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Abstract

The elementary approaches to finding the number of integer solutions (x, y)
to the equation x2 +y2 = n with n ∈ N are well known. We first examine a
generalization of this problem by finding the ways a natural number n can
be written as a sum of two k-sided regular figurate numbers. The technique
is then adapted to find the number of ways n can be written as a sum of `
regular figurate numbers.
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1 Introduction

1.1 Figurate numbers

Regular figurate numbers have been an object of study since Fermat. Special
cases of figurate numbers, triangular and square numbers were studied far before
that [4].

Definition 1.1.1. Let n ∈ N and k ∈ N with k ≥ 2. Then the nth k-sided
regular figurate number fk(n) is defined recursively by fk(1) = 1 and

fk(n) = fk(n− 1) + (k − 2)n− (k − 3).

Consider when k = 3. From the definition, f3(n) = f3(n − 1) + n + 0. Since
f3(1) = 1 and f3(2) = 1 + 2, f3(3) = 1 + 2 + 3. Inductively, we see that

f3(n) = n+

n−1∑
i=1

i =

n∑
i=1

i.

Since we can arrange f3(n) dots into a triangle with n dots on each side (see
Figure 1), f3(n) are also known as the triangular numbers.

Similarly, f4(n) dots can be arranged into squares (see Figure 2) and f5(n) dots
can be arranged into pentagons (see Figure 3). In fact, fk(n) dots will always
give the k sided regular polygon with sides of length n. The formula gives
fk(1) = 1 and fk(2) = k. Then, fk(n) is fk(n−1) dots with k−2 sides of length
n added to it and k − 3 subtracted from it for the overlap at corners. For a
specific example, examine Figure 3. If we want to get f5(n), we start with with
f5(n − 1) and add 3 more sides of length n, and subtract 2 for the overlap at
the bottom two corners.

Figure 1: The first five f3(n), each arranged as a triangle. The
numbers f3(n) are also known as triangular numbers. Note that
f3(n) = f3(n− 1) + n.

Theorem 1.1.2. Let n ∈ N and k ∈ N with k ≥ 2. Then

fk(n) =
n [(k − 2)n+ (4− k)]

2
.
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Figure 2: The first five f4(n), each as a square with sides of
length n. By definition, f4(n) = f4(n− 1) + 2n− 1.

Figure 3: The first four “pentagonal” numbers. The nth
pentagonal number has 5 sides of length n. Notice that
f5(n) = f5(n− 1) + 3n− 2.

Proof. Define

gk(n) =
n[(k − 2)n+ (4− k)]

2
.

We show that gk(n) = fk(n) by showing that they satisfy the same initial con-
ditions and the same recurrence relation. First, notice that

gk(1) =
1 · [(k − 2) · 1 + 4− k]

2
=

2

2
= 1 = fk(1).

Now we need to show that gk(n) = gk(n− 1) + (k− 2)n− (k− 3). To check this,
note that

gk(n− 1) + (k − 2)n− (k − 3)

=
(n− 1)[(k − 2)(n− 1) + (4− k)]

2
+ (k − 2)n− (k − 3)

=
1

2
(n2(k − 2) + n(2k + 4− k − 2k))

=
n[(k − 2)n+ (4− k)]

2
= gk(n).
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Therefore gk(n) = fk(n) and thus

fk(n) =
n [(k − 2)n+ (4− k)]

2
.

When k = 4, the formula gives

f4(n) =
n[(4− 2)n+ 4− 4]

2
= n2;

thus the nth “square” number is n squared. For k = 3 and k = 5 the formulas
are

f3(k) =
n2 + n

2

and

f5(k) =
3n2 − n

2

respectively.

1.2 Big O notation

It turns out to be impossible to find a general explicit formula for certain func-
tions in which we are interested, so we utilize big O notation to describe the
growth of those functions in general.

Definition 1.2.1. Let f be a function over the real numbers. We say that
f(x) = O(g(x)) for some function on the real numbers g if there exist constants
c and x0 so that |f(x)| ≤ c|g(x)| for all x ≥ x0.

For example, let x be a real number such that x ≥ 1. Since
√
x ≥ 1,

√
2x+

1

2
≤
√

2
√
x+

1

2

√
x

=

(√
2 +

1

2

)√
x

= c
√
x,

where c =
√

2 +
1

2
. Therefore,

√
2x+ 1

2 = O(
√
x). However, keep in mind that

it is equally valid to say
√

2x+ 1
2 = O(x). We may do that because the big O is

dependent on an inequality. In general, we seek the “smallest” possible g(x) to
give the best approximation.
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Definition 1.2.2. Let f , g, and h be functions on the real numbers. We say

f(x) = h(x) +O(g(x))

if there exists c such that

|f(x)− h(x)| ≤ c|g(x)|.

In this case, we think of g(x) as an error term as long as

lim
x→∞

g(x)

h(x)
= 0.

1.3 The Gauss Circle Problem

Definition 1.3.1. Let n ∈ N∪ {0}. Let r4(n) be the number of ways to write n
as a sum of two squared nonnegative integers.

Notice that if an integer n can be written as a sum of two squares, then the
circle x2 + y2 = n will pass through the point (h, k) where h2 + k2 = n. In this
way, we gain a geometric representation of numbers that can be described as a
sum of two squares (see Figure 4).

Figure 4: The circles x2 + y2 = n with n ≤ 9. Note that r4(n)
is exactly the number of lattice points on a circle centered at the
origin with radius

√
n.

Definition 1.3.2. Let n ∈ N ∪ {0}. Then define p4(n) by p4(n) =

n∑
i=0

r4(i).

7



Figure 5: The first 14 values of
r4(n). Notice that there is no dis-
cernible pattern.

Figure 6: The first 14 values of
p4(n). We create a patten out of
the r4(n) by adding them together.

We study p4(n) because it is a more predictable function than r4(n). While r4(n)
can vary wildly from one positive integer to the next, p4(n) has a noticeable
increasing trend (see Figures 5 and 6).

If we set lattice points in R2 at every (h, k) where h, k ∈ Z ≥ 0, then p4(n) is
the number of first quadrant lattice points inside a circle of radius

√
n.

We identify each lattice point with a square of area one, whose bottom left corner
on a lattice point inside the circle. That is, the square for the lattice point (h, k)
has its four corners at the points (h + i, k + j) where i, j ∈ {0, 1}. From this
point forward, we treat p4(n) as the area created by the lattice points of p4(n)
by that method, (see Figure 7).

Lemma 1.3.3. Let n ≥ 0. Then
πn

4
≤ p4(n) ≤ π(

√
n+
√

2)2

4
.

Proof. The maximum linear distance between two points in a square with side
1 is

√
2. Since we are only working with the first quadrant, p4(n) is strictly

greater than the area of the circle of radius
√
n and strictly less than the area

of the circle of radius
√
n+
√

2.

Theorem 1.3.4. Let n ≥ 0. Then p4(n) =
πn

4
+O(

√
n).

Proof. From Lemma 1.3.3, we have that
πn

4
≤ p4(n) ≤ π(

√
n+
√

2)2

4
. In the
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Figure 7: The solid black line gives a circle of radius
√

18
centered at (0,0), and the dotted black line gives a circle of radius√

18 +
√

2. Each blue square has is assigned to the lattice point
at it’s bottom left corner. The total area of the blue squares is
p4(18) = 20.

right hand inequality, we have that

p4(n) ≤ π(
√
n+
√

2)2

4

=
πn+ 2π

√
2
√
n+ 2π

4

which gives us

p4(n)− πn

4
≤ 2π

√
2
√
n+ 2π

4
. (1)

The left hand inequality gives

p4(n) ≥ πn

4

which implies that

p4(n)− πn

4
≥ 0

≥ −2π
√

2
√
n+ 2π

4
.

From this, and from statement (1) we know that∣∣∣p4(n)− πn

4

∣∣∣ ≤ 2π
√
n− 2π

4
,
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which means that
p4(n) =

πn

4
+O(

√
n).

The Gauss Circle Problem is the quest for the smallest possible g(x) so that

p4(n) =
πn

4
+O(g(x)).

2 Sums of Two Figurate Numbers

The problem of determining p4(n) was first proposed by Gauss, who also found
this relationship to the area of the circle. We generalize his solution from count-
ing the sums of two squares, f4(m), to counting the sums of two regular figurate
numbers, fk(m).

Definition 2.0.5. Fix n ≥ 0 and k ≥ 3. Then rk(n) is the number of ways n
can be written as a sum of two k-sided regular figurate numbers.

In other words rk(n) counts nonnegative integer solutions (x, y) of

n =
x[(k − 2)x+ 4− k]

2
+
y[(k − 2)y + 4− k]

2
. (2)

Definition 2.0.6. Fix n ≥ 0 and k ≥ 3. Then define pk(n) by

pk(n) =

n∑
i=0

rk(i).

We again attach the bottom left corner of a square with area 1 to each lattice
point in the first quadrant. We think of pk(n) as the sum of the areas of all of
the squares attached to first quadrant lattice points inside the circle defined by
equation (2).

2.1 Sums of two triangular numbers

We set k = 3 in equation (2) to get

x(x+ 1)

2
+
y(y + 1)

2
= n

and complete the square so that(
x+

1

2

)2

+

(
y +

1

2

)2

= 2n+
1

2
.
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Figure 8: The solid black line gives a circle of radius 2 · 18 + 1
2

centered at (−1
2 ,−

1
2). Each blue square is assigned to a lattice

point included in p3(18), so their sum is p3(18) = 30. The dotted
black line quarter circles enclose areas that are upper and lower
bounds for p3(18).

Notice that this is a circle with radius
√

2n+ 1
2 and center (−1

2 ,−
1
2). However,

the radius is different from that of the Gauss Circle Problem, and the center of
this circle is not at the origin.

Lemma 2.1.1. Let n ≥ 2 be given. Then

π
(√

2n+ 1/2−
√

1/2
)2

4
≤ p3(n) ≤

π(
√

2n+ 1/2 +
√

2)2

4
.

Proof. As in the proof of Lemma 1.3.3, this is geometrically clear. We bound the
circle from p3(n) above and below by circles centered at (0, 0). We compensate
for the center being in the third quadrant by decreasing the radius of the lower

bound by
√

1
2 . We increase the radius of the upper bound by

√
2 for the same

reason as in the proof of Lemma 1.3.3 (see Figure 8).

Theorem 2.1.2. Let n ≥ 2. Then p3(n) =
πn

2
+O(

√
n).
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Proof. From Lemma 2.1.1, we have

p3(n) ≤
π
(√

2n+ 1/2 +
√

2
)2

4

=
π(2n+ 1/2) + 2π

√
2
√

2n+ 1/2 + 2π

4

so that

p3(n)− πn

2
≤
π(1/2) + 2π

√
2
√

2n− 1/2 + 2π

4
. (3)

Also from Lemma 2.1.1 we get

p3(n) ≥
π
(√

2n+ 1/2−
√

1/2
)2

4

=
π(2n+ 1/2)− 2π

√
1/2
√

2n+ 1/2 + π/2

4
(4)

so that

p3(n)− πn

2
≥
π(1/2)− 2π

√
1/2
√

2n+ 1/2 + π/2

4

≥ −
π(1/2) + 2π

√
2
√

2n− 1/2 + 2π

4
.

From (3) and (4) we have that∣∣∣p3(n)− πn

2

∣∣∣ ≤ π(1/2) + 2π
√

2
√

2n− 1/2 + 2π

4
.

Thus
p3(n) =

πn

2
+O

(√
n
)
.

2.2 Sums of two pentagonal numbers

By Theorem 1.1.2, a pentagonal number is a regular figurate number of the form
x(3x− 1)

2
where x ∈ N ∪ {0}. We set k = 5 in equation (2) and complete the

square to get (
x− 1

6

)2

+

(
y − 1

6

)2

=
2n

3
+

1

18
.

Lemma 2.2.1. Let n ≥ 0. Then

π

4

(
2n

3
+

1

18

)
≤ p5(n) ≤ π

4

(√(
2n

3
+

1

18

)
+
√

2 +
√

1/2

)2

.

12



Figure 9: The solid black line gives a circle of radius
√

34
3 + 1

18

centered at
(

1
6 ,

1
6

)
. The total area of the blue squares is p5(17) =

15. The dotted black line quarter circles enclose areas which are
upper and lower bounds bounds for p5(17).

Proof. The bounds are geometrically clear. The center of this circle is at the
point

(
1
6 ,

1
6

)
. As in the Gauss Circle Problem, we use the area of the quarter

circle with this radius as a lower bound for p5(n). We can do this because the
area of the quarter circle with this radius centered at the origin is less than the
circle with the same radius centered at

(
1
6 ,

1
6

)
(see Figure 9).

For the upper bound we increase the radius by
√

2 +
√

1
2 , which is 3

√
2

2 , where

the
√

1
2 is an overcompensation for moving the center a distance of

√
1
18 into

the first quadrant.

Theorem 2.2.2. Let n ≥ 1. Then p5(n) =
πn

6
+O(

√
n).

Proof. We begin in the same way, with the right hand inequality in of Lemma 2.2.1;

p5(n) ≤ π

4

(√(
2n

3
+

1

18

)
+

3
√

2

2

)2

=
π

4

[(
2n

3
+

1

18

)
+ 3
√

2

√
2n

3
+

1

18
+

9 · 2
4

]

13



which gives us

p5(n)− πn

6
≤ π

4

(
1

18
+ 3
√

2

√
2n

3
+

1

18
+

9

2

)
. (5)

We rearrange the left inequality from Lemma 2.2.1 to see that

p5(n) ≥ π

4

(
2n

3
+

1

18

)
and subtract the leading term from both sides to get that

p5(n)− πn

6
≥ π

72

≥ −π
4

(
1

18
+ 3
√

2

√
2n

3
+

1

18
+

9

2

)
. (6)

Finally, we combine (5) and (6) and see that

∣∣∣p5(n)− π

6

∣∣∣ ≤ π

4

(
1

18
+ 3
√

2

√
2n

3
+

1

18
+

9

2

)
or

p5(n) =
πn

6
+O

(√
n
)
.

2.3 Sums of two regular figurate numbers

We use the same methodology as in the proof of Lemma 2.2.1 to find upper and
lower bounds for pk(n).

Lemma 2.3.1. Let n ≥ 1 and k ≥ 4. Then

π

4

[
2n

k − 2
+ 2

(
4− k
2k − 4

)2
]
≤ pk(n) ≤ π

4

√ 2n

k − 2
+ 2

(
4− k
2k − 4

)2

+
3
√

2

2

2

.

Proof. We begin by completing the square of equation (2) to get(
x+

4− k
2k − 4

)2

+

(
y +

4− k
2k − 4

)2

=
2n

k − 2
+ 2

(
4− k
2k − 4

)2

.

Since k ≥ 4 the circle is centered in the first quadrant and the lower bound can
be the area of the quarter circle with the given radius.

14



To find an upper bound on the center we examine the behavior of the cen-

ter

(
− 4− k

2k − 4
,− 4− k

2k − 4

)
. First we see that the expression − 4− k

2k − 4
is strictly

monotonically increasing in k since

− 4− k
2k − 4

< − 3− k
2k − 2

= − 4− (k + 1)

2(k + 1)− 4
.

Then we take the limit as k goes to infinity to get

lim
k→∞

− 4− k
2k − 4

=
1

2
.

Therefore, our upper bound must be adjusted not just by
√

2 as in the Gauss

Circle Problem, but by
√

2 +
√

1
2 .

Theorem 2.3.2. Let n ≥ 1 and k ≥ 3. Then pk(n) =
πn

2k − 4
+O(

√
n).

Proof. Theorem 2.1.2 proves this when k = 3. If k > 3 we first manipulate the
right inequality of Lemma 2.3.1 to get that

pk(n) ≤ π

4

√ 2n

k − 2
+ 2

(
4− k
2k − 4

)2

+
3
√

2

2

2

=
π

4

 2n

k − 2
+ 2

(
4− k
2k − 4

)2

+ 3
√

2

√
2n

k − 2
+ 2

(
4− k
2k − 4

)2

+
9 · 2

4


=

πn

2k − 4
+
π

2

(
4− k
2k − 4

)2

+
3π
√

2

4

√
2n

k − 2
+ 2

(
4− k
2k − 4

)2

+
9π

8
.

Thus

pk(n)− πn

2k − 4
≤ π

2

(
4− k
2k − 4

)2

+
π
√

2

4

√
2n

k − 2
+ 2

(
4− k
2k − 4

)2

+
9π

8
.

The left inequality of Lemma 2.3.1 gives

pk(n) ≥ π

4

[
2n

k − 2
+ 2

(
4− k
2k − 4

)2
]
,

so that

pk(n)− πn

2k − 4
≥ π

2

(
4− k
2k − 4

)2

.

Note that
π

2

(
4− k
2k − 4

)2

is a positive number. Therefore

pk(n)− πn

2k − 4
≥ −π

2

(
4− k
2k − 4

)2

− π
√

2

4

√
2n

k − 2
+ 2

(
4− k
2k − 4

)2

− 9π

8
.
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Combining the results from above, we get∣∣∣∣pk(n)− πn

2k − 4

∣∣∣∣ ≤ π

2

(
4− k
2k − 4

)2

+
π
√

2

4

√
2n

k − 2
+ 2

(
4− k
2k − 4

)2

+
9π

8
.

Thus,

pk(n) =
πn

2k − 4
+O

(√
n
)
.

Corollary 2.3.3. Let k ≥ 4. Then rk(n) = 0 for infinitely many n.

Proof. First, notice that rk(n) is always a non-negative integer. Define the
average value of rk(n) to be r̄k(n) where

r̄k(n) =
pk(n)

n
.

By Theorem 2.3.2,

r̄k(n) =
π

2k − 4
+O

(
1√
n

)
.

Notice that since k ≥ 4, the leading term is less than 1. As n goes to infinity,
the error goes to 0. Therefore,

lim
n→∞

r̄k(n) =
π

2k − 4
< 1

therefore infinitely many rk(n) must be 0.

3 Sums of Multiple Figurate Numbers

3.1 Sums of three regular figurate numbers

Definition 3.1.1. Let n ≥ 0 and k ≥ 3 be given. Then rk,3(n) is the number
of ways n can be written as a sum of three k-sided regular figurate numbers. In
other words it counts positive integer solutions (x1, x2, x3) of

n =
x1[(k − 2)x1 + (4− k)]

2
+
x2[(k − 2)x2 + (4− k)]

2
+
x3[(k − 2)x3 + (4− k)]

2
.

(7)

Definition 3.1.2. Let n ≥ 0 and k > 2. Define pk,3(n) by

pk,3(n) =
n∑
i=0

rk,3(i).
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For each lattice point (h1, h2, h3) with h1, h2, h3 ∈ N ∪ {0} we attach a cube of
volume 1 so that all vertices of the cube are of the form (h1 + j1, h2 + j2, h3 + j3)
where ji ∈ {0, 1}. We think of pk,3(n) as the sum of the volume of each of the
cubes attached to lattice points inside the sphere defined by equation (7).

Lemma 3.1.3. Let n ≥ 0 be given. Then

πn
3
2

6
≤ r4,3(n) ≤

π
(√
n+
√

3
)3

6
.

Proof. The lower bound is the volume of the sphere in the first octant,

1

8
· 4

3
π
(√
n
)3
.

The upper bound is adjusted by the maximum distance from one point of our
lattice-counting-cubes to another,

√
12 + 12 + 12 =

√
3.

Theorem 3.1.4. Let n ≥ 0 be given. Then p4,3(n) = π
6n

3
2 +O(n).

Proof. We manipulate the right side of the Lemma 3.1.3 inequality to get

p4,3(n) ≤
π
(√
n+
√

3
)3

6

=
π

6

(
n

3
2 + 3n

√
3 + 9

√
n+ 3

3
2

)
so that

p4,3(n)− π

6
n

3
2 ≤ π

6

(
3n
√

3 + 9
√
n+ 3

3
2

)
. (8)

We rearrange the left inequality from Lemma 3.1.3 to get

p4,3(n)− π

6
n

3
2 ≥ 0

≥ −π
6

(
3n
√

3 + 9
√
n+ 3

3
2

)
. (9)

We put (8) and (9) together to get∣∣∣p4,3(n)− π

6
n

3
2

∣∣∣ ≤ π

6

(
3n
√

3 + 9
√
n+ 3

3
2

)
.

Thus,

p4,3(n) =
π

6
n

3
2 +O(n).

We use the same methodology as in Subsection 2.3 to find upper and lower
bounds for pk,3(n).
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Lemma 3.1.5. Let n ≥ 1 and k ≥ 4. Then

π

6

[
2n

k − 2
+ 3

(
4− k
2k − 4

)2
] 3

2

≤ pk,3(n) ≤ π

6

√ 2n

k − 2
+ 3

(
4− k
2k − 4

)2

+
3
√

3

2

3

.

Proof. The proof is analogous to that of Lemma 2.3.1. First we complete the
square in equation (7) to get that(
x1 +

4− k
2k − 4

)2

+

(
x2 +

4− k
2k − 4

)2

+

(
x3 +

4− k
2k − 4

)2

=
2n

k − 2
+ 3

(
4− k
2k − 4

)2

.

The, the bounds follow geometrically as before.

Theorem 3.1.6. Let n ≥ 1 and k ≥ 4. Then

pk,3(n) =
π

6

(
2n

k − 2

) 3
2

+O(n).

We omit the proof in favor of the proof for Theorem 3.2.4, which is a general-
ization.

3.2 Sums of ` regular figurate numbers

Definition 3.2.1. Let n ≥ 0 and k ≥ 3 be given. Then rk,`(n) is the number
of ways n can be written as a sum of `, k-sided regular figurate numbers, the
positive integer solutions (x1, . . . , x`) of

n =
x1[(k − 2)x1 + (4− k)]

2
+ · · ·+ x`[(k − 2)x` + (4− k)]

2
. (10)

Definition 3.2.2. Let n ≥ 0 and k ≥ 3. Define pk,`(n) by

pk,`(n) =

n∑
i=0

rk,`(i).

For each lattice point (h1, . . . , h`) with h1, . . . , h` ∈ N ∪ {0} we attach a hyper-
cube of volume 1 so that all vertices of the cube are of the form (h1 +j1, . . . , h`+
j`) where ji ∈ {0, 1}.

In the same way as before, we can think pk,`(n) as the sum of the volumes of each
of the hypercubes attached to lattice points inside the hypersphere defined by
equation (10). The maximum distance between two points in a unit hypercube
is
√
`.
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Lemma 3.2.3. Let n ≥ 1, k ≥ 4 and ` ≥ 2 be given. If ` is even,

π
`
2

2`
(
`
2

)
!

[
2n

k − 2
+ `

(
4− k
2k − 4

)2
] `

2

≤ pk,`(n)

and

pk,`(n) ≤ π
`
2

2`
(
`
2

)
!

√ 2n

k − 2
+ `

(
4− k
2k − 4

)2

+
3
√
`

2

`

.

If ` is odd, (
`−1

2

)
! π

`−1
2

`!

[
2n

k − 2
+ `

(
4− k
2k − 4

)2
] `

2

≤ pk,`(n)

and

pk,`(n) ≤
(
`−1

2

)
! π

`−1
2

`!

√ 2n

k − 2
+ `

(
4− k
2k − 4

)2

+
3
√
`

2

`

.

Proof. We begin by completing the square in equation (10) to see that(
x1 +

4− k
2k − 4

)2

+ · · ·+
(
x` +

4− k
2k − 4

)2

=
2n

k − 2
+ `

(
4− k
2k − 4

)2

.

From [3], the volume of the `-dimensional hypersphere with radius r is
π

`
2(
`
2

)
!
r`,

if ` is even, and
2`
(
`−1

2

)
! π

`−1
2

`!
r`, if ` is odd. Since we are restricted to positive

solutions, we divide the volume by 2`.

We use the radius

rlower =

√
2n

k − 2
+ `

(
4− k
2k − 4

)2

for the lower bound. For the upper bound, we use the radius

rupper =

√
2n

k − 2
+ `

(
4− k
2k − 4

)2

+

√
`

2
+
√
`.

Indeed, as in the proof of Lemma 2.3.1 as k goes to infinity, the center is

(1
2 , . . . ,

1
2). We take into account this distance of

√
`

2 from the origin, and add an

additional
√
` for the maximum distance between two corners of one of volume-

counting hypercube.

Theorem 3.2.4. Let n ≥ 1, k ≥ 4, and ` ≥ 2 be given. Then, if ` is even,

pk,`(n) =
π

`
2

2`
(
`
2

)
!

(
2n

k − 2

) `
2

+O
(
n

`−1
2

)
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and, if ` is odd,

pk,`(n) =

(
`−1

2

)
!π

`−1
2

2``!

(
2n

k − 2

) `
2

+O
(
n

`−1
2

)
.

Proof. We consider the even and odd cases separately for clarity. Let ` be even.
Define

a =
2n

k − 2
+ `

(
4− k
2k − 4

)2

,

b =
3
√
`

2
and

c =
π

`
2

2`
(
`
2

)
!
.

We manipulate the right inequality from the even case of Lemma 3.2.3

pk,`(n) ≤ c

√ 2n

k − 2
+ `

(
4− k
2k − 4

)2

+
3
√
`

2

`

= ca
`
2 + c

∑̀
i=1

(
`
i

)
a

`−i
2 bi.

We can expand a
`
2 with the binomial theorem

a
`
2 =

[(
2n

k − 2

)
+
∑̀
i=1

(
`
i

)(
2n

k − 2

)`−i
`i
(

4− k
2k − 4

)2i
] 1

2

so that for n sufficiently large,

a
`
2 ≤

[(
2n

k − 2

)`
+
∑̀
i=1

(
`
i

)(
2n

k − 2

)`−1

`

(
4− k
2k − 4

)2
] 1

2

=

[(
2n

k − 2

)`
+ (2` − 1)

(
2n

k − 2

)`−1

`

(
4− k
2k − 4

)2
] 1

2

.

From there, the triangle inequality gives

a
`
2 ≤

(
2n

k − 2

) `
2

+ 2
`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
.

Therefore,

pk,`(n)− c
(

2n

k − 2

) `
2

≤ c

[
2

`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
+
∑̀
i=1

(
`
i

)
a

`−i
2 bi

]
. (11)
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We rearrange the left inequality from the even case of Lemma 3.2.3 to get

pk,`(n) ≥ ca
`
2

≥ c
(

2n

k − 2

) `
2

so that

pk,`(n)− c
(

2n

k − 2

) `
2

≥ 0

≥ −c

[
2

`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
+
∑̀
i=1

(
`
i

)
a

`−i
2 bi

]
. (12)

We put (11) and (12) together to get∣∣∣∣∣pk,`(n)− π
`
2

2`( `2)!

(
2n

k − 2

) `
2

∣∣∣∣∣
≤ c

[
2

`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
+
∑̀
i=1

(
`
i

)
a

`−i
2 bi

]
.

So, when ` is even, we conclude that

pk,`(n) =
π

`
2

2`
(
`
2

)
!

(
2n

k − 2

) `
2

+O
(
n

`−1
2

)
.

Now let ` be odd. Set

a =
2n

k − 2
+ `

(
4− k
2k − 4

)2

,

b =
3
√
`

2

as before, and set

c =

(
`−1

2

)
!π

`−1
2

2``!
.

We manipulate the right inequality from the odd case of Lemma 3.2.3

pk,`(n) ≤ c

√ 2n

k − 2
+ `

(
4− k
2k − 4

)2

+
3
√
`

2

`

= ca
`
2 + c

∑̀
i=1

(
`
i

)
a

`−i
2 bi
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pk,`(n)− c
(

2n

k − 2

) `
2

≤ c

[
2

`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
+
∑̀
i=1

(
`
i

)
a

`−i
2 bi

]
. (13)

We rearrange the left inequality from the odd case of Lemma 3.2.3 to get

pk,`(n) ≥ ca
`
2

≥ c
(

2n

k − 2

) `
2

so that

pk,`(n)− c
(

2n

k − 2

) `
2

≥ 0

≥ −c

[
2

`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
+
∑̀
i=1

(
`
i

)
a

`−i
2 bi

]
. (14)

We put (13) and (14) together to get∣∣∣∣∣pk,`(n)−
(
`−1

2

)
!π

`−1
2

2``!

(
2n

k − 2

) `
2

∣∣∣∣∣
≤ c

[
2

`
2 `

1
2

(
2n

k − 2

) `−1
2
(

4− k
2k − 4

)
+
∑̀
i=1

(
`
i

)
a

`−i
2 bi

]
.

So, when ` is odd, we conclude that

pk,`(n) =

(
`−1

2

)
!π

`−1
2

2``!

(
2n

k − 2

) `
2

+O
(
n

`−1
2

)
.
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4 Summary of Capstone Project

The problem of finding the number of integer solutions (x, y) to the equation
x2 + y2 = n with n as a positive integer is more than 200 years old [1]. This
capstone examines some generalizations of this problem.

We examine elementary solutions to the sum of two figurate numbers, an ex-
pression motivated by a polygon with k sides of the same length. From there
we adapt the technique to find the number of ways n can be written as a sum
of ` regular figurate numbers, instead of only two.

Vocabulary

We define regular figurate numbers by a formula, and then give examples of how
the formula is related to a polygon with k sides. The proof that they are the
same is in the paper.

Definition. The equation of the nth figurate number with k sides is defined by

fk(n) =
n [(k − 2)n+ (4− k)]

2
.

As an example, consider when k = 4, the four sided figurate numbers which
we call f4(n). We would like f4(n) to form a polygon with four sides of equal
length. Computing gives

f4(n) =
n[(4− 2)n+ 4− 4]

2
=
n(2n)− 0

2
= n2.

You might recognize f4(n) as n “squared” but it is important to see (check
Figure 10) that these are literally squares. For each n, f4(n) gives a square with
sides of length n.

Figure 10: The first five four sided figurate numbers. Notice
that f4(n) dots can be arranged in a square, with each of the
four sides having a length of n. This is the rationale for calling
f4(n) “square” numbers.
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This geometric definition is actually the rationale behind the term regular fig-
urate number. For every k, fk(n) dots forms a polygon with k sides each of
length n. Setting k = 3 gives us the “triangular” numbers. When looking at
the diagram, you should notice that each fk(n) is built on the previous figurate
number, fk(n − 1) in a specific way that is the same for all figurate numbers.
For a more rigorous explanation consult Subsection 1.1 of the paper.

Figure 11: The first five f3(n) in dots, each arranged as a
triangle. The nth triangular number can be represented as a
triangle with three sides of length n.

The next tool we will need to define is called “big O” notation. This is a
way to talk about the relative size of a function as compared with an easier to
understand function.

Definition. Let f , g and h be functions on the real numbers. We say

f(x) = h(x) +O(g(x))

if there exists c such that

|f(x)− h(x)| ≤ c|g(x)|.

We read this “f(x) is h(x) plus big O of g(x)”.

In other words, if the distance between two functions f(x) and h(x) is less than
a constant times g(x), we call f(x) equal to h(x) +O(g(x)).

This notation is useful in cases where it is impossible to find an explicit formula
for a function f(x). The number of ways to write a positive integer n as a sum
of some regular figurate numbers is one such function.

Definition. Let n be greater than or equal to 0, and k greater than or equal to
3 be given. Then rk,`(n) is the number of ways n can be written as a sum of
`, k-sided regular figurate numbers. It counts the number of points (x1, . . . , x`)
that satisfy

n = fk(x1) + · · ·+ fk(x`)

or

n =
x1[(k − 2)x1 + (4− k)]

2
+ · · ·+ x`[(k − 2)x` + (4− k)]

2
.
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The number of ways to write n as a sum of ` regular figurate numbers, rk,`, is
not easy predict. In fact, the function rk,`(n) cannot be written as a polynomial.
As an example, consider when k = 4 and ` = 2, the function r4,2(n). This is the
number of ways a number n can be written as a sum of two squares. To find
r4,2(n) we would calculate

1 = 12 + 02 = 02 + 12; 2 = 12 + 12;

3 6= a2 + b2 for all a and b; 4 = 22 + 02 = 02 + 22;

5 = 22 + 12 = 12 + 22; 6 6= a2 + b2 for all a and b

so that

r4,2(1) = 2 r4,2(2) = 1

r4,2(3) = 0 r4,2(2) = 2

r4,2(5) = 1 r4,2(6) = 0.

Since there isn’t an explicit formula for rk,`(n), we add up all the rk,`(i) from
i = 0 to n. We call this sum pk,`(n). As it is the primary object in this paper,
we provide a formal definition here.

Definition. Let n ≥ 0 and k ≥ 3. Define pk,`(n) by

pk,`(n) =
n∑
i=0

rk,`(i).

It turns out that the function pk,`(n) is closely related to the volume of a hyper-
sphere in ` dimensions. This capstone capitalizes on the inherent geometry of
the problem to find a formula for pk,`(n) in big O notation. The geometric con-
nection to pk,`(n) is fascinating, the interested reader should consult the figures
in Section 1.3 for more information.

Results

As early as 1638, Fermat stated that every number n can be written as a sum
of k, k-sided figurate numbers. That result was later proved by Cauchy [2]. The
results from this paper point to that statement, but do not aid in proving it.

These are the two primary results from the paper.

Theorem 2.3.2 Let n ≥ 1 and k ≥ 3. Then pk,2(n) =
πn

2k − 4
+O(

√
n).

This is the result for sums of two figurate numbers, pk,2(n). It says that the
error term is O(

√
n) regardless of which two regular figurate numbers are added

together. However, the more sides each figurate number has, the smaller the
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leading term. So, as k increases, pk,2(n) decreases. The generalization of this
theorem is the final result from the paper.

Theorem 3.2.4 Let n ≥ 1, k ≥ 4, and ` ≥ 2 be given. Then, if ` is even,

pk,`(n) =
π

`
2

2`( `2)!

(
2n

k − 2

) `
2

+O
(
n

`−1
2

)
and, if ` is odd,

pk,`(n) =

(
`−1

2

)
!π

`−1
2

2``!

(
2n

k − 2

) `
2

+O
(
n

`−1
2

)
.

In this theorem the same pattern holds. When ` is constant, an increase in k
makes pk,`(n) smaller. This implies that a number n should be a sum of more k
figurate numbers than k − 1 figurate numbers. While it can not prove Fermat’s
statement, this theorem does give an overview of how arbitrary sums of figurate
numbers behave.
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