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Abstract 

We build general model-theoretic semantics for higher-order logic programming languages. 
Usual semantics for first-order logic is two-level: i.e., at a lower level we define a domain of indi­
viduals, and then, we define satisfaction of formulas with respect to this domain. In a higher-order 
logic which includes the propositional type in its primitive set of types, the definition of satisfac­
tion of formulas is mutually recursive with the process of evaluation of terms. As result of this in 
higher-order logic it is extremely difficult to define an effective semantics. For example to define 
T p operator for logic program P, we need a fixed domain without regard to interpretations. In 
usual semantics for higher-order logic, domain is dependent on interpretations. We overcome this 
problem and argue that our semantics provides a more suitable declarative basis for higher-order 
logic programming than the usual general model semantics. We develop a fix point semantics based 
on our model. We also show that a quotient of the domain of our model can be the domain of a 
model for higher-order logic programs with equality. 

1 Introduction 

Many extended versions of Prolog are developed which incorporate higher-order features in logic pro­

gramming languages to make programs more versatile and expressive [22, 7, 1]. One important motiva­

tion for adding higher-order features to logic programming is the need to allow programs to manipulate 

such things as formulas, predicates, and programs themselves in the same way as they manipulate object 

level terms (for further motivation for higher-order logic programming see [11, 12, 19, 20]). 

In this paper, we build a model-theoretic semantics for a higher-order logic programming language 

which is suitable for describing declaratively operations of such programming language. 

Church [8] introduced a simple theory of types as a system of higher-order logic. This system 

incorporated A-notation in its particularly simple syntax which actually be viewed as a version of simply 

typed A-calculus. Henkin first gave a semantics for Church's system based on general models. Domain 

members of a general model are truth values, individuals, and functions. Church's system was proved to 

• Address correspondence to author, School of Computer and Information Science, Center for Science and 
Technology/Fourth Floor, Syracuse University, Syracuse, New York 13244-4100, USA, Email address of author, 
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be complete with respect to Henkin's semantics [13]. Andrews studied general models further in [3, 4, 5], 

and built a non-extensional model which is suitable under settings of resolution theorem proving [2]. 

The proof theory for this system is shown to have a close resemblance to that of first-order logic: there 

is, for example, a generalization to Herbrand theorem that holds for a variant of this system [18] . 

..\Prolog [22] was the first language to show that higher-order logic could be used as the basis of 

a practical programming language. ..\Prolog is based on typed ..\-calculi which have their ultimate 

origin in Russel's method of stratifying sets to avoid the set theoretic paradoxes. In higher-order logic 

on which ..\Prolog is based, compared to first-order case, it is extremely difficult to build an effective 

model-theoretic semantics. One of these difficulties is that the definition of satisfaction of formulas is 

mutually recursive with the process of evaluation of terms (see [13, 2, 3, 4, 5]). In first-order case, 

the model-theory is two level [16, 21, 24]. First we define a domain of individuals, and then define 

satisfaction wrt this domain. The second reason is that since higher-order logic programming languages 

are usually formulated in non-extensional form, we need a non-extensional model to describe properly 

such languages. 

Henkin's general model semantics is extensional: i.e., if two objects in a model have the same 

extension, then they must be equal. Extensional models are very difficult to deal with, and unsuitable 

to describe a higher-order logic programming language like ..\Prolog which contain a propositional type in 

its primitive set of types. For example, we can define a program P1 = {p(a), q(a), r(p(a))} in ..\Prolog. 

Given program Pb the goal r(p( a)) will succeed in ..\Prolog, but the goal r( q( a)) will fail, since the 

unification of r( q( a)) and r(p( a)) will simply fail. For any extensional model M for Pb M will assign 

the value T for p(a) and q(a). So p(a) = q(a) is a logical consequence of Pt. M will also assign the 

value T to r(p(a)), so the extension of the predicate which M will assign to r contains T. Therefore 

r(q(a)) is a logical consequence of the program Pt. Note that for this program the valuation of terms 

is mutually recursive with the satisfaction of formulas, since a formula can occur as an argument of 

predicate or functional symbols. 

2 AProlog 

In this section we describe a higher-order logic programming language for which we build models in the 

later sections. For the exposition of the logic programming language ..\Prolog we will follow closely those 

in [22, 20]. 

The set T of types contains a collection To of primitive types and is closed under the formation of 

functional types: i.e., if a, {JET, then (a-t {J) E T. The type constructor -t associates to the right. 

The type (a -t {J) is that of a function from objects of type a to objects of type {J. We assume 

that the type constructor -t associates to the right, and we shall often write type expressions such as 
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a 1 --+ a2 --+ • • • --+an --+ f3 in the form a~,···, an --+ {3, or even in the form a--+ {3, with f3 an arbitrary 

type. 

For 1 E To, the set T"~ of types of kind 1 [10] is the subset ofT defined inductively by: 

(a) 1 E T"'~. 

(b) If a E T and f3 E T"'~, then (a--+ /3) E T"'~. 

We introduce a very convenient notation from [23]. For each type symbol a, and each set S containing 

objects or expressions, we write Sa to denote the set of things inS which are of type a. We sometimes 

write {S01 } 01 to denote S. We can also define a type assignment mapping r on the set S such that 

r: S--+ T and for all s E S, r(s) =a if s E Sa. 

Let S and T be sets. The set S --+ T is the set of all mappings from S into T. Given a mapping 

f: S--+ T, a E S, and bET, let f[bfa] be that mapping f': S--+ T such that for f'a =band f'c = fc 

for all c #a. Given a set S1 ~ S, we write f(St) for {f(a): a ESt}. 

Let S, T~, T2 be sets, and f : S --+ T1 and g : T1 --+ T2. The composition off and g is the function 

fog: S--+ T2 such that for all s E S, f o g(s) = g(J(s)). 

Let T1 and T2 be sets and b be an element in T1 X T2, then b1 and b2 are the first and second 

components of b, so b = (b1 , b2 ). Iff is a mapping whose values are in T1 x T2 , let jl and P be 

mappings with the same domain as f defined so that for any argument t, fit= (Jt)i fori= 1, 2. Thus 

ft = (J1t, Pt). 

Let S, T, Tt, T2 be sets. Iff : S --+ T is a mapping, then we say that f is good if for all s E S, 

r(J(s)) = r(s). Iff: S--+ T1 x T2, then we say that f is good if jl and Pare good. In this paper we 

consider only good mappings, so a mapping is always assumed to be good unless said otherwise. 

Let 71 be a subset ofT and S a set. By S j 71 we mean {Sa}ae1i. the subset of S consisting of 

elements in S of types in 71. When f is a mapping whose domain is S, then f j 71 is defined to be 

f j (S j 71) the restriction off to S j 71. 

For each integer nEw, we write [n] for the set {1, · · ·, n}. 

We assume that there are denumerably many variables and constants of each type. Let the set of 

variables and constants be ~ and :E, respectively. Then for each type symbol a, ~o is the set of variables 

of type a and :Ea is the set of constants of type a. So, ~ = UaeT ~a and :E = UaeT :E01 • 

Simply typed >.-terms are built up in the usual fashion from these typed constants and variables via 

abstraction and application. Our well formed terms ( wfts) are simply typed >.-terms. We define the set 

T(E) of all wfts by giving the definition of the set T(E)a of wfts of type a by induction: 

(a) ~0 ~ T(E) 0 • 

(b) Eo ~ T(E)a· 

(c) If tf3 E T(E)f3 and X 0 E ~0 , then [>.xotf3] E T(E)a-+{3• 
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It is assumed that the reader is familiar with most of basic notions and definitions such as bound, 

free variables, closed terms (c-terms), substitution and .A-conversion for this language; only a few are 

reviewed here. 

Letters J0, s 0, tc., · · ·, will be used as syntactical variables of wfts of type a. Type subscript symbols 

may be omitted when context indicates what they should be or irrelevant to discussion. We use the 

expression FV(t) to denote the set of free variables of a wft t. 

By Church-Rosser theorem [6], a .A-normal wfts of a wft is unique upto a renaming of variables. 

For most part we shall be satisfied with any of these normal forms corresponding to a wft t, and we 

shall write .Anorm(t) to denote such a form. In certain situations we shall need to talk about a unique 

normal form and, in such cases, we shall use p(t) to designate what we shall call the principal normal 

or p-normal form of t; i.e. p is a mapping from wfts to ,\-normal terms. There are several schemes 

that may be used to pick a representative of the a-equivalence classes of .A-normal terms and the one 

implicitly assumed here is that of [2]. 

We define a notion of substitution as a mapping from and to wfts. A substitution is any total good 

mapping u: ~ ~ T(:E) such that u(x) =f:. x for only finitely many x E ~- Given a substitution u, the 

domain of u is the set of variables Dom( u) = { x E ~ : u( x) =f:. x}. A substitution whose domain is 

empty is called the identity substitution, and is denoted by f. Given a substitution u, if its domain is 

the set {x1, · · ·, xn}, and if ti = u(xi) fori E [n], then u is also denoted by listing its binding explicitly: 

[t1/x1, · · ·, tnfxn]· We say that u is .A-normal(p-normal, closed) substitution if each ti, for i E [n], is in 

.A-normal (p-normal, closed) form. Given a term t, we define u(t) = p([.Ax1 · · · Xn · t]t1 • • • tn)· Finally 

given an arbitrary mapping x: ~ ~ T(E), we can consider x as a generalized substitution such that for 

each term t, x(t) = (x j FV(t))(t). 

So far we have introduced .A-term structures and operations on .A-terms. We can introduce logic into 

,\-term structures by including o, a type for propositions, amongst the set of primitive types To, and 

requiring that the collection :E of constants contain the following logical constants: 1\ and V of type 

o ~ o ~ o; T of type o; and for every type a, 3a of type (a ~ o) ~ o. The constants in :E other than 

1\, V, 3 and T are called as non-logical constants. 

A type will be called a predicate type if it is a type in the set T 0 of types of kind o, or a non-predicate 

type otherwise. A variable of predicate type will be called predicate variable. And a non-logical symbol 

in E of predicate type will be called predicate constant. We let II ~ E be the set of predicate constants. 

The type subscript on 3 will be omitted except when its value is essential in a discussion and can 

not be inferred from the context. Expression of the form 3(,\xG) will be abbreviated by 3xG. 
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Terms of type o are referred to as goal formula or just formula. The A-normal form of a formula 

consists, at the outermost level, of a sequence of applications, and the leftmost symbol in this sequence 

is called its top level symbol. We shall have use for the structure of A-normal formulas that is described 

below. A formula is said to be an atom (atomic) if its leftmost symbol that is not a bracket is either a 

predicate variable or constant. A A-normal goal formula G, then, has the following inductive character­

ization: 

(a) it is T. 

(b) it is an atom. 

(c) it is G1 A. G2 or G1 V G2 , where G1 and G2 are A-normal formulas, or 

(d) it is 3xG, where G is a A-normal formula. 

Now we identify the formulas that we call higher-order definite clauses, sentences, goal formula, and 

equations. 

Let g be the collection of all A-normal formulas. A goal formula is a formula G in g. An atom is 

an atomic goal formula A. A rigid atom is an atom A,. that has a predicate constant as its head. An 

atom is thus a formula of the form pt1 • • • tn where 'Y = a 1 , • • · , an --. o, p is a predicate constant.., or 

variable..,, and, for each i E [n], ti is a A-normal terma;, it is a rigid atom just in case p is a constant. 

Sometimes we write p( t 17 • • • , tn) or p(t) for the above atom. 

Let G be an arbitrary goal formula and A,. be any rigid atom. Let x be an arbitrary listing of all the 

variables free in either G or A,.. Let a formula C be of the form A,.+- G. Then Cis a (higher-order) 

definite clause and the formula 'IX · D is a (higher-order) definite sentence. 

Let sa, ta E T(E). Then, as usual, an equation e is of the form Sa= ta, and an extensional equation 

is of the form Sa = ta. 

Let Vef be the set of all definite clauses. Then given the collection E of constants, our logic 

programming language £ =£(E) is completely determined as the triple (T(E), g, Vef). A formula in a 

language £ is a goal formula, or a definite clause, or an equation. 

We refer a set P of formulas from Vef as a higher-order definite logic program. As usual, variables 

in definite clauses are implicitly universally quantified. 

We say that a predicate symbol p occurs extensionally in formula G if 

(a) G is p(l), or 

(b) G is Gt A. G2 or G1 V G2 , and p occurs extensionally in G1 or G2 • 

(c) G is 3xG1 , and p occurs extensionally in G1 . 

In following sections, we will define semantics for AProlog. We will take advantage of the following 

situation: Since logic programs compute extensions of predicates, and relations between arguments of 
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predicate symbols constitute extensions of predicates, we don't need extensions of terms until we meet 

extensional occurrences of predicate symbols in the definition of satisfaction of formulas. 

3 Extensional Domains 

We shall have extensive use of structures of partially ordered set (poset) in this paper. It is convenient 

to study structures of this type in a more general setting. 

If P is a non-empty set with binary relation ~P which is a partial ordering (i.e., the relation ~P is 

reflexive, transitive and anti-symmetric), we say that Pis a partially ordered set, or simply a poset. 

There are many examples of posets, but we are interested only in those satisfying special requirement 

below. In particular, we note that any non-empty set A can be considered a poset under the identity 

relation where x CAy iff x = y. We call this type of poset discrete. 

Let x and y be elements of a poset P. We say that y is an upper bound of x in P if x ~P y. If x is an 

element of P such that every element of Pis an upper bound of x, we say that xis a bottom element of 

P. If this element exists it is clearly unique, it is denoted in the form l.p. An element x in the poset P 

is maximal if whenever x Cp y, then x = y, or equivalently when the only upper bound of xis x itself. 

If P is a discrete poset, then every element of P is maximal. 

Let x and y be elements of a poset P. We say that x and y are consistent in P if they have a 

common upper bound, i.e., there is an element z in P such that x ~P z andy ~P z. A subset M of P 

is consistent if any two elements in Mare consistent. 

Let M be a subset of the poset P. If x is an element of P which is an upper bound of every element 

of M we say that x is an upper bound of M. We say that M is directed if every finite subset of M has 

an upper bound in M. An element x of P is the least upper bound (lub) of Min P if it satisfies the 

following two conditions: (a) xis an upper bound of M; (b) if y is any upper bound of M, then y is an 

upper bound of x. It is clear that the least upper bound of a set M is unique if it exists. We shall use 

the notation UpM to denote the least upper bound of a subset M of a poset P whenever such element 

exists. 

There is a dual notion that also plays a role in our discussion. We say that an element x of a poset 

Pis a lower bound of a subset M if xis a lower bound of every element in M. An element x of Pis the 

greatest lower bound (glb) of M if it satisfies the following conditions: (a) xis a lower bound of M; (b) 

if y is any lower bound of M, then y is a lower bound of x. We shall use the notation npM to denote 

the greatest lower bound of a subset M of a poset P whenever such element exists. 

If M is the two element set {x, y }, then we write x Up y for UpM and x nP y for npM. 

A lattice is a poset in which each two element subset has both an lub and a glb. Thus in a lattice L 

for any x, y E L both x UL y and x nL y exist. A lattice L is a complete lattice if ULM and nLM exist 
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for every subset M of L. 

A poset Dis a. domain if every consistent subset of D ha.s a. least upper bound. Since the empty set 

is consistent, it follows that D ha.s a. bottom element. 

Lemma 3.1 tdomdglb:1 Let D be a domain. If M is a non-empty subset of D, then M has a greatest 

lower bound. 0 

A transformation of a. poset P is a. total mapping T from P to P which satisfies the following 

monotonicity condition for all z andy in P: if z ~P y, then Tz ~P Ty. If Tis a. transformation on P, 

and z is an element of P such that Tz ~P z, we sa.y that z is closed under T. If Tz = z we sa.y that z 

is a. fixed point of T. 

Theorem 3.2 tdflfp: LetT be a transformation on the domain D. There is a unique element z in D 

such that: 

(a) The element z is a fixed point ofT. 

{b) If y is an element of D which is closed under T, then y is an upper bound of z. 0 

We call the unique element z in the above theorem the least fixed point of the transformation T. This 

least fixed point ha.s a. more convenient formulation by recursion using transfinite ordinals: 

Theorem 3.3 t dtlfpo: Let T be a transformation of a domain D. Define Tv for all ordinals v: for 

XED, 

(a) T 0x = x 

(b) Tv+lz = T(Tvz) 

(c) Tvx = U~&<vT"z v is a limit ordinal 

Then T has a least fixed point given by TY .Lv where 'Y is the first ordinal such that TY .Lv = TY+l .Lv. 

We call the ordinal 'Y closure ordinal for T. 0 

Let T be a. transformation of a. domain D. We sa.y that T is continuous if T(UvM) = UvT(M), for 

every directed subset M of D. 

Theorem 3.4 ttcontlfp: LetT be a continuous transformation of a domain D. Then the least fixed 

point ofT is Tw .Lv. D 

Now a few constructions of posets will be discussed. 

Let P1 and P2 be disjoint posets. P1 U P2 is a poset P = P1 U P2 such that for all x, y E P, x ~P y 

if x ~P1 Y or x ~P2 y. P1 X P2 is a poset P = P1 x P2 where for all x,y E P, x ~P y if x 1 ~p1 y1 and 

x2 ~P2 y2. 

1 We use the label starting with tonly for editing purpose. In the following, ignore them. 
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Let S be a set, and P a poset. S ~Pis a poset F such that for all j, g E F, f ~F g if for all s E S, 

f(s) ~P g(s). 

Theorem 3.5 Let S be a set, and D a domain. Then S ~ D is also a domain. 

Proof Let M be a consistent subset of S ~ D, and g be a mapping in S ~ D defined as: for all s E S, 

g(s) = Uv{f(s) : f EM}. Then it is easy to see that g = Us-+vM. 0 

In the following, given a poset the poset subscript on ~ and U and n will be omitted except when 

its value is essential in a discussion and cannot be inferred from the context. 

Let 8 be the set of boolean values T and F where F ~B T. Then B is a domain. We shall write V 

and A for UB and nB, respectively. 

Let A be an arbitrary set. We can consider A a discrete poset. A predicate P over A of type 

a-1, ···,an ~ o is a mapping in Aa1 X • • • X Aa,. ~ 8, or equivalently a subset of Aa1 X • • • X Aa,.· And 

we consider truth values T and F as null-ary predicates over A of type () -+ o such that T() = T and 

F() = F, respectively. More generally, we define predicates T~1 , ... ,a,. for each list a-17 ···,an of types 

where n ~ 0 as Aa1 X··· X Aa,.· We write ~(A) for the set of all predicates over A. 

Lemma 3.6 ~(A)a-+o is a domain. 0 

Given two predicates P, Q E ~(A), it is obvious that P ~ Q if P and Q are of same type and Pis a 

subset of Q. 

Theorem 3.7 LetS be a set, and F the set of all good mappings inS~ ~(A). Then F is a domain.D 

Given a list a~,···, O'n of types and i E [n], i-th identity function Ji is a function in Aa1 X··· X Aa,. ~ 

Aa; such that for all (at,··· ,an) E Aa1 X··· X Aa,., Ji(at, .. ·,an)= ai. 

Operations on ~(A) can be introduced as follows. 

Let P, Q E ~(A)a-+o· Then predicates P A.Q and PVQ defined by 

(Disjunction) PVQ = P U Q and 

(Conjuction) PA.Q = P n Q 

are in ~(A)a-o• 

Let P E ~(A)a-+o· Then a predicate {3P defined by 

(Adjoining of a variable{)) f3P(b, a) = P(a) 

is in ci>(A)fJ,a-+o· 

Let P E ~(A)fJ,a-+o· Then a predicate 8P defined by 

(Projection) 8P(a)= 3b E Af3 · P(b, a) 

=There exists abE Af3 such that P(b, a). 
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is in <I>(A)a-oo· 

Given a list of types a 1 , ···,an, and a function 1r: [n]-+ [n], 

and P E <I>(A)a,.(l)····,a,.(n)-+o, the predicate 1r P defined by 

(Simple substitution) 1r P(a) = P(J7r(1)(a;), · · ·, pr(n)(a)) 

is in <I>(A)a-+o· 

Theorem 3.8 Let p be a subset of <I>( A) where p is closed under conjunction and disjunction. Then 

Pa-+o is a domain. 0 

Given a subset p of <I>(A), we can extend p to the unique extensional domain p' = {p~}a based on A: 

In a situation where a set A is given, we shall use p to mean p'. 

Let p be an extensional domain. We say that p is elementarily closed if p contains predicates T 

and F and is closed under conjunction, disjunction, projection, adjoining of a variable, and simple 

substitution. 

Given any extensional domain p, we call an extensional domain p"' as a elementary closure of p if 

p* is a minimal extension of p which is elementarily closed. We can also give inductive definition of p*. 

Definition Given a subset p of <I>(A), for each ordinal v, Pv is defined by: 

(a) Po= P 

(b) P E Pv+l iff P E Pv, or 

P can be obtained by conjunction or disjunction or projection or adjoining of a variable, or simple 

substitution from predicates in Pv· 

(c) v is a limit ordinal. 

Pv = U"'<vPw 

Finally p* defined to be Uv Pv· 

Note that P E p"' iff P E Pv for some ordinal v. 0 

4 General Model Theoretic Semantics 

In this Section we build model-theoretic semantics for the language £. As introduced in Section 1 we 

need a non-extensional model to prove that the resolution system in type theory is complete. The 

model in [2] is in a sense non-extensional. But it doesn't provide an adequate notion of "general" non­

extensional model for our purpose: Domain is defined by indexing extension of the element in it by wfts. 
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The indexed entity like (t,p) is called a V-complexe where Vis a truth value evaluation of formulas. 

So only one kind of domain is used in [2], since the set of all wfts is predetermined given a language£. 

In [2], in order to define the domain of interpretation we need a semivaluation function V, as above, 

which evaluates proposional formulas to T or F. The definition of domain or the evaluation of terms is 

mutually recursive with the definition of evaluation of formulas. 

Now we generalize Andrews model to a model where we index the extension by an element from an 

arbitrary set which we call universe. Since our language £ is based on ..\-calculus and application is a 

basic operation of the ..\-calculus, any model of £ should be an applicative structure which is a ..\-model. 

Definition Let A be an arbitrary set and · a binary operation over A such that for all a, f3 E T, for all 

a E Aac ..... p, bE Aac, a· b is an element in Ap. Then A= (A,·) is said to be an applicative structure. An 

assignment into a set A is a good mapping cp: ~--+A. A ..\-model is a triple (A,·, V) such that (A,·) is 

an applicative structure and V a binary function such that for each assignment cp into A and term ta, 

V<,e>tac E Aa. We call the function V a valuation function in A. 0 

Definition A universe is a nonempty set D of objects each of which is assigned a type symbol from the 

set Tin such a way that every object in Da-+13 is a function from Da to D13 for all type symbols a and 

(3. A pre-interpretation :F of the language£ is a pair (D, J) where D is a universe, and J is a function 

which maps each constant Ca E E of type a to an element of D0 • We say that :F is based on D. An 

assignment into a pre-interpretation is an assignment into the universe of the pre-interpretation. 0 

Note that Da-+13 is some collection of functions mapping Da into Dp, i.e. Da-+13 ~ Da --+ D13 . 

A pre-interpretation :F = (D, J) is said to be general iff there is a binary function V:F = V such 

that for each assignment cp and term toe, V <,e>ta E Doc, and the following conditions are satisfied for each 

assignment cp and all terms: 

(a) if x E ~'then V~"x = cpx. (b) if c E E, then V~"c = Jc. 

(c) V~"(!t) = (V~"f)V~"t (the value of the function V~"f at the argument V~"t) 

(d) V~"(..\xact/3) = ~d E Doc · V<,e>[d/:r:]tp i.e. that function from Da into Dp whose value for each 

argument d E Da is V <,e>[d/x]tp. 

Lemma 4.1 t svfuni: If a pre-interpretation :F is general, the function V:F is uniquely determined. 

Proof By induction on the definition of terms. 0 

We call the function V:F the connotational valuation function of terms in the pre-interpretation 

:F. v::t is called the value oft in :F wrt cp. We sometimes write v:: as V~", as V:F, or as V, when 

pre-interpretation or assignment is clear from context, or irrelevant. 

A universe D is called a standard universe iff for all a and (3, Dac ..... p is the set of all functions from 

Doc into Dp, i.e. Dac-+(3 = Doc --+ Dp. We call a pre-interpretation as a standard pre-interpretation if its 

universe is standard. Clearly a standard pre-interpretation is general. 
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Lemma 4.2 Let a pre-interpretation F be general, t a term, and cp and '1/J assignments which agree on 

all free variables oft. Then Vr.pt = V'I/Jt. 

Proof By induction on the construction oft. 0 

It is clear that if t is a c-term, then V:Ft may be considered meaningful without regard to any 

assignment. In this case, V:Ft is called the connotation of t in F and written as t'. Obviously for a 

general universe D, (D, ·, V) where · is interpreted as a functional application is a general .\-model, 

but in a pre-interpretation logic symbols such as logical operators and predicate constants are not fully 

interpreted. So we call it a pre-interpretation. 

Definition Let D be a universe. A semivaluation of D is a function V with domain Do and range the 

set B of truth values such that the following properties hold: for all C0 , do, fa-+o E D, 

(a) V(T') = T. 

(b) V(V1c0 d0 ) = V(co)VV(do)· 

(c) V(/\ 1c0 do) = V(c0 )/\V(d0 ). 

(d) V(3~fa-+o) =Tiff there is some e E D01 such that V(Ja-+oe) = T. 0 

Lemma 4.3 Let cp be an assignment into D. Then for all goal formula G, V(Vr.pG) = V(Vr.p(p(G))). 

Proof Vr.pG = Vr.pp(G). o 

Definition Given a universe D and a semi valuation V of D, we define the set 1) of V -complexes based 

on D as follows: For each type 1 we define the set 'D-y of V-complexes-y as follows by induction on 1: 

(a) 'D0 = {(d, Vd): dE D 0 }. 

(b) 1J01 = {(d,d): dE Da} when a E To- {o}. 

(c) 'Da-+{3 = {(f,p): f E Da-+{3 and p: 'Da--+ 1)(3 such that for a E 'D01 , pa = (fa\r) for some r}. 

We say that 1) is the set of V-complexes based on D. 0 

Lemma 4.4 t dvduni: Given a universe D and a semi valuation V of D, the set 1) of V -complexes based 

on D is unique. 

Proof We prove by induction on 1: For each dE D-y, there is only one p such that (d,p) E 'D-y. 

For 1 E To it is obvious. For 1 =a--+ /3, let f E Da-+{3· Assume (f,p), (!, q) E Va-+{3 to show p = q. 

Then p, q : Va --+ V13. For any a E V 01 , pa = (fa1, r 1) and qa = (fa1, r 2). By IH r 1 = r 2 • Therefore 

pa = qa for all a E V 01 • Sop= q. 0 

Definition Let V be a set of V-complexes. Then we define the applicative operation* of type (a --+ 

/3), a--+ /3: For a E Va-+{3 and bE V 01 , a* b is defined to be a2b. The operation* is left associative. 0 

Let a E Va1 , ... ,an-+f3 and bi E Va; for i E [n]. Then by definition of V it is easy to see that 

a * b1 * .. · * bn E V (3. 
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Lemma 4.5 (V, *) is an applicative structure. 0 

Lemma 4.6 2 tdev: For each d-r E D-r, there exists a v such that (d-r, v) E V'Y" 

Proof We choose v as a function of d-r by induction on 1, and show that (d-r, v(d-r)) E V-r. This is 

trivial when 1 is in To. If 1 =a~ {3, let v(da-+.B)a = (da-+.Ba\ v(da-+1Ja1 )) for each a EVa. 0 

Let :F = (D, J) be a pre-interpretation, V a semivaluation of D, and 1) a set of V-complexes based 

on :F. Then we can introduce an isomorphic mapping"' between D and V: For all dE D, Kd = (d, v(d)). 

Then for any a E V, Ka1 =a, and for any mapping x whose values are in V, X1 o"' =X· 

Lemma 4.7 For the above mapping K the following holds: 

For all f E Da-+fJ, dE Da, (Kf) * (Kd) = K(jd). 

Proof 

0 

Definition Let 1) be a set of V-complexes. We can define a binary mapping V such that for all 

assignment c.p into 1), Vc,o: T('E) ~ V, and for all t E T('E), V! = Vc,od. 0 

Lemma 4.8 tksc: Let c.p be an assignment into D. Then for all term t, KVc,ot = Vc,oox:t. 

Proof c.p o "' is an assignment into 1) and ( c.p o "')1 = c.p. 

Vc,oox:t = (Vc,ot, v(Vc,ot)) = KVc,ot. 0 

Lemma 4. 9 t gdcvuni: Let D be a general universe and 1) a set of V -complexes. Then there is the 

unique V satisfying that for all t-r E T('E) and assignment c.p into V, Vc,ot-r E V-r· 

Proof Follows from Lemmas 4.8, 4.1. 0 

Theorem 4.10 If D is a general universe and 1) a set of V -complexes, then (V, *• V) is a >.-model. 

Proof Follows from Lemma 4.9. 0 

From now on we always assume that our universe D is general, and we are given a fixed set 'D of 

V-complexes based on D for some semivaluation V of D. 

Lemma 4.11 V~(>.xat) =.\a EVa· Vc,o[a/za]t. 

Proof V~(>.xat) = v(Vc,ol(>.xat)). For a EVa, 

V!(>.xat)a = {Vc,ol(Axat)a\v(Vc,ol(Axat)a1)) = {Vc,ol[al/xa]t,v(Vc,ol[al/xa]t)) = KVc,o'[al/xa]t = Vc,o[a/za]t. D 

2It is easy to see that given 'D, the function v in the proof of this lemma is unique. Note also that we use boldface 
character for extension. 
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Lemma 4.12 Let ftt · o o tn be a wft in T(E) where n > 0. 

Then Vtp(Jt1 o o o tn) = (Vtpf) * (Vtptt) * o o o * (V~Ptn)o 

Proof By induction on no 

Lemma 4.13 tcvapp: Let G1 and G2 be goal formulas. 

(a) V~(Gt V G2) = V~GtVV~G2. 

(b) V~(Gt A G2) = V~Gti\V~G2. 

(c) V~(3xaGI) = T iff there exists an a E 'Da such that V~[a/xa]Gt = T. 

Proof (a) V~(G1 V G2) = V(V'(V~P1Gt)V~P1G2) = V(V~P1Gt)VV(V~P1G2) = V~G1VV~G2. 

(b) Similarly as in (a) o 

0 

(c) Let f = V~P1 (AxaG1). Then V~(3xaG1) = V(3~f) =Tiff there exists ad E Da such that V(Jd) = T. 

fd = VIPl(>..xaGt)d = V~Pl[d/xa]Gl = T. Therefore there is an a= Kd such that v~[a/xa]Gl = T. 0 

Definition Given a universe D, we define a primitive extensional domain Ea for a E To: 

(a) Eo= B. 

(b) Ea = Da for a E To- {o}. 0 

Definition Given an a E 'Da1 , ... ,a,.-f3 where n ~ 0 and {3 E To, we define a mapping a0 in Da1 -+ · · · -+ 

Da,. -+ Ef3 by induction on n: 

(a) When n = 0, a0 = a2. 

(b) When n > 0, a0 = ~d1 E Da1 ·(a* t>:dt)0 . 0 

Lemma 4.14 teapp: Let a E 'DaJ.· .. ,a,.-{3 where n > 0 and {3 E To. Then for all di E Da; 1 i E [n], 

a0d1 · "dn = (a* Kdt *" · Kdn)2. 

Proof By induction on n. When n = 1. a0 d1 = (a* Kd1 )0 = (a* t>:d1 )2. 

When n > 1. 

a0d1 · "dn = (a* Kdt)0 d2 "· dn 

= (a* Kdt * Kd2 * o "* Kdn? by IH. 

0 

Lemma 4.15 textsam: Let a E 'Da1 , ... ,a,.-+f3 where n ~ 0 and {3 E To- { o}. Then a0 = a1. 

Proof By induction on n. When n = 0. a0 = a2 = a1 by the definition of 'Df3· When n > 0. For all 

0 

Definition Let :F = (D, J) be a general pre-interpretation and V a semivaluation of D. An £-structure 

A is a pair ('D, J) such that 'Dis a set of V-complexes based on D. We say that A is based on :For on 

D. An assignment into A is an assignment into 'D. 0 
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Definition 3 Let A= ('D, J) be an £-structure, <pan assignment into A. When F is a formula in£, 

we write A1=F[c.p] to say that A satisfies F wrt c.p. 

(a) When s01 , t 01 E T(E), A1=s01 = t01[c.p) iff VrpsOt = VrptOt, 

A1=s01 = t 01 [c.p) iff (Vrps01 )0 = (Vrpt01 )0. 

(b) When G is a goal formula, A1=G[c.p] iff V!G = T. 

(c) When A+- G is a definite clause, A1=A +- G[c.p) iff A1=A[c.p] whenever A1=G[c.p]. 

We write A1=F to say that a formula F is valid in A if A1=F[c.p] for all assignments <pinto A. Given a 

set of definite clause P, we say that A is a model or D-model for P, and write A1=P, if each definite 

clause in Pis valid in A. Given a closed goal formula G, we say that G is a logical consequence of P, 

and write P1=G if G is valid in all models of P. 0 

Lemma 4.16 tatom: Let A= ('D, J) be an £-structure, <p an assignment into A and p(t17 • • ·, tn) an 

atom. Then 

(a) Al=p(th · · ·, tn)[c.p) iff (Vrptih · · ·, Vrptin) E (Vrpp) 0 • 

(b) Al=p(tt, · · ·, tn)[c.p] iff (Vrpdt, · · ·, Vrpdn) E (J o ~~:(p))0 if p is a constant 

or (V rpl t1 , · · • , V rpl tn) E ( <pp )0 if p is a variable. 

Proof 

V!(p(tt, · · ·, tn))= (V""p * Vrptt * · · · * Vrptn) 2 

= (V""P* ~~:Vrptit * · · · * ~~:Vrpttn? 
= (Vrpp)0 (Vrptit, · · ·, Vrpttn) 

by Corollary 4.8. 

by Lemma 4.14. 

Lemma 4.17 tlop: Let A= ('D, J) be an £-structure, <p an assignment into A. Then 

(a) AI= T[c.p]. 

(b) AI=Gt V G2[c.p] iff AI=Gt[c.p] or A1=G2[c.p). 

(c) AI=Gt 1\ G2[c.p] iff AI=Gt[c.p] and A1=G2[c.p]. 

(d) Al=3x01 G[c.p] iff there is an a E 'D01 such that AI=G[c.p[a/xaJJ· 

0 

Proof (a) By (a) in the definition of semivaluation. (b), (c), and (d) follow from Lemma 4.13. 0 

Definition Let (D, J) be a general pre-interpretation. Then we write II( D) for the D-base which is 

defined to be the set {p(a~, ···,an) : p E IIai.···,an-+o and ai E Dai for all i E [n]}. 0 

3 Note that in this definition the symbol for satisfaction in A is the small!=. The normal size F is used for another 
definition of satisfaction which is defined later in this paper. 
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A subset IC of II( D) induces a unique mapping IIC in II-+ <I>( D) as follows: for all dE D, (d) E h(p) 

iff p(d) E IC. Let IC1 ~ IC2 ~ II(D), then it is easy to see that /x:1 ~~~-~(D) h;2 • Sometimes given 

IC ~ II(D), we write simply IC to mean the mapping I,.._. 

Definition Let D be a general universe and S a subset of Do. 

(1) S is upward saturated if 

a) c E S implies V'cd, V'dc E S ford E D0 • 

b) c,d E S implies 1\'cd E S. 

c) fa-+oda E S implies 3~fa-+o E S 

(2) S is downward saturated if 

a) If V' cd E S, then c E S or d E S. 

b) If 1\'cd E S, then c, dES. 

c) If 3~fa-+o E S, then there is a d E Da such that fa-+od E S. 

(3) S is saturated if S is both downward and upward saturated. 

Lemma 4.18 LetS~ D0 • There is a smallest upward saturated set extending S. 

0 

Proof Let C be the collection of upward saturated set extending S. C is not empty, since Do E C. So nC 

exists. It is easy to check that it is upward saturated. It fulfills the other considerations, by definition. 

0 

Definition For S ~ Do, the smallest upward saturated set extending S is called the upward saturated 

closure of S, and is denoted as su. 0 

Lemma 4.19 Let 81 ~ S2 ~Do. Then Sf~ Sf. 

Proof Let C1 be the collection of upward saturated sets extending S1, and similarly for C2 • Then C2 ~ C1; 

hence Sf= nC1 ~ nC2 =Sf. o 

Lemma 4.20 If S is downward saturated, su is saturated. 

Proof It is enough to show that su is downward saturated. Say c ¢ su; we show 1\1 cd ¢ su. The 

other cases are similar. If c ¢ su, we cannot have A'cd E S, since S is downward saturated. So we 

would have c E S, butS~ su. Hence S ~ su- {A'cd}. But su- {1\'cd} is still upward saturated. So 

su ~ su- {A'cd}. Then 1\'cd ¢ su. 0 

Definition Given I~ IT(D), we can introduce set S1 such that S1 = {p'd: pd E I} U {T'}. We define 

a function VI: Do-+ Bas follows: for each dE D 0 , VId = T if dE Sf, F otherwise. 0 

Lemma 4.21 S1 is downward saturated and Sf saturated. And VI is a semivaluation of D. 0 
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Lemma 4.22 tiivmon: It~ I2 ~ IT(D). Then Vi1 C Vi11. 

Proof SK ~ sg. 0 

Definition Let I~ II(D). Then I induces the set VI of Vi-complexes based on D and the following 

functions whose domain is D: the function "I such that for each d E D' { d, "I( d)) E VI' the function 

"-I : D --+ V 1 such that for d E D, K.1d = (d,v1(d)}, and the function e1 such that for d E D, 

0 

Lemma 4.23 It~ I2 ~ II(D). Then 'VI1 ~ 'VI11 • 

Proof We prove v It d.., ~ v 111 d.., for all d.., E D by induction on "f. When "f = o. Follows by Lemma 4.22. 

When"' E 'To- {o}. By definition of VI-complexes,VI1 d-r = VI2 d-r. 

"'=a--+ (3. Let a E 'Da. 

(v11 d..,)a = (d..,a\ 'VJ1 (d..,at)) 

~ (d..,a\vi2 (d..,at)) 

= (VI2 d..,)a. 

by IH 

Lemma 4.24 teiapp: Let I~ II(D) and dE Da ..... fl· Then for all dt E Da, e1(d)dt = e1(ddt). 

0 

Proof e1(d)dt = (K.Id)0 dt = (K.Id* K.ldt)0 = (K.ddt)0 = ei(ddt)· 0 

Lemma 4.25 It~ I2 ~ II(D). Then e11 ~ e12 • 

Proof We prove ford E Da1 , ... ,a,. ..... p, (3 E 'To, n ~ 0, e11 (d)~ e12 (d) by induction on n. 

n = 0. e11 d = (d,v~td}0 = V11 d ~ V12 d = (d,v12 d} 0 = e12 d. 

n > 0. For dt E Da1 , 

(e11 d)dt= e11 (ddt) 

~ ei2 (ddt) 

= (e12 d)d1. 

by Lemma 4.24 

by IH 

0 

Definition Let (D, J) be a general pre-interpretation. An interpretation M is a pair (D, I) where 

I: IT--+ ~(D). We call M aD-interpretation. An assignment into M is a good mapping c.p: V--+ D. 

0 

Definition Let M = (D,I) be an interpretation of C, c.p an assignment into M. When F is a formula 

in £, we write M t= F[c.p] to say that M satisfies F wrt c.p. For all goal formulas G, G~, G2 , for each 
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rigid atom A, 

(a) When Sa, ta E T(E)a, M I= Sa= ta['t?] iff Vr.psa = Vr.pta, 

M I= Sa = ta['t?] iff e]Vr.psa = e]Vr.pta. 

(b) M I= T[cp] 

(c) M I= p(t1 , · • ·, tn)[cp] iff (Vr.pth · · ·, Vr.ptn) E Jp if pis a constant 

or (Vr.pt1, • • ·, Vr.ptn) E cp o e1(p) if pis a variable 

(d) M I= Gt V G2[cp] iff M I= Gt[~P] or M I= G2(cp] 

(e) M I= Gt A. G2[cp] iff M I= Gt[~P] and M I= G2[cp] 

(f) M I= 3xaG iff there is ad E Da such that M I= G[cp[d/xa]] 

(g) M I= A +- G[cp] iff M I= A[cp] if M I= G[cp]. 

We write M I= F to say that a formula F is valid in M if M I= F[cp] for all assignments cp into M. 

Given a definite program P, we say that M is a model or D-model for P, and write M I= P, if each 

definite clause in Pis valid in M. Given a closed goal formula G, we say that G is a logical consequence 

of P, and write P I= G if G is valid in all models of P. 0 

Assume that G is any formula where the predicate variable p of type a -+ o does not occur free. We 

call any formula of the following form 

3pVX[p(x) 4-+ G] 

as a relation comprehension formula. 

Theorem 4.26 Relation comprehension formulas are valid. 

Proof By induction on the goal formula G. 0 

Definition Let F = {D, J) be a general pre-interpretation, V a semivaluation of D, and 'D be the set 

of V-complexes based on D. Then 1)0 is defined to be the set {a0 : a E 'D}. Let A = ('D, J) be an 

£-structure based on F. Then the D-interpretation A0 induced by A is defined to be (D, I) where 

I= J o "o (·)0 ; n. o 

Lemma 4.27 Let TJ0 be as above. Then p = 1)0 is an elementarily closed extensional domain based 

on D. 

Proof Assume P, Q E rPa-+o to show PVQ E rPa-+o· Then there are a, bE Va-o such that P = a0 and 

Q = b0 , and an assignment cp into 1) satisfying <py = a and cpz = b. Let c = V ""(Ax · yx V zx) E Va-o 

Then it is easy to see that c0 = PV Q. 0 

Lemma 4.28 tind: Let cp be an assignment into D. Then for all formulas F in£, A0 ~ F[r.p] iff 

At=F[cp o ~~:). 
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Proof F is Sa = ta. 

A1=F[cp 0 ~~:) iff Vr,oo"Sa = Vr,oo"ta iff ~~:Vr,osa = ~~:Vr,ota iff Vr,osa = Vr,ota. 

F is Sa= ta• 

A1=F[cp o ~~:) iff (Vr,oo"sa)0 = (Vr,oo"ta)0 iff (~~:Vr,osa)0 = (~~:Vr,ota)0 iff e1Vr,osa = e1Vr,ota. 

F is p(tt, · · ·, tn)· 

If p is a constant, At=p(tt, · · ·, tn)[cp o ~~:) iff (Vr,ot1 , • • ·, Vr,otn) E J o II': o (·)0 (p). If p is a variable, 

Al=p(tt, · · ·, tn)[cp o ~~:)iff (Vr,ott, · · ·, Vr,otn) E cp o ~~: o (·)0 (p). 

Al=3xaG1 [cpo~~:). There is an a E 'Da such that AI=Gt[cpo~~:[a/xa]). So by IH, A0 F= Gt[cp[a1/xa) o~~:). 

D 

Lemma 4.29 teimp: For all formula Fin C, A 0 F= F iff A1=F. 

Proof Assignments into A® and A have one-one correspondence between them. So the lemma follows 

from Lemma 4.28. D 

Theorem 4.30 te2a: Let 'P be a definite program and G a closed goal. Then P F= G implies 'P1=G. 

Proof Let A1=P. Then by Lemma 4.29 A 0 F= P, so A 0 F= G. 

Therefore A1=G by Lemma 4.29. D 

Definition Let :F = (D, J) be a general pre-interpretation, M = (D, J) a D-interpretation based on 

:F, and De be a set of Vi-complexes based on D. Then Me is an £-structure (De, J) induced by M. D 

Lemma 4.31 For all formula F inC and assignment cp into D, 

Me1=F[cp o ~~:1] iff M F= F[cp]. 

Lemma 4.32 td2aval: For all formula Fin C, Met=F iff M F= F. 

Theorem 4.33 t a2e: Let P be a definite program and G a closed goal. Then 

P1=G implies P F= G. 

Proof Assume M F= P. Then Me1='P. So Me1=G. By Lemma 4.32, M F= G. 

Theorem 4.34 For all formula F in C, F= F iff t=F. 

Theorem 4.35 Let P be a definite program and G a closed goal. Then 'P F= G iff'PI=G. 

Proof =?) By Theorem 4.30. ¢:) By Theorem 4.33. 

Theorem 4.36 The extensionality is not valid. 

D 

D 

D 

D 

0 

Proof Take an extensionality formula Pa = q0 -+ Pa = q0 • It is obvious that V~Pa = V~qa does not imply 

that Vr,oPa = Vr,oqa. 

For the extensionality formula (Vxa · fx = gx) -+ f = g, we take a E To and {3 = o and D-

interpretation I such that Ip = lq = F~. Then p = q but not always p = q. 0 
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Let M = (D, I) be an interpretation based on :F = (D, J), we can identify M with the subset I of 

II(D). And every subset I of Il(D) is a D-interpretation. Obviously the set of all D-interpretation is a 

complete lattice with the usual set inclusion ordering between D-interpretations. 

Theorem 4.37 tiimon: Let It ~ I2 ~ II(D). Then 

If It I= G[cp], then I2 I= G[cp]. 

Proof By induction on G. 

When G is T, it is obvious. When G is a rigid atom p(tt, · · ·, tn), since Itp ~ I2p, I2 I= G[cp]. When 

G is p(tt, · · ·, tn) where pis a variable. Since e11 ~ e12 , I2 I= p(tt, · · ·, tn)[cp]. 

When G is Gt 1\ G2. It I= Gt[cp] and It f= G2[cp]. By IH I2 I= Gt[<t?] and I2 f= G2[cp]. So I2 I= G[cp]. 

When G is Gt V G2. Assume, wlog, It I= Gt [cp]. By IH I2 I= Gt [cp]. 

When G is 3xaGt. There exists ad E Da such that It f= Gt[<p[d/xa]]. By IH I2 I= Gl[cp[d/xa]]. So 

I2 I= G(cp]. o 

Let :F = (D, J) be a general pre-interpretation. We can define a mapping T:: from the lattice of 

D-interpretations to itself. 

Definition Let :F be a pre-interpretation (D, J) of a definite 

program P and I a D-interpretation. Then 

T:: (I) = {p( dt, · · · , dn) E II( D) : there exist an assignment cp into I and 

a clause p(tt, · · ·, tn) +- G E P such that 

di = V "'ti for each i E [n] and 

I I= G[cp]} 

Lemma 4.38 ttmonf: T:: is monotonic, i.e. given It ~ I2 ~ Il(D), Tf;(Jt) ~ T::(/2). 

0 

Proof Assume p(dt, · · ·, dn) E T::(Jt) for p(dt, · · ·, dn) E II( D). Then there are an assignment cp into It 

and a clause p(tt, · · ·, tn) +- G E P such that V"'ti = di for all i E [n] and I1 I= G[cp]. By Theorem 4.37, 

I2 I= G[cp]. o 

So T:: is a transformation on the set of all D-interpretations. 

Lemma 4.39 tdmodel: Let I~ Il(D). Then I I= P iffT::(I) ~I. 

Proof=*) Assume p(dt, · · ·, dn) E T p(I) for some p(dt, · · ·, dn) E II( D). Then there are an assignment 

cp into I and a clause p(tt, · · ·, tn) +- G E P such that Vcpti = di for all i E [n] and I I= G[cp]. Then 

since I I= P, I I= p(tt, · · ·, tn)[cp]. Therefore p(dt, · · ·, dn) E I. 

<¢=) Similarly. 0 
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Lemma 4.40 tdmints: Let It and I2 beD-models ofP. Then It n I2 is also D-model ofP. 

Proof Since T ,(I1) ~It and T ,(I2) ~ I2, by monotonicity ofT p operator, 

T ,(It n I2) ~ T ,(It) ~It and 

T ,(It n I2) ~ T p(I2) ~ I2. 

SoT ,(It n I2) ~It n I2. D 

But the set of all D-models is not closed under join operation, i.e. It U I2 is not necessarily a D­

model, whenever It and I2 are D-models. Take for example the definite program 1'2 = {p +- q, r }. Then 

II(D) = {p,q,r}. {q} and {r} are D-models for 7'2 , but {q,r} is not aD-model. 

Still we can show that every definite program has the least D-model as follows: 

Theorem 4.41 t4min: Let M, = n{I ~ II(D) : I F P}, then M, is the least D-model of 1' and 

M, = Tj, ( ¢J) for the closure ordinal "(. 

Proof By Lemmas 4.39,4.40,4.38, and Theorem 3.3. 

5 Herbrand Models 

Definition The Herbrand domain His a set such that 

(a) His the set of all p-normal c-terms. 

(b) Let f E H01-fJ, then for all t E Ha, f(t) = p(ft). 

It is obvious that the Herbrand domain H is countable. 

D 

D 

Definition The Herbrand pre-interpretation 'HF is a pre-interpretation (H, J) such that H is the 

Herbrand domain and J satisfies the following: 

(a) If c01 is a constant such that a is a primitive type, then Jc01 = c01 • 

(b) If da-fJ is a constant of type a-+ (3, then for all t 01 E H01 , (Jd01_.f3)(ta) = d01_.f3t01 • D 

Lemma 5.1 The Herbrand pre-interpretation is general. D 

Definition An Herbrand interpretation M is an interpretation (H, I) based on the Herbrand pre-

interpretation. The Herbrand base 1lB is the set II(H). D 

As for D-interpretations, we can identify an Herbrand interpretation M with a subset I of the 

Herbrand base ll(H). 

Let I~ ll(H) be an Herbrand interpretation and cp an assignment into I. Then we can consider cp 

as the generalized substitution u such that for each term t E T(E), ut = (cp j FV(t))t. It is easy to see 

that for every term t, cpt is a c-term and Vcpt = cpt, for each goal formula G, cpG a closed goal formula, 

and for each definite clause C, cpC a closed definite clause. 
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The Herbrand interpretation M* induced by M is an Herbrand interpretation I* such that for every 

A E II(H), A E I* iff M I= A. Let cp and cp' be assignments into I and M, respectively. Then we say 

that cp' is induced by cp if cp' = cp o y:r. The mapping y:r : H ---+ D is a homomorhism from I* into I, 

since for p E 1Ia1 , ... ,an-+o, hi E Ha., i E [n], if (ht, · · ·, hn) E I*p, then (V:Fht, · · ·, V:Fhn) E Ip. Moreover, 

Lemma 5.2 thdhom: LethE Ha17 ···,an-+o· Then for all hi E Ha,, i E [n], (ht, · · ·, hn) E €J•(h) implies 

(V:Fht, · · ·, V:Fhn) E e1(VFh). 

Proof By induction on n. 

Lemma 5.3 td2h: Let M,I*,cp',cp be as above. Then 

(a) Ift is a term, then V~(cpt) = V~t, 
(b) If A is a rigid atom then I* I= A[cp] iff M I= A[cp'], 

(c) If G is a goal formula such that I* I= G[cp], then M I= G[cp'], and 

(d) IfC is a definite clause such that M I= C[cp1, then I* I= C[cp]. 

Proof (a) Let all free variables oft are in Xt, · · ·, Xk. 

V~(cpt) = V~([Axt · · · AXkt](cpxt) · · · (cpxk)) 

= (V~[Ax1 · · · AXkt])V~(cpx 1 ) · · · V~(cpxk) 

= (V~[Ax1 · · · AXkt])(cp'xt) · · · (cp'xk) 

= v:F,t cp 

by the definition of substitution 

by definition of V 

by definition of cp' 

(b) Let A = p( t1, · · · , tn) where p is a predicate constant. 

I* I= A[cp] iff (cptt, .. ·, cptn) E I*p iff p( <pit, .. ·, cptn) E I* iff 

M I= p( <pit, .. · , cptn )[ cp'] iff p( .. ·) is a closed goal. 

(V~cplt, .. ·, V~cptn) E Ip iff 

(V~tt, .. ·, V~tn) E Ip iff By (a) 

M I= A[cp']. 

(c) By induction on the construction of G. 

0 

G is T, trivial. G is an atomic formula A = p(t1, · · ·, tn)· When p is a constant, then by (b), 

I* I= A[cp] iff M I= A[cp']. When p is a variable, similarly, by Lemma 5.2 (cptt, .. ·, cptn) E ep(cpp) 

implies (V~tt, · · ·, V~tn) E e1(V:,cpp). 

G is 3xaGl. Then there is an hE Ha such that I* I= G1 [cp[h/xa]]. So by IH M I= GI[cp'[V:,h/xa]]. 

Therefore M I= 3xaGt[<p']. 

(d) Let C =A+- G. Assume I* I= G[<p] to show I* I= A[<p]. M I= G[cp'] by (c). M I= A[<p'] since 

M I= C[<p']. I* I= A[<p] by (b). o 
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Theorem 5.4 Let I be the Herbrand interpretation induced by an interpretation M and P a definite 

program. Then if M I= 'P, then I I= P. 

Proof By Lemma 5.3 (d). 0 

Let :F be a general pre-interpretation. Then FF denotes logical implication in the context of fixed 

domains and functional assignment. Specifically FHF denotes logical implication in the context of 

Herbrand domain and functional assignment. 

Let G be a goal formula. We write 3(G) to denote the existential closure of free variables in G. 

Theorem 5.5 Let P be a definite program and G a goal formula. 

Then P I= 3(G) iffP F1i.F 3(G). 

Proof <===) Let an Herbrand interpretation induced by the given interpretation M be I. Assume 

M I= 'P. Then I I= 'P, so I I= 3(G). Then there is an assignment cp into I such that I I= G[cp]. Let the 

assignment c.p' into M be induced by c.p. Then M I= G(c.p'] by Lemma 5.3. So M I= 3(G). 0 

If c.p is a substitution, then 'P-:r:a is that substitution u such that u = cp j (V - {X a}). 

Lemma 5.6 Let I~ IT(H). Then for all closed substitution u, assignment c.p into H, and goal formula 

G, I I= uG[c.p] iff I I= c.puG. 

Proof We prove by induction on G. When GisT or a rigid atom, it is obvious. When G is p(t~, · · ·, tn) 

where p E V. I I= uG[c.p] iff (c.put~, · · ·, c.putn) E e1(c.pup) iff (c.p'c.pult, · · ·, c.p'c.putn) E ei(c.p'[c.pupfp]p) for all 

assignment c.p' into H iff I I= cpuG(cp1 for all assignment cp' into H iff I I= c.puG. 

When G is 3xaGt. I I= uG[c.p] iff I I= 3xaU-xaGt[c.p] iff there is an h E Ha such that I I= 
U-:r: .. Gt[cp(h/xa]J iff there is an h E Ha such that I I= c.p[h/xa]u-:r: .. G1 by IH iff for all assignment c.p' 

into H, I I= c.p'c.p[h/xa]u_:r:aGb since c.p[h/xa]u-xaGl is a closed goal. iff I I= (c.p'[h/xa])'P-xalT-xaGl iff 

IF Cf'-x0 lr-x0 Gt(c.p'[h/xa]] iff IF 3XaCf'-xalr-x0 Gt['P1 iff I I= cpuG. 0 

Corollary 5. 7 For all assignment c.p into H, goal formula G, I I= G[c.p] iff I I= c.pG. 0 

Corollary 5.8 For all assignment c.p into H, goal formula G, I I= c.p3xa-G iff there is an h E Her such 

that I I= c.p[h/xa-]G. 

Proof I I= c.p3xaG iff I I= 3xaG(c.p] iff there is an h E Ha such that I f= G(c.p[h/xa]] iff there is an 

h E Ha such that I I= c.p[h/ X a] G. 0 

Lemma 5.9 tbsisub: Let {In}new be w-chain of Herbrand interpretations. Then for all assignment cp 

into H, goal formula G, Unew In I= cpG only if there is ann E w such that In I= c.pG. 

Proof We prove the lemma by induction on G. (a) When G is T or a rigid atom, it is obvious. 
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When G is a flexible atom. If r.pG is an atom, by (a). If r.pG = Gtl\ G2. Then Unew In I= Gt, G2. So 

by IH, there are/, mEw such that I, I= G1 and Im I= G2 • Assume, wlog, l < m. Then by Theorem 4.37, 

Im I= G1 • Therefore Im I= G1 1\ G2. If r.pG = 3xaGt, then there ish E Ha such that Unew In I= [h/xa]Gt 

by Corollary. Therefore by IH, there is nEw such that In I= [h/xa]Gt. So In I= 3xaGt. 

When G is 3G1 . There is an hE Ha such that Unew In I= r.p[h/xa]Gt. By IH there is annE w such 

0 

Lemma 5.10 Let {/n}new be w-chain of Herbrand interpretations. Then for each goal G and assignment 

r.p into H, Unewin I= G[r.p] only if there is annE w such that In I= G[r.p]. 

Proof By Lemma 5.9. 0 

Corollary 5.11 Let Mp = n{I ~ ll(H): I I= P}. Then Mp I= P. 

Proof Follows from Theorem 4.41. 0 

Let e be an expression with free variables in the list x. By lei, we mean p-normal instances of e, 

lei = { ue : u is a closed p-normal substitution for x}. 

If C =A+- G is a definite clause, then ICI denotes instances of C. This notation can be extended 

to set of definite clauses. 

IPI = U{ICI : c E P} 

We note that, given above definition, ICI is a collection of definite sentences, so also is IPI. 
We can now give another equivalent definition of the transformation T~.r on the set of all H­

interpretations. Let I~ ll(H). We define T~'(I) = {A E ll(H) : there is a A +- G E IPI such that 

I I= G}. 

Corollary 5.12 T~.r is monotone. 

Lemma 5.13 t5cont: T~.r is continuous. 

Proof Let (In)new be a w-chain of Herbrand interpretations. We need to show: 

T P(Unew In)= Unew T p(In)· 

The monotonicity ofT p implies that Unew T p(In) ~ T p(Unew In)· 

Now we need to show that T P(Unew In) ~ Une"' T p(In)· 

0 

Let ht, · · · , hn E H, and p( ht, · · · , hn) E ll( H). Assume p( ht, · · · , hn) E T p (Unew In), to show p( h1 , • • • , hn) E 

Unew T P(/n)• 

There are p(tt, · · ·, tn) +- G E "P and an assignment r.p into H such that Vr.pti = hi for all i E [n] and 

Unew In I= G[r.p]. 

So there is nEw such that In F G[r.p]. Therefore there is nEw such that p(h1 , • • ·, hn) E T p(In)· 0 
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Proof Follows from Lemma 5.13 and Theorem 3.4. 

Theorem 5.15 Let A E II(H). Then 

p F A iff Mp F A. 

Proof P f= A iff P F'HF A iff 

for all H-interpretation I such that If= P, A E I iff A E Mp. 

0 

0 

For the definite program P 1 introduced in section 1, it is easy to see that Tp1 ( </>) = {p(a), q(a), r(p(a))}. 

So r(p( a)) is a logical consequence of P1, while r( q( a)) is not. 

6 .AProlog with Equality and H/£-Interpretations 

Much of the research in logic programming concentrates on extensions of Prolog. An important issue is 

the integration of the essential concepts of functional and logic programming. Another issue is the use 

of equations to define data types. Works along these lines can be found in [9, 15]. 

In this section we will develop semantics for ..\Prolog augmented with an equality theory E. We will 

establish the existence of the least model and least fixed point semantics. 

Let D be a universe and R an equivalent relation on D consistent with the intended equality theory 

E. For each a, we write R0 for the restriction of R to D0 • Then 

Let d be an element of D0 • Then [dJR is the equivalent class containing d. We also say that R is a 

congruence relation on D consistent with the intended equality theory E if R is an equivalent relation 

on D consistent with E and for all a, {3 E T, for all d E Do-+fJ, for all c E Do, [dJR[c]R = [dc]R· We 

sometimes write [dJR as [d] when the congruence relation is clear from the context. 

Given a universe D and a congruence relation R on D, we define a quotient universe D/R as a 

universe {Do/Ro}o· 

If :F = (D, J) is a pre-interpretation, :F/R is defined to be a pre-interpretation 

(D/R, J') such that for each constant c, J'c = [Jc]R· 

Lemma 6.1 If a pre-interpretation :F = (D, J) is general, then :F /R is also general. 

Proof Let V be a valuation function in :F, and :F/R = {D/R,J') and cp an assignment into :F/R. Then 

there is an assignment cp' into :F such that cp = cp' o [·]R· Define a binary function V' such that for each 

term t, V~t = [V"",t]R· We show V' is a valuation function in :F/R by showing that for each term t0 , 
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V~ta E Da/Ra by induction on ta. 

When ta is a variable Xa, 

When ta is a constant Ca, 

V~(J(J-+aS(J) = [Vc,o'(f(J-+aS(J)] = [(Vc,o'J(J-+a)(Vc,o1S(J)] 

= [V c,o' fp_.a][V c,o'S(J] by definition of R 

by IH 

d' = V~(.\xps-y) = [Vc,o'Axps-y] = [.Xb E Dp · Vc,o'[b/x,s]s-r] 

Forb E Dp, 

d'[b] = [V c,o'Axps-y][b] 

= [(Vc,o'Axps-y)b] 

= [V c,o'[b/x,s]s-r] 

= v~[(b]/x,s]s'Y 

by definition of R 

by IH 

Corollary 6.2 Let 1-l:F be the Herbrand pre-interpretation, then 1-l:F /R is general. 

By analogy with the first-order case in [14, 17], we have 

Proposition 6.3 Let A be a closed atom. Then 

P,£ I= A ijJP,£ FH.r;R A for all R. 

0 

0 

0 

We want the existence of a canonical model for the equality theory, i.e. we wish the existence of a 

congruence R0 such that 

Proposition 6.4 £ I= S01 = t01 iff [s()(]R0 = [t()(]R0 where S01 and ta are closed terms. 0 

But this can be achieved only if the theory £ has a finest congruence relation R0 • This motivates our 

choice of using Horn equality clauses in our framework presented below. 

A definite clause logic program P is defined to be a finite set of definite clauses 
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where A is a rigid atom in g, i.e. not an equation, each ei is an equation and G is a goal formula in 9. 

A Horn equality clause takes one of two forms 

or 

where n ~ 0 and all the ei's therein are equations. As usual, variables in Horn equality clauses are 

implicitly universally quantified. We define a Horn clause equality theory to be a set of equality clauses. 

A given consistent Horn clause equality theory£ defines a logic programming language whose programs, 

called logic programs, are the pairs (7', £) where 1' is a definite clause logic program. 

Lemma 6.5 There exists a finest congruence over H generated by each definite equality theory £. 

Proof Consider models of£ over the Herbrand domain H, and for our purposes here, a model is a set 

of pairs in H x H. Suppose now that I is the intersection of a set of models of£. If I is not a model 

itself, then some closed instance of a clause in £, say e +- et, ···,en, is falsified by I. This means that e 

is not in I while e1 , ···,en are in I, contradicting the fact that e is in the models of the set in question. 

The finest congruence then is given by the intersection of all models of £, with the obvious functional 

assignment J' such that (J'f~-.e)([t~]) = [f~-.et~] for each functional constant f~-.e E E. 0 

We thus may now write H /£ to denote this finest congruence. As a consequence 

Lemma 6.6 Let A be a closed atom. Then 

(7',£) FA iff(1',£) FH/E A 

Proof It suffices to prove that (7', £) FH/E A iff (P, £) FH/R A for all R. 

=::}) Let Ro be the finest congruence relation. For some R, let I be any H/R-interpretation such that 

If= (P, £),but I~ A. Construct the following H/£-model I' by defining that I' f= p([tt)R0 , • • ·, [tn]R0 ) 

iff I f= p([tt]R, · · ·, [tn]R) for all predicate constant p. This is well defined because R0 is finer than R. 0 

Proposition 6. 7 Let A be a closed atom. Then 

(P, £) FA iffP FH/t' A. 0 

Let I denote a sequence of terms it,···, tn, n ~ 0. We now give definitions wrt a given logic program 

(P,£). 

The £-base is the set IT(Hj£). We write [s] to denote the element of H~f£ assigned to the ground 

terma s. Similarly, [t] is an element of Ha1 /£ X · • • X Han/£ and p((t]) is an element of the £-base. 

Where Sis a set of closed terms, [S] denotes {[s] : s E S}. 

We are now in a position to give the declarative semantics of higher-order logic program with equality 

as a natural extension of the declarative semantics of the traditional first-order logic programs. 
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Theorem 6.8 There is a least Hf&-model M('P,e) of ('P, &), and for all A E II( H), 

('P, &) F= A iff M('P,e) F= A. 0 

We now consider the fixpoint formalization of an intuitive semantics of our logic programs. T ('P ,e) 

maps from and into H f &-interpretations and is defined as follows: 

T('P,e)(I) = {p(d) E II(H/&) :there is a closed H-instance of a clause in 'P 

p(s) +- e1 , ···,en, G such that 

[s] = d, 
& f= ek for all k E [n], and 

I f=G} 

Lemma 6.9 T('P,e) is continuous. 

Theorem 6.10 M('P,e) = T(,,e)(t,6). 

7 Conclusion 

0 

0 

We have built a general model theoretic semantics for >.Prolog and established the least model and 

least fixed point semantics. We have not given any definition of interpreters for >.Prolog. But we can 

prove soundness and completeness of those interpreters developed in [22, 20] by establishing equivalence 

between the fixed point semantics and the operational semantics of those interpreters based on 'P­

derivations. 
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