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Abstract 
Deconvolution is a useful statistical technique for recovering an unknown density in the presence of measurement 
error. Typically, the method hinges on stringent assumptions about the nature of the measurement error, more 
specifically, that the distribution is entirely known. We relax this assumption in the context of a regression error 
component model and develop an estimator for the unknown density. We show semi-uniform consistency of the 
estimator and provide an application to the stochastic frontier model. 

 
1 Introduction 

Kernel deconvolution methods are used to estimate the density of a random variate (u) when contaminated 
(convoluted) with an independent and additive measurement error (ν). Most methods have been developed for the 
scenario where a random sample of observations from the contaminated variate is available (ε = u + ν). An early 
treatment is Stefanski and Carroll (1990), who consider kernel estimation of a continuous and bounded target 
density convolved with errors from a fully-known normal density.1 They show that convergence rates of ln(n) for 
the target density estimates are typical. Other kernel deconvolution treatments consider errors drawn from a fully 
known Laplace density; these cases generally exhibit better convergence rates. With normal errors, Meister (2006) 
relaxes the assumption that the variance of the normal component is known, and consistently estimates both the 
target density and the unknown variance of the normal error. His identifying assumption is that the target density is 
from the ordinary smooth family of distributions (Fan 1991a), which places a lower bound on the rate of decay of its 
characteristic function’s tails. Examples of ordinary smooth distributions are the Laplace, exponential and gamma; a 
precise definition and discussion of ordinary smooth densities are provided in the sequel.  

An alternative, yet rarely studied, scenario is where the contaminated variate (ε) is not directly observed, 
but is an additive error in a regression model (e.g., y = α + xβ + ν + u). In econometrics the contaminated variate is a 
‘‘composed error’’ and the regression a ‘‘composed error model’’. Horowitz and Markatou (1996) consider the case 
where panel data (repeated observations) are available and neither error component density is known.2 Essentially, 
the information contained in the time-dimension of the panel replaces the normal error assumption to identify 
uniformly consistent estimators of both densities in the composed error. They first estimate slope parameters from 
two regression transformations (‘‘within group’’ and ‘‘first-difference’’). Second, they treat the regression residuals 
from the first step as if they were observations of the unobserved errors in the transformed regression models. Using 
standard kernel deconvolution techniques, they recover the densities of the error components from these residuals. 
Since their regression residuals converge in distribution to that of the composed errors at a much faster rate than 
ln(n), deconvolution using residuals is asymptotically equivalent to deconvolution of the regression errors. They use 
the results to estimate an earnings mobility model where u is time-invariant worker ability. Using data from the 
Current Population Survey, they show that ability appears to be normally distributed and the density of ν is non-
normal.  

This paper considers kernel deconvolution in the cross-sectional regression model with a composed error. If 
a panel is not available, what can be identified? It seems intuitive that if the density of ν were normal and fully-
known, and if the target density of u were continuous and bounded, then it could be consistently estimated at the 
ln(n) rate. In a cross-section, this would amount to using the Horowitz and Markatou deconvolution estimator but 
with Stefanski and Carroll’s assumption of the fully-known normal density replacing the information lost along the 
time dimension of the panel. Again, the regression residuals converge in distribution to the composed regression 
errors, which can be decomposed into the density of the known error and the target density. Unfortunately, in a 
regression model the density of the error is never fully-known. That is, the usual Gauss–Markov assumption is that 
the density of the error is from a zero-mean, normal family with unknown variance. In this paper we show that if the 

                                                           
1 Stefanski and Carroll derive results for a more general convolution problem, but treat the normal error case in greatest detail. 
2 Partial knowledge of the densities is typically necessary for estimation of the regression parameters. A leading case is the random-effects model 
for panel data. 



 
 

density of ν is known to be normal up to its variance, σ2, then the target density can be semi-uniformly consistently 
estimated, if it is assumed that the density of u is ordinary smooth. Hence, our deconvolution estimator is a 
regression generalization of the estimator of Meister (2006) and the cross-section complement of Horowitz and 
Markatou (1996). Our proof of semi-uniform consistency of the density estimator involves bounding an additional 
variance component arising from the regression residuals.  

There are myriad situations in economics where these cross-sectional deconvolution techniques are useful. 
For example, Postel-Vinay and Robin (2002, 2003) use deconvolution to separate the distribution of productivity 
levels of workers in an equilibrium search model. Cost-specific factors in auction models have also benefited from 
deconvolution techniques, see Li et al. (2000) and Krusnatskaya (2009). We also note that research geared towards 
recovering the distribution of unobservable heterogeneity (e.g., hedonic models) may benefit from deconvolution 
methods, see Benkard and Bajari (2005). Finally, a leading case of an error component setting is the stochastic 
production/ cost frontier model (Aigner et al. 1977), which is the focus of our empirical example. These models are 
wide-spread in studies of firm productivity and efficiency and have been used in a variety of contexts. However, one 
of the limitations of a cross-sectional stochastic frontier analysis (SFA) is the dependency of the methods on 
distributional assumptions for both noise (ν) and inefficiency (u). The appeal of deconvolution methods is the ability 
to dispense with distributional assumptions on the inefficiency term which is the object of interest in a cross-
sectional SFA. To illustrate our methods, we re-analyze the technical inefficiency distribution of a random sample of 
US banks previously used in Kumbhakar and Tsionas (2005).  

The paper is organized as follows. In Sect. 2 we provide a brief tour of deconvolution methods in statistics. 
Section 3 discusses issues with deconvolution inherent to our problem, as well as the assumptions needed to show 
semiuniform consistency of the estimator. Section 4 contains some Monte Carlo results, followed by a stochastic 
frontier application. Directions for future research and conclusions are in Sect. 5. 

 
2 Deconvolution: the state of the art 

While estimation strategies relating to measurement error have existed for quite some time, deconvolution 
techniques were introduced by Mendelsohn and Rice (1982). They use B-splines to deconvolve the number of live 
cells from the number of dead cells in DNA content. Kernel estimation techniques, or deconvolving kernels, were 
proposed by Stefanski and Carroll (1990). Even before their paper was published, Carroll and Hall (1988) showed 
that for the class of deconvolving estimators, the best possible rate of convergence in the presence of normal 
measurement error is logarithmic. 

Other contributions to the asymptotic theory of deconvolution estimators from a kernel perspective are due 
to Devroye (1989), Liu and Taylor (1989) and Fan (1991a, b, c, 1992, 1993). Bandwidth selection issues are 
considered in Barry and Diggle (1995), Hesse (1999) and Delaigle and Gijbels (2002, 2004a, b). Other practical 
issues relating to kernel deconvolution are in Zhang and Karunamuni (2000) for boundary corrections, in Neumann 
(1997) for the estimation of the unknown measurement error as opposed to assuming its family, in Hesse (1995) for 
the case when the data of interest are dependent, and in Hesse (1996) for the case when only some of the data are 
measured with error. 

A recent spate of papers on theoretical and computational aspects of deconvolution estimators has 
rekindled interest in the area. Matias (2002), Butucea and Matias (2005) and Meister (2006) propose estimators for 
the unknown variance of the known noise distribution under various sets of assumptions and develop the 
corresponding rates of convergence of the deconvolution estimator. Meister (2004a, b) develops procedures for 
testing whether the assumed measurement error density is correct while Delaigle and Meister (2007, 2008) extend 
the homoscedastic variance setting to allow for heteroscedasticity (in both errors-in-variable regression and density 
settings). Carroll and Hall (2004) develop a deconvolution estimator that involves information on the moments of 
the noise distribution (as opposed to assuming the family explicitly) which greatly improves accuracy, and Hall and 
Qui 2005) consider a trigonometric expansion for deconvolution that is simpler to implement than kernel methods. 
Delaigle and Gijbels (2007) discuss key issues with calculating the integrals arising in deconvolution settings. 
Delaigle and Hall (2007) and Delaigle (2008) discuss issues associated with optimal kernel choice and the 
appropriateness of assuming a diminishing error variance as the sample size grows. Also, Delaigle et al. (2008) 
develop an estimation strategy when replication copies of the noise are present. Taken as a whole these series of 
papers represent the state of the art in the statistics literature. 
 
 

 
 

3 The convolution problem 



 
 

Consider the specification: 
 
 
 
 
and β is a parameter vector of dimension k to be estimated. Here j indexes observations. Equation 1 is the classic 
deconvolution problem where ε is observed. Equation 2 is complicated by the fact that the errors are unobserved and 
have to be estimated. This specification appears in a variety of econometric settings. For example, if 
characterizes a production function and uj < 0, then this would be a standard stochastic production frontier model. In 
a panel setting if it is assumed that xj is uncorrelated with uj then (2) would be the usual random-effects model. The 
key difference between (1) and (2) is that we have direct observations on εj in (1), while we must estimate εj in (2). 
We make the following assumptions on the random components of the model and the covariates when present. 
Assumption 3.1  
The xj, νj and uj are pairwise independent for all j = 1, …, n. Let the probability densities of the error components be 
                                  with corresponding characteristic functions                              Based on the independence 
between vj and uj in Assumption 3.1,  

 
 

We restrict our attention to densities that satisfy the following two assumptions. 
 
Assumption 3.2 The distribution of v is a member of the normal family with zero mean and unknown variance, i.e. 

 
 

 
 

Assumption 3.2 is standard and restricts v to the class of normally distributed random variates with mean 0 
and unknown variance σ2. Assumption 3.3 dictates tail behavior of the characteristic function of u. The class of 
ordinary smooth densities was first defined by Fan (1991a) and implies that the density of u is absolutely 
continuous. The upper bound is used when examining uniform consistency while the lower bound ensures the rate of 
decay of the tails of the characteristic function does not approach zero too rapidly and is needed for identification. 
The constants C1 and C2 are irrelevant for large T while    ensures polynomial tail behavior and includes a wide array 
of densities. Polynomial tails of a characteristic function decay slower than exponential tails, thus precluding a 
normal target density in this class. This ensures unique identification of the variance of the normal noise distribution.  

Examples of distributions that fall within the ordinary smooth family are the Laplace, gamma and 
exponential. Both the gamma and exponential densities have been employed in stochastic frontier applications. The 
most common distribution assumed for inefficiency in stochastic frontier model is the truncated normal distribution 
(however, this largely appears to be an assumption of convenience). This class of densities is not ordinary smooth 
and is excluded by Assumption 3.3. However, our requirement for the density to belong to the class of ordinary 
smooth densities is for excluding the non-identified case of a normal– normal composed error.  

Assuming that the v random variates are from the normal family guarantees that they possess a nonzero 
characteristic function everywhere. Under Assumptions 3.2 and 3.3, the Fourier inversion formula identifies the first 
derivative of the distribution of u, which equals the density of u, 
 
 
 
Where           , see Lukacs (1968, p. 14). Meister (2006) has shown that to estimate σ2 one loses the ability to 
estimate         uniformly consistently. He shows that one can estimate         semi-uniformly consistently in the sense 
that for a given density in          a deconvolution estimator is uniformly consistent, but not uniformly consistent over 
all densities within       . This is the price one pays by not knowing the variance. See Meister (2003) for more on 
concepts related to semi-uniform consistency. 
 If he were known we could, using Eq. (4), recover the density of u, but it is not, so we rely on its empirical 
characteristic function, 
 
 



 
 

Unfortunately,    is unobserved in (2), but we can estimate it by consistently estimating   . That is, for some 
consistent estimate     , define residuals                        The precise nature of the consistent estimate,   , is discussed 
later. We will use the empirical characteristic function of the residuals which is defined as 
 
 
 

Replacing                        in Eq. (4), does not ensure that the integration will exist, so we convolute the 
integrand with a smoothing kernel.3 Define a random variable   with the usual Parzen (1962) kernel density        and 
corresponding (invertible) characteristic function          .The characteristic function,         , must have finite support 
to ensure that the integration exists and that the resulting estimate represents a density function. 
 Using                                                                our estimator of the density of u is, 
 
 
 
 
where the limits of integration are a function of a sequence of positive constants                 which represent the 
degree of smoothing, while                        also a sequence of constants. The variance estimator is defined as  
 
 

 

where                                                              .4  Here                                  are arbitrary. They should correspond to 
the parameters of the true density in 3.3, however, Meister (2006) shows that inappropriate choices of these 
constants have negligible effect on the performance of the estimator.  

To show that the unknown variance deconvolution estimator retains its asymptotic properties when the 
composed error is estimated we provide two additional conditions that will be useful in the Lemmas and Theorem to 
follow. 
 Assumption 3.4 The distribution of x has bounded support. 

Assumption 3.5 Our estimator of                                   . That is,                                             , for an 
estimator      . 

Assumption 3.4 follows Horowitz and Markatou (1996) while Assumption 3.5 guarantees that the random 
sampling error between the composed errors and the estimated ones is asymptotically negligible. Equation (2) can   
be      -consistently estimated with Ordinary Least Squares (OLS) if u has zero mean. If not, then any intercept in the 
parameter vector,    , cannot be consistently estimated, and the target density, u, can only be estimated up to location. 
We discuss this at length in the sequel.  

The following lemmas will be used to establish semi-uniform consistency of         . 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

                                                           
3 See Stefanski and Carroll (1990). 
4 Meister (2006) introduces this truncation device on the variance estimator, however, as the sample size grows this truncation becomes 
irrelevant. 



 
 

Notice the distinction between   in Assumption 3.2 and    above. The latter is the family of normal 
distributions that involves an upper bound on the variance and is a subset of the former.5 It turns out that the bound 
on B and the first integral of the bound on E converge slowly and determine the convergence rates of the estimator. 
Since these bounds are identical to those of Meister (2006), the convergence rates are also identical. The other 
components of the bound (V1, V2, and the second integral in the bound on E) all involve an inverse power of n and 
converge relatively quickly. The V2 component of the bound does not appear in the bound of Meister (2006) and 
arises from the estimation of the regression function. Clearly, its bound converges faster than that of V1. The second 
integral on the bound of E is identical to that of Meister (2006), but the estimation of the regression function causes 
ours to converge more slowly. Ultimately, this is unimportant as there is an inverse n that dominates this component 
as we shall see in the next lemma.  

B is a bias component of the estimator, and V1 and V2 are variance components, the bounds of which exhibit 
the usual bias-variance trade-off in non-parametric density estimation. As the bandwidth goes to zero, the bound on 
the bias (B) is decreasing, while those on V1 and V2 are increasing. Of course, the inverse n in the bounds on V1 and 
V2 dominate and cause these terms to go to zero. The E is a hybrid bias-variance term. The second integral of its 
bound behaves like a variance, while the first integral behaves like a bias-variance hybrid. It is ultimately decreasing 
in the bandwidth like a variance, but it does not rely specifically on an inverse n for its convergence, rather it 
depends on the tails of the characteristic function as well shall see. 

 
 
 
 

 
 

Given that we have to replace e with an estimate, our lemma differs from Meister (2006) through the 
addition of k2

 n. However, the presence of the inverse n dominates the logarithmic structure of kn. Therefore, the 
increase in this bound over Meister’s will not affect the optimal rates of convergence in the following theorem. This 
is to be expected since the convergence rates for deconvolution estimators are extremely slow. In fact, it is possible 
to take our analysis a step further and allow for our unknown regression function to be estimated nonparametrically 
since the convergence rates here are still polynomial in n. 
 

Lemmas 3.1 and 3.2 can be used to show 
 
 
 
 
 
 
 
 
 
 
The rates here are identical to those found in Meister (2006) and show the difficulty of deconvolution with 

normal error.6 All of the rates, regardless of     , are powers of logarithmic and iterated logarithmic terms of the 
sample size. These rates are, however, optimal for deconvolution with normal measurement error (see Carroll and 
Hall 1988). 

It is worth mentioning again that the reason we achieve the Meister (2006) rates is that the residuals 
converge in distribution faster than the density deconvolution estimator converges. This happens because the terms 
affecting the speed of convergence of our estimator depend on B and the first integral of the bound on E in Lemma 
3.1. However, the residuals only show up in the additional component of the bound on V and the second integral of 
the bound on E. Both of these terms contain a 1/n which allows them to go to zero faster than the remaining terms 
on the upper bound of the MISE. Thus, even though we have to estimate the errors,      -consistent estimation 

                                                           
5 This bounding of the variance in the class of normal distributions is what leads to semi-uniform consistency as opposed to uniform consistency. 
That is, uniform consistency only holds for this bounded class. 
6 Our rates are slightly different that those in Meister (2006), Theorem 2 to correct for a typo there. 



 
 

guarantees a semi-uniformly consistent estimator. This is essentially what occurs in the deconvolution estimator of 
Horowitz and Markatou (1996) who also consider deconvolution in a regression context. 

If one were to assume an ordinary smooth distribution for v (such as Laplace or twice convolved Laplace) 
then the rates would be polynomials of the sample size which are noticeably faster. As Meister (2004b) has shown, it 
may prove fruitful to perform deconvolution under the assumption of Laplacian error as the loss associated with 
assuming normal measurement error, when in fact it should be Laplacian, is finite.7 However, assuming normal 
measurement error in the presence of Laplace error results in infinite loss. That is, if the true measurement error is 
Laplace, but one erroneously performs deconvolution assuming that the measurement error is normal, then the MISE 
goes to infinity as the sample size increases.  

 
4 Performance of the method 

4.1 Small sample properties 
 We draw from several other deconvolution simulation studies to examine the small sample properties of 
our estimator.8 We consider sample sizes of 200 and 1,000. 
Our model is 

 
The xis are generated from a standard normal. The uis are generated from the two times self-convoluted, zero-mean 
Laplace density.9 To determine the impact of the noise variance we generate vi from a zero-mean normal density 
with variance equal to 1 or 4. This implies that our signal to noise ratio is either 1 or 0.25.  

Figures 1, 2, 3, 4 show the results for four simulations under each setting. The dotted line is the true twice 
convolved Laplacian density labelled Actual in the legends), the solid line is the Meister (2006) estimator using  
(labelled M in the legends), and the dashed line is the estimator discussed in this paper using  (labelled ME in the 
legends). We can see that both our estimator and the Meister estimator provide a similar estimate of the density.  

Figure 1 shows four individual runs for n = 200 and variance equal to 1. The estimated variances using the 
known variances are {0,0,0,0} and {0,0,0,0.229} using the estimated residuals. In Fig. 2 we have n = 200 but with 
measurement error variance equal to 4. Again, we see the fit of both estimates is similar but poor relative to those in 
Fig. 1 due to a decrease in the signal to noise ratio. The estimated variances in this setting are {0,0.390,0.417,0} and 
{0,0.417,0.258,0} for the known and estimated residuals, respectively.  
Performing this analysis with a sample size of 1000 further illustrates the superiority of the √𝑛 prate of convergence 
of the residuals as opposed to the logarithmic rates for the deconvolution density estimator. In Fig. 3 we have 
measurement error variance of 1 and the estimated variances are {0,0.227, 0.141, 0} and {0,0.330,0.186,0} for the 
known and estimated errors, respectively. The estimators are indistinguishable. Moving to the lower signal to noise 
ratio setting with measurement error variance equal to 4, we see that the fit of both estimators has degraded and yet 
they remain almost identical throughout the range of the simulated data. Here our estimated sets of variances are {0, 
0.295, 0, 0.042} and {0,0.418,0,0} for the known and estimated errors, respectively.  

Notice that there is a high occurrence of zero estimates for the unknown variance. This is an unresolved 
issue for these estimators. Also, the density estimates can be negative in certain regions and tend to fit the target 
density better in the tails than in the center of the distribution where a majority of the mass is present. These are 
unavoidable characteristics of deconvolution estimators. Also, these pictures depict a set of four runs and therefore 
are likely to be impacted by random sampling.  

One point worth mentioning is that the variance estimate is impacted by the sample size as well as 
specification of C1 and   . Given a zero estimate of the variance, a procedure to make it minimally positive would be 
to change C1 and/or     until it becomes nonzero. Since these choices do not affect the asymptotic performance of the 
estimator, this seems a reasonable strategy. However, it is also worth mentioning that interest centers on the 
unknown density and not consistent estimation of the noise variance. Thus, the occurrence of a zero variance 
estimate is not too troubling. We mention that developing a positive variance estimate is a fruitful avenue for further 
research. 
 
4.2 Stochastic frontier application 

                                                           
7 Here loss is taken to be MISE. 
8 Meister (2006) and Stefanski and Carroll (1990). 
9 The standard Laplace density has the form L(x) = (2b)-1 e-|x|/b, where b is the scale parameter, while the twice convolved Laplace density iS                                                                                                       
            . We choose b so that this density has variance 1, which corresponds to b = 1. In this setting it is known that C1 = 1/4 
and     = 2. We are not concerned with C2 as it has no bearing on any calculations for the estimator.  



 
 

 A typical stochastic frontier model (e.g., Aigner et al. 1977) is given in Eq. (2), but with u < 0 for a 
production function or u [0 for a cost function. Given distributional assumptions on inefficiency, u (e.g., exponential 
or gamma), and on noise, v (e.g., normal up to parameters),    can be consistently estimated and used to calculate the 
conditional distribution of firm-level inefficiency, which is typically characterized by the empirical distribution of u 
conditional on    (e.g., Jondrow et al. 1982). While normality of v is widely accepted as plausible, the distribution of 
u has been debated in the literature (Greene 1990). Perhaps surprisingly little has been published on hypothesis 
testing of these distributional of choices (e.g., Wang et al. 2008). Our semi-uniformly consistent estimator of the 
distribution of u can provide insight into the shape of the distribution of u and help guide parametric choices. What 
follows is intended for readers familiar with the literature, a textbook treatment of which is provided in Kumbhakar 
and Lovell (2000). Applying the deconvolution estimator to the stochastic frontier model requires only some modest 
extensions to our main results. First, Assumptions 3.1 and 3.2 are standard in any parametric stochastic frontier 
model. However, if the distribution of u is truncated normal in the population (a typical assumption), then 
Assumption 3.3 is violated, and a consistent estimate of the distribution is not forthcoming. If the distribution is 
gamma or exponential (among others), 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 



 
 

 

 
then it is ordinary smooth and the assumption holds. Second, in a typical stochastic frontier model u has a non-zero 
mean, so OLS on Eq. 2 will be inconsistent for the regression intercept (violating Assumption 3.5) and will produce 
residuals: , where E(u) ≠ 0. Substituting    for    everywhere in Sect. 3, yields a consistent estimate of the 
distribution of                    , so the distribution of u can be estimated up to location. This is fine for purposes of 
trying to understand the shape of the distribution of u. Third, the deconvolution estimator assumes the distribution of 
u has support everywhere, but the assumptions of the stochastic frontier model imply that the distribution of u will 
have a jump discontinuity at u = 0. However, Hall and Simar (2002) develop a procedure for detecting this jump 
discontinuity, which occurs at -E(u) in the support of the distribution of u*. Therefore, their procedure can be used 
to estimate E(u), which allows relocation of the estimated distribution of u* to that of u.  
 The estimator proposed by Hall and Simar (2002) is quite intuitive. If we observed data generated by a 
convolution where one random variable has a jump discontinuity (as does our inefficiency variable),10 say 𝜇, while 
the other is continuous almost surely, then the point of this discontinuity causes a severe change in the derivative of 
the convoluted density. Define the ordered regression residuals,  then Hall and Simar propose to estimate 
the jump discontinuity by   

 

  
where  is a neighborhood around either the left or right tail of the distribution where the jump 
discontinuity exists. That is, while a local maximum of the derivative of the kernel density estimate can occur 
anywhere, Hall and Simar (2002) suggest explicitly looking in a region where the jump discontinuity is likely to 

                                                           
10 The jump discontinuity occurs due to the fact that no probability is assigned to points to the left of the boundary, assuming the boundary is a 
lower boundary 



 
 

occur. So, for a jump discontinuity appearing on the right hand side of the distribution (as in the production frontier 
setting) we search near the nth order statistic , whereas if the jump discontinuity appears on the left hand side of 
the distribution (as in the cost frontier setting) we search around the first order statistic . A kernel density 
estimator and its associated derivative is used to construct .  
 Hall and Simar (2002) show that as   . Notice that this bias does not diminish as the 
sample size increases. They provide conditions to further reduce the bias, however, unless one is willing to assume 
the the variance of the noise is diminishing as the sample increases, one can do no better than a biased estimate of 
the jump discontinuity. In simulations they show that the bias is actually quite small and so this estimator shows 
promise as a viable means of estimating the boundary of the distribution of u. Bandwidth selection for the kernel 
density estimate and the selection of the neighborhood are discussed in Hall and Simar (2002) and Delaigle and 
Gijbels (2006a, b).  
 The data come from Kumbhakar and Tsionas (2005) and are a random sample of 500 commercial banks 
taken from the commercial bank and bank holding company database managed by the Chicago Fed.11 The banks are 
observed over the 1996–2000 time period giving us 2,500 total observations (we ignore panel aspects of the data for 
our application).12 We have data on five outputs and five input prices. Our outputs are installment loans (Y1), real 
estate loans (Y2), business loans (Y3), federal funds sold (Y4) and other assets (Y5). The input variables are labor 
(W1), capital (W2), purchased funds (W3), interest-bearing deposits in total transaction accounts (W4) and interest-
bearing deposits in total non-transaction accounts (W5). We impose linear       homogeneity by normalizing cost and 
input prices by dividing by the price of input five. For simplicity we estimate a Cobb Douglas cost function as 
 
 
 
 
 
where T is a time trend and j indexes observations.  
 Ignoring the panel structure of the model and assuming that u is positive half normal and v is normal, we 
estimate Eq. (14) using maximum likelihood, yielding estimates for and   of 0.730 and 1.840, respectively (  
is the standard deviation of u prior to truncation below zero). The estimate of  implies an estimate for E(u) of 
1.468. Other than ignoring the panel structure, this is a typical stochastic frontier analysis (SFA). A plot of the 
assumed half normal density is the solid line (SFA) in Fig. 5. To implement the deconvolution estimator we estimate 
the model in (14) by OLS, which imposes no shape assumptions on the distributions of u or v. Selecting  = 1.5 and 
C1 = 3 and using the rule-of-thumb bandwidth of Meister (2006), the deconvolution estimator yields an estimate for 

 of 0.333 and returns the density of u* = u - E(u). Using the procedure of Hall and Simar (2002, p. 412) with a 
bandwidth of 0.256 we detect a jump discontinuity at u*= -0.3037, implying an estimate .13  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
11 The data are publicly available on Bill Greene’s webpage at http://pages.stern.nyu.edu/*wgreene/Econometrics/banks.xl. 
12 This is nearly as large as the sample of long-term daily saturated fat intake in women used in Stefanski and Carroll (1990), which had 2,888 
total observations. 
13 Hall and Simar (2002) point out that their estimator works well in low noise settings. An alternative would be to use the boundary estimator of 
Delaigle and Gijbels (2006a, b). 
 



 
 

 
 
  
 The jump discontinuity estimate is used to relocate the density of u* to that of u. Our estimate of the 
density of u is the dashed line (Deconvolution) is Fig. 5. Notice that it has a much thinner right-tail than the positive 
half normal density (solid line), and this is reflected in its lower estimated mean (compare to 0.3037 to 1.468 of the 
half normal).14 Visual inspection of the densities in Fig. 5 indicates that they are quite different (obviously a 
Kolmogorov-Smirnoff test could be preformed, but our purpose is simply to demonstrate the feasibility of the 
deconvolution estimator, so we did not do it). The observed differences in the densities suggests that a half normal 
assumption for this particular data set and model, may be incorrect. 
 

5 Conclusions 
 This paper proposes a semiparametric estimator for crosssectional error components models. Our estimator 
is  Semiparametric as it hinges on a distributional law for one of the components. This assumption is tempered by 
allowing for an unknown variance using the recent methods proposed by Meister (2006). Our finite sample results 
show that a √𝑛 estimator of the convolved errors does not degrade the consistency or the rates of convergence of the 
density estimate when compared to deconvolution based on direct observation. This is intuitive given that the errors 
are estimated at the parametric √𝑛 rate while deconvolution estimators typically possess a logarithmic rate. We have 
provided an application to the stochastic frontier model, a natural candidate for future empirical exercises. The 
utility of the density estimator to the stochastic frontier literature should be clear. Overall the possibilities for this 
estimator are multifarious. A test against known parametric densities and extensions to calculating conditional 
densities and expectations are worthwhile extensions of our results. Research in this area has been somewhat 
limited. See Wang, Amsler and Schmidt (2008) and Horrace (2009) for a test of correct specification in SFA models 
and Wang and Schmidt (2009) for insights into the distribution of inefficiency. As previously stated, developing a 
positive variance estimate is also an interesting extension of this work. 
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The first addend represents the bias, does not depend on the fact that the convoluted errors are estimated and can be 
bound as in Lemma 1 of Meister (2006). The second term can be split into two pieces, V1 and V2, where V1 is 
identical to V in Lemma 1 of Meister (2006) while V2 is the additional component of variance due to estimating the 

                                                           
14 The careful reader will recognize that our density estimate of u does not appear to integrate to one. This occurs for two reasons. First, there is a 
boundary bias which we are not correcting and second, the deconvolution density estimator is not guaranteed to be positive everywhere. 



 
 

composed errors. Our third term, which we call E can be bound almost as found in Lemma 1 of Meister (2006) but 
the form of the bound is more complicated due to the fact that the empirical characteristic function used to construct 
the variance of the normal contamination is constructed with  instead of .  
 We split the second addend into two parts (V1 and V2) and let 
  

 

 

 

 

 

 

 

 

 

 

The second addend is identical to Meister’s V and is bound above by: 
 
 

 
All that is left to consider is the first addend, which is the important difference between these results and Meister’s. 
Call this V2. Under Assumption 3.5 it has bound: 

 
 

 
Proof of Lemma 3.2: 
We can bound the term from above by two addends; we derive upper bounds for both of these 
addends. Since we are selecting an , we have that . Now 
 

 
 
where . The last inequality follows from the bounds on a characteristic function for a normally 
distributed random variable and the ordinary smooth characteristic function. Given the description of kn and dn 
above we know that . At this point we know a constant  (0,1) exists such that  
 

 



 
 

 

as in Lemma 2 of Meister (2006), and the first addend is bound as in our Lemma 3.1 by 

 
 
The term  can be bound in identical fashion.  
 
Proof of Theorem 3.1: 
Our proof follows Meister (2006) Theorem 2 except that in the corresponding max operators we have  
instead of  in the second argument. However, the presence of   makes these terms asymptotically 
irrelevant to the other arguments. We still have the three cases that Meister (2006) considers: (a) , (b)

, and (c) , so the theorem follows by the same arguments in Meister (2006). It turns out that for the 
case , the bias (B) dictates the uniform rate of convergence, while for the case  the first integral of 
the bound on E dictates the rates. 
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