Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1996

A Framework for Integrated Communication and 1/0 Placement

Rajesh Bordawekar
Syracuse University

Alok Choudhary
Syracuse University, Electrical and Computer Engineering Department

J Ramanujam
Louisiana State University, Electrical and Computer Engineering Department

Follow this and additional works at: https://surface.syr.edu/eecs

6‘ Part of the Computer Engineering Commons

Recommended Citation

Bordawekar, Rajesh; Choudhary, Alok; and Ramanujam, J, "A Framework for Integrated Communication
and I/0 Placement" (1996). Electrical Engineering and Computer Science. 150.
https://surface.syr.edu/eecs/150

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/150?utm_source=surface.syr.edu%2Feecs%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Framework for Integrated Communication
and I/0O Placement

Rajesh Bordawekar!, Alok Choudhary! and J. Ramanujam?

! ECE Dept., 121, Link Hall, Syracuse University, Syracuse, NY 13244
2 ECE. Dept., Louisiana State University, Baton Rouge, LA 70803

Abstract. This paper describes a framework for analyzing dataflow
within an out-of-core parallel program. Dataflow properties of FORALL
statement are analyzed and a unified I/O and communication place-
ment framework is presented. This placement framework can be applied
to many problems, which include eliminating redudant I/O incurred in
communication. The framework is validated by applying it for optimizing
I/O and communication in out-of-core stencil problems. Experimental
performance results on an Intel Paragon show significant reduction in
I/O and communication overhead.

1 Introduction

It is widely acknowledged in the high-performance computing circles that par-
allel input/output requires substantial improvement in order to make scalable
computers truly usable. There are several reasons for a parallel application for
performing input/output. These include real-time I/0, initial/final read-write,
checkpointing and out-of-core computations [Bor96].

We focus on the problem of supporting out-of-core computations. Out-of-
core computations are those computations whose primary data sets are stored
on files in the secondary memory. Specifically, we concentrate on compiling out-
of-core programs developed using High Performance Fortran (HPF) [Hig93].?
HPF is a data parallel language which provides explicit language directives to
partition data over processors in certain pre-defined decomposition patterns like
BLOCK and CYCLIC. This data distribution results in each processor storing a
local array associated with each array distributed in the HPF program. HPF
also provides data-parallel program construsts like FORALL [Hig93].

In this paper, we describe a dataflow framework for optimizing communica-
tion in out-of-core problems. We focus on communication optimization within
a single out-of-core FORALL construct. Unlike the available dataflow frameworks
for optimizing inter-processor communication [KN94, KS95, GSS95], our frame-
work takes an unified approach for placing I/O and communication calls while
preserving characteristics of these calls. All the current frameworks focus on im-
proving communication performance by vectorizing messages, eliminating redun-
dant communication and overlapping communication with computation. How-

Although the techniques are discussed with respect to HPF, they can be applied to
compilation of data parallel programs in general.

ever, these frameworks do not directly extend to out-of-core problems. Another
limitation of these frameworks is that they do not make efficient use of the
copy-in-copy-out semantics of the HPF FORALL construct. We illustrate these
points by applying two communication placement frameworks [KN94, KS95] to
an out-of-core problem performing stencil computations (also called an regular
problem). We then compare the results with an integrated I/O and communica-
tion placement framework which achieves substantial performance improvement
by simultaneously reordering I/O and communication calls.

The paper is organized as follows: Section 2 introduces various dataflow def-
initions that will be used throughout the paper. In Section 3, we present an
out-of-core regular problem and analyzes it’s communication and I/O pattern.
This problem is used as a running example throughout the paper. Section 4
presents an integrated I/O and communication framework and describes its ap-
plication in eliminating extra file I/O from communication. Section 5 presents
experimental performace results of optimizing out-of-core communication from
stencil problems using our framework. Finally, we conclude in Section 6.

2 Background

Our program representation is based on [KS95]. Let G=(N, E) be the interval
flow graph representing an HPF program, with NV nodes and F edges. Let s and
e be the unique start and end nodes of G. Every edge in E can be classified as
an entry, forward or backward edge. Let a Tarjan interval T(h) represent a set
of program flow nodes that correspond to a loop in the program text. T(h) has
a unique header h, where h ¢ T(h). For every node n of the interval flow graph,
G, we define Succ(n) and PRED(n) as a set of successor and predecessor nodes
of n. The edges induce the following traversal order over G. Given a forward
edge (m,n), a FORWARD order visits m before n and a BACKWARD order visits
m after n. Let HEADER denote the header node of the interval T(n). [Bor96)
describes the properties of the interval flow graph.

To anlyze dataflow properties of the FORALL statement, we use the classical
dataflow definitions, i.e., USE, DEF, KILL. A variable is said to be USEd if it is
referred in an expression. A variable is said to be DEFed if it is initialized in
an expression. The variable is said to be LIVE until it is defined again (in other
words, KlLLed). We can extend these definitions for objects such as arrays. An
array is said be INJURED, if some elements of the array are overwritten, otherwise
the array can be considered LIVE. An array is said to be ACTIVE if some of its
elements are either USEd or DEFed and these elements constitute the ACTIVE
set of the array.

Recall that the FORALL statement has copy-in-copy-out semantics [Hig93].
Consequently, during the execution of a FORALL statement, old as well as new
values of an array can be LIVE. In other words, the FORALL statement satisfies
the DELAYED_KILL property [Bor96]. We use variable DKILL to represent an
array which satisfies the DELAYED_KILL property.

We now define some dataflow variables that will be used for analyzing com-
munication and I/O access patterns in out-of-core programs. Let ACTIVEP de-
note the set of elements that will be used in computation in processor p at a node
n in the interval flow graph. Similarly INCORE? denote the set of elements read
by a processor p at node n. Definitions ACTIVE? and INCOREP are used to com-
pute the send-recv sets for each processor, SEND? and REcv?. Using SEND? and
RECV?, we can compute the set of elements communicated at a node n, COMM,,
as |J,{SEND},+RECV! }. Similarly, we compute the set of incore elements at node
n, INCORE,, as | J; INCORE!,. For every node n, for every processor p and SEND?,,
we define E10” as a set of elements which will be sent by p but are not members
of INCOREP. Formally, EI0?P=SEND?- (INCORE?, (] SENDZ?).

For any data set d € INCORE or SEND or RECV, the following predicates are
defined. Bit vectors are used to represent individual data sets.

— Used(n, d)ﬁ TRUE iff a subset of d is referenced at node n.
— Kz’ll(n,d)ﬁ TRUE iff a subset of d is modified at n.

d . .
— Incore(n,d)zf TRUE iff a subset of d is in-core at n.

3 I/0 and Communication Optimization: An Example

Figure 1:2 presents an HPF example in which an out-of-core array a is dis-
tributed over 4 processors in BLOCK fashion. This example will be used as a
running example throughout the paper. Our running example performs one-
dimensional relaxation using 3-point stencil computations. The interior points
of the array a are updated using a FORALL construct. To preserve the FORALL
semantics, it is necessary to use temporaries to store initial and intermediate
data. Since the primary data sets are stored in files, it is necessary to use two
different files, the source local array file (LAF) for reading initial data and a
temporary LAF to store the updated intermediate data. After the computation
is over, the temporary LAF can be renamed as the source LAF .

Figure 1:3 shows the pseudo-code for the stripmined program (assuming per
processor available memory as 10). There are two stripmined iterations, each
iteration reads the initial data from the source file into an in-core local array
(ICLA) temp and writes the intermediate results from an ICLA templ to the
temporary file. Each iteration, after reading the ICLA, performs communica-
tion (if required). For example, in the first iteration, processors 0,1 and 2 send
elements a(16),a(32) and a(48) to processors 1,2, and 3 respectively. In the
second iteration, processors 1,2, and 3 send elements a(17), a(33) and a(49)
to processors 0, 1, and 2. Note that this is an example of the Receiver-driven
In-core communication method [Bor96].

Figure 1:4 shows the initial communication and input/output placement. The
communication and input/output sets for each processor are given in global name

* A more detailed description is provided in [Bor96].

- - -
i=2
(1)
1:9 17:25 33:41 49:57
REAL A(64) @ Read 5 . 5 3
I HPF$ PROCESSCRS P(4)
I HPF$ DI STRI BUTE A(BLOCK) ONTO P @ Comm 16 g g
FORALL(i =2: 63) 01 12 23
a(i)=(a(i-1)+a(i+1))/2 doj=1b b
ENDFORALL - :
2 tenpl(j)= (tenp(j-1)+tenp(j+1))/2
enddo
1:8 17:24 33:40 49:56
@ Write —
0 1 2 3
@ 8:16 24:32 40:48 56: 64
Read —
1 2 3
doi=1,2 R
- Comm L7 33 49
‘ Read In-core Array Section tenp @ ﬁ i ;
oj=1Ib, u
do j=1b, ub te Py = : :
.) . npl(j)= (tenp(j-1)+tenmp(j+1))/2
tenpl(j)= (tenp(j-1)+tenp(j+1))/2 onado
enddo
‘ WriteIn-core Array Section tenpl @ Write 9:1625:32 41:48 57:64
enddo 1 2 3
(3) (4)

Fig. 1. Example program.

space while the bounds for the in-core computation are given in the local strip-
mined space (i.e., 1b=1 and ub=8). For example, Readl(’]—9 means that processor

0 is reading elements a(1) to a(9), Comm 0 B represents communication
of element a(16) from processor 0 to processor 1 and Write% means that
processor 0 writing elements a(1) to a(8).

From the computation pattern, it is easy to determine the communication
pattern for each stripmined iteration [Bor96]. For example, in the first iteration,
processor (0 needs to send element a(16) to processor 1. Since processor 0 does
not have element a(16) in memory, however, it needs to read it from the LAF
and send it to processor 1. Similarly, processors 2 and 3 need to read elements
a(32) and a(48) from their LAF's and send them to their respective destinations.
These file reads are termed as extra since the read elements are not required for
computation by the owner processor. In the second iteration, processors 1, 2,
and 3 perform also extra file accesses to read elements a(17), a(33) and a(49)
respectively. To prevent violation of FORALL semantics, old values of elements,
a(17), a(33), and a(49), are read from the source LAF and communicated to
appropriate processors. It should be observed that elements a(17), a(33) and

a(49) are brought into memory in the first iteration and could be communicated
before or after they are overwritten; thus minimizing extra file accesses. The
example also performs redundant reads of some elements. For example, in the
first iteration, processor 0 reads elements a(1) to a(9), but writes modified
values of elements a(1) to a(8) while retaining the old set of elements, a(1)
to a(9) in form of the temporaries.® In the second iteration, processor 0 again
reads the old values of elements a(8) and a(9). Therefore, these two reads are
partially redundant. These partially redundant reads can be eliminated if it is
possible to determine which elements can be reused across iterations.

As observed before, for our running example, communication requires both
inter-processor communication (i.e., communication of in-core data) and file I/O.
To improve the communication cost, it is very important to minimize the file I/O
cost (or the number of file accesses). The file accesses generated by the program
can be classified into: (1) Compulsory: These accesses are required to read and
write in-core data and (2) Extra: These accesses are required for communicat-
ing off-processor out-of-core elements. The file I/O cost can be reduced by (1)
eliminating partially redundant compulsory file accesses and (2) minimizing ex-
tra file accesses by communicating in-core data whenever possible. The second
optimization requires reordering computation and placing the communication
calls so that only in-core data is communicated [Bor96]. In an out-of-core ap-
plication, the computation order is decided by the data access pattern, that is,
by placement of the read/write calls. Therefore, to minimize overhead due to file
I/O in communication, it is important that both communication and I/O calls
are placed at appropriate positions.

4 A Framework for Integrated I/O and Communication
Placement

In Section 3, we describe the compilation of an out-of-core FORALL statement.
We observe that the implementation of out-of-core FORALL requires extra file
accesses during communication and a naive implementation results in reading
redundant data. In this section, we propose an integrated I/O and communi-
cation placement framework that exploits the DELAYED KILL property of the
FORALL construct and applies the array access information for improving the
overall performance. Note that the indeterminacy in FORALL execution order,
allows our framework to freely reorder in-core computations. Specifically, our
framework reorders in-core computation such that communication would involve
only inter-processor communication. Consequently, all extra file accesses will be
eliminated.

4.1 The Correctness Criteria

Our integrated framework imposes the following correctness requirements:

5 Note that temporaries are marked LIVE during the FORALL computation.

— Safety: All data either communicated or read is used immediately.

— Sufficiency: Every in-core computation is preceded by an appropriate READ
call and each non-local reference is preceded by appropriate communication.

— Balance: For every SEND, there is exactly one matching RECV. Note that
this condition does not apply for READ.®

In the presence of the DELAYED _KILL type of computation, the definition of
Safety is considerably weakened. Hence, it is more appropriate to term it as Weak
Safety. Note that Weak Safety and Sufficiency are applicable for both file access
and communication calls, while Balance is applicable only to communication
calls. Therefore, our framework is able to take an unified approach for placing file
access and communication calls while honoring their individual characteristics.

4.2 Eliminating Extra File Accesses in Communication

It should be observed that extra file accesses are generated because an array
section” is used several times in the stripmined FORALL iterations; once by the
processor that owns the section and in remaining cases, by other processors. If
it is possible for the processors to perform computation on the common array
section in the same iteration, the communication will involve only inter-processor
data transfer and extra file accesses could be eliminated. To satisfy this condition,
we add the following constraint in the correctness criteria.

Strict Safety Constraint

— Strict Safety: Everything that is read or communicated (i.e., sent and re-
ceived) will be used only once.

Criteria Safety and Strict Safety require that the data read by processor i at
node n, INCORE? , should be used immediately and should not be used anywhere
else in the computation. Computation in any processor, j, at node n’, which
requires elements of INCORE!, (in other words, RECV’, C INCORE}), should,
therefore, be placed at node n. Then, processor i needs to send only the incore
data (SEND!, C INCORE!). Applying this condition to every processor, we can
observe that if node n satisfies Strict Safety, CoMM,, is subsumed by INCORE,
and therefore, set E10 is empty and all extra I/O is eliminated.

Processors i, j satisfying the above requirements exhibit one or both of the
following inclusion properties

—~ REcV!, C SEND!, = RECV/, C INCORE,
— REcvVi, C SENDY, — RECV], C INCORE],

where n and n' are nodes of the interval flow graph denoting the initial
placement of the computation (in other words, placement of READ calls). To

5 We currently use synchronous I1/0 calls.
7 An element can be considered as a special case of section.

find 7,5 and n,n’, it is necessary to perform both FORWARD and BACKWARD
flow analysis.
Let us now define a predicate Inclj(n,n’) as follows:

' d . 4 , , ,
— Incl(n,n') Y Trur if REcv!, C INCORE,, or RECVY, C INCORE/,

For a processor i, the solution of the Incl;(n,n’)7 for any processor j (j #
i), gives the node pair (n,n') satisfying the inclusion properties. The inclusion
property is then verified for every INCORE and RECV set in the program. If all
the INCORE and RECV sets satisfy the inclusion property, then the computation
is said to be balanced. For balanced computation, one can eliminate extra I/O
by reordering computations.

We illustrate this optimization by using our running example (Figures 1).
Table 1 illustrates the values of various dataflow variables corresponding to the
stripmined iterations (Figure 1). There are two stripmined iterations; for each
iteration, INCORE gives the set of elements that are brought in memory by each
processor (ICLA). Corresponding ACTIVE, SEND and RECV sets are also shown.

Table 1. Dataflow Variables for the running example.

[Iter.[Processor[Node[INCORE[ACTIVE[SENT|RECV|

1 0 2 1:9 1:9 16 -
17:25 | 16:25 | 32 16

33:41 | 32:41 | 48 32
49:57 | 48:57 - 48
8:16 8:17 - 17

24:32 | 24:33 | 17 | 33
40:48 | 40:49 | 33 | 49
56:64 | 56:64 | 49 -

N
W DN = D] W DN =
O O O O N N DN

Table 2 presents the solutions for the Incl predicate for all processors in
form of the Inclusion matrix. An entry (n,n') in a position [i,j] denotes the
pair of nodes of the interval flow graph satisfying the inclusion equations for
the processors ¢ and j. This entry is called as a solution entry. In other words,
it defines the INCORE sections of processors ¢ and j that satisfy the inclusion
property. For example, consider the solution at position [2,1]. The solution tuple
(2,6) denotes that RECVS C INCORE], i.e., the data required by the ICLA of
processor 2 at node 2 (first stripmined iteration) is part of the ICLA of processor
1 at node 6 (second stripmined iteration). The entries in the positions [0,0] and
[3,3] denote that processors 0 and 3 do not perform communication at nodes 2
and 6 respectively (in other words, in the first and second stripmined iteration).
Such entries are called non-solution entries. The number of solution entries in

th

7

row or jt* column denotes the number of times a processor i or j performs

communication.

Table 2. Inclusion matrix for the running example.

||Pr0cessor| Processor ||
0 1 2 3
0 (2,2)[(2,6)| - -
1 (2,6)| - [(6,2)] -
2 - [(2,6)] - ((6,2)
3 - - 1(2,6)/(6,6)

The information provided by Table 2 can be used to reorder the computa-

tion. This reordering is an iterative procedure; every iteration tries to schedule
computation such that the inclusion equations are satisfied. The iterations stop
when all ICLAs represented by the solution tuples are scheduled. Let us un-
derstand the reordering procedure using our running example and its inclusion
matrix.

1.

In the first step, choose a random processor i. For our problem, let us choose
processor 2. For this processor, select a solution entry from the second row,
e.g., entry [2,1] which corresponds to the solution tuple (2,6). It states that
REecVZ C INCORE]. Therefore, sections of local arrays of processors 2 and
1, corresponding to the nodes 2 and 6 (in the interval flow graph) should be
brought in memory.

. In the second step, using the inclusion matrix, determine if the ICLA of pro-

cessor 1 requires any off-processor data. It can be easily found out by checking
the first row of the inclusion matrix for solution entries containing node 6.
The entry [1,2] corresponds to the solution tuple (6,2), which indicates that
RECvy C INCORE3S. Note that the array section of processor 2, correspond-
ing to node 2, is already in memory. Therefore, the communication between
processors 1 and 2 will involve only inter-processor communication.

. The first two steps have scheduled ICLAs of processors 1 and 2. The third

step tries to schedule ICLAs of the remaining processors so that there are no
extra 1/O accesses. Consider processor 0. In the 0" row, the only solution
entry involves processor 1 at node 2. Since ICLA of processor 1 at node
2 is already scheduled, this entry cannot be used. In this case, the non-
solution entry, i.e., entry at position [0,0], [2,2], should be used. This non-
solution entry suggests that the ICLA of processor 0 at node 2 does not
require communication and therefore, can be scheduled along with ICLAs of
processors 1 and 2. Applying the same principle to processor 3, we can see
that ICLA of processor 3 at node 6 does not require communication. Hence,

this ICLA can be scheduled along with the ICLAs of processor 0, 1 and 2.
For this ICLA schedule, only communication required will be inter-processor
communication between processors 1 and 2.

4. Applying the same procedure, the remaining four ICLAs can be scheduled.
This ICLA schedule will involve interprocessor communication between pro-
cessors 0 and 1, and between processors 2 and 3. Therefore, the overall
computation involves only inter-processor communication and the extra I/O
accesses are eliminated. Figure 2:A illustrates the final placement of 1/0O
and communication calls. Figure 2:B illustrates an alternative placement.
This placement is obtained using a different choice of initial processor.

1:9 24:32 33: 41 56: 64 Read 8:1617: 25 40: 48 49: 57
0 1 2 3 0 1 2 3
32 33 33 32 16 17 48 49 17 16 49 48
— — | |Reev. — — Send —— — —||Reecv ————
1 2 1 2 01 2 3 01 2 3
doj=1b, ub doj=1b, ub
templ(j)= (tenp(i-1)+tenp(i+l))/2 tenpl(j)= (tenp(i-1)+tenp(i+1))/2
enddo enddo
. 1:8 25:3233:4057:64 . 9:1617:24 39:48 49: 56
Write — Write —
0 1 2 3 0 1 2 3
10: 16 17: 23 42: 48 49: 55 1:7 26:3233:39 58: 64
Read Read
0 1 2 3 0 1 2 3
16 17 48 49 17 16 49 48 32 33 33 32
————||Reev —— —— Send — — | |[Reev — —
o1 2 3 01 2 3 1 2 1 2
doj=1b, ub doj=1b, ub
templ(j)= (tenp(i-1)+tenp(i+l))/2 tenpl(j)= (tenp(i-1)+tenp(i+l))/2
enddo enddo
Write 9: 16 17:24 41: 48 49: 56 Write 118 25:3240:58 57: 64
0 1 2 3 0 1 2 3
0 1 - 2 3 0 <= 1 2 <> 3
i=1
i=2
B - -
Reuse (@ Comm (b)

Fig. 2. Final placement of I/O and communication calls.

5 Applying Dataflow Framework to Stencil Problems

We now apply the communication and I/O placement framework to the stencil
problems. We illustrate using the 5- and 9-point stencils (Figure 3 (1) and (2)).

O O e O o O e e e O

O e O e o O e O e O

O O e o o O e e e O

o O O O o 0O O O o o
@ @

Fig. 3. 5- and 9-point Stencils

This section presents performance results of hand-coded out-of-core examples
that use 5-and 9-point stencils. The experiments were performed for square real
arrays of size 8K*8K (aggregate file sizes 256 Mbytes), distributed in BLOCK-BLOCK
fashion over processors logically arranged as a square mesh. These experiments
are performed using 16 and 64 nodes of an Intel Paragon.

Tables 3 present performance results for column, and square tiles. In each
experiment, the amount of time required to read and write local data, LIO, and
the time required for performing communication, COMM, were measured for
unordered and ordered (after placing the I/O and communication calls) access
patterns and the communication gain was computed. Each table presents LIO
and COMM for 5- and 9-point stencils with different processor grids and different
array sizes. Since the local computation time is negligible compared to LIO, we
have not reported the computation cost. Each experiment was performed for the
memory ratio of % (i.e., the ratio of size of available memory to that of out-
of-core array). Note that for the unordered cases, COMM includes the cost of
inter-processor communication and extra file I/0.

From Table 3, we can observe that by reordering communication and I/0
calls, the communication cost COMM is significantly reduced. For example, for a
9-point stencil problem running on 64 processors using 8K*8K array and column
tiles, COMM without ordering is 2.06 seconds, and with ordering is 0.05 seconds
(therefore, the communication gain is 39). For the same problem, if square tiles
are used, the communication gain is 35992. This increase in the gain is due to
the additional I/O cost incurred during accessing square tiles.

6 Conclusions

In this paper, we described a framework for optimizing communication and I/0O
costs in out-of-core problems. We focussed on communication and 1/0 optimiza-
tion within a FORALL construct. We showed that existing frameworks do not ex-
tend directly to out-of-core problems and can not exploit the FORALL semantics.
We presented a unified framework for the placement of I/O and communication
calls and applied it for optimizing communication for stencil applications. Using
the experimental results, we demonstrated that correct placement of I/O and
communication calls can completely eliminate extra file I/O from communication
and as a result, significant performance improvement can be obtained.

Table 3. Performance of the 5-and 9-point stencils. time in seconds.

Unordered Ordered Comm
Memory|Procs.{COMM| LIO |COMM]| LIO Gain
ratio a b c d e=(a/c)
5-point Stencil, Column Tiles, 8K*8K Array
1/4 16 1.38 | 7.57 | 0.04 | 6.71 35.38
1/4 64 1.16 | 10.87| 0.05 | 9.80 25.21
9-point Stencil, Column Tiles, 8K*8K Array
1/4 16 1.27 | 7.70 | 0.03 | 7.05 38.48
1/4 64 2.06 |10.20 | 0.05 |10.15| 39.84

5-point Stencil, Square Tiles, SK*8K Array
1/4 16 |175.11|183.96| 0.03 |178.14| 5506.60
1/4 64 |192.2 (197.57| 0.005 |196.40/36061.79
9-point Stencil, Square Tiles, SK*8K Array
1/4 16 (150.78|175.88| 0.03 |182.01| 4569.09
1/4 64 |192.2(197.57| 0.005 |196.40|35992.51

Acknowledgments

The work of R. Bordawekar and A. Choudhary was supported in part by NSF
Young Investigator Award CCR-9357840, grants from Intel SSD and in part by
the Scalable I/O Initiative, contract number DABT63-94-C-0049 from Advanced
Research Projects Agency(ARPA) administered by US Army at Fort Huachuca.
R. Bordawekar is also supported by a Syracuse University Graduate Fellowship.
The work of J. Ramanujam was supported in part by an NSF Young Investigator
Award CCR-9457768, an NSF grant CCR-9210422 and by the Louisiana Board of
Regents through contract LEQSF(1991-94)-RD-A-09. This work was performed
in part using the Intel Paragon System operated by Caltech on behalf of the
Center for Advanced Computing Research (CACR). Access to this facility was
provided by CRPC.

References

[Bor96] Rajesh Bordawekar. Techniques for Compiling 1I/0O Intensive Parallel Pro-
grams. PhD thesis, Electrical and Computer Engineering Dept., Syracuse Uni-
versity, April 1996.

[GSS95] Manish Gupta, Edith Schonberg, and Harini Srinivasan. A Unified Framework
for Optimizing Communication in Data-Parallel Programs. IEEE Transactions
on Parallel and Distributed Systems, 1995.

[Hig93] High Performance Fortran Forum. High Performance Fortran Language Spec-
ification. Scientific Programming, 2(1-2):1-170, 1993.

[KN94] Ken Kennedy and Nenad Nedeljkovié. Combining Dependence and Data-Flow
Analyses to Optimize Communication. Technical Report CRPC-TR94484-S,
CRPC, Rice University, September 1994.

[KS95] Ken Kennedy and Ajay Sethi. A Constraint Based Communication Place-
ment Framework. Technical Report CRPC-TR95515-S, CRPC, Rice Univer-
sity, February 1995. Revised May 1995.

This article was processed using the IXTEX macro package with LLNCS style

	A Framework for Integrated Communication and I/O Placement
	Recommended Citation

	tmp.1286817483.pdf.uGBod

