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Abstract

In this paper, we study the limiting distributions for ordinary least squares (OLS), fixed effects (FE),
first difference (FD), and generalized least squares (GLS) estimators in a linear time trend regression with
a one-way error component model in the presence of serially correlated errors. We show that when the
error term is 1(0), the FE is asymptotically equivalent to the GLS. However, when the error term is I(1),
the GLS could be less efficient than the FD or FE estimators and the FD is the most efficient estimator.
However, when the intercept is included in the model and the error term is I(0), the OLS, FE, and GLS
are asymptotically equivalent. Monte Carlo experiments are employed to compare the performance of
these estimators in finite samples. The main findings are: (1) the two-step GLS estimators perform well
if the variance component, A, is small and close to zero when p < 1; (2) the FD estimator dominates the
other estimators when p = 1 for all values of A; and (3) the FE estimator is recommended in practice
since it performs well for all values of p and A.

1 Introduction

In this paper we study the limiting distributions for the ordinary least squares (OLS), fixed effects (FE),
first difference (FD), and generalized least squares (GLS) estimators in a linear time trend regression with a
one-way error component model in the presence of serially correlated errors. There are two popular ways of
estimating a regression with error components, the FE model and the random-effect model. The FE model
can be estimated by OLS by conditioning on the error components, while the random-effect model is usually
estimated by GLS unconditionally. One advantage of using the FE estimator is that we do not need to invert
the variance-covariance matrix, which could be computationally involved, especially when the error terms

are serially correlated (e.g., Baltagi and Li, 1991). However, as we show in Theorems 1-6, the GLS is the

*An electronic version of the paper in postscript format can be retrieved from http://web.syr.edu/~cdkao. Address corre-
spondence to: Chihwa Kao, Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse, NY 13244-1020; e-mail:
cdkao@maxwell.syr.edu.



asymptotically efficient estimator when the error term is I(0) and almost asymptotically efficient when the
error term is I(1). On the other hand, econometricians have been concerned with conditions under which the
OLS estimator is asymptotically efficient, e.g., Grenander and Rosenblatt (1957), Kruskal (1968), Chipman
(1979), Kramer (1982), Baltagi (1989), Phillips and Park (1988), Canjels and Watson (1997), and Vogelsang
(1998).

In this paper we show that when the error term is 1(0), the FE is asymptotically equivalent to the GLS
and the OLS is less efficient than the GLS. However, when the error term is I(1), the GLS could be less
efficient than the FE and FD, and the FD is the most efficient estimator. When the error term is 7(0), the
OLS, FE, and GLS are all asymptotically equivalent if the intercept is included in the model.

Section 2 develops the asymptotic theory for OLS, FE, FD, and GLS estimators with an I(0) error term.
Section 3 gives the limiting distributions of OLS, FE, FD, and GLS estimators with an I(1) error term.
Section 4 discusses the effects of a fitted intercept. In Section 5, we discuss the asymptotics of the estimators
when the error is nearly I(1). Section 6 discusses the feasible GLS estimators. Section 7 presents Monte Carlo
results to evaluate the finite sample properties of the proposed estimators. . In Section 8 we summarize the
findings. All proofs are in the Appendix.

A word on notation. We use % to denote convergence in distribution, % to denote convergence in
probability, X ~ F to denote random variable X has distribution F, [z] to denote the largest integer < x,

and 71(0) and I(1) to signify a time series that is integrated of order zero and one, respectively.

2 OLS, FE, FD, and GLS Estimators

Consider the following simple linear trend with one-way error component model

Yit = p; + O+ vig, (1)

t=1,..,N,t=1,..T, where {y;} are 1 x 1, 3 is the slope parameters, {y,;} are the unobservable individual
effects with p; ~ iid (0,02), and {vi;} are AR(1) stationary disturbance terms with

Vit = pui—1 + €ir, |p| < 1, (2)

where 5 ~ iid (0,0?). The p,; are assumed to be independent of v;; and v ~ (O,U%) , where 02 = 1%;2'

Let w;z = p; + v;e. We follow Canjels and Watson (1997) to assume the following initial conditions:

Assumption 1 v; = ZEK::C)] 1 €i1—j., where K is a parameter that governs the variance of the initial condi-

tion.



Remark 1 1. When k =0, vy is O,(1). When k > 0, v;1 s Op(1) when vy is 1(0) but is Op(Tl/Q) when
v is I(1).

2. Model (1) can be seen as a panel regression with a non-zero drift I1(1) regressor.

3. Many data sets have both a large time-series and a large cross-section dimension, e.g., Summers and

Heston (1991) data.

Our interest is in the estimates of the trend coefficient, (3, and the estimators to be considered are the

OLS, the FE, the FD, and the GLS. The OLS, BOLS, FE, BFE, and FD, BFD, are:

Zf\; 25:1 1yt 5
TN T 5 (3)
Zi:l Zt:l tz

501;5 =

BFE _ Zil Z?:l(t — f)ylt (4)
POARD DN (EIE
and N
B _ Zi:l (le - yll) (5)
FD N(T-1)
where
o1& T+l
P=7 ;t =

Next we consider the GLS, BG rg; (1) can be written in vector form
y=BX+u (6)

where y is NT x 1, X is a vector of — (1,2,...,T) of dimension NT x 1, and u is NT x 1. In order to

obtain the GLS estimator we need to know the variance-covariance matrix of u, Q. It is known that

= Iy®X,

Q

where

1 p PN pT71
A= P 1 ’
pT—l 1



tris a T x 1 one, Iy is an identity matrix and ® denotes the Kronecker product. Then the GLS estimator

is

Bors = ()(’srl)()_1 X' ly. (7)

The limiting distributions of 30 LS B FES B rp, and BG s are summarized as follows. All limits in Theorems

1 —6 are taken as T" — oo followed by N — oo sequentially.

Theorem 1 Let y;; be generated from a simple time trend model in (1) where

Vit = PUijt—1 + Eit,

with e; ~ tid (O, O'g) and initial condition in Assumption 1. Then

(a) VNT (/@OLS - 5) 4N (0,%0%),
(0) VNT? (B —8) N (0, 32%5) .

[T]+2

(¢) VNT (Brp—8) N (0,022 ),

P

(d) W(BGLS—5> 4N (0,(11—%:5—2) :

Remark 2 1. The results in Theorem 1 still hold if the error term is assumed to be a martingale difference

sequence as in Cangels and Watson (1997).

2. When the error term, vy, is iid, then the equivalence of the GLS and FE estimators can be shown

easily. To see this, note that (e.g., Baltagi, 1995, p.16) the GLS is a weighted average of the BFE and
the between estimator, B B’

BGLS = WBFE +(1-W) BBa (8)

where W is a weight. Note that W =1 and BB = 0 since the time trend, t, in (1) does not vary across

i. It is clear that BFE and BGLS are identical.

. If [KT] — oo, then VNT (BFD . 5) 4N (0, f_Lp) .

. We expect that the equivalence results in Theorems 1-6 will continue to hold if we replace the time

trend by the I(1) regressor, though the speed of convergence of estimators will be slower. Also a fully
modified version of the estimators may be needed if the regressor is correlated to the regression error
with the 1(1) regressor. The results will be reported by the authors in different papers. A fully modified
FE estimator has been studied by Kao and Chiang (1997).



5. Note that

where

and

Then

»lg
QX =[IywE X = :
Sz
1 o2 .
-1 _ = [ 2-1_ 2
= - o2 (A 0%+90%GTGT)’
(1 0 0 0
—p 1+p% —p 0 0
0 —p 1+p> —p 0
0 0 0 0 —p 14p°
[0 0 0 0 0 —p
» -
I-p
1 L—p
ar Ly 1+p )
I—p
_1 -
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0 0 0 0 0 —p 1




,pQ
0
1 9 0
12 L=p) s : ’
0
| p(T=Tp+1) |
and ) _
1
I—p
, 1+ (1=p) (S ) +T] | 1-p
arapr =
! (1+p)°
I-p
- 1 -
It follows that
1 (72 ’
1 - 1 w
Y = 0_—12)<A WGTGT).T
_pQ
0
1 : 0
) (I=p) o+ : -
0
| p(T=Tp+1) |
F LT LT
1 0
T—1
11—-p oy 1 0
——F 1+(1— t]+7| - +
021+ po?+0o2 (I1=p) (;) (IL=p) p
1 0
_1_ _1_

Clearly R (E_lx) # R (z) and hence R (Q_lX) # R(X), where R signifies the range space of a matriz.
It follows by Kruskal’s theorem (1968) that GLS and OLS are not equivalent even asymptotically.

Assumption 2 ¢;; = d(L)ejg,with d(L) = Y52 g d; L7, 37770 jlds| < 00 and e ~ iid (0,02) .



Then we have the following corollary:

Corollary 1 Suppose e+ follows Assumption 2 and let y;z be generated from a simple time trend model in
(1) where
Vit = PUst—1 1 Eit
and initial condition in Assumption 1. Then
-~ d
(b) VNT® (Brp —8) 4 N (0, G220 )
~ _ 2[kT]+42
(¢) VNT (Brp = 8) N (0,2(1)0? 2422,

() VNT? (BGLS - 5) 4N (O, %) .

Remark 3 The GLS estimator in Corollary 1 ignores the I(0) serial correlation associated with d(L), due
to the results in Grenander and Rosenblatt (1957).

3 Asymptotics of OLS, FE, FD, and GLS Estimators when p =1

Model (2) is restrictive because it excludes p = 1. We investigated the asymptotic properties of the OLS,
FE, FD and GLS estimators in Section 2 and found that the FE is asymptotically equivalent to the GLS
estimator when v, is I(0). In this section, we assume p =1 in (2), i.e., vy is I(1). We will show that the

previous conclusions in Section 2 are substantially altered when p = 1. Note that v;; = Zz':o €45 SO
Q:E(uu/> =Iy®X,

where ¥ = (U?A + UiLTL/T) and

(11 1 1]
1 2 2 9
A=1]1 2 3 3
12 3 T |
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0
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K
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Next, let’s look at the GLS. First we note,

1 3

xz X1

xz X1

Y1
Y2
Y3

YN

17,
X
N
:Zx Yl
i=1
x
X
o] [1]
0 2
0 3
1 1L T |
0 1
0 Y2
0 Y3
»! 1 [y~ |
N
sz Sy,
i=1



where

2-A —1 0 0
1 2 -1 0
, 1
e X7y, = —2[1 23 ... T 0 -1 2 -0
0-5

Yi1
Yi2
1 1
= U—g[—A o0 --- 1 Yi3 :O__g[yiT_Ayil]~
| YiT |
It follows that the GLS can be written as
-~ 7 -1 !
Bars = (X Q_1X> X0ty
N 1N
= lz (x E_la:)] Z (:1: E_lyi>
i=1 i=1
N 1rn
= Z (T - A)] [Z (yir — Ayil)] :
i=1 i=1
2
Remark 4 1. If A= 02102 =1, then the GLS is reduced to the FD estimator.
2to;

2. Since vy is I(1), then for all i,

%Uﬂ = L 261‘1,]- i) N (O, H(J'g) .

3. The u,; can not be consistently estimated when the error term is I(1).

The limiting distributions of the OLS, FE, FD, and GLS estimators are given in the next theorem.

Theorem 2 Let y;; be generated from a simple time trend model in (1) where
Vit = Vit—1 T Eit,
with ;¢ ~ iid (O, og) and v;y1 = Zg’fg €1—j.. Then
(a) VNT (Bors — 8) N (0, (§ + §r) o),

10

Yi1
Yi2
Yi3

Yir




(b) VNT (Bpp — ) %N (0,402).
(¢) VNT (Brp—8) =N (0.02),
(d) VNT (EGLS - ﬁ) 4N (o, [1 +(1-A)? n} og) .

Remark 5 1. The limiting distribution of the GLS depends on the variance component, A = and

_ %
2 2
oz +0u

the parameter that governs the variance of the initial error, k.

2. If A <1 then % + %lﬁ] +2kA — kA2 > 0. Hence the GLS estimator is also more efficient than the OLS
estimator with p = 1. However, the GLS could be less efficient than the FD or FE estimators. For
example, the GLS is less efficient than the FD unless k =0 or A = 1. Also the GLS is more efficient
than the FE only if (1 — A)*k < i

3. Theorem 2 confirms the results of Baltagi and Chang (1992), i.e., the relative performance of the

estimators depends on the variance of the initial error in panel data.
4. The FD estimator is the most efficient estimator with p = 1.

5. It can be shown that

—-A
0
1
1
_1 -

and then R (2_1:1:) # R(z) and R (Q_lX) # R(X). It follows by Theorem 1 in Kruskal (1968) that
the OLS and GLS are not equivalent even asymptotically.

6. From Theorems 1 and 2 we know that when the error term is I(0) the FE estimator is asymptotically
efficient, and when the error term is I(1) the FD estimator is asymptotically efficient. Hence the
inference on B in (1) can be carried out using the t-statistic from the FE when the error term is I(0)
and from the FD estimator when the error term is I1(1).The tests on whether the error term is I(0) or

I(1) in (2) can be found in Kao (1998) and McCoskey and Kao (1998).

11



4 The Effects of a Fitted Intercept

An intercept is not included in (1) since the intercept can not be consistently estimated by any method when
the error term is I(1). However, it is usual in empirical work for the panel regression to include an intercept

(e.g., Baltagi, 1995). Consider the following model in place of (1):
Yir = o+ Bt + ug, 9)

where « is the intercept,
Ui = Uy + Vgt
and
Vit = pug—1 + €it, |p| < 1.

We note that N " ~
Zi:1 Zt:l(t — 1)yt

N T o
Zi:l Zt:l(t - t)2

From the proof of Theorem 1 we know the inclusion of a fitted intercept in (9) does not alter the asymptotic

501;5 = 5FE =

distribution of B rg that is given in Theorem 1. Thus, the FE estimator has the same limiting distribution
whether or not an intercept is included in the regression. However the limiting distribution of Bo g will be
affected by a fitted intercept. In this case, the limiting distribution of 30 s is

= 2
) 552

since the OLS is identical to the FE estimator under model (9). Also from the proof of Theorem 1 we note
that the presence of the intercept does not influence the limiting distribution of the GLS estimator. The
following two theorems provide the limiting distributions of the FE, FD and GLS estimators under model

(9) with a stationary error term and a nonstationary error term.

Theorem 3 Let y;; be generated from a simple time trend model in (9) where
Vig = PU—1 + Eit,

with €5 ~ tid (0, og) and nitial condition in Assumption 1. Then

' 1-p)?

() VNT? (B = 8) = N (0, 325 .

() VT (Bpp — 5) N (0,022

P2

12



=)

(c) W(BGLS_6> iN<0 ﬁ)

Remark 6 Theorem 8 shows that, when the error term is 1(0), the presence of the intercept does not change

the limiting distribution of the GLS estimator.
Theorem 4 Let y;; be generated from a simple time trend model in (9) where
Vit = Vi—1 + Eit,
with €4 ~ tid (0, og) and initial condition in Assumption 1. Then
() VNT (Br — B) 4N (0, 802).
(b) VNT (Bpp— 8) =N (0.02),
(¢) VNT (Bars —B) N (0,302).

Remark 7 If vy is I(1), i.e., p = 1, then the FE and FD estimators have the same limiting distributions

that are given in Theorem 2. However, the GLS is the least efficient estimator.

5 Nearly I(1) Errors

In recent years, there has been considerable interest in the asymptotic properties of the estimation and
inference of 3 in (1) when p is close to one in the time-series (i.e., when N = 1) econometrics literature. In
this section we assume p = 1+ ¢/T in (2), i.e., the v; follows a local-to-unit or a nearly I(1) process. The

asymptotics of the OLS, FE, FD, and GLS estimators are summarized in the following theorem:
Theorem 5 Let y;; be generated from a simple time trend model in (1) where
Vit = PU_1 + &, p=1+¢/T,
with €4 ~ tid (0, og) and initial condition in Assumption 1. Then
(a) VNT (/@OLS - 5) 4N (07 UERO) )
(b) VNT (Bpi; —B) % N(0,02Ry),
(¢) VNT (Bpp — 8) %N (0,02 [Se(1) + (1 = ¢9)Sc(w)])

13



(d) m(BGLS_ﬁ) $N<0,(i§— ),

c2 730+3)2 R2

where

9 2 2¢ 3,92 9
2(c—1)%e*“+3c®°+3¢c-—3 9
RO:Q( ) 2 2 4=

(ce€ — e° + 1)
c® 2

cd '

(_1 _'_620/{)
Ry =Var { [Wc(l) —(1—e9) VNVC(K])} + c? fol s [Wc(s) + echNVC(n)} ds —c¢ [Wc(l) + GCWC(K])} } , and Ry
is given in the Appendix E.

It is clear that in the limiting distributions the FE and FD estimators are the same with and without

intercept. The asymptotics of the FE, FD, and GLS estimators when there is an intercept are stated in the

following theorem:
Theorem 6 Let y;; be generated from a simple time trend model in (9) where
Vit = o1+, p=1+¢/T,
with ;4 ~ tid (0, Ug) and initial condition in Assumption 1. Then
(a) VNT (Brp — 8) % N0, 02Ry),
(b) VNT (Bpp = 8) N (0,02 [Se(1) + (1 = 9)Se(w)])
0 VT (Bens =) % (002 (sti) ).

where

Ry = Var { <2 - C) (Wel)) — (1= ) Welw)) + & /01 (s - %) [We(s) + W) ds} .

Remark 8 1. Note

. 9 4c3e?¢ — 14c%e?e + 22ce?° — 112 — 5 + 16e° — 16ce¢ 9 geny (€€ — €€ 4+1)°
o = 7 P +5 ()
6,9,
5 47
¢ [18(c — 2)%e¢ + T2¢(c — 2)e° 4+ 12¢3 4 54c? + T2¢ — 72
lim R lim (A; + Ag) = c — 9 —
hm By 04)0( 1 2) 1448, () ce®+c—2(e°—1)
2c?
6
= =
and
lim Ry = 1. (10)

14



2. Note from (d) of Theorem 5 and (c) of Theorem 6 that as ¢ — 0 we have
VNT (Bos —B) = N(0,0%)

which is different from (d) in Theorem 2 and (c) in Theorem 4. It is because that the limit of letting
¢ go to zero and then follows by a large T may not be the same by increasing T first and follows by

letting ¢ go to zero.

6 Feasible GLS Estimators

For the feasible GLS estimators we need the estimation of the variance components, A, and the autocorre-
lation coefficient p. The parameter p can be estimated easily, i.e.,

N T ~ ~
D izt Dt Yitlit—1

N T [~ 27 (11)
Zi:] Zt:? (Uitfl)

where U;; is the estimated residual, taken from the FE estimation of the model in (1). It can be shown that

ﬁ:

pin (11) is a consistent estimator of p by using (b) in Theorem 1. The variance component can be estimated
in the same way as for the models without autocorrelation by using the variance decomposition and the
Prais-Winsten (PW) transformation, as Baltagi and Li (1991) pointed out.

On the other hand, the efficiency of the GLS estimator also relies on x as we know from Theorem
2. Maeshiro (1976) pointed out that the Cochrane-Orcutt (CO) procedure, which ignores the information
contained in the first observation, performs worse than the OLS for smoothly trended regressors. Beach and
MacKinnon (1978) and Park and Mitchell (1980) suggested that when the regressors are trended, estimation
using the PW transformation is more efficient than using the CO procedure. The importance of the initial
observation in a panel data regression with AR(1) error terms has been studied recently by Baltagi and
Chang (1992). However, when p = 1, u,; can no longer be consistently estimated by any method and hence

2

oy, is no longer identifiable. It limits the usefulness of the GLS estimator when the error term is I(1).

7 Finite Sample Simulations of Estimators

In this section we will evaluate the finite sample properties of the OLS, FE, FD, GLS-CO, GLS-PW and
infeasible GLS estimators and ask whether the 7(0) and I(1) asymptotic variance provides a useful guide for

choosing among the estimators in small samples. The model is set as follows:
Yie = p; + 0t +up,i=1,.. ,Nt=1,..T,
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where 8 =1 and with p; WN (0,02) and vy follows an AR(1) with

Vit = PUit—1 + Eit,
eir " N (0,02) and vy = S0 pies_j, where & = (0,0.1,0.25, 1.0) and p = (0,0.2,0.4,0.6,0.8,0.9,0.95,1.0) .
We fix ai +02=10and let A = Uzi"gz take the values (0,0.2,0.4,0.6,0.8) . The following sample size com-

binations are used: N = 25,50 and T" = 25,50. Each experiment involves 10,000 replications. For each
replication we estimated the model using OLS, FE, FD, GLS-CO, GLS-PW and infeasible GLS estima-
tors. The simulations were performed by an Ultra Enterprise 3000. GAUSS 3.2.31 was used to perform the
simulations. Random numbers for p; and e; were generated by the GAUSS procedure RNDNS. At each
replication, we generated an N(T" 4 1000) length of random numbers and then split it into IV series so that
each series had the same mean and variance. The first 1,000 observations were discarded for each series.
We only report the results for the model without intercept since the results for the model with intercept are
similar to the model without intercept.

Tables 1-2 give the mean square error (MSE) of the various estimators of 3 relative to the infeasible GLS
estimator for various values of p, A, and k when N =T = 25. We do not report the cases when N and T
are more then 25 since the results are similar to Tables 1 and 2. We also do not report the bias, which was
negligibly small for all the estimators. The FE, GLS-CO and GLS-PW estimators are essentially efficient
and are preferred to the FD and OLS estimators as predicted from Theorem 1 with p < 1 but not too close
to 1. However, when p = 1, the FD estimator is efficient and is preferred to the OLS and FE estimators as
predicted from Theorem 2. The OLS, GLS-CO and GLS-PW estimators perform poorly for large values of
A. Interestingly, the FE and FD estimators perform well for large values of A. This observation was also
noted by Baltagi (1981, p. 43). In general, the FD estimator is better than the OLS when A is large and
better than the FE estimator when p is closer to 1. However, the FD estimator is worse than the OLS when
A is small and also worse than the FE when p is small. The relative performance of the OLS, FE and FD
also depends critically on ¥ when p = 1. When & = 0, the FD estimator is as efficient as the infeasible GLS
estimator and dominates the OLS and FE estimators. As we expected from Theorem 2, the FD estimator
is more efficient than the infeasible GLS estimator when « > 0.1, though the better performance of the FD
estimator decreases as A increases. Overall, the FE estimator performs relatively well when compared to

other methods.
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8 Conclusion

This paper considers a linear time trend model with a one-way error component with a serially correlated
error term and studies the limiting distributions of the OLS, FE, FD, GLS-CO, and GLS-PW estimators.

The results are confirmed by means of Monte Carlo experiments. The main findings are:

1. The GLS-CO and GLS-PW estimators perform well if the variance component, A, is small and close

to zero when p < 1.
2. The FD estimator dominates the other estimators when p =1 for all values of A.

3. The FE estimator is recommend in practice since it performs well for all values of p and A.

Appendix

A Proof of Theorem 1

Proof. Equation (3) can be expressed as

Zijil 23:1 (t —us (12)

re PSSR ST e

We multiply (12) by v NT3, resulting in

. SN STy,
VI (Bres = 0) =S ST 13)

It is straightforward to show that
Al NT (T2 - 1)

Zz(t -9 = 12

O(N"'T?). (14)

Thus, the leading term in S-°  S2F (¢ —#)2 is Nl—J;, that is,

;X Yy 1
NT3 Zz(t —1)" = 12
i=1 =1
We turn next to the numerator in (13). It can be shown that (e.g., Hamilton, 1994) if ¢ (L) is a possible
infinite polynomial in the lag operator L, such that + (z) has all of its roots outside the unit circle, then

T 2 2
7323 ty(L)e, &N (0, %)
t=1
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and

sany, o d o2y (1)
-3/ ;(tft)w(L) e LN (O’T .

Note that vy = Y272 p7 L/es. Choose ¢ (L) = 372 p/ L7 and ¢ (1) = 372 p/ = 125. We have

\/_1N ST - P = % S TS =) G+ o)
= \/_11_\7 ZT‘WQ {,ui Z(t -1+ Z(t f)vﬁ}

1 N T
= LSy -t
m =1 t=1

_ J_IN ST (D (L) e

Now for fixed N as T — oo we have

LNy B (e b L o2 1
m;T ;(t ) (L) e NZN<O’12(1_p)Q>

i=1
and
ﬁZiNﬂZtTﬂ(tf)uuﬂizN(O L{,g)
N i S (t = 1)? N \Ta-p?)
Obviously

1 & 1202\ 4 1202
TN;N<O’<1@2> N(O’<1p>2)

as N — oo (in fact, it is true for all N) proving (b). (a) can be shown similarly by following the proof of (b).

To see this, first we note that

N T
BOLS 4= Dim1 D Pt
T TN T :
Dim1 2
Then for a fixed N, we obtain
N T N T
DDt = DYt t i)
i=1 t=1 i=1t=1
N T N T
SDYDNE DI
=1 =1 i=1 t=1

Mo
= ZMEO(TQ) +O(T3/%).

=1
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It follows that for a fixed N as T' — oo,

1 N T 1 N
T2 > tug = 5 > i+ op(1).
s = i=1

=1 t=1

Hence,

as N — oo. Finally,

VNT (Bors —8) = ﬁf '
N

proving (a). Note that

—p
0
) 1 0
—1 _ 2
x AT = 1ip2x 1-=p)Yz+ _
0
| p(T=Tp+1) |
T
_ (1_P)2 2 1 2
= T th T (—P? +Tp(T —Tp+1)),
P
L—p
o 1+ (1-p) (25 +7] | 10
T ararr = T
' (1+0p)" -
1—p
- 1 -
T—1 2
= 1+ (1 —-p) t|+7T| ,
(14 p)° =
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1 2 2 2
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1 2 T-1 T-1
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= —%xA 70—12}012}_'_9 ixaTaTx
T
(1—p)° 1
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2
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02024002 \1+p
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since

and

It is known that

and then

1 (1—p (1 o2 T-1 =
= ()1 - L + .
o2 (1+p>( T o2 002 ;) T1/2;7”
1 /1—p 1 o2 =
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and

Then

1 _1 N o1
INTE (G ) — AT LT i
NT? (Bors —0) = &
N
12

proving (d). Finally, we show the limiting distribution of the FD estimator.

Using

and

Then

and hence

proving (c).

\/NT<BFD*B> - \/_Zl 1((;ZT )u“)

\/_Zl 1(7)1T 7)11)
N (T -1)

[T

o
UiT*vﬂ:Zp]eT j Z;ﬂel —j
=0

[T
Var (vir —vyn) = Var Zp er—;j | +Var Zp751 —j

j=0 =0
- O'g O'g]_ _ pQ[HT]+2
1 p? 1— p2?

2
_ O¢ (2_ 2[HT]+2)
1—p2? P '
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B Proof of Theorem 2

Proof. Following Canjels and Watson (1997) we note that when p =1

1 [Tx] L
—=V;1 = Eil—j — (TEW(K)

and
1

N Zem Lo, W)+ W(x)

for all 4, where W(r) and W(ff) are independent standard Brownian motions. We write the FE as

2 Zz 1 /75 Zt 1( )uzt
VNT (B 5) = J_J—sz JT—_Z INUEEY

_ I Yim 7w S Deie (16)
NZi:1ﬁZt:1(t*t)

Let us begin with the numerator in (16). Using Proposition 17.1 in Hamilton (1994), we see that for a fixed

NasT — oo
T

723 (=B S o /01(7’ - %) [W(r) + W(n)} dr ~N < , 1";) .

t=1

Then
N

T
1 1 - d o2
—— (t—t)vit—>N(, E>
VN Zizl VT thl 120

ot

as N — oo. Thus

proving (b). Similarly,

Li 1 Ztuit = Li 1 it(u + v;t)
Nz:l\/zTSt:1 \/lelﬁt:1 '
1 N1 =
_ \/_N;\/ﬁ ul;H;wit]
1 X1 [&
- ﬁ;x/ﬁ ;tvit +o(1).

It follows that
2

) 1 - g RO
\/—%Z\/%Ztuuﬂﬁg/o [W(r)+W(n)}dr~N<,215§ 48)

=1 (=1

~
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as T — oo and then N — oco.

m(BOLS_ﬁ> = 37%2%27&@“—&-%(1)

\/ﬁ@cm ): %i ] lLNZLT(UiTAUﬂ)]-

It is easy to see that for a fixed N as T — oo that

%(T*A)Hl

and

1
U;
T — \/T
(/’1’7, + UZT) A
1
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1
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VT

1
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i RS I
ﬁZT ﬁzl \/T //I’z
1

VT

L

VT

iy + vi1)

~ 1 1
\/T \/TUH +Op(1)

where v;7 = v;7 — v;1. Then
VNT (BGLS —ﬁ) 4N (0,03 [1 r(1- A)%D
as N— oo proving (d). It can be shown easily that the FD estimator has the following limiting distribution:
VNT (Bpp = 8) %N (0,02)

proving (c).
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C Proof of Theorem 3

Proof. It will be convenient to center the observation so that z =t — ¢ and

Yi1 — Y;
Yi2 — T;
Yi= | ¥i3—Y;
| Yir —T; |
From the proof of Theorem 1 we know
(1 0 0 0
—p 1+p% —p 0 0
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D Proof of Theorem 4

Proof. If p =1, then from Section 2 the GLS can be written as

where

and
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It follows that for a fixed N we have
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E Proof of Theorem 5

Proof. The approach we follow is based on Canjels and Watson (1997). To prove (a) we first note
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By the Lindeberg-Levy central limit theorem, as N — oo
VNT (BOLS - 5) %N (0,02Ro) .

This proves (a). We write the FE as
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To compute Ay, notice that
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14T+ (1 (- :
o2 10224—90% 1+p + +( p); ( p)T1/2 ;vt
T - -
1 1— pQ U.i ( 1 >2 T-—1
—U;T 3 = 1+T+(1 7/7) t +Op(1)
\/T O¢ ﬁ + (9(7}% 1+ P t—2
11 21 = (1—¢) 1
= TETieY T TR Z i + —5— g i + op(1)
€ € t=2 €
1 [@1-e¢ 1 s
2 | i YT it t e Ztvit +0p(1),
€ t=2

as T — oo using

1_ 2 o2 1 \2 T-1
lim 2P = £ ( > 1+T+(1-p) t| =0.
T—oo 0% 41*;02 + (9(71% 1+p ;

It follows that

#x’z—lui
4, Ui { (W) = (1= ) W) + ¢ /018 [Wels) + e TWe)] ds — ¢ [W(1) +ecv~vc(n)”
using
= 5 (= (1= ") )
o [We(1) = (1 - e) We(w)]
and . 1
Tsl/z Z;tvwag /0 s [Wels) + W ()| ds.

It follows that

VT (Bous - 9)
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where

Ry = Var { [Wc(l) —(1—¢%) VVC(H)] +e /01 s [Wc(s) + escm(n)} ds— ¢ [Wc(l) + ecvifc(/{)} } .

proving (d). W

F Proof of Theorem 6

Proof. To prove (¢) we first note

%Zilzf}*lz
where
(L-p>~y =2, P
2T = ) (1) oS (T )~ (T -1l [T 1]
£ t=1 1>
2 & 2 1+F c
_ TQU?Z(t—t) + 502 [(T+1)—(T—1)(1+Tﬂ T — 1]
t=1
2 T 2 2
c 2 T+Hec (2% —cT*+4+2T —2T —c¢
= TQUQZ(t_t) +2T0'2< T >
Et:l &
and
Z/E*Iui

T-1

S t=2

1 _ cl — 2T — 3¢ 2 11 _ _ 3
= E {(7}11 - ’Ui) < QT > + ﬁ Z (t — t) (’Uit — ’Ui) + (UZ-T — Uit)
° =2

For a fixed N as T — oo, we have

1. 12 12-c¢
lim =25 lz= =S 42226
e T- 7 T 1202 T2 52

We next find the limiting distributions of z' 2~ u;.
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.1 { (Wc(n)f s Wc(s)+escl/f/c(n)} ds) (552) + & [} (s — ) [Wc(s)+ech~Vc(n)} ds }
 (Well) + e Welw) = fy [Wels) + W) ds) (252)

_ %{(2;) (W) + (e = )W) + 2 /01 (s— %) [We(s) + e () ds}.

= 7 2R {(%) (Wc(l) —(1—¢) Wc(n)> +e Jy (s—3) |:Wc(5) + eScWC(H)] ds}
% Zi\; (%g—; + %20—5(:)

- e 2 { (50 (no-a-eyiw) +e [ (5= 3) [+ i) i+ o)

12 ?
2
N<07‘7€ (CQ+126C> R3>7

where
Rs =Var { <2 ; C) (Wc(l) —(1—¢9 Wc(n)) +c2 /01 (s — §> [Wc(s) + e“VVC(H)] ds}
|
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Table 1: Relative Efficiencies of Estimators

k=0 k=0.1

A P OLS FE FD GLS-CO  GLS-PW OLS FE FD GLS-CO  GLS-PW

0 0 1 .235 .054 372 422 1 .235 .054 373 422
0.2 .997 241 .079 417 461 997 .239 .078 417 .460
0.4 .982 .250 125 .489 .529 .982 .245 116 .489 .523
0.6 .950 .269 217 .616 .654 .949 .255 184 617 .639
0.8 .876 343 .450 .839 .868 871 .308 .355 .841 .853
09 .813 493 .709 .949 961 791 442 .592 .954 .963
0.95 .799 .654 .875 971 974 749 .617 .806 .963 .968
1.0 .853 .831 .957 .803 .896 1.031

02 O 518 .683 157 763 .845 518 .683 157 763 .845
0.2 .623 .608 201 .828 .914 .625 .606 198 .829 913
04 .732 516 257 .849 .929 738 .509 241 .855 .924
0.6 .818 425 .343 .852 918 .826 407 .293 .859 .903
0.8 .828 405 .532 913 951 .825 .364 .420 912 .935
09 .785 519 746 .958 974 764 465 .622 .961 974
0.95 .776 .663 .887 .963 .969 729 .626 .818 .954 .962
1.0 .845 .838 .964 776 .879 1.013

04 O .268 .839 .193 422 .449 .268 .839 193 422 .449
0.2 .354 779 .257 571 .614 .355 778 .254 573 .616
0.4 .469 .684 341 734 797 ATT .680 .322 .746 .804
0.6 .611 .559 .450 .861 .934 .629 .546 .393 .883 .939
0.8 .731 478 .627 .938 .986 738 434 .501 .944 978
09 737 .552 799 .956 977 721 498 .667 957 975
0.95 .741 678 .907 .949 957 .699 .639 .836 .938 .948
1.0 .828 .845 972 147 .869 1.000

06 O .136 919 211 188 195 .136 919 211 .188 195
0.2 .188 878 .289 281 .294 .189 878 287 282 .295
04 .269 799 .398 .429 457 276 .801 .379 .440 .466
0.6 .394 .674 .543 .637 .687 416 .673 485 671 714
0.8 .570 .559 734 .849 .899 .592 .522 .603 .875 .916
0.9 .647 .607 .873 913 .940 .639 .548 734 917 941
0.95 .678 703 941 914 .926 .643 .664 .868 .902 916
1.0 .790 .852 981 706 .863 .994

08 0 .055 967 222 .065 .066 .055 967 222 .065 .066
0.2 .078 943 311 .093 101 .079 943 .308 .099 101
04 .118 .883 .440 157 157 122 .891 422 .166 174
0.6 .189 773 .622 .288 .356 204 .790 .569 314 .329
0.8 .328 .645 .847 .539 .71 .359 .645 734 .b87 .618
0.9 .454 678 975 718 748 463 .627 .839 736 .764
0.95 .535 749 1.003 793 811 515 11 .929 784 .803
1.0 .686 .859 .990 .616 .863 .993

Note:
(a) N =T= 25.

(b) Relative efficiency is the ratio of the mean square error of the infeasible GLS estimator to the mean
square error of the estimator given in row 2.
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Table 2: Relative Efficiencies of Estimators

k=0.25 k=1

A P OLS FE FD GLS-CO  GLS-PW OLS FE FD GLS-CO  GLS-PW

0 0 1 235 .054 372 422 1 .235 .054 372 422
0.2 .997 .240 .078 417 .460 997 .240 .078 417 .460
0.4 .982 .245 116 .489 .523 .982 .245 116 .489 .523
0.6 .949 253 179 617 .635 .949 253 179 617 .635
0.8 .878 .352 447 .846 871 .873 317 .348 .844 .852
0.9 .769 .398 .501 .958 .964 752 .369 451 .960 .966
0.95 .689 .569 721 .948 .957 702 .499 .612 914 .928
1.0 .735 1.021 1.175 .599 1.657 1.907

02 O 518 .683 157 763 .845 518 .683 157 763 .845
0.2 .625 .606 198 .829 913 .625 .606 198 .829 913
04 .738 .508 .240 .856 .924 738 .508 .240 .856 .924
0.6 .828 .404 .286 .859 .900 827 404 .286 .859 901
0.8 .831 418 531 .923 .958 .829 377 414 .919 .936
09 .745 418 .527 .962 973 728 .388 474 .963 973
0.95 .674 DT 731 .939 .949 .b88 .506 .619 .902 918
1.0 .683 .959 1.105 .492 1.375 1.583

04 O .268 .839 .193 423 .449 .268 .839 193 423 .449
0.2 .355 778 .254 573 .616 .355 778 .254 573 .616
0.4 477 .680 .322 147 .805 AT .680 .322 147 .805
0.6 .633 .b45 .386 .887 941 .633 .545 .386 .887 941
0.8 .732 .494 .628 .949 .994 741 452 .496 .953 .982
09 .707 .449 .566 .958 974 .692 417 .510 .958 972
0.95 .649 .590 748 .923 .936 .569 518 .634 .885 .902
1.0 .637 914 1.052 407 1.151 1.325

06 O .136 919 211 188 195 .136 919 211 .188 195
0.2 .189 878 287 282 .295 .189 878 287 282 .295
04 .276 .801 .379 441 467 276 .801 .379 441 467
0.6 .420 .674 ATT 677 719 419 .674 ATT 677 719
0.8 .568 581 736 .856 905 591 .545 .598 .882 .919
0.9 .636 .499 .628 .923 945 .626 465 .567 .923 945
0.95 .604 613 Ny .888 .903 .536 .538 .659 .850 .869
1.0 .592 .883 1.016 .342 .989 1.139

08 0 .055 967 222 .065 .066 .055 967 222 .065 .066
0.2 .078 943 .308 .099 101 .078 943 .308 .099 101
04 .122 .891 421 .165 174 122 .891 421 .165 174
0.6 .207 794 .563 .164 .332 207 794 .562 .160 332
0.8 .323 .668 .848 .537 .568 .356 .662 127 .586 .616
0.9 .476 .b86 738 761 783 479 .b56 677 772 799
0.95 .496 .661 .838 776 796 454 .585 717 751 772
1.0 .520 .867 .998 .289 .894 1.029

Note:
(a) N =T= 25.

(b) Relative efficiency is the ratio of the mean square error of the infeasible GLS estimator to the mean
square error of the estimator given in row 2.
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