagram for self-avoiding anisotropic membranes with the Gaussian fixed point (GFP), the tubular phase
fixed point (TPFP) and the self-avoidance fixed point (SAFP).
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FIG. 19: The phase diagram for self-avoiding anisotropic membranes with the Gaussian fixed point (GFP), the tubular phase
fixed point (TPFP), the self-avoidance fixed point (SAFP) and the bending rigidity fixed point (BRFP).

with the remaining exponents following from the scaling relations Eq.(44).
The self-avoiding case may be treated with techniques similar to those in isotropic case. The size exponent may be

estimated within the Flory approximation, yielding

νFl = 2/dH =
D + 1

d+ 1
. (46)

The Flory estimate is an uncontrolled approximation. Fortunately, a ε-expansion, adapting the multi-local operator
product expansion technique[91]−[93] to the case of tubules, is also possible.[89, 90] The resulting renormalization
group β-functions provide evidence for the phase diagram shown in Fig.18. Extrapolation techniques also provide
estimates for the size exponent, the most accurate value being ν = 0.62 for the physical case. The rest of the exponents
may be computed from the scaling relations.

Numerical simulations so far, however, do not find a tubular phase in the case of strict self-avoidance.

VI. ORDER ON CURVED SURFACES

Imagine we instantaneously freeze a fluctuating membrane so that it has some fixed but curved shape. We can then
ask about the nature of the ground state of particles distributed on this surface and interacting with some microscopic
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pair-wise repulsive potential. The relevant physics is clearly related to the infinite bending rigidity limit (flat phase)
of elastic membranes. In such a membrane the topology and topography are fixed.

FIG. 20: A 2.5 micron scan of 0.269 micron diameter polystyrene spheres crystallized into a regular triangular lattice - taken
from http://invsee.asu.edu/nmodules/spheresmod/.

Spherical particles on a flat surface pack most efficiently in a simple triangular lattice, as illustrated in Fig.20. In the
dense limit each particle “kisses” six of its neighbors.[94] Such six-coordinated triangular lattices cannot, however, be
perfectly wrapped on the curved surface of a sphere; topology alone requires there be defects in coordination number.
The panels on a soccer ball and the spherical carbon molecule C60 (buckyball)[97, 98] are good illustrations of the
necessity of defects for a spherical triangulation – they have 12 pentagonal faces (each the dual of a 5-coordinated
defect) in addition to 20 hexagonal faces (each dual to a regular 6-coordinated node.) The necessary packing defects
can be characterized by their topological charge, q, which is the departure of their coordination number c from the
preferred flat space value of 6 (q = 6 − c). These coordination number defects are point-like topological defects
called disclinations[99] and they detect intrinsic Gaussian curvature located at the defect. A profound theorem
of Euler[100, 101] states that the total disclination charge of any triangulation whatsoever of the sphere must be
12![102] A total disclination charge of 12 can be achieved in many ways, however, which makes the determination
of the minimum energy configuration of repulsive particles, essential for crystallography on a sphere, an extremely
difficult problem. This was recognized nearly 100 years ago by J.J. Thomson[103], who attempted, unsuccessfully, to
explain the periodic table in terms of rigid electron shells. Similar problems arise in fields as diverse as multi-electron
bubbles in superfluid helium,[104] virus morphology,[105]−[108] protein s-layers,[109, 110] giant molecules[111, 112]
and information processing.[95, 96] Indeed, both the classic Thomson problem, which deals with particles interacting
through the Coulomb potential, and its generalization to other interaction potentials, are still open problems after
almost 100 years of attention.[113]− [115]

The spatial curvature encountered in curved geometries adds a fundamentally new ingredient to crystallography
not found in the study of order in spatially flat systems. As the number of particles on the sphere grows, isolated
charge 1 defects (5s) will induce too much strain. This strain can be relieved by introducing additional dislocations,
consisting of pairs of tightly bound 5-7 defects[116, 117], which don’t spoil the topological constraints because their
net disclination charge is zero. Dislocations, which are themselves point-like topological defects in two dimensions,
disrupt the translational order of the crystalline phase but are less disruptive of orientational order.[117]

Recent work on an experimental realization of the generalized Thomson problem has allowed us to explore the lowest
energy configuration of the dense packing of repulsive particles on a spherical surface and to confront a previously
developed theory with experiment.[118]. We create two-dimensional packings of colloidal particles on the surface of
spherical water droplets and view the structures with optical microscopy. Above a critical system size, the thermally
equilibrated colloidal crystals display distinctive high-angle grain boundaries, which we call “scars”. These grain
boundaries are found to end entirely within the crystal, which is never observed on flat surfaces because the energy
penalty is too high.

The experimental system is based on the self-assembly of one micron diameter cross-linked polystyrene beads
adsorbed on the surface of spherical water droplets (of radius R), themselves suspended in a density-matched oil
mixture.[119] The polystyrene beads are almost equally happy to be in oil or water (the bead/oil surface tension is
close to the bead/water surface tension) and therefore diffuse freely until they find the oil-water interface and stick
there. Particle assembly on the interface of two distinct liquids dates to the pioneering work of Pickering[120] and
was beautifully exploited by Pieranski[121] some time ago. The particles are imaged with phase contrast using an

http://invsee.asu.edu/nmodules/spheresmod/
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inverted microscope. After determining the center of mass of each bead, the lattice geometry is analyzed by original
Delaunay triangulation algorithms[122] appropriate to spherical surfaces.

FIG. 21: Light microscope images of particle-coated droplets. Two droplets (A) and (C) are shown, together with their
associated defect structures (B) and (D). Panel (A) shows an ≈ 13% portion of a small spherical droplet with radius R = 12.0
microns and mean particle spacing a = 2.9 microns (R/a = 4.2), along with the associated triangulation (B). Charge +1(−1)
disclinations are shown in red and yellow respectively. Only one +1 disclination is seen. Panel (C) shows a cap of spherical
colloidal crystal on a water droplet of radius R = 43.9 microns with mean particle spacing a = 3.1 microns (R/a = 14.3), along
with the associated triangulation (D). In this case the imaged crystal covers about 17% of the surface area of the sphere. The
scale bars in (A) and (C) are 5 microns.

We analyze the lattice configurations of a collection of 40 droplets. A typical small spherical droplet with system
size, R/a = 4.2, where a is the mean particle spacing, is shown in Fig. 21A. The associated Delaunay triangulation is
shown in Fig. 21B. The only defect is one isolated charge +1 disclination. Extrapolation to the entire surface of the
sphere is statistically consistent with the required 12 total disclinations.

Qualitatively different results are observed for larger droplet sizes as defect configurations with excess dislocations
appear. Although some of these excess dislocations are isolated, most occur in the form of distinctive (5− 7− 5− 7−
· · · − 5) chains, each of net charge +1, as shown in Fig. 21D. These chains form high-angle (30◦) grain boundaries, or
scars, which terminate freely within the crystal. Such a feature is energetically prohibitive in equilibrium crystals in
flat space. Thus, although grain boundaries are a common feature of 2D and 3D crystalline materials, arising from a
mismatch of crystallographic orientations across a boundary, they usually terminate at the boundary of the sample in
flat space because of the excessive strain energy associated with isolated terminal disclinations. Termination within
the crystal is a feature unique to curved space.

Of key interest is the number of excess dislocations per chain as a function of the dimensionless system size R/a.
This is plotted in Fig. 22. Scars only appear for droplets with R/a ≥ 5. These results provide a critical confirmation
of a theoretical prediction that R/a must exceed a threshold value (R/a)c ≈ 5, corresponding to M ≈ 360 particles,
for excess defects to proliferate in the ground state of a spherical crystal.[123] The precise value of (R/a)c depends
on details of the microscopic potential, but its origin is easily understood by considering just one of the 12 charge +1
disclinations required by the topology of the sphere. In flat space such a topological defect has an associated energy
that grows quadratically with the size of the system,[117] since it is created by excising a 2π/6 wedge of material and
gluing the boundaries together.[11, 117] The elastic strain energy associated with this defect grows as the area. In the
case of the sphere the radius plays the role of the system size. As the radius increases, isolated disclinations become
much more energetically costly. This elastic strain energy may be reduced by the formation of linear dislocation
arrays, i.e. grain boundaries. The energy needed to create these additional dislocation arrays is proportional to a
dislocation core energy Ec and scales linearly with the system size.[123] Such screening is inevitable in flat space (the
plane) if one forces an extra disclination into the defect-free ground state. Unlike the situation in flat space, grain
boundaries on the sphere can freely terminate,[123]−[126] consistent with the scars seen on colloidal droplets.

A powerful analytic approach to determining the ground state of particles distributed on a curved surface has
been developed.[123, 126, 127] The original particle problem is mapped to a system of interacting disclination defects
in a continuum elastic curved background. The defect-defect interaction is universal with the particle microscopic
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FIG. 22: Excess dislocations as a function of system size. The number of excess dislocations per minimal disclination N as a
function of system size R/a, with the linear prediction given by theory shown as a solid red line.

potential determining two free parameters – the Young modulus K0 of the elastic background and the core energy Ec

of an elementary disclination. A rigorous geometrical derivation of the effective free energy for the defects is given
in Ref.[128] An equivalent derivation may also be given by integrating out the phonon degrees of freedom from the
elastic Hamiltonian,[29] with the appropriate modifications for a general distribution of defects. The energy of a
two-dimensional crystal embedded in an arbitrary frozen geometry described by a metric gij(x) is given by

H = E0 +
Y

2

∫ ∫

dσ(x)dσ(y)

×
{

[s(x) −K(x)]
1

∆2
[(s(y) −K(y)]

}

, (47)

where the integration is over a fixed surface with area element dσ(x) and metric gij , K is the Gaussian

curvature, Y is the Young modulus in flat space and s(x) =
∑N

i=1
π
3 qiδ(x, xi) is the disclination density

[

δ(x, xi) = δ(x− xi)/
√

det(gij)
]

. Here 5- and 7-fold defects correspond to qi = +1 and −1, respectively. Defects

like dislocations or grain boundaries can be built from these N elementary disclinations. E0 is the energy correspond-
ing to a perfect defect-free crystal with no Gaussian curvature; E0 would be the ground state energy for a 2D Wigner
crystal of electrons in the plane.[129] Eq.(47), restricted to a sphere, gives[123]

H = E0 +
πY

36
R2

N
∑

i=1

N
∑

j=1

qiqjχ(θi, ψi; θj , ψj)

+ NEc , (48)

where Ec is a defect core energy, R is the radius of the sphere and χ is a function of the geodesic distance βij between
defects with polar coordinates (θi, ψi ; θj , ψj):

χ(β) = 1 +

∫
1−cos β

2

0

dz
ln z

1 − z
. (49)

The potential is attractive for opposite charged defects and repulsive for like-charged defects. Many predictions of this
model are universal in the sense that they are insensitive to the microscopic potential. This enables us to make definite
predictions even though the colloidal potential is not precisely known. It also means that our model system serves as a
prototype for any analogous system with repulsive interactions and spherical geometry. To further test the validity of
this approach, we show a typical ground state for large M in Fig. 23. The system size here is R/a = 12, similar to the
droplet in Fig. 21D. The results are remarkably similar to the experimentally observed configuration in Fig. 21D; the
only difference is a result of thermal fluctuations, which break the two defect scars in the experiment. This agreement
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FIG. 23: Model grain boundaries. This image is obtained from a numerical minimization for a system size comparable to the
large droplet in Fig.21(c,d).

FIG. 24: The polyhedral siliceous cytoskeleton of the unicellular ocean organism Aulosphaera.

between theory and experiment also provides convincing evidence that these scars are essential components of the
equilibrium crystal structure on a sphere.

The theory predicts that an isolated charge +1 disclination on a sphere is screened by a string of dislocations of
length cos−1(5/6)R ≈ 0.59R.[123] One can use the variable linear density of dislocations to compute the total number

of excess dislocations N in a scar. One finds that N grows for large (R/a) as π
3

[√
11 − 5 cos−1(5/6)

]

R
a ≈ 0.41R

a ,
independently of the microscopic potential. This prediction is universal, and is in remarkable agreement with the
experiment, as shown by the solid line in Fig. 22.

We expect these scars to be widespread in nature. They should occur, and hence may be exploited, in sufficiently
large stiff viral protein capsids, giant spherical fullerenes, spherical bacterial surface layers (s-layers), provided that
the spherical geometry is not too distorted. Terminating strings of heptagons and pentagons might serve as sites for
chemical reactions or even initiation points for bacterial cell division[109] and will surely influence the mechanical
properties of spherical crystalline shells.

The polyhedral siliceous cytoskeleton of the unicellular non-motile ocean organism Aulosphaera (a member of the
species Phaeodaria[130]) is shown in Fig.24. A triangulation revealing three scars, two of which are branched, is shown
in Fig.25. The skeleton itself is such a perfect triangular lattice that it coincides with the Delaunay triangulation
determined by its vertices. The case of viral capsids has been analyzed in Ref.[108], where it is shown that, rather
than scarring, icosahedral packings become unstable to faceting for sufficiently large virus size, in analogy with the
buckling instability of disclinations in two-dimensional crystals.[5, 131]
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FIG. 25: The Delaunay triangulation of the Aulosphaera cytoskeleon above.

FIG. 26: A typical ground state for a toroidal hexatic. Five-fold disclinations are shown as solid circles (red) and 7-fold
disclinations as solid squares (blue).

Scarred spherical crystals may provide the building blocks (atoms) of micron-scale molecules[132, 133] and materials.
While topology dictates the overall number of scars (12), the details of the geometry and defect energetics determine
the length and structure of the scars themselves. It is possible that scarred colloidosomes will ultimately yield complex
self-assembled materials with novel mechanical or optoelectronic properties.[132]

New structures arise if one changes the structure of the colloid of the topology of the surface they coat. Nelson has
analyzed the case of nematic colloids coating a sphere.[133] In this case the preferred number of elementary disclination
defects is 4, allowing for the possibility of colloidal atoms with tetrahedral functionality and sp3-type bonding. The
case of toroidal templates with 6-fold bond-orientational (hexatic) order has been analyzed recently.[127] It is found
that defects are energetically favored in the ground state for fat torii or moderate vesicle size. A schematic of a
“typical” ground state is shown in Fig.26.
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